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FAST COMMUNICATION

ON UNIFORM SECOND ORDER NONLOCAL APPROXIMATIONS
TO LINEAR TWO-POINT BOUNDARY VALUE PROBLEMS∗

QIANG DU† , JIWEI ZHANG ‡ , AND CHUNXIONG ZHENG§

Abstract. In this paper, nonlocal approximations are considered for linear two-point boundary
value problems (BVPs) with Dirichlet and mixed boundary conditions, respectively. These nonlocal
formulations are constructed from nonlocal variational problems that are analogous to local problems.
The well-posedness and regularity of the resulting nonlocal problems are established, along with the
convergence to local problem as the nonlocal horizon parameter δ tends to 0. Uniform second order
accuracy with respect to δ of the nonlocal approximation to the local solution, spatially in the pointwise
sense, can be achieved under suitable conditions. Numerical simulations are carried out to examine the
order of convergence rate, which also motivate further refined asymptotic estimates.

Keywords. nonlocal two-point boundary value problems; nonlocal operator and maximum prin-
ciple; nonlocal Dirichlet and Neumann-type problems with volume-constraints; local limit; the weak
regularity of nonlocal solutions.
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1. Introduction
Nonlocal models are becoming a rich research field, with connections to subjects

such as the peridynamical theory of continuum mechanics, nonlocal wave propagation,
and nonlocal diffusion process, see [3,7,17,24,25]. By utilizing the alternative integral-
type nonlocal operators to evade the explicit application of spatial derivatives, the ef-
fectiveness of nonlocal models has been demonstrated for complex processes involv-
ing singular solutions and anomalous behavior. For example, peridynamics has been
successfully used in simulating material singularities [1, 15, 18, 20], such as the crack
nucleation and growth, fracture and failure of composites, polycrystals and nanofiber
networks.

Different from local PDEs, nonlocal models associated with nonlocal diffusion and
nonlocal peridynamics studied in [7] often involve a horizon parameter δ to charac-
terize the range of nonlocal interaction. While nonlocal models are often used not as
approximations of local PDEs, it is still natural to ask, at least in simple benchmark
settings where local PDEs remain valid, whether or not the solutions of nonlocal analog
are consistent with solutions of classical PDEs when nonlocal effects vanish [6]. More
precisely, as the horizon parameter δ→0, whether the solutions of the nonlocal models
converge to that of the corresponding local PDE under suitable assumptions on the
kernel functions and the given data [7]. Such consistency is quite useful not only for
the modeling, but also the validation/verification of numerical simulations, which offer
confidence in capturing the underlying physics of nonlocal problems and demonstrating
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their mathematical meaning. Moreover, in cases that nonlocal models converge to a
corresponding limit, it is interesting to investigate what are the proper assumptions on
the data and solutions to ensure the optimal order of convergence. This is the main
task of this work.

On the continuum level, several techniques have been developed to investigate the
local limit, including Talyor expansions with sufficiently smooth solutions [17, 18] and
functional analytical means without extra regularity assumptions [13, 14]. In the dis-
crete level, a theory of asymptotically compatible schemes was proposed in [22, 23] to
guarantee the consistency of numerical schemes with the local limit as both mesh size
h and nonlocal parameter δ tend to zero. Meanwhile, the issue of consistency between
nonlocal models and local PDEs also arises in various studies of PDEs that utilize non-
local relaxations. A good example for the latter is the SPH method originally proposed
in [12] and [11] to simulate local continuum models. While a variety of studies on
the convergence of nonlocal continuum models to local limits have been carried out for
bounded domain problems [4,7,8,10,23,25], some issues still remain open. In particular,
it is desirable to see if there are some systematic relaxations of well-posed nonlocal mod-
els that can be high-order approximations, with respect to the horizon parameter δ, to
the local limit under minimal regularity assumptions and for various types of boundary
conditions or volume constraints.

Generically, nonlocal approximations to many familiar local differential operators,
in the free space, can be of second-order rate with respect to the horizon parameter δ
that measures the range of nonlocal interactions [9, 25]. This property becomes more
complicated to establish for problems defined on a bounded domain. The aim of this
paper is to present some formulations of linear nonlocal models such that their solutions
converge to those of limiting local BVPs, subject to various boundary conditions, in
a second-order rate with respect to parameter δ. The convergence order is measured
spatially in a pointwise sense, so that the rate remains uniform across the spatial domain.
To this end, we first introduce nonlocal variational problems with nonlocal Dirichlet
and Neumann-type constraints that are analogous to classical elliptic equations. After
establishing the well-posedness of these nonlocal problems, we investigate the regularity
of nonlocal solutions.

Specifically, under suitable assumptions that the source term and boundary data are
given as piecewise continuous and bounded functions, we show that nonlocal solutions
are generically only continuous and bounded. This weak regularity of nonlocal solutions
brings new challenge to the convergence order analysis of nonlocal models to their local
limit. To avoid extra regularity assumptions on the nonlocal solutions, we present,
for Dirichlet-type problems, the construction of the nonlocal boundary data using the
information at the boundary and the first-order derivatives of the limiting solution to
local BVPs. Such a construction is reminiscent of the auxiliary function approach used
in [21] but with new derivations.

For nonlocal Neumann-type data, if we also apply the nonlocal maximum principle
directly, the initial five terms of Taylor expansion of the solution to local BVPs are
required to theoretically guarantee a pointwise second-order approximation. A compu-
tational finding from numerical experiments shows that the second-order convergence
rate is achieved even if only the initial two terms of Taylor expansion are used. To clar-
ify this last point, we give a detailed analysis to find out the underneath mathematical
theory. This interesting observation is again consistent to a similar claim stated in [21]
where a different justification is made based on the construction of a barrier function.
The formulation and approach presented in this work provide more direct and intuitive
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understanding.
The organization of the paper is as follows. In Section 2, the definition of nonlo-

cal operator is introduced associated with a prescribed primitive kernel function, and
the maximum principle of nonlocal operator is demonstrated as an analog of the local
second-order elliptic operator. In Section 3, the formulations of nonlocal models with
Dirichlet-type and Neumann-type nonlocal constraints are presented. In Section 4, we
show that the solutions of the resulting nonlocal problems converge to that of local BVPs
in a pointwise second-order rate as the horizon parameter δ tends to zero. In Section 5,
we present a refined asymptotic estimate that provides the mathematical clarification to
the experimental observations (described in Section 6) that not all information used for
imposing nonlocal Neumann boundary data in the Section 4 are required. This paper
ends with a conclusion.

