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PATTERNS OF COMPLEX OSCILLATIONS AND INSTABILITY IN
CHEMICAL REACTIONS∗

JINGHUA YAO† , DUCHAO LIU‡ , AND XIAOYAN WANG§

Abstract. We prove that the diffusive Brusselator model can support more complicated spatial-
temporal wave structure than the usual temporal-oscillation from a standard Hopf bifurcation. In our
current investigation, we discover that the diffusion term in the model is neither a usual parabolic
stabilizer nor a destabilizer as in the Turing instability of uniform state, but rather plays the role of
maintaining an equivariant Hopf bifurcation spectral mechanism. At the same time, we show that such
a mechanism can occur around any nonzero wave number and this finding is also different from the
former works where oscillations caused by diffusion can cause the growth of wave structure only at a
particular wavelength. Our analysis also demonstrates that the complicated spatial-temporal oscillation
is not solely driven by the inhomogeneity of the reactants.
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1. Introduction
In this paper, we study the oscillations and instabilities in reaction-diffusion

chemical systems from uniform states by rigorous mathematical analysis. The
investigation of reaction-diffusion system that forms a pattern from uniform state dates
back to the famous 1952 paper of A. Turing [20]. In this far-reaching work [20], Turing
did careful linear stability analysis for a reaction-diffusion system with two interacting
chemicals. The analysis in [20] had led to several important insights. One of the
most surprising insight is that diffusion in a reacting chemical system can actually be
a destabilizing factor that leads to instability. This is contrary to the intuition that
diffusion smooths out spatial variations of a concentration field. A second insight is
that the instability caused by diffusion can cause the growth of wave structure at a
particular wavelength (or equivalently at a particular wave number). Almost at the
same time as Turing, B. P. Belousov was observing oscillating chemical reactions in his
laboratory. However, around the middle of last century, the chemical oscillations were
thought to be inconsistent with the commonly accepted fact that a closed system of
mixed chemicals must relax to equilibrium monotonically. Therefore, Belousov’s work
was not quickly appreciated. It was only until A. M. Zhabotinsky’s systematic studies on
spatially uniform oscillations that people began to realize the possibility of the chemical
oscillations. During the period from late 60s to mid 70s, the works of G. Nicolis, R.
Lefever, I. Prigogine and their coworkers (see [9,11–13,17–19] and the references therein)
greatly enhanced our understanding of instability and oscillation phenomena in purely
dissipative system involving chemical reactions and diffusions. Since then, the studies
of chemical oscillation and instabilities have been attracting more and more attention
till today in both the chemical physics community and mathematical community.
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Motivated by the above mentioned developments from an applied point of view,
we study the so-called Brusselator model in chemical reaction and show that this
model supports more complicated oscillation wave structures than those previously
identified. From a mathematical point of view, we extend our recent systematic studies
on equivariant dynamics of nonlinear partial differential equations [14, 23, 24] to purely
parabolic systems in this work. More precisely, we are able to show that there are at least
two families of standing waves and a torus of standing waves bifurcated from a uniform
state for the Brusselator model in our setting. We also discover that the diffusion in our
study plays the role of maintaining an O(2)-Hopf bifurcation mechanism and it is not a
destabilizer in the sense of Turing. Meanwhile, the bifurcated wave structure can happen
at any nonzero wave number. Our analysis puts the existence of oscillation waves in the
chemical reaction systems on a solid theoretical foundation, complementing the former
studies in [19, 20] which are essentially linear stability analysis from a mathematical
point of view.

Now we describe the model we investigate, i.e., the Brusselator model. The
Brusselator model, also known as the trimolecular model, is a very famous model for the
study of cooperative processes in chemical kinetics. It is associated with the following
chemical reaction system [12,17–19,22]

Bin→X (1.1)

Ain+X→Y +D (1.2)

2X+Y →3X (1.3)

X→E (1.4)

in which Ain and Bin are reactants, D and E are products or output chemicals while
X and Y are intermediates.

Let [Q] be the concentration of a chemical Q. Then the partial differential equations
governing the evolution process, i.e., changes of [X] and [Y ], are given by the following
mathematical system [1,10,18,19,22] in the one spatial dimensional setting∂t[X] =k1[Bin]−k2[Ain][X]+k3[X]2[Y ]−k4[X]+D1∂

2
x[X],

∂t[Y ] =k2[Ain][X]−k3[X]2[Y ]+D2∂
2
x[Y ].

(1.5)

The positive constants ki (1≤ i≤4) are reaction rates in the four steps (1.1)-(1.4)
and the positive constants D1 and D2 are diffusion rates of X and Y respectively. The
evolution of [X] is caused by the joint effects of creation in (1.1) corresponing to the
term k1[Bin], annihilation in (1.2) corresponding to the term −k2[Ain][X], creation in
(1.3) corresponding to the term k3[X]2[Y ], annihilation in (1.4) corresponding to the
term −k4[X], and diffusion corresponding to the term D1∂

2
x[X] respectively. This is the

first equation in (1.5). The second equation in (1.5) can be interpreted similarly.
Introducing the notations U1 =U1(x,t) := [X], U2 =U2(x,t) := [Y ] and controlling

concentrations [Ain] and [Ain] so that [Ain]≡A and [Bin]≡B, we obtain the following
system of partial differential equations∂tU1 =k1B−k2AU1 +k3U

2
1U2−k4U1 +D1∂

2
xU1,

∂tU2 =k2AU1−k3U
2
1U2 +D2∂

2
xU2.

(1.6)



J. YAO, D. LIU AND X. WANG 1715

We can perform a nondimensionalization procedure for the above system by setting

u1 :=
(k3

k4

)1/2

U1,u2 :=
(k3

k4

)1/2

U2,α :=
(k3

k4

)1/2 k1B

k4
,

β :=
k2A

k4
, t̄ :=k4t, δ1 :=D1/k4, δ2 :=D2/k4,

and obtain a system on (u1,u2)T which takes on the following form after dropping the
bar in t̄: ∂tu1 =α−βu1 +u2

1u2−u1 +δ1∂
2
xu1,

∂tu2 =βu1−u2
1u2 +δ2∂

2
xu2.

(1.7)

We also remark that the most mathematically convenient way to obtain the form
of (1.7) from (1.6) is simply setting k2,k3 and k4 as unity and making the following
identifications:

U1→u1,U2→u2, A→β, k1B→α,D1→ δ1, D2→ δ2.

See also the treatment in [19].
In the current work, we rigorously prove that the chemical mechanism (1.1)-(1.4)

supports more complicated oscillations than those oscillations identified in the previous
works by showing here that (1.6) bifurcates both standing waves and rotating waves
when the parameter β varies around some specific values. Meanwhile, we verify that
these spatial-temporal oscillations are not induced by the inhomogeneity of u1 and u2

during the chemical reaction process.
Rearranging (1.7), we obtain the following system∂tu1 = δ1∂

2
xu1−(β+1)u1 +u2

1u2 +α,

∂tu2 = δ2∂
2
xu2 +βu1−u2

1u2,
(1.8)

in which δ1,δ2,α and β are positive parameters and u= (u1,u2)T is a function of space
and time.

We will assume x∈ [−π,π] and assume the state variable u satisfies periodic
boundary condition. Here the choice of a spatial length 2π is nonessential. Actually π
can be replaced by any positive number. For the choice of periodic boundary condition,
we follow [4] which is a natural boundary condition (see page 100 of [4]). In other words,
we consider the system (1.8) in the spatial domain T :=R/[−π,π].

Assume β1 = 1+α2 +δ1 +δ2 and µ=β−β1. Our main result is the following
theorem.

Theorem 1.1. System (1.8) can maintain an O(2)-Hopf bifurcation around the
uniform state (α, β1

α ) in the Hilbert space H1(T)×H1(T) when β varies around β1.
There are two families of bifurcated rotating waves and a torus of bifurcated standing
waves. The above wave structure can occur around any nonzero wave number. Moreover,
the mean-zero perturbations of the state variable from the corresponding uniform state
do not support such an oscillation wave structure.