2. Nonlocal operators and maximum principle
To streamline the notation, we first present the definition of some useful kernels.

Definition 2.1. A (one-dimensional) parent kernel function γ1 is defined as a
nonnegative function which satisfies the following properties:

• γ1(−s) =γ1(s) for all s∈R;

• γ1 is piecewise smooth on R;

• γ1(s)>0 for almost all s∈R with |s|<1;
• γ1(s) = 0 for all s∈R with |s|>1.

A (rescaled) kernel function γδ (with horizon δ>0) is determined by a rescaling of a
parent kernel γ1 through

γδ(s) =
1

δ3
γ1

(s
δ

)
.

In the above definition, by piecewise smooth, we mean that the function and its
derivatives are bounded except at a finite number of points.

Given an interval Ω = (a,b)⊂R (not necessarily bounded), for all δ< |Ω|/2, we in-
troduce the following notations:

Ω−δ = (a+δ,b−δ), Ω−,cδ = (a,a+δ)∪(b−δ,b),
Ω+
δ = (a−δ,b+δ), Ω+,c

δ = (a−δ,a)∪(b,b+δ).

We here list the definitions of some notations often used in the following.

• The space of bounded, continuous functions is denoted by

Cb(Ω) :={u∈C(Ω) :u is bounded}.

• For any non-negative integer m, we define

Cmb (Ω) :={u∈Cb(Ω) :∀ nonegative integer k≤m,u(k)∈Cb(Ω)}.

• A function u measurable on Ω is said to be essentially bounded on Ω if there
is a constant K such that |u(x)|≤K a.e. on Ω. The greatest lower bound of
such constants K is called the essential supremum of |u| on Ω, and is denoted
by esssupx∈Ω |u(x)|, i.e.

esssup
x∈Ω

|u(x)| := inf
µ(E)=0

{ sup
x∈Ω\E

|u(x)|},

where µ(E) is the Lebesgue measure of set E.



1740 ON UNIFORM SECOND ORDER NONLOCAL APPROXIMATIONS

Definition 2.2. Given an interval Ω = (a,b), a nonlocal diffusion operator with
horizon δ< |Ω|/2 associated with a prescribed parent kernel function γ1 is defined as the
following linear operator

LΩ,δu(x) =

∫
Ω

[u(x)−u(y)]γδ(x−y)dy, ∀x∈Ω. (2.1)

By Young’s inequality for integral operators and the assumption on the kernel that
γ1∈L1, we have the following result.

Lemma 2.1. The linear mapping LΩ,δ is bounded from L2(Ω) to L2(Ω).

The nonlocal operator considered previously has a close connection with local differ-
ential operators [6]. Actually, given a function u∈C4

b (Ω+
δ ), for any x∈Ω with δ< |Ω|/2,

it holds that

LΩ+
δ ,δ
u(x) =

1

δ3

∫
Ω+
δ

[u(x)−u(y)]γ1

(
x−y
δ

)
dy

=
1

2δ2

∫ 1

−1

[2u(x)−u(x+sδ)−u(x−sδ)]γ1 (s)ds

=
1

2

∫ 1

−1

2u(x)−u(x+sδ)−u(x−sδ)
s2δ2

s2γ1 (s)ds

=LΩ,0u(x)+O(δ2),

where we have defined

σ=
1

2

∫ 1

−1

s2γ1(s)ds>0, LΩ,0u(x) =−σd
2u(x)

dx2
. (2.2)

This implies that acting on the smooth functions suitably away from the boundary,
the nonlocal operator converges to the local differential operator with a second order
rate by taking the horizon δ as a small asymptotic parameter.

Analogous to local elliptic differential operators, nonlocal operators may also admit
the maximum principle. For example, we have

Theorem 2.1. Let Ω = (a,b) be a bounded interval, and u a piecewise smooth function
satisfying u|Ω∈Cb(Ω) and u|Ω+,c

δ
∈Cb(Ω+,c

δ ) for some δ< |Ω|/2. Then the following

statements are valid:

(1) LΩ+
δ ,δ
u|Ω∈Cb(Ω) and LΩ+

δ ,δ
u|Ω+,c

δ
∈Cb(Ω+,c

δ );

(2) if LΩ+
δ ,δ
u|Ω≤0, then esssupΩu≤ esssupΩ+,c

δ
u;

(3) if LΩ+
δ ,δ
u|Ω∪(b,b+δ)≤0, then esssupΩ∪(b,b+δ)u≤ esssup(a−δ,a)u.

Proof. The first statement is obvious according to the definition of the primitive
kernel function γ1 and the definition of the nonlocal operator LΩ+

δ ,δ
, see (2.1). In the

sequel we merely prove the third statement, since the proof of the second statement
is actually analogous but simpler to that of the third statement. Let us consider the
following case first:

LΩ+
δ ,δ
u|Ω∪(b,b+δ)≤−σ∗<0, (2.3)

where σ∗ is an arbitrary positive number. If

esssup
Ω∪(b,b+δ)

u> esssup
(a−δ,a)

u,
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then for all ε>0, there exists a continuous point x∗=x∗(ε)∈Ω∪(b,b+δ), such that

u(x∗)−u(y)≥−ε, a.e. ∀y∈Ω+
δ .

Therefore, it holds that

LΩ+
δ ,δ
u(x∗) =

∫
Ω+
δ

[u(x∗)−u(y)]γδ(x−y)dy≥−2ε

∫ δ

0

γδ(s)ds.