Let z̄, Rez and Imz be the complex conjugate, real part and imaginary part of a
complex number z respectively. The following theorems explain the O(2)-Hopf dynamics
of the system (1.8) given by Theorem 1.1 more precisely.
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Theorem 1.2. System (1.8) admits a center manifold reduction with O(2) symmetry
near µ= 0. If the center space is parametrized by z1ξ1 +z2ξ2 + z̄1ξ̄1 + z̄2ξ2 with z1,z2∈C1

and

ω=
√
α2(1+δ1−δ2)−δ2

2 , ξ1 =eix
(

1
−α2−δ2+iω

α2

)
, ξ2 =e−ix

(
1

−α2−δ2+iω
α2

)
, (1.9)

then the dynamics on the center manifolds has the following form
d
dtz1 = iωz1 +z1P (|z1|2, |z2|2,µ)+ζ(z1,z2, z̄1, z̄2,µ),

d
dtz2 = iωz1 +z2P (|z2|2, |z1|2,µ)+ζ(z2,z1, z̄2, z̄1,µ),

(1.10)

in which P is a polynomial of degree p∈N in its first two arguments with coefficients
depending on µ, and has the form Pµ(|z1|2, |z2|2) =aµ+b|z1|2 +c|z2|2 +h.o.t where a, b,
c are given by Proposition 2.2 and ζ(z1,z2, z̄1, z̄2,µ) =O((|z1|+ |z2|)2p+3) satisfies

ζ(eiφz1,e
iφz2,e

−iφz̄1,e
−iφz̄2,µ) =eiφζ(z1,z2, z̄1, z̄2,µ).

To analyze the equivariant Hopf bifurcation dynamics of (1.10), it is sufficient to
consider the third order truncated system. The truncated system of (1.10) at order
three has the following form

dz1
dt = iωz1 +z1(aµ+b|z1|2 +c|z2|2),

dz2
dt = iωz2 +z2(aµ+b|z2|2 +c|z1|2),

(1.11)

which can be written as follows
d
dtz1 = (aµ+ iω)z1 +cz1(|z1|2 + |z2|2)+(b−c)|z2

1 |z1,

d
dtz2 = (aµ+ iω)z2 +cz2(|z1|2 + |z2|2)+(b−c)|z2

2 |z2.
(1.12)

The latter, i.e., (1.12), is in accordance with that of [16] by the following correspondence

aµ→λ, c→A, b−c→B. (1.13)

A sufficient condition for (1.12) to support both bifurcating standing waves and
bifurcating rotating waves (see [16]) consists of the following relations

ReB 6= 0,ReA+ReB 6= 0, 2ReA+ReB 6= 0. (1.14)

Concerning the stability of these bifurcated waves, we have the following schematic
graph Figure 1.1 from [16]: In the graph, “AR” and “BR” means the real parts of
A and B respectively. “TW” represents rotating wave and “SW” represents standing
wave. The two degeneracy (in the sense of (1.14)) lines in the box are given by the
equations ReA+ReB= 0 and 2ReA+ReB= 0. The solid (resp., dashed) lines indicate
(orbital) stability (resp., orbital instability) of bifurcated solutions.

Rephrasing these relations in terms of a,b,c for (1.11), the sufficient condition
becomes

Reb 6= 0,Re(b±c) 6= 0. (1.15)
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Fig. 1.1. O(2)-Hopf bifurcation diagram. Reproduced with permission from Jeff Moehlis
and Edgar Knobloch (2007), Scholarpedia, 2(9):2511.

Though the above condition is by no means necessary for the bifurcated nontrivial
solutions, we can verify it for some (hence uncountably many) specific parameters δ1,
δ2 and α. For our purpose, it suffices to show that there are parameter values such
that the above condition holds. Following [19], we choose δ1 = δ2 = 1, α= 2. Then we
have β1 = 7 and ω=

√
3 by (2.4) and (2.6). With these set of datum, we obtain Br = 18,

Bi=−33, Nr = 66, Ni= 12, Reb=− 17
8 . We also get C2r =−192, C2i= 72

√
3, P2(0) = 12,

Qr = 42, Qi=−20
√

3, Rec= 11
4 . For expressions of the above quantities, see Proposition

2.2. With the above choice of δ1,δ2 and α, we have Reb<0 and Reb+Rec= 5
8 >0.

In view of (1.13), these two relations correspond to the situation ReA+ReB<0 and
2ReA+ReB>0.

Discussion and Problems. Let us first comment on the reaction mechanism in the
model (1.1)-(1.4). The trimolecular reaction step, i.e., (1.3), arises in the formation of
ozone by atomic oxygen via a triple collision. It also arises in enzymatic reactions and
in plasma and laser physics [1,10,21] etc. It has been known [1,17,18] since late sixties
of last century that the problem of dealing with chemical reactions of systems involving
two variable intermediates (in the Brusselator model, X and Y ) together with certain
reactants whose concentrations are assumed to be controlled throughout the reaction
process is both significant in the investigation of chemical reaction mechanisms and
pragmatic in applications. As is well-known, a state of homogeneity and equilibrium is
quickly reached for most of the chemical reactions. While for the Brusselator model,
a distinct and surprising feature is that it supports very complicated oscillations and
produces chemical reaction instabilities. Our results are in accordance with the results
in the celebrated works [18, 19] on chemical reaction oscillations and instabilities. As
we always have Rea 6= 0 here, we only need Reb 6= 0 or Rec 6= 0, or Reb+Rec 6= 0 to
have spatial-temporal oscillational dynamics. Therefore, we have demonstrated more
complicated mechanism for chemical reaction oscillations and instabilities in the current
study. Motivated by our current study, a very intriguing problem would be rigorously
analyzing the mechanisms of oscillations and instabilities for the reaction schemes
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proposed in [19] at the nonlinear level. A related question is the construction of reaction
schemes which can exhibit equivariant oscillations or instabilities with respect to given
isometry groups. In other words, it would be interesting to further investigate the roles
of symmetry in chemical reactions.

2. Proof of main result
To show our main result, we will carry out a complete equivariant bifurcation

analysis. We divide this part into subsections to make the argument structure concrete.

2.1. Onset of bifurcation. Our goal in this section is to identify the onset of
possible bifurcations. The following analysis is essentially a linear stability analysis.

Introducing the new variable v= (v1,v2)T := (u1−α,u2− β
α )T , system (1.8) can be

written in terms of v as{
∂tv1 = δ1∂

2
xv1 +(β−1)v1 +α2v2 +2αv1v2 + β

αv
2
1 +v2

1v2,

∂tv2 = δ2∂
2
xv2−βv1−α2v2−2αv1v2− β

αv
2
1−v2

1v2,
(2.1)

which can be identified as an operator equation

∂tv=Lβv+R(v) (2.2)

with

Lβ =

(
δ1∂

2
x+β−1 α2

−β δ2∂
2
x−α2

)
,

R(v) =

(
2αv1v2 + β

αv
2
1 +v2

1v2

−2αv1v2− β
αv

2
1−v2

1v2

)
.

The Euclidean symmetry. The Equation (2.2) is equivariant under the Euclidean
group O(2), which can be easily observed due to the form of the equation and the
periodic boundary condition. Indeed, define the group actions R(φ) and S where
φ∈R1/2πZ as follows

R(φ)v(x) =v(x+φ), Sv(x) =v(−x).

It is obvious that S2 = Id. As only second order derivatives and constants are involved
in the operator Lβ , we have [Lβ ,S] = 0. Also, it is easy to verify that SR(φ) =R(−φ)S.
As there are no derivatives involved in the nonlinear term R(v), we also have [R,S] = 0
where [A,B] :=AB−BA is the commutator for two operators or functions A, B. We can
also easily observe that [R(φ),L] = 0 and [R(φ),R] = 0. Therefore, (2.2) is equivariant
with respect to the Euclidean group O(2).

Now we regard Lβ as a linear operator on the space L2(T)×L2(T) with domain
H2(T)×H2(T), i.e.,

Lβ :H2(T)×H2(T)⊂L2(T)×L2(T)→L2(T)×L2(T).

To identify the onset of bifurcation, we study the spectral equation Lβv=λv with
parameter β for λ∈C1.

By Fourier analysis, the spectra of Lβ are given by the eigenvalues of the matrices
Mn for n∈Z where

Mn=

(
−n2δ1 +β−1 α2

−β −n2δ2−α2

)
.
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This corresponds to seeking solutions v= (v1,v2) of the form v1 =
∑
n∈Zv

(n)
1 ein

2π
2π x=∑

n∈Zv
(n)
1 einx and v2 =

∑
n∈Zv

(n)
2 ein

2π
2π x=

∑
n∈Zv

(n)
2 einx where v

(n)
1 and v

(n)
2 are

complex numbers. Therefore, the matrices Mn have been indexed by wave numbers
n.

The characteristic equations of Mn are

Pn(λ,β) =λ2 +(β(n)−β)λ+γ(n)−n2δ2β (2.3)

with

β(n) = 1+α2 +n2(δ1 +δ2),

γ(n) =n2δ2 +n2δ1α
2 +n4δ1δ2 +α2.

We consider the dynamics of the system (1.8) when β varies around β(1). For
convenience, we will use the following notation

β1 :=β(1) = 1+α2 +δ1 +δ2. (2.4)

When the wave number n= 0, we have

P0(λ,β1) =λ2 +(1+α2−β1)λ+α2 =λ2−(δ1 +δ2)λ+α2.

Therefore, P0(λ,β1) has two roots with positive real parts (either a pair of complex
conjugate roots or two positive real roots).

Before we consider the contribution of nonzero wave numbers n, we remark that the
spectral analysis around the zero wave number has the following important consequence:

Proposition 2.1. There is no Turing instability for the uniform state (α, β1

α ), i.e.,
the diffusion terms are not a destabilizer in the sense of Turing.

Proof. By the definition of Turing instability for a uniform state, a Turing unstable
uniform state should be spectrally stable without diffusion and becomes unstable when
diffusion effects are taken into account. If there were no diffusion terms, the stability
of uniform state here is determined by the spectra of Lβ1 contributed by the wave
number n= 0. However, P0(λ,β1) has two roots with positive real parts. Therefore, the
conclusion of the proposition follows.

When the wave number n 6= 0, we first notice that β(±n) =β(|n|) and the latter is
strictly increasing as a function of |n|∈N. By elementary inequality, we know that

γ(n)−n2δ2β=n2δ2(1+α2 δ1
δ2

+n2δ1 +
α2

n2δ2
−β)

≥n2δ2(1+α2 δ1
δ2

+2

√
n2δ1

α2

n2δ2
−β)

=n2δ2

(
(1+α

√
δ1/δ2)2−β

)
.

Notice that the quantity in the bracket of the last line does not depend on the wave
number n.

In the following, we assume

β1< (1+α
√
δ1/δ2)2. (2.5)
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Then we know γ(n)−n2δ2β1>0 uniformly in n∈Z. In particular, when n=±1, we
have

δ2(1+α2 δ1
δ2

+δ1 +
α2

δ2
−β1) =α2(1+δ1−δ2)−δ2

2 >0.

When β=β1, both P1(λ,β1) and P−1(λ,β1) have the same pair of conjugate pure
imaginary roots ±iω with ω>0 given below

ω2 =α2(1+δ1−δ2)−δ2
2 . (2.6)

When β=β1, Pn(λ,β1) have no roots lying on the imaginary axis in the complex
plane for any wave number n with |n|≥2. This can be easily observed by checking the
coefficients of λ in the polynomials Pn(λ,β1).

For convenience, we will denote Pn(λ,β1) by Pn(λ) from now on. To sum up the
analysis above, we have identified the onset of an O(2)-Hopf bifurcation. More precisely,
the operator Lβ1

has a pair of pure imaginary eigenvalues ±iω when β=β1 under the
assumption (2.5). Due to the symmetry of the system (1.8), both eigenvalues double
and have geometric multiplicity two.

We are in a position to explain the role of diffusion terms for our study now: when
applied to a single wave einx with wave number n, the second order operator ∂2

x acts as
multiplication by −n2 on the wave, i.e., −n2einx; while for a nonzero wave number n,
we have n 6=−n, hence einx and e−inx produce independent single waves. Therefore, it
is the diffusion in system (1.8) that makes the O(2)-Hopf bifurcation spectral scenario
possible. It is important to notice this mechanism of diffusion here.

Examining the above analysis, we find that the O(2)-Hopf bifurcation mechanism
can be maintained around any nonzero wave number n. This is also in contrast to
the situation in the classical work of Turing where the instability caused by diffusion
can cause the growth of wave structure at a particular wavelength (or equivalently at a
particular wave number), i.e., the second insight mentioned in the introduction.

2.2. Spectral analysis. In this part, we will compute the center space of the
operator Lβ1

and prove a resolvent estimate which we will need to show the existence
of center manifolds later.

Now we proceed to compute the center space of Lβ1
in the space H2(T)×H2(T)

or equivalently L2(T)×L2(T) because of the finite dimensionality of the center space.
Due to group action and conjugacy, this is an easy task. Consider the case when wave
number n= 1. We shall seek solutions of the form ξ1 =eixV for the eigenvalue iω where
V ∈C2 is a complex vector. The equation Lβ1

ξ1 = iωξ1 reduces to an algebraic equation
on the complex vector V given below(

−δ1 +β1−1− iω α2

−β1 −δ2−α2− iω

)
V =

(
0
0

)
. (2.7)

As det

(
−δ1 +β1−1− iω α2

−β1 −δ2−α2− iω

)
=P1(iω) = 0, we can choose V as follows

V =

(
1

−α2−δ2+iω
α2

)
.

The corresponding eigenfunction to Lβ1
is

ξ1 =eix
(

1
−α2−δ2+iω

α2

)
.
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As [Lβ1 ,S] = 0, we know

ξ2 :=Sξ1 =e−ix
(

1
−α2−δ2+iω

α2

)
is also an eigenfunction of Lβ1

corresponding to the eigenvalue iω. Indeed, we have

Lβ1
ξ2 =Lβ1

Sξ1 =SLβ1
ξ1 =S(iωξ1) = iωSξ1 = iωξ2.

By conjugacy, we know that

ξ̄1 =e−ix
(

1
−α2−δ2−iω

α2

)
, ξ̄2 =eix

(
1

−α2−δ2−iω
α2

)
are also eigenfunctions of Lβ1

and they are associated with the eigenvalue −iω.
The indices will be important for the computations in determining the parameters

in the bifurcation dynamics. Here ξ1 and ξ2 are eigenfunctions associated with iω.
Hence ξ̄1 and ξ̄2 are eigenfunctions associated with −iω. Consequently, ξ1 and ξ̄2
are eigenfunctions associated with the Fourier mode n= 1 while their conjugates are
associated with the Fourier mode n=−1.