Due to (2.3), this is impossible if we set

ε=
σ∗
2

(∫ δ

0

γδ(s)ds

)−1

.

In the general case, let us put

φδ(x) = (x−b−δ)2. (2.4)

Since for all x∈Ω∪(b,b+δ), it holds that

LΩ+
δ ,δ
φδ(x) =

∫ min(δ,b+δ−x)

−δ
[φδ(x)−φδ(x+s)]γδ(s)ds

=−
∫ min(δ,b+δ−x)

−δ
[s2 +2s(x−b−δ)]γδ(s)ds

≤−σ−(x−b−δ)
∫ min(δ,b+δ−x)

−δ
sγδ(s)ds≤−σ,

with an arbitrary ε>0, we have

LΩ+
δ ,δ

(u+εφδ)≤−εσ<0.

By the previous argument, we have

esssup
Ω∪(b,b+δ)

(u+εφδ)≤ esssup
(a−δ,a)

(u+εφδ).

Sending ε to zero, we finish the proof.

We note that although maximum principles are known to be valid and have been
used for various scalar nonlocal equations [21,22], the weak version shown in the above
requires only piecewise continuity of the solution which could be very fitting to situations
where nonlocal models might be applicable.

Next, we state the pointwise a priori estimates in a precise form to distinguish them
from the local counterpart.

Theorem 2.2. Let Ω = (a,b) be a bounded interval, and u a piecewise smooth function
satisfying u|Ω∈Cb(Ω) and u|Ω+,c

δ
∈Cb(Ω+,c

δ ) for some δ< |Ω|/2. Then there exists a

constant c>0, independent of u but depending on |Ω|, such that

‖u‖∞,Ω≤‖u‖∞,Ω+,c
δ

+c‖LΩ+
δ ,δ
u‖∞,Ω, (2.5)

‖u‖∞,Ω∪(b,b+δ)≤‖u‖∞,(a−δ,a) +c‖LΩ+
δ ,δ
u‖∞,Ω∪(b,b+δ), (2.6)
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‖u‖∞,Ω∪(a−δ,a)≤‖u‖∞,(b,b+δ) +c‖LΩ+
δ ,δ
u‖∞,Ω∪(a−δ,a). (2.7)

Proof. We only prove (2.6). Set

v±=±u+
1

σ
‖LΩ+

δ ,δ
u‖∞,Ω∪(b,b+δ)φδ,

where σ is given in (2.2) and φδ is defined as in (2.4), then we have

LΩ+
δ ,δ
v±=±LΩ+

δ ,δ
u+

1

σ
‖LΩ+

δ ,δ
u‖∞,Ω∪(b,b+δ)LΩ+

δ ,δ
φδ≤0.

Applying Theorem 2.1, we derive

esssup
Ω∪(b,b+δ)

v±≤‖u‖∞,(a−δ,a) +
1

σ
‖LΩ+

δ ,δ
u‖∞,Ω∪(b,b+δ) max

(a−δ,a)
φδ.

Therefore, we have

‖u‖∞,Ω∪(b,b+δ)≤maxv±+
1

σ
‖LΩ+

δ ,δ
u‖∞,Ω∪(b,b+δ) max

Ω+
δ

φδ

≤‖u‖∞,(a−δ,a) +
2

σ
‖LΩ+

δ ,δ
u‖∞,Ω∪(b,b+δ) max

Ω+
δ

φδ.

The inequality (2.7) can be derived similarly. This ends the proof.

We note that the contribution of the nonlocal boundary terms is over regions of
nonzero volume to the bounds on the right-hand sides of (2.5) and (2.6). This is a
particular feature of nonlocal problems.

3. Nonlocal problems on bounded domain
In this section, we formulate variational problems associated with the nonlocal

operator LΩ+
δ ,δ

. To achieve this, we recall the boundary value problems of local operators

first, then present the nonlocal analog. The formulation of nonlocal Dirichlet-type
problems is similar to that in [13], while the one involving Neumann-type data is similar
to that in [14, 21]. In comparison, we propose more careful treatment of the boundary
data to achieve higher order consistency to the local limit. Additional references and
more detailed discussions on nonlocal problems can be found in [5–7].

3.1. Local BVPs. Let Ω = (a,b) be a bounded interval. Given a source function
f ∈L2(Ω) and two boundary values u0 and u1 at the boundary points a and b, the
classical Dirichlet principle reads as:

JD0 (u) = inf
{v∈H1(Ω), v(a)=u0, v(b)=u1}

JD0 (v), (3.1)

where

JD0 (v) =
1

2
(σ∇v,∇v)Ω−(f,v)Ω, ∀v∈H1(Ω). (3.2)

The weak form of (3.1) is the following:

Find u∈H1(Ω) with u(a) =u0, u(b) =u1, s.t.

(σ∇u,∇v)Ω = (f,v)Ω, ∀v∈H1
0 (Ω).

(3.3)
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The strong form of (3.1) is to find u∈H2(Ω) such that

LΩ,0u=f in Ω,

u(a) =u0, u(b) =u1,
(3.4)

where the local operator LΩ,0 is defined as in (2.2). It is known that the problem (3.4)
admits a unique solution for f ∈L2(Ω), and its regularity can be raised to Cm+2

b (Ω) if
f ∈Cmb (Ω) for some m≥0.

On the other hand, given a source function f ∈L2(Ω) and two boundary data u0

and ũ1 at the two boundary points a and b, the variational form of the mixed BVP
reads as:

JN0 (u) = inf
{v∈H1(Ω), v(a)=u0}

JN0 (v), (3.5)

where

JN0 (v) =
1

2
(σ∇v,∇v)Ω−(f,v)Ω− ũ1v(b), ∀v∈H1(Ω). (3.6)

The weak form of (3.5) is the following:

Find u∈H1(Ω) with u(a) =u0, s.t.

(σ∇u,∇v)Ω = (f,v)Ω + ũ1v(b), ∀v∈H1(Ω) with v(a) = 0.
(3.7)

The strong form of (3.5) is to find u∈H2(Ω), such that

LΩ,0u=f in Ω,

u(a) =u0, σu′(b) = ũ1.
(3.8)

Again, it is known that the mixed BVP (3.8) admits a unique solution for all f ∈L2(Ω),
and its regularity can be raised to Cm+2

b (Ω) if f ∈Cmb (Ω).

3.2. Nonlocal constrained value problems. Now let us consider the formu-
lations of nonlocal problems with nonlocal constraints as discussed in [7]. Given two
bounded domains Ω1 and Ω2, let us introduce

AδΩ1,Ω2
(u,v) =

1

2

∫
x∈Ω1

∫
y∈Ω2

[u(x)−u(y)][v(x)−v(y)]γδ(x−y)dydx. (3.9)

This is a symmetric nonnegative definite bilinear form on L2(Ω1)×L2(Ω2). Besides, it
holds that

AδΩ1,Ω2
=AδΩ2,Ω1

. (3.10)

Now, given a source function f ∈L2(Ω) and a nonlocal boundary data g∈L2(Ω+,c
δ ),

by replacing the quadratic term in (3.2) with Aδ
Ω+
δ ,Ω

+
δ

(v,v)/2, we formulate the varia-

tional form of nonlocal Dirichlet constrained value problems (CVP) as:

JDδ (u) = inf
{v∈L2(Ω+

δ ), v=g on Ω+,c
δ }
JDδ (v), (3.11)

where

JDδ (v) =
1

2
Aδ

Ω+
δ ,Ω

+
δ

(v,v)−(f,v)Ω, ∀v∈L2(Ω+
δ ). (3.12)
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The weak form of (3.11) is the following:

Find u∈L2(Ω+
δ ) with u=g on Ω+,c

δ , s.t.

Aδ
Ω+
δ ,Ω

+
δ

(u,v) = (f,v)Ω, ∀v∈L2
c(Ω

+,c
δ ),

(3.13)

where we have set the constrained test space as

L2
c(Ω

+,c
δ ) ={v∈L2(Ω+

δ ) :v= 0 in Ω+,c
δ }. (3.14)

The strong form of (3.11) is to find u∈L2(Ω+,c
δ ), such that

LΩ+
δ ,δ
u=f in Ω,

u=g on Ω+,c
δ .

(3.15)

The need to impose constraint of u on a region Ω+,c
δ (the so-called interaction domain

and often denoted as ΩI) of nonzero measure is a character of the nonlocal model,
see [5–7] for more discussions.

On the other hand, given a source function f ∈L2(Ω) defined on Ω, nonlocal bound-
ary data functions g∈L2(a−δ,a) and w∈L2(b,b+δ) defined in regions of nonzero vol-
ume, by replacing the quadratic term in (3.6) with Aδ

Ω+
δ ,Ω

+
δ

(v,v)/2, and the term ũ1v(b)

with (w,v)(b,b+δ), we formulate the variational form of nonlocal mixed CVP as:

JNδ (u) = inf
{v∈L2(Ω+

δ ), v=g in (a−δ,a)}
JNδ (v), (3.16)

where

JNδ (v) =
1

2
Aδ

Ω+
δ ,Ω

+
δ

(v,v)−(f,v)Ω−(w,v)(b,b+δ), ∀v∈L2(Ω+
δ ). (3.17)

By defining a constrained test space accordingly,

L2
n(Ω+,c

δ ) ={v∈L2(Ω+
δ ) :v= 0 in (a−δ,a)}, (3.18)

the weak form of (3.16) can be stated as follows:

Find u∈L2(Ω+
δ ) with u=g in (a−δ,a), s.t.

Aδ
Ω+
δ ,Ω

+
δ

(u,v) = (f,v)Ω +(w,v)(b,b+δ), ∀v∈L2
n(Ω+

δ ).
(3.19)

The strong form of (3.16) is to find u∈L2(Ω+
δ ), such that

LΩ+
δ ,δ
u=f in Ω,

LΩ+
δ ,δ
u=w in (b,b+δ),

u=g in (a−δ,a),

(3.20)

For more general discussions of formulations of nonlocal models on the bounded domain
like the ones above, we refer to [7, 14].
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3.3. Well-posedness of nonlocal CVPs.
Theorem 3.1. If f ∈Cb(Ω) and g∈Cb(Ω+,c

δ ), then the nonlocal Dirichlet CVP (3.13)
admits a unique solution u satisfying u|Ω∈Cb(Ω).

Proof. The problem (3.13) is equivalent to finding u∈L2(Ω+
δ ) such that u|Ω+,c

δ
=g

and it holds that

cδu(x)−
∫

Ω

u(y)γδ(x−y)dy=

∫
Ω+,c
δ

g(y)γδ(x−y)dy+f(x), (3.21)

where

cδ =

∫ δ

−δ
γδ(s)ds= δ−2

∫ 1

−1

γ1(s)ds.

The left-hand side of (3.21) determines a Fredholm operator of the second kind in L2(Ω),
see [16]. Therefore, to show the well-posedness of (3.13), it suffices to verify that the
kernel space is trivial with f = 0. To show the latter, let v∈L2(Ω+

δ ) lie in the kernel
space, then v|Ω+,c

δ
= 0, and it holds that

Aδ
Ω+
δ ,Ω

+
δ

(v,v) = 0.

This leads to v= 0 [25]. Note that for x∈Ω, it holds that

cδu−
∫

Ω

u(y)γδ(x−y)dy=

∫
Ω+,c
δ

g(y)γδ(x−y)dy. (3.22)

In the case that g∈Cb(Ω+,c
δ ), the right-hand side of (3.22) determines a function in

Cb(Ω). Since the solution u belongs to L2(Ω+
δ ), we know that the second term on the

left-hand side of (3.22) belongs to Cb(Ω). The proof is thus complete, considering that
cδ is a positive constant.

Theorem 3.2. If f ∈Cb(Ω), w∈Cb(b,b+δ), and g∈Cb(a−δ,a), then the nonlocal
mixed CVP (3.19) admits a unique solution u which satisfies u|Ω∈Cb(Ω) and u|(b,b+δ)∈
Cb(b,b+δ).