As we have identified the center space of Lβ1
, we parametrize the center space of

Lβ1
by using complex conjugate coordinates as follows

{z1ξ1 +z2ξ2 + z̄1ξ̄1 + z̄2ξ̄2 |z1,z2∈C1}. (2.8)

For later use, here we also compute a normalized dual eigenfunction of ξ1, i.e., an
eigenfunction ξ∗1 which is in ker(iω−Lβ1

)∗ such that 〈ξ∗1 ,ξ1〉= 1. Noticing the form of
iω−Lβ1 , i.e.,

iω−Lβ1 = iωId−
(
δ1∂

2
x+β1−1 α2

−β1 δ2∂
2
x−α2

)
,

we shall seek a solution of the form eixW with the constant vector W ∈C2. Then the
action of (iω−Lβ1

)∗ on such a solution is equivalent to the action of the following matrix
to the vector W :

−iωI2−
(
−δ1 +β1−1 −β1

α2 −δ2−α2

)
=−

(
−δ1 +β1−1+ iω −β1

α2 −δ2−α2 + iω

)
.

Therefore, W shall be parallel to the following vectors(
δ2+α2−iω

α2

1

)
,

(
1

δ2+α2+iω
β1

)
.

Notice that the above two vectors are parallel. In view that the second component of
ξ1 is more complicated than its first component 1, we could pick the dual eigenfunction
ξ∗1 according to the first vector as follows

ξ∗1 = i
α2

4πω
eix
(
δ2+α2−iω

α2

1

)
. (2.9)

With the above choice of ξ∗1 , it is easy to check that 〈ξ∗1 ,ξ1〉= 1.
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Next, we prove a lemma concerning the behavior of the resolvent of the operator
Lβ1 .

Lemma 2.1. There exists a constant ω0>0, such that iλ∈ρ(Lβ1
) for any real number

λ with |λ|>ω0 and the following resolvent estimate holds:

‖(iλ−Lβ1)−1‖L2(T)×L2(T)→L2(T)×L2(T)≤
M

|λ|

for some fixed positive constant M .

Proof. First, we claim that the operator A :H2(T)⊂L2(T) 7→L2(T) defined by
Av=−δ1∂2

xv is a sectorial operator. Indeed, the spectral set σ(A) of the operator A is
{δ1n2 |n∈Z}. In particular, the set S−δ1,π4 :={z∈C1 |π4 ≤|arg(z−(−δ1))|≤π,z 6=−δ1}
is a subset of ρ(A). For any z∈S−δ1,φ, an easy geometric argument yields |z−δ1n2|≥
(sin π

4 )|z−(−δ1)| for any n∈Z. For these z, we consider the operator equation
(z−A)v=w. Assume w=

∑
n∈Zw(n)einx where w(n)’s are the Fourier coefficients of w.

Then v can be solved explicitly as v=
∑
n∈Zv(n)einx with v(n) = v(n)

λ−δ1n2 . By Plancherel
Theorem, we obtain

|v|2L2(T) =
∑
n∈Z
|v(n)|2 =

∑
n∈Z

∣∣∣ w(n)

λ−δ1n2

∣∣∣2
≤
∑
n∈Z

1

(sin2 π
4 )|z−(−δ1)|2

|w(n)|2≤ 2

|z−(−δ1)|2
|w|2L2(T),

which implies the resolvent estimate

‖(z−A)−1‖L2(T)→L2(T)≤
√

2

|z+δ1|
.

Therefore the claim is true.
Similarly, the operator B :H2(T)⊂L2(T) 7→L2(T) defined by Bv=−δ2∂2

xv is also
a sectorial operator. Therefore, the operator diag{A,B} is a sectorial operator on
L2(T)×L2(T). By standard perturbation theory of linear operators (see for example p.
19 of [7]), we conclude −Lβ1 is a sectorial operator. Then there exists a sector Sa0,φ
similary defined as S−δ1,π4 with a0<0 and 0<φ< π

2 such that

‖(z+Lβ1)−1‖≤ M

|z−a0|
, for anyz∈Sa0,φ and some fixed positive constantM.

Then for any real λ with |λ|≥ω0 := 2a0 tanφ, we have iλ∈ρ(Lβ1) and the resolvent
estimate

‖(iλ+Lβ1
)−1‖≤ M

|− iλ−a0|
≤M

|λ|
.

This completes the proof of Lemma 2.1.

We emphasize that the boundary condition involved in Lemma 2.1 is the
periodic condition rather than a Dirichlet boundary condition. Our geometric proof
demonstrates that the above far field resolvent estimate along the imaginary axis is a
robust structural property of the operator Lβ1

.



J. YAO, D. LIU AND X. WANG 1723

Next, we will isolate the bifurcation parameter, write the nonlinearity in terms of
multilinear maps and show the existence of center manifolds for the system (1.8). The
isolation of the bifurcation parameter µ=β−β1 will make the linear operator in (2.10)
below have no dependence on µ while writing the nonlinearity in terms of multilinear
maps will bring us computational convenience later. Notice now v= (u1,u2)T −(α, β1

α )T .
For the above purposes, we write the opeator Equation (2.2) as follows

∂tv=Lβ1v+(Lβv−Lβ1v)+R(v). (2.10)

Introducing the notation R(v,µ) := (Lβv−Lβ1v)+R(v), we write R(v,µ) in terms of
multilinear maps as the following sum

R(v,µ) =µR01v+R20(v,v)+R30(v,v,v)+µR21(v,v)

where

R01v=

(
v1

−v1

)
, R20(u,v) =

(
α(u1v2 +u2v1)+ β1

α u1v1

−α(u1v2 +u2v1)− β1

α u1v1

)
,

R30(u,v,w) =
1

3

(
u1v1w2 +u1v2w1 +u2v1w1

−u1v1w2−u1v2w1−u2v1w1

)
, R21(u,v) =

(
1
αu1v1

− 1
αu1v1

)
.

Now, we conclude the existence of center manifolds for the system (2.10). For our
specific purpose in the current study, we make the following choice of Banach spaces

Z=H2(T)×H2(T),Y =H1(T)×H1(T), X=L2(T)×L2(T).

Then we have the following theorem.

Theorem 2.1. System (2.10) (or equivalently system (1.8)) admits a parameter-
dependent center manifold M0(µ) given through the reduction function Ψ∈Ck(Z0,Zh)
by M0(µ) ={v0 +Ψ(v0,µ);v0∈Zc} in a neighborhood of Ov×Oµ of (0,0) and
[Ψ,R(φ)] = 0 and [Ψ,S] = 0.

Proof. We shall verify the assumptions in the center manifold theorem Theorem
A.1 in the Appendix item by item. It is evident that R(0,0) = 0 and DvR(0,0) = 0 from
the specific form of R(v,µ). By Sobolev embedding theorem, it is also easy to verify
that R(v,µ)∈Y. The spectral gap condition and symmetry conclusion follow from the
analysis in Section 2.1 while the resolvent estimate follows from Lemma 2.1.

2.3. Normal form of bifurcation dynamics. Due to Theorem 2.1 and our
spectral analysis, we know that the reduced dynamics of the system (2.10) is a four-
dimensional system of nonlinear ordinary differential equations. We will adopt the
complex conjugate pair parametrization z1ξ1 +z2ξ2 + z̄1ξ̄1 + z̄2ξ̄2 of the center space in
(2.8) throughout the article. We readily identify that the action of the operator Lβ1

on
the center space is given by the following rules:

Lβ1
ξ1 = iωξ1,Lβ1

ξ2 =−iωξ2.

Due to the finite dimensionality of the center space and the spectral mapping theorem,
the action of the operator etL

∗
β1 on the center space is given as follows

etL
∗
β1 ξ1 =eiωtξ1, e

tL∗
β1 ξ2 =e−iωtξ2.
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In view of our specific parametrization for the center space, the dynamics of (1.8) on
the center manifolds has the following form

d
dtz1 = iωz1 +N 1

µ(z1,z2, z̄1, z̄2)+ζ(z1,z2, z̄1, z̄2,µ),

d
dtz2 = iωz2 +N 2

µ(z1,z2, z̄1, z̄2)+ζ(z2,z1, z̄2, z̄1,µ).
(2.11)

The polynomial function (N 1
µ ,N 2

µ ,N 1
µ ,N 1

µ)T corresponds to the function Nµ in Theorem

B.1. We will denote Nµ(z1,z2, z̄1, z̄2) := (N 1
µ ,N 2

µ ,N 1
µ ,N 1

µ)T . Here ζ represents higher
order terms.

We shall explore the function Nµ(z1,z2, z̄1, z̄2) by Theorem B.1. This can be easily
achieved by choosing specific test values of time variable t and phase variable φ.

In view of the action of the operator etL
∗
β1 on the center space, we know that the

characteristic condition Nµ(etL
∗
v) =etL

∗Nµ(v) yields

N j
µ(eiωtz1,e

iωtz2,e
−iωtz̄1,e

−iωtz̄2) =eiωtN j
µ(z1,z2, z̄1, z̄2), j= 1,2. (2.12)

Noticing that [Nµ,R(φ)] = 0 and [Nµ,S] = 0, we have the following conclusions:

N 1
µ(eiφz1,e

−iφz2,e
−iφz̄1,e

iφz̄2) =eiφN 1
µ(z1,z2, z̄1, z̄2), (2.13)

N 2
µ(eiφz1,e

−iφz2,e
−iφz̄1,e

iφz̄2) =e−iφN 2
µ(z1,z2, z̄1, z̄2) (2.14)

and

N 1
µ(z2,z1, z̄2, z̄1) =N 2

µ(z1,z2, z̄1, z̄2). (2.15)

From (2.12) and (2.14), we obtain that

N 1
µ(ei(φ+ωt)z1,e

i(−φ+ωt)z2,e
−i(φ+ωt)z̄1,e

−i(−φ+ωt)z̄2) =ei(φ+ωt)N 1
µ(z1,z2, z̄1, z̄2).

(2.16)
Choosing special values of t∈R1 and φ∈R1/2πZ such that

φ+ωt=−argz1,−φ+ωt=−argz2,

we have

N 1
µ(|z1|,|z2|,|z1|,|z2|) =e−iargz1N 1

µ(z1,z2, z̄1, z̄2). (2.17)

Now choosing t∈R1 and φ∈R1/2πZ such that

φ+ωt=π,−φ+ωt= 0,

we find from (2.16) that

N 1
µ(−z1,z2,−z̄1, z̄2) =−N 1

µ(z1,z2, z̄1, z̄2). (2.18)

Finally choosing t∈R1 and φ∈R1/2πZ such that

φ+ωt= 0,−φ+ωt=π,

we deduce from (2.16) that

N 1
µ(z1,−z2, z̄1,−z̄2) =N 1

µ(z1,z2, z̄1, z̄2). (2.19)
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Equations (2.17), (2.18) and (2.19) imply that the polynomial N 1
µ(z1,z2, z̄1, z̄2) =

z1P1(|z1|2, |z2|2) for some polynomial P1. Repeating the above reasoning, we also obtain
that N 2

µ(z1,z2, z̄1, z̄2) =z2P2(|z1|2,|z2|2) for some polynomial P2. Taking into account
(2.15), we obtain that P1(|z2|2, |z1|2) =P2(|z1|2, |z2|2).

To sum up, we obtain from the above analysis that the dynamics of (1.8) on the
center manifolds has the following form

d
dtz1 = iωz1 +z1Pµ(|z1|2,|z2|2)+ζ(z1,z2, z̄1, z̄2,µ),

d
dtz2 = iωz2 +z2Pµ(|z2|2,|z1|2)+ζ(z2,z1, z̄2, z̄1,µ).

(2.20)

Due to tangency in Theorem B.1, the constant c0 in the polynomial Pµ(|z1|2, |z2|2) = c0 +
aµ+b|z1|2 +c|z2|2 +h.o.t must be zero. Therefore, we obtain the following truncated
form of (2.10) with the complex constants a, b and c to be determined:

d
dtz1 = iωz1 +z1(aµ+b|z1|2 +c|z2|2),

d
dtz2 = iωz2 +z2(aµ+b|z2|2 +c|z1|2).

(2.21)

2.4. Comparison of coefficients. To show our main result, we will verify that
the non-degeneracy conditions for the normal form dynamics can survive for certain
parameter values. Therefore, we shall compute the constants a,b and c in the normal
form dynamics.
By center manifold theory, we decompose v=z1ξ1 +z2ξ2 + z̄1ξ̄1 + z̄2ξ2 +Ψ(z1,z2, z̄1, z̄2)
where Ψ(z1,z2, z̄1, z̄2,µ)∈Zh is the center manifold reduction function. If we
take into account the normal form transformation step w=z1ξ1 +z2ξ2 + z̄1ξ̄1 + z̄2ξ2 +
Πµ(z1,z2, z̄1, z̄2) where Πµ(z1,z2, z̄1, z̄2)∈Zc, we obtain another decomposition v=z1ξ1 +
z2ξ2 + z̄1ξ̄1 + z̄2ξ2 +Πµ(z1,z2, z̄1, z̄2)+Ψ(z1,z2, z̄1, z̄2). With a slight abuse of notation,
we still write the sum Πµ(z1,z2, z̄1, z̄2)+Ψ(z1,z2, z̄1, z̄2) as Ψ(z1,z2, z̄1, z̄2,µ) but now
Ψ(z1,z2, z̄1, z̄2,µ)∈Z.

In order to determine the coefficients a, b and c in the truncated normal form, we
expand the function Ψ:

Ψ(z1,z2, z̄1, z̄2) =
∑

p+q+r+s+l≥1

Ψpqrslz
p
1 z̄
q
1z
r
2 z̄
s
2µ

l. (2.22)

In this expansion, Ψpqrsl are functions in the space Z. Due to tangency, we know

Ψ10000 = Ψ01000 = Ψ00100 = Ψ00010 = 0.

By conjugacy, we also have Ψpqrsl= Φ̄qpsrl.
By flow invariance, we use the substitutions given by the normal form (2.20) and the

expansion of Ψ (2.22) in the bifurcation Equation (2.10). By comparing coefficients at
orders O(µ), O(µz1) (or O(µz2)), O(|z1|2), O(z2

1), O(|z2|2), O(z1z2), O(z1z̄2), O(z2
1 z̄1),

O(z1|z2|2), we obtain that

(Lβ1
+R01)Ψ00001 = 0,

aξ+(iω−Lβ1
)Ψ10100 =R01(ξ1)+2R20(ξ1,Ψ00001),

(2iω−Lβ1
)Ψ20000 =R20(ξ1,ξ1),

Lβ1
Ψ11000 =−2R20(ξ1, ξ̄1),

Ψ00110 =SΨ11000,

(2iω−Lβ1
)Ψ10100 = 2R20(ξ1,ξ2),

Lβ1
Ψ10010 =−2R20(ξ1, ξ̄2),

bξ1 +(iω−Lβ1
)Ψ21000 = 2R20(ξ1,Ψ11000)+2R20(ξ̄1,Ψ20000)+3R30(ξ1,ξ1, ξ̄1),

cξ1 +(iω−Lβ1
)Ψ10110 = 2R20(ξ1,Ψ00110)+2R20(ξ2,Ψ10010)+2R20(ξ̄2,Ψ10100)+6R30(ξ1,ξ2, ξ̄2).