The proof of Theorem 3.2 is analogous to Theorem 3.1, and we omit it here. We
remark that, for points that are in (b,b+δ) in case of Neumann-type data, the first term
is no longer cδu(x) in (3.21) but another nonzero function of x times u(x).

In Section 5, we need to consider the following nonlocal Neumann CVP in a semi-
infinite interval: find u∈L2(−∞,δ), such that

L(−∞,δ),δu= 0 in (−∞,0),

L(−∞,δ),δu=w in (0,δ).
(3.23)

Theorem 3.3. If w∈Cb(0,δ) satisfies (w,1)(0,δ) = 0, then the nonlocal CVP (3.23)
admits a unique solution u∈L2(−∞,δ) which satisfies u|(−∞,0)∈Cb(−∞,0) and u|(0,δ)∈
Cb(0,δ).

Proof. The weak form of nonlocal CVP (3.23) is to find u∈L2(−∞,δ) such that

Aδ(−∞,δ),(−∞,δ)(u,v) = (w,v)(0,δ), ∀v∈L2(−∞,δ). (3.24)
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The left-hand side determines a Fredholm operator of the second kind [16] in L2(−∞,δ).
Considering (3.24), we know that the kernel space is trivial. By the Fredholm theory,
the problem (3.24) admits a unique solution in L2(−∞,δ) if w satisfies the compatibility
condition (w,1)(0,δ) = 0.

Next we prove the regularity. Confined to (0,δ), we have

u(x)

∫ δ

x−δ
γδ(x−y)dy−

∫ δ

x−δ
u(y)γδ(x−y)dy=w(x).

Since γδ is piecewise smooth, the right-hand side belongs to Cb(0,δ). The second
term on the left-hand side belongs to Cb(0,δ) since u|(0,δ)∈L2(0,δ). Therefore, we have
u|(0,δ)∈Cb(0,δ). Confined to (−∞,0), we have

u(x)

∫ δ

−δ
γδ(s)ds=

∫ x+δ

x−δ
u(y)γδ(x−y)dy.

The right-hand side belongs to Cb(−∞,0) since u∈L2(−∞,δ). Therefore, we have
u|(−∞,0)∈Cb(−∞,0).

4. Order of approximations of nonlocal CVPs to local BVPs
For a prescribed smooth function u, as shown earlier, the function Lδu converges

to L0u with a second order rate as δ→0, away from the boundary. In this section, we
investigate the asymptotic error of nonlocal CVPs. More precisely, we want to figure
out for what kind of nonlocal boundary data, solutions of nonlocal CVPs converge to
those of local BVPs with a second order asymptotic rate in δ.

Theorem 4.1. Let Ω = (a,b) be a bounded interval. Suppose u0∈C4
b (Ω) is the unique

solution to the following local Dirichlet boundary value problem:

LΩ,0u0(x) =f(x), x∈Ω, (4.1)

u0(a) =g0, u0(b) =g1, (4.2)

where f ∈C2
b (Ω). For all δ< |Ω|/2, let uδ be the unique solution to the following nonlocal

Dirichlet boundary value problem:

LΩ+
δ ,δ
uδ(x) =f(x), x∈Ω, (4.3)

uδ(x) =g0 +(x−a)
du0(a)

dx
, x∈ (a−δ,a), (4.4)

uδ(x) =g1 +(x−b)du0(b)

dx
, x∈ (b,b+δ). (4.5)

Then it holds that

‖uδ−u0‖∞,Ω =O(δ2).

Proof. Let us define

ũ0(x) =



4∑
m=0

(x−a)m

m!

dmu0(a)

dxm
, x∈ (a−δ,a),

u0(x), x∈Ω,
4∑

m=0

(x−b)m

m!

dmu0(b)

dxm
, x∈ (b,b+δ).
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Since ũ0∈C4
b (Ω+

δ ), we have

LΩ+
δ ,δ
ũ0 =LΩ,0u0 +O(δ2) =f+O(δ2), ∀x∈Ω.

Therefore, it holds for x∈Ω that

LΩ+
δ ,δ

(uδ− ũ0) =O(δ2).

Applying Theorem 2.2, we derive

‖uδ−u0‖∞,Ω≤‖uδ− ũ0‖∞,Ω+,c
δ

+O(δ2) =O(δ2).

This ends the proof.

Theorem 4.2. Let Ω = (a,b) be a bounded interval. Suppose u0∈C4
b (Ω) is the unique

solution to the following local mixed boundary value problem:

LΩ,0u0(x) =f(x), x∈Ω, (4.6)

u0(a) =g0, σu′0(b) = g̃1, (4.7)

where f ∈C2
b (Ω). For all δ< |Ω|/2, let uδ be the unique solution to the following nonlocal

mixed boundary value problem:

LΩ+
δ ,δ
uδ(x) =f(x), x∈Ω, (4.8)

uδ(x) =u0(a)+(x−a)
du0(a)

dx
, x∈ (a−δ,a), (4.9)

LΩ+
δ ,δ
uδ(x) =LΩ+

δ ,δ
ũ0(x), x∈ (b,b+δ), (4.10)

where

ũ0(x) =

4∑
m=0

(x−b)m

m!

dmu0(b)

dxm
. (4.11)

Then it holds that

‖uδ−u0‖∞,Ω =O(δ2).

Proof. Let us define

û0(x) =



4∑
m=0

(x−a)m

m!

dmu0(a)

dxm
, x∈ (a−δ,a),

u0(x), x∈Ω,
4∑

m=0

(x−b)m

m!

dmu0(b)

dxm
, x∈ (b,b+δ).

Then û0∈C4
b (Ω+

δ ). Therefore, it holds that

LΩ+
δ ,δ
û0(x) =LΩ,0u0(x)+O(δ2) =f(x)+O(δ2), ∀x∈Ω.