(2.23)
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Among the above operator equations, the three relations containing a, b and c
amount to saying that the following three functions

−aξ1 +R01(ξ1)+2R20(ξ1,Ψ00001), (2.24)

−bξ1 +2R20(ξ1,Ψ11000)+2R20(ξ̄1,Ψ20000)+3R30(ξ1,ξ1, ξ̄1), (2.25)

−cξ1 +2R20(ξ1,Ψ00110)+2R20(ξ2,Ψ10010)++2R20(ξ̄2,Ψ10100)+6R30(ξ1,ξ2, ξ̄2) (2.26)

are all elements in the range of the operator iω−Lβ1
. By the kernel and range relation

for a linear operator and its conjugate, we know R(iω−Lβ1
) =
(
ker(iω−Lβ1

)∗
)⊥

where
the symbols R(iω−Lβ1) and ker(iω−Lβ1)∗ represent the range of iω−Lβ1 and kernel
of the linear operator (iω−Lβ1)∗ respectively. Recalling the definition of ξ∗1 by (2.9),
we know that the three vectors in (2.24), (2.25), (2.26) are all perpendicular to ξ∗1 in
L2(T)×L2(T). Therefore, by orthogonality, we have

a= 〈R01(ξ1)+2R20(ξ1,Ψ00001),ξ∗1〉; (2.27)

b= 〈2R20(ξ1,Ψ11000)+2R20(ξ̄1,Ψ20000)+3R30(ξ1,ξ1, ξ̄1),ξ∗1〉; (2.28)

c= 〈2R20(ξ1,Ψ00110)+2R20(ξ2,Ψ10010)+2R20(ξ̄2,Ψ10100)+6R30(ξ1,ξ2, ξ̄2),ξ∗1〉. (2.29)
Now we proceed to examine the coefficients a,b and c, which is crucial to test the

non-degeneracy of the spatial-temporal oscillations for our model under investigation.
First, we aim to obtain the parameter a. We can compute a either by asymptotic

analysis or by the above functional equation. Here we demonstrate both devices as one
device can be regarded as a verification of the computational result of the other.

Let us first calculate a by asymptotic analysis. The parameter a is the coefficient
of µ in the spectral branch of the operator Lβ corresponding to the eigenvalue iω in

the limit µ→0. The eigenvalues of the operator Lβ =

(
δ1∂

2
x+β1 +µ−1 α2

−β1−µ δ2∂
2
x−α2

)
corresponding to ±iω are given by the roots of the polynomial

P1(λ,β) =λ2 +(β1−β1−µ)λ+ω2−δ2µ=λ2−µλ+ω2−δ2µ.

Denote the two branches of eigenvalues by λ±(µ), we obtain by the quadratic formula
that

λ±(µ) =
1

2
µ± i

√
ω2−δ2µ−µ2/4.

Therefore, the asymptotic expansion of the branch corresponding to iω is given by

λ+(µ) = iω+(
1

2
− i δ2

2ω
)µ+O(µ2).

Consequently, we find that

a=
1

2
− i δ2

2ω
.
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Now we demonstrate the calculation of a through (2.27). From the relation
(Lβ1 +R01)Ψ00001 = 0, we can compute Ψ00001. In fact, to compute Ψ00001, we have
to seek solutions of the form e0ixV with V being a complex vector. Put this ansatz into
the operator equation (Lβ1

+R01)Ψ00001 = 0 to obtain the following algebraic equation
on the complex vector V (

β1−2 α2

−β1 +1 −α2

)
V =

(
0
0

)
,

which only has the trivial solution. Therefore, we find that Ψ00001 = 0, and consequently
obtain that

a= 〈R01(ξ1)+2R20(ξ1,Ψ00001),ξ∗1〉= 〈R01(ξ1),ξ∗1〉=
1

2
− i δ2

2ω
. (2.30)

Second, we calculate the parameter b. For this purpose, we first compute Ψ11000

and Ψ20000.
As we know that Ψ11000 is determined by the operator equation Lβ1Ψ11000 =

−2R20(ξ1, ξ̄1), we first examine the right-hand side term of the operator equation.
Simple computation yields

−2R20(ξ1, ξ̄1) =
4(α2 +δ2)−2β1

α

(
1
−1

)
.

Due to the form of −2R20(ξ1, ξ̄1), we need to seek a solution of the form ei0xV with
V being a complex vector. Using the substitution Ψ11000 =ei0xV in the equation
Lβ1Ψ11000 =−2R20(ξ1, ξ̄1), we arrive at the following algebraic equation on V :(

β1−1 α2

−β1 −α2

)
V =

4(α2 +δ2)−2β1

α

(
1
−1

)
.

As 0∈ρ(Lβ1
), the resolvent set of Lβ1

, we know det

(
β1−1 α2

−β1 −α2

)
=P0(0) 6= 0.

Therefore, the vector V can be solved uniquely:

V =

(
β1−1 α2

−β1 −α2

)−1
4(α2 +δ2)−2β1

α

(
1
−1

)
=

4(α2 +δ2)−2β1

α3

(
0
1

)
.

Consequently, we find that

Ψ11000 =
4(α2 +δ2)−2β1

α3

(
0
1

)
. (2.31)

The computation of Ψ20000 can be proceeded similarly. By examining the right-hand
side term of the operator equation

(2iω−Lβ1
)Ψ20000 =R20(ξ1,ξ1),

we find that

R20(ξ1,ξ1) =
−2(α2 +δ2)+β1 +2iω

α
e2ix

(
1
−1

)
.
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Inspecting the form of R20(ξ1,ξ1) above, we shall seek a solution of the form e2ixV with
V being a complex vector. Inserting Ψ20000 =e2ixV in the above operator equation, we
deduce the following algebraic equation on the complex vector V :{

2iωI2−
(
−4δ1 +β1−1 α2

−β1 −4δ2−α2

)}
V =
−2(α2 +δ2)+β1 +2iω

α

(
1
−1

)
.

As 2iω∈ρ(Lβ1
), we know

det
{

2iωI2−
(
−4δ1 +β1−1 α2

−β1 −4δ2−α2

)}
=P2(2iω) 6= 0.

Therefore, the vector V can be solved uniquely as

V =
1

P2(2iω)

−2(α2 +δ2)+β1 +2iω

α

(
2iω+4δ2 +α2 α2

−β1 2iω+4δ1−β1 +1

)(
1
−1

)
=

1

P2(2iω)

−2(α2 +δ2)+β1 +2iω

α

(
2iω+4δ2

−2iω−4δ1−1

)
.

Therefore, we obtain

Ψ20000 =
1

P2(2iω)

−2(α2 +δ2)+β1 +2iω

α
e2ix

(
2iω+4δ2

−2iω−4δ1−1

)
. (2.32)

Using (2.31) and (2.32), we can now compute all the terms 3R30(ξ1,ξ1, ξ̄1),
2R20(ξ1,Ψ11000) and 2R20(ξ̄1,Ψ20000) in (2.28). Direct computations yield:

3R30(ξ1,ξ1, ξ̄1) =
−3(α2 +δ2)+ iω

α2
eix
(

1
−1

)
,

2R20(ξ1,Ψ11000) =
8(α2 +δ2)−4β1

α2
eix
(

1
−1

)
,

2R20(ξ̄1,Ψ20000) =
2

P2(2iω)

−2(α2 +δ2)+β1 +2iω

α
eix
(

1
−1

)
×
(
−α(2iω+4δ1 +1)− 2iω+4δ2

α
(iω−1−δ1)

)
.