If x∈ (b,b+δ), then

LΩ+
δ ,δ
û0(x) =LΩ+

δ ,δ
ũ0(x)+O(δ2).
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Therefore, for x∈Ω∪(b,b+δ) we have

LΩ+
δ ,δ

(uδ− û0) =O(δ2).

Applying Theorem 2.2, we derive

‖uδ−u0‖∞,Ω =‖uδ− û0‖∞,Ω≤‖uδ− û0‖∞,(a−δ,a) +O(δ2) =O(δ2).

This ends the proof.

The result of the previous theorem, derived with a high order Taylor expansion of
the local solution, is not optimal. It turns out that sharper truncation error analysis
can be derived, see the construction of special barrier function in [21] and the refined
estimate of the residual terms in the next section for details.

5. Refined asymptotic estimate of Theorem 4.2
Numerical evidences presented in the next section show that to maintain the second-

order asymptotic convergence rate for the Neumann part of the boundary, only the terms
up to m= 1 in (4.11) are necessary. This is consistent with similar observations made
in [21]. Analysis given in [21] relies on careful examination of the appropriate barrier
function. In this section, we intend to clarify this point through similar calculations but
in more direct and straightforward fashion.

Firstly, we prove the following theorem. Before the next computation, we here con-
sider a special case that Ω+

δ = (a−δ,b+δ) with b= 0, and the results can be straightfor-
wardly extended to the more general case Ω+

δ = (a−δ,b+δ).

Theorem 5.1. Let Ω = (a,0) be a bounded interval. For all δ< |Ω|/2, let um,δ be the
unique solution to the following nonlocal mixed boundary value problem:

LΩ+
δ ,δ
um,δ(x) = 0, x∈Ω, (5.1)

um,δ(x) = 0, x∈ (a−δ,a), (5.2)

LΩ+
δ ,δ
um,δ(x) =LΩ+

δ ,δ
xm, x∈ (0,δ), (5.3)

where m is any integer not less than 2. Then it holds that

‖um,δ‖∞,Ω =O(δ2).

At the first glance, it does not seem possible to expect the conclusion in the Theorem
5.1, since for any x∈ (0,δ), we have

LΩ+
δ ,δ
xm=

∫ δ

x−δ
[xm−ym]γδ(x−y)dy

= δm−2

∫ 1

x̂−1

[x̂m− ŷm]γ1(x̂− ŷ)dŷ

= δm−2L(−1,1),1x̂
m=O(δm−2), x̂=

x

δ
.

Therefore, if we were to apply Theorem 2.2 directly, then we would only expect

‖um,δ‖∞,Ω =O(δm−2). (5.4)

In particular, it would appear that ‖u2,δ‖∞,Ω =O(1) at best.



Q. DU, J. ZHANG, AND C. ZHENG 1749

Before presenting the proof of Theorem 5.1, it is useful to derive the following
results.

Lemma 5.1. For any smooth function ϕ(x) that is also even, it holds that∫ δ

0

LΩ+
δ ,δ
ϕ(x)dx= 0.

Besides, for any strictly increasing function ϕ(x), it holds that∫ δ

0

LΩ+
δ ,δ
ϕ(x)dx>0.

Proof. A direct computation shows that∫ δ

0

LΩ+
δ ,δ
ϕ(x)dx

=

∫ δ

0

∫ δ

x−δ
[ϕ(x)−ϕ(y)]γδ(x−y)dydx

=

∫ δ

0

∫ δ

0

[ϕ(x)−ϕ(y)]γδ(x−y)dydx+

∫ δ

0

∫ 0

x−δ
[ϕ(x)−ϕ(y)]γδ(x−y)dydx

≡T1 +T2.

Obviously, by the antisymmetry of the integral in T1, we have T1 = 0. If ϕ is a strictly
increasing function, then T2>0. On the other hand, if ϕ is an even function, it holds
that

T2 =

∫ 0

−δ

∫ δ+y

0

[ϕ(x)−ϕ(y)]γδ(x−y)dxdy

=

∫ δ

0

∫ δ−y

0

[ϕ(x)−ϕ(−y)]γδ(x+y)dxdy

=

∫ δ

0

∫ 0

y−δ
[ϕ(−x)−ϕ(−y)]γδ(y−x)dxdy

=

∫ δ

0

∫ 0

y−δ
[ϕ(x)−ϕ(y)]γδ(y−x)dxdy=−T2,

which leads to T2 = 0. The proof is thus complete.

In the case that ϕ(x) =xm, with m being some positive odd integer, and recalling
the proof of the above lemma, we have∫ δ

0

LΩ+
δ ,δ
xmdx=

∫ δ

0

∫ 0

x−δ
[xm−ym]γδ(x−y)dydx

= δm−1

∫ 1

0

∫ 0

x−1

[xm−ym]γ1(x−y)dydx≡ δm−1cm.

Therefore, if we introduce

φm,δ(x) =


L(−∞,δ),δx

m, m≥2 even,

L(−∞,δ),δx, m= 1,

L(−∞,δ),δx
m−cmc−1

m−2δ
2L(−∞,δ),δx

m−2, m≥3 odd,

(5.5)
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we have ∫ δ

0

φm,δ(x)dx= 0, ∀m≥2. (5.6)

Note that the function φm,δ(x) admits the scaling property, i.e.,

φm,δ(x) = δm−2φm,1(x/δ), ∀m≥2. (5.7)

Instead of considering the problem (5.1)-(5.3), we consider (m≥1):

LΩ+
δ ,δ
ũm,δ(x) = 0, x∈Ω, (5.8)

ũm,δ(x) = 0, x∈ (a−δ,a), (5.9)

LΩ+
δ ,δ
ũm,δ(x) =φm,δ(x), x∈ (0,δ). (5.10)

In the case that m= 1, the function ṽ1,δ(x) = ũ1,δ(x)−(x−a) solves

LΩ+
δ ,δ
ṽ1,δ(x) = 0, x∈Ω, (5.11)

ṽ1,δ(x) =a−x, x∈ (a−δ,a), (5.12)

LΩ+
δ ,δ
ṽ1,δ(x) = 0, x∈ (0,δ). (5.13)

Applying Theorem 2.2, we have

‖ṽ1,δ‖∞,Ω =O(δ),

which leads to

‖ũ1,δ‖∞,Ω =O(1). (5.14)

For m≥2, let us consider the following semi-infinite domain problem:

L(−∞,1),1ψm(x) = 0, x∈ (−∞,0), (5.15)

L(−∞,1),1ψm(x) =φm,1(x), x∈ (0,1). (5.16)

Thanks to Theroem 3.3, there exists a unique solution ψm∈L2(−∞,1) independent
of δ, which satisfies ψm|(−∞,0)∈Cb(−∞,0). Then the function ṽm,δ(x) = δmψm(x/δ)−
ũm,δ(x) solves:

LΩ+
δ ,δ
ṽm,δ(x) = 0, x∈Ω, (5.17)

ṽm,δ(x) = δmψm(x/δ), x∈ (a−δ,a), (5.18)

LΩ+
δ ,δ
ṽm,δ(x) = 0, x∈ (0,δ). (5.19)

Applying Theorem 2.2, we have

‖ṽm,δ‖∞,Ω =O(δm), ∀m≥2.

This leads to

‖ũm,δ‖∞,Ω =O(δm), ∀m≥2.

Now we are ready to prove the theorem.
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Proof. (Proof of Theorem 5.1.) If m≥2 is an even integer, the theorem holds
since um,δ = ũm,δ. If m≥3 is an odd integer, it suffices to prove the following

‖um,δ‖∞,Ω =O(δm−1). (5.20)

Recalling the Definition (5.5) of φm,d, thanks to (5.14), we have

u3,δ = ũ3,δ+c3c
−1
1 δ2ũ1,δ =O(δ2).

The estimate (5.20) holds for m= 3. For each odd integer m>3, we have

‖um,δ‖∞,Ω =‖ũm,δ+cmc
−1
m−2δ

2um−2,δ‖∞,Ω
≤‖ũm,δ‖∞,Ω +‖cmc−1

m−2δ
2um−2,δ‖∞,Ω

=O(δm)+δ2O(δm−3) =O(δm−1).

Therefore, the estimate (5.20) holds by induction.

Based on the conclusion of Theorem 5.1, we immediately arrive at an improved
asymptotic estimate of Theorem 4.2 as follows.

Theorem 5.2. Let Ω = (a,b) be a bounded interval. Suppose u0∈C4
b (Ω) is the unique

solution to the following local mixed boundary value problem (4.6). For all δ< |Ω|/2, let
uδ be the unique solution to the following nonlocal mixed boundary value problem (4.11)
with

ũ0(x) =u0(b)+
du0

dx
(b)(x−b). (5.21)

Then it holds that

‖uδ−u0‖∞,Ω =O(δ2).

6. Numerical experiments
Above, we theoretically proved the uniform second order convergence, as δ→0, of

nonlocal CVPs to the local limit with our proposed nonlocal boundary data.
We now provide numerical examples to demonstrate the sharpness of our theoretical

analysis. We consider the kernel function γδ with δ∈ (0,1) given by

γδ(x,y) = 3δ−3χ[−δ,δ](x−y).

In all calculations, we use the linear finite element method by taking a sufficiently small
mesh size h, and consider the affect in the reduction of δ. In the situation of h� δ, we
can investigate the convergence properties of the nonlocal problem to the local problem
by taking δ→0, see [2,19,23]. In this situation, the theory developed in [22,23] ensures
that an asymptotically compatible scheme can numerically solve the nonlocal problem
such that its numerical solutions can correctly converge to those of the corresponding
local problem.

As what we will see later, the convergence has an optimal second order accuracy
with respect to the variable δ. This implies that the analysis of nonlocal boundary
value problems proposed here are valid. In the following, we respectively consider the
nonlocal CVPs with Dirichlet and mixed boundary conditions.
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6.1. Nonlocal Dirichlet CVP. Theorem 4.1 shows that the nonlocal problem
(4.3)-(4.5) converges to the corresponding local problem (4.1)-(4.2) as δ→0 in second
order. Two examples are provided to verify the theoretical analysis.

Example 6.1. To investigate the quantitative accuracy of our analysis in Theorem 4.1,
we construct an exact solution u(x) =x2 +x4 +x5 +x7 to the local problem (4.1)-(4.2) in
the computational domain (a,b) = (0,1). For the local problem, we have f(x) =−(42x5 +
20x3 +12x2 +2), u0(a) = 0 and u0(b) = 4. For the nonlocal problem, we consider two kind
of boundary conditions:

(1) The first kind of Dirichlet boundary condition (DBC1):

uδ(x) =u0(a), x∈ (a−δ,a), uδ(x) =u0(b), x∈ (b,b+δ).

(2) The second kind of Dirichlet boundary condition (DBC2):

uδ(x) =u0(a)+(x−a)
du0(a)

dx
, x∈ (a−δ,a),

uδ(x) =u0(b)+(x−b)du0(b)

dx
, x∈ (b,b+δ).

The first kind of boundary condition here means the boundary condition of nonlocal
problems over a layer with the width δ is extended by directly using the information of
boundary values of local problem. The second kind of boundary condition here means
the boundary condition of nonlocal problems over a layer with the width δ is extended by
using the information of both boundary values and derivative values of local problem, this
is the first order Taylor expansion. As what we can see in Theorem 4.1, the constructions
of boundary conditions above for nonlocal problems will lead to the first and second order
convergences with respect to horizon parameter δ. To demonstrate the analysis, in the
simulations we refine δ= 2−5,2−6,2−7,2−8,2−9 and use a spatial mesh size h= 2−13 that
can provide sufficient resolution. Table 6.1 shows the first and second order convergences
by using DBC1 and DBC2, respectively.