Gleaning the above information and noticing that〈
eix
(

1
−1

)
,
iα2

4πω
eix
(
δ2+α2−iω

α2

1

)〉
=− i(δ2 + iω)

2ω
, (2.33)

we obtain that

b=〈2R20(ξ1,Ψ11000)+2R20(ξ̄1,Ψ20000)+3R30(ξ1,ξ1, ξ̄1),ξ∗1〉

=− i(δ2 + iω)

2ω

{5(α2 +δ2)−4β1 + iω

α2
+

2

P2(2iω)

−2(α2 +δ2)+β1 +2iω

α

×
(
−α(2iω+4δ1 +1)− 2iω+4δ2

α
(iω−1−δ1)

)}
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=
ω− iδ2
2ωα2

{(
5(α2 +δ2)−4β1 + iω

)
+

2

P2(2iω)

(
−2(α2 +δ2)+β1 +2iω

)
×
(
−α2(2iω+4δ1 +1)−(2iω+4δ2)(iω−1−δ1)

)}
. (2.34)

In oder to simplify the above expression, we shall make some simple but tedious
computations. We first observe that(

−2(α2 +δ2)+β1 +2iω
)
×
(
−α2(2iω+4δ1 +1)−(2iω+4δ2)(iω−1−δ1)

)
= (β1−2α2−2δ2)(2ω2 +4δ2 +4δ1δ2−α2−4α2δ1)−2ω2(2+2δ1−4δ2−2α2)

+ iω
(

(β1−2α2−2δ2)(2+2δ1−4δ2−2α2)+2(2ω2 +4δ2 +4δ1δ2−α2−4α2δ1)
)

:=Nr+ iωNi, (2.35)

where we have used the following convention for the real quantities Nr and Ni:

Nr = (β1−2α2−2δ2)(2ω2 +4δ2 +4δ1δ2−α2−4α2δ1)−2ω2(2+2δ1−4δ2−2α2) (2.36)

and

Ni= (β1−2α2−2δ2)(2+2δ1−4δ2−2α2)+2(2ω2 +4δ2 +4δ1δ2−α2−4α2δ1). (2.37)

Denote by Br and ωBi the real part and imaginary part of

2

P2(2iω)

(
−2(α2 +δ2)+β1 +2iω

)(
−α2(2iω+4δ1 +1)−(2iω+4δ2)(iω−1−δ1)

)
respectively. To make further computations, we first write P2(2iω) explicitly. Noticing
the expressions of Pn(λ) and ω, we obtain

P2(2iω) =−3α2 +12δ1δ2 +6i(δ1 +δ2)ω,

which is a complex number. Therefore, we have

1

P2(2iω)
=−3

α2−4δ1δ2 +2(δ1 +δ2)ωi

(α2−4δ1δ2)2 +4(δ1 +δ2)2ω2
. (2.38)

Then, by direct computations, the real quantities Br and Bi are given by

Br =
−6

(α2−4δ1δ2)2 +4(δ1 +δ2)2ω2

(
(α2−4δ1δ2)Nr−2ω2(δ1 +δ2)Ni

)
, (2.39)

Bi=
−6

(α2−4δ1δ2)2 +4(δ1 +δ2)2ω2

(
(α2−4δ1δ2)Ni+2(δ1 +δ2)Nr

)
(2.40)

in which Nr and Ni are given by (2.36) and (2.37) respectively.
Collecting the information above, we obtain the following expression of b from (2.34):

b=
ω− iδ2
2ωα2

{(
5(α2 +δ2)−4β1 + iω

)
+(Br+ iωBi)

}
=
ω− iδ2
2ωα2

(
5(α2 +δ2)−4β1 +Br+ iω(1+Bi)

)
=

ω

2ωα2
(5α2 +5δ2−4β1 +Br+δ2 +δ2Bi)
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+ i
1

2ωα2
(ω2 +ω2Bi−5δ2α

2−5δ2
2 +4δ2β1−δ2Br). (2.41)

Third, we compute the parameter c. For this purpose, we first determine Ψ10010,
Ψ00110 and Ψ10100.

To determine Ψ10010 from the operator equation Lβ1Ψ10010 =−2R20(ξ1, ξ̄2), we first
note that

−2R20(ξ1, ξ̄2) =
4(α2 +δ2)−2β1

α
e2ix

(
1
−1

)
.

Due to the form of −2R20(ξ1, ξ̄2) above, we shall seek a solution of the form Ψ10010 =
e2ixV . Putting this ansatz into the equation Lβ1

Ψ10010 =−2R20(ξ1, ξ̄2), we obtain an
algebraic equation on V :(

−4δ1 +β1−1 α2

−β1 −4δ2−α2

)
V =

4(α2 +δ2)−2β1

α

(
1
−1

)
.

As

(
−4δ1 +β1−1 α2

−β1 −4δ2−α2

)
=P2(0) 6= 0, the complex vector V can be solved uniquely

as

V =
1

P2(0)

4(α2 +δ2)−2β1

α

(
−4δ2

4δ1 +1

)
.

Therefore, we have

Ψ10010 =
1

P2(0)

4(α2 +δ2)−2β1

α
e2ix

(
−4δ2

4δ1 +1

)
. (2.42)

Now we look for Ψ10100 which is determined by the operator equation

(2iω−Lβ1
)Ψ10100 = 2R20(ξ1,ξ2).

First, we find by direct computation that

2R20(ξ1,ξ2) =
4(−α2−δ2 + iω)+2β1

α

(
1
−1

)
,

which implies that Ψ10100 has the form Ψ10100 =e0ixV for some complex vector V . As
2iω∈ρ(Lβ1

), we can solve Ψ10100 uniquely as before and obtain

Ψ10100 =
1

P0(2iω)

4(−α2−δ2 + iω)+2β1

α

(
2iω

−1−2iω

)
. (2.43)

With (2.31), (2.42) and (2.43) at hand, we are now ready to compute the terms
6R30(ξ1,ξ2, ξ̄2), Ψ00110, 2R20(ξ1,Ψ00110), 2R20(ξ̄2,Ψ10100) and 2R20(ξ̄2,Ψ10100). Direct
computations yield:

6R30(ξ1,ξ2, ξ̄2) =
2

α2

(
−3(α2 +δ2)+ iω

)
eix
(

1
−1

)
,

Ψ00110 =SΨ11000 = Ψ11000 =
4(α2 +δ2)−2β1

α3

(
0
1

)
,
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2R20(ξ1,Ψ00110) =
8(α2 +δ2)−4β1

α2
eix
(

1
−1

)
,

2R20(ξ2,Ψ10010) =
4

P2(0)

2(α2 +δ2)−β1

α
eix
(

1
−1

)
×
(
α(4δ1 +1)− 4δ2

α
(iω+1+δ1)

)
,

2R20(ξ̄2,Ψ10100) =
4

P0(2iω)

2(−α2−δ2 + iω)+β1

α
×
(
−α(2iω+1)+

2iω

α
(−iω+1+δ1)

)
eix
(

1
−1

)
.

Gleaning the information above and again noticing (2.33), we have

c=〈2R20(ξ1,Ψ00110)+2R20(ξ2,Ψ10010)+2R20(ξ̄2,Ψ10100)+6R30(ξ1,ξ2, ξ̄2),ξ∗1〉

=− i(δ2 + iω)

2ω

{2(α2 +δ2)−4β1 +2iω

α2
+C1 +C2

}
, (2.44)

where C1 and C2 are given by

C1 =
4

P2(0)

2(α2 +δ2)−β1

α
×
(
α(4δ1 +1)− 4δ2

α
(iω+1+δ1)

)
=

4

P2(0)

2(α2 +δ2)−β1

α
×
(
α(4δ1 +1)− 4δ2(1+δ1)

α
− 4δ2ω

α
i
)
, (2.45)

C2 =
4

P0(2iω)

2(−α2−δ2 + iω)+β1

α
×
(
−α(2iω+1)+

2iω

α
(−iω+1+δ1)

)
=

4

P0(2iω)

β1−2(α2 +δ2)+2iω

α
×
(

(−α+
1+δ1
α

)2iω+(
2ω2

α
−α)

)
=

4

P0(2iω)

β1−2(α2 +δ2)+2iω

α2
×
(

(−α2 +1+δ1)2iω+(2ω2−α2)
)

=
4

P0(2iω)

1+δ1−δ2−α2 +2iω

α2
×
(

(−α2 +1+δ1)2iω+(2ω2−α2)
)

=
4

P0(2iω)α2

{
(1+δ1−δ2−α2)(2ω2−α2)−4(1+δ1−α2)ω2

+
(

(2ω2−α2)+(1+δ1−δ2−α2)(1+δ1−α2)
)

2iω
}
. (2.46)