δ DBC1 order DBC2 order
2−5 2.366×10−1 – – 9.081×10−3 – –
2−6 1.166×10−1 1.02 2.264×10−3 2.00
2−7 5.784×10−2 1.01 5.651×10−4 2.00
2−8 2.881×10−2 1.01 1.412×10−4 2.00
2−9 1.437×10−2 1.00 3.532×10−5 2.00

Table 6.1. (Example 6.1) L∞-errors and convergence orders between nonlocal solutions and local
solutions by refining δ and fixing the mesh size h−13.

Example 6.2. We construct the exact solution of the local problem as u0(x) =
cos(πx)+sin(πx) over the computational domain [a,b] = [0,1]. For the local problem, we
have f(x) =−π2(cos(πx)+sin(πx)), u0(a) = 1 and u0(b) =−1. For the nonlocal prob-
lem, we investigate two kinds of boundary conditions DBC1 and DBC2 as shown in
Example 6.1. In the simulations we refine δ= 2−2,2−3,2−4,2−5,2−6 and fix the spatial
mesh size h= 2−13 as in the previous example. Again, Table 6.2 shows the first and
second order convergences with DBC1 and DBC2 respectively.

From Tables 6.1 and 6.2, we see that the boundary data play important roles in the
asymptotic convergence rate. That is, it is necessary to have suitable nonlocal constraints
(data) for nonlocal problems in order to lead to a second-order asymptotic convergence.
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δ DBC1 order DBC2 order
2−5 4.124×10−2 – – 1.175×10−3 – –
2−6 2.033×10−2 1.02 2.935×10−4 2.00
2−7 1.001×10−2 1.01 7.332×10−5 2.00
2−8 5.028×10−3 1.01 1.833×10−5 2.00
2−9 2.509×10−3 1.00 4.587×10−6 2.00

Table 6.2. (Example 6.2) L∞-errors and convergence orders between nonlocal solutions and local
solutions by refining δ and fixing the mesh size h−13.

6.2. Nonlocal mixed CVP. Directly using maximum principle, Theorem 4.2
shows that the nonlocal problem (4.8)-(4.10) converges to the local problem (4.6)-(4.7) as
δ→0 in the second-order rate, but it requires the fourth-order Taylor expansion for the
Neumann boundary data. In the following simulations, we implement the left Dirichlet
boundary condition by DBC2, and two kinds of Neumann boundary conditions, namely,
taking

LΩ+
δ ,δ
ũ0(x) =

∫ b+δ

x−δ
(ũ0(x)− ũ0(y))γ(x−y)dy, x∈ (b,b+δ)

with
(1) the first kind of Neumann boundary condition (NBC1): ũ0(x) is given by (5.21).
(2) the second kind of Neumann boundary condition (NBC2):

ũ0(x) =

2∑
m=0

(x−b)m

m!

dmu0(b)

dxm
.

As we can see in the following numerical results, both NBC1 and NBC2 result in the
second-order asymptotic convergence. This is explained in the refined asymptotic esti-
mate in Theorem 5.2. Two numerical examples are given to substantiate the analytical
studies.

δ NBC1 order NBC2 order
2−5 4.710×10−3 – – 1.165×10−3 – –
2−6 1.159×10−3 2.02 2.921×10−4 2.00
2−7 2.283×10−4 2.01 7.316×10−5 2.00
2−8 7.152×10−5 2.01 1.831×10−5 2.00
2−9 1.785×10−5 2.00 4.584×10−6 2.00

Table 6.3. (Example 6.3) L∞-errors and convergence orders between nonlocal solutions and local
solutions by refining δ and fixing the mesh size h−13.

Example 6.3. To investigate the quantitative accuracy of the asymptotic com-
patibility, we construct the solution u0(x) = cos(πx)+sin(πx) to local mixed CVPs
over the computational domain (a,b) = (0,1). For the local problem, we have f(x) =
−π2(cos(πx)+sin(πx)), u0(a) = 1 and u′0(b) =−π.

In the simulations, we refine δ= 2−2,2−3,2−4,2−5,2−6 and fix the spatial mesh size
h= 2−13. Table 6.3 shows the second-order convergence in the L∞-norm by using NBC1
and NBC2, respectively
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δ NBC1 order NBC2 order
2−5 2.190×10−2 – – 3.810×10−3 – –
2−6 5.700×10−3 1.94 9.520×10−4 2.00
2−7 1.452×10−3 1.97 2.380×10−4 2.00
2−8 3.664×10−4 1.99 5.958×10−5 2.00
2−9 9.204×10−5 1.99 1.497×10−5 1.99

Table 6.4. (Example 6.4) L∞-errors and convergence orders between nonlocal solutions and local
solutions by refining δ and fixing the mesh size h−13.

Example 6.4. We construct another exact solution of the local problem as u0(x) =
exp(2x)(cos(πx)+sin(πx)) over the computational domain [a,b] = [0,1]. For the local
problem, we have f(x) =−u′′0(x), u0(a) = 1 and u0(b) =−(2+π)exp(2). Again, in the
simulations, we refine δ= 2−2,2−3,2−4,2−5,2−6 and fix the spatial mesh size h= 2−13.
Again, Table 6.4 shows the second-order convergence with NBC1 and NBC2 respec-
tively.

From Tables 6.3 and 6.4, one can see that only the first order Taylor expansion for
the Neumann boundary data is required to produce the second-order convergence rate.
The detailed theoretical analysis is established in Section 5.

7. Conclusion

In this work, we carefully investigate the formulations of nonlocal constrained value
problems (CVPs) and their asymptotic order of convergence to the local limit. The
regularity and well-posedness of the resulting nonlocal CVPs are also studied for given
source terms and boundary data. Without any extra regularity assumption on nonlocal
solutions, we construct suitable boundary data so that nonlocal solutions converge to
the local solution in the second-order rate with respect to the horizon parameter δ. For
nonlocal Neumann boundary data, a refined asymptotic estimate is given to understand
the underlying mechanism. Numerical examples are reported to further verify the the-
oretical predictions. The findings and techniques presented in this work may be useful
in not only benchmark studies of nonlocal models and their local limits but also con-
structions of more accurate numerical discretizations to local PDEs based on nonlocal
integral relaxations to differential operators [8].
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