Easy calculation shows that

P2(0) =α2(4δ1−4δ2 +1)+12δ1δ2−4δ2
2 , (2.47)

which is a real number.
In view of (2.38), we can write C2 as follows

C2 =
−12

α2[(α2−4δ1δ2)2 +4(δ1 +δ2)2ω2]
(C2r+ iC2i)

with C2r and C2i given by

C2r =(α2−4δ1δ2)
(

(1+δ1−δ2−α2)(2ω2−α2)−4(1+δ1−α2)ω2
)
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−4ω2(δ1 +δ2)
(

2ω2−α2 +(1+δ1−δ2−α2)(1+δ1−α2)
)
, (2.48)

C2i=2ω
{

(δ1 +δ2)
(

(1+δ1−δ2−α2)(2ω2−α2)−4(1+δ1−α2)ω2
)

+(α2−4δ1δ2)
(

2ω2−α2 +(1+δ1−δ2−α2)(1+δ1−α2)
)}
. (2.49)

Defining Qr and Qi as

Qr =2(α2 +δ2)−4β1 +
4

P2(0)
(2α2 +2δ2−β1)(4α2δ1 +α2−4δ2−4δ1δ2)

− 12C2r

(α2−4δ1δ2)2 +4(δ1 +δ2)2ω2
, (2.50)

Qi= 2ω− 16δ2ω

P2(0)
(2α2 +2δ2−β1)− 12C2i

(α2−4δ1δ2)2 +4(δ1 +δ2)2ω2
, (2.51)

we obtain the following expression of c from (2.44):

c=
ω− iδ2
2ωα2

(Qr+ iQi) =
1

2ωα2

(
(ωQr+δ2Qi)+(ωQi−δ2Qr)i

)
. (2.52)

It is the real parts of the parameters a, b and c that are crucial for our analysis
of the dynamics driven by (2.10) or equivalently (1.5). Therefore, we summarize the
information on (2.30), (2.41) and (2.52) in the following proposition.

Proposition 2.2. The real parts for the parameters a, b and c in Pµ in the normal
form Equation (2.20) for (2.10) are given by

Rea=
1

2
,Reb=

1

2α2
(5α2 +5δ2−4β1 +Br+δ2 +δ2Bi),Rec=

1

2ωα2
(ωQr+δ2Qi)

where Br, Bi, Qr and Qi are given by (2.39), (2.40), (2.50) and (2.51) respectively.

3. Analysis of dynamics
The functional equalities in (2.23) must hold once a choice of function spaces Z,Y

and X is made. Here we shall remark that X can not be chosen as L2
0(T)×L2

0(T) (hence
there can not be mean-zero restriction in the space X) or else the functional relations
Lβ1

Ψ11000 =−2R20(ξ1, ξ̄1),Ψ00110 =SΨ11000 and (2iω−Lβ1
)Ψ10100 = 2R20(ξ1,ξ2) have

no solutions. This is determined by the structure of (1.1)-(1.4) or equivalently the form
of (2.10). The mean-zero requirement in the space H2

0 (T)×H2
0 (T) would exclude the

constant term in the Fourier expansion of a function. See also the computations of Ψ11000

and Ψ10100 in last section. As mean-zero perturbations of the uniform state correspond
to different distributions of the same amount of chemical reactants, these perturbations
represent the inhomogeneity of the concentrations of the chemical reactants. A direct
consequence of our analysis is that the wave structure we demonstrated for the system
(1.8) is indeed not solely due to the inhomogeneity of the concentrations.

The analysis of the dynamics (2.20) is now routine (see e.g., [14, 24]). We produce
the analysis here for completeness and for the convenience of readers. For our purpose,
it is sufficient to consider the truncated normal form at order three as the wave structure
is persistent for (3.1) and (2.20) by implicit function theorem.
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To proceed, we introduce the polar coordinates z1 = r1e
iθ1 and z2 = r2e

iθ2 , the
truncated normal form at cubic order becomes

dr1
dt = r1

(
(Rea)µ+(Reb)r2

1 +(Rec)r2
2

)
,

dr2
dt = r2

(
(Rea)µ+(Reb)r2

2 +(Rec)r2
1

)
,

dθ1
dt =ω+(Ima)µ+(Imb)r2

1 +(Imc)r2
2,

dθ2
dt =ω+(Ima)µ+(Imb)r2

2 +(Imc)r2
1.

(3.1)

The equations on (r1,r2) and (θ1,θ2) decouple. The point to do the analysis is that
we can first seek bifurcated nontrivial equilibria in the radial equations by assuming
r1≡0 or r2≡0, or r1 = r2 and these bifurcated equilibria correspond to time periodic
solutions to the system (3.1) due to the rotations given by (θ1,θ2)-equation. This point
is guided by the symmetry of the normal form equation, in particular, the system is
invariant if one interchanges r1 and r2, which is induced by SO(2)-symmetry. For us,
we always do analysis in a small neighborhood of µ= 0 in R1.

We shall first analyze the radial equations. As we have obtained that Rea= 1
2 , we

consider the auxiliary real function f(r) = 1
2µ+Λr2 defined on [0,ε] for some small ε>0

where Λ is a fixed real constant whose sign is important for us. If µΛ>0, f has no roots
in the interval (0,+∞). If µΛ<0, f has a nontrivial root r=

√
− µ

2Λ =O(|µ|)1/2. Now,
consider the right-hand sides of the radial equations of r1 and r2. If we let r2≡0, then
the right-hand side of equation on r1 contains a factor with the same structure as f(r).
We can consider the r2 equation similarly. Hence the above analysis for f(r) applies.

Let r∗(µ) =
√
− µ

2Reb . We conclude that besides the trivial solution (0,0), there are

bifurcated solutions of the forms (r∗(µ),0), and (0,r∗(µ)). Further, if Reb+Rec does
not vanish, we may consider the situation r1≡ r2. In such a situation, the r1 and
r2 equations are the same and both contain a factor of the form f(r) in the right-
hand sides. Therefore, there are bifurcated solutions of the form (r∗(µ),r∗(µ)) with

r∗(µ) =
√
− µ

2(Reb+Rec) .

Now, we are in a position to analyze the two angular equations. From the above
analysis, we know that all the three families of bifurcated solutions have magnitude
O(|µ|1/2). As a consequence, we could arrange that dθ1

dt ≥
ω
2 >0 and dθ2

dt ≥
ω
2 >0 when

|µ| remains small, which enables us to conclude that all the three families of bifurcated
equilibria correspond to genuine time periodic waves of the system (3.1). The equilibria
(r∗(µ),0) and (0,r∗(µ)) correspond to rotating waves on r1-axis and r2-axis, which is
the same as for the Hopf bifurcation with SO(2) symmetry. The symmetry S plays the
role of exchanging the two axes, i.e., exchanging the rotating waves corresponding to
r2 = 0 into the rotating waves corresponding to r1 = 0. The equilibria (r∗(µ),r∗(µ)) with
r1 = r2 correspond to standing waves, another class of bifurcating periodic solutions.
These waves correspond to a torus of solutions of the normal form

V0(t,µ,φ1,φ2) =r∗(µ)
(
eiω∗(µ)t+φ1ξ1 +eiω∗(µ)t+φ2ξ2

)
+r∗(µ)

(
e−(iω∗(µ)t+φ1)ξ̄1 +e−(iω∗(µ)t+φ2)ξ̄2

)
for any (φ1,φ2)∈R2, which induces a torus of solutions U(t,µ,φ1,φ2) in Y of the
nonlinear perturbation system (2.10). The ω∗(µ) is the phase function determined
by the (θ1,θ2)-equation in system (3.1) such that ω∗(0,0) =ω. These standing waves in
addition possess the following symmetry

R(φ2−φ1)SU(t,µ,φ1,φ2) =U(t,µ,φ1,φ2), R(2π)U(t,µ,φ1,φ2) =U(t,µ,φ1,φ2),
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R(π)U(t,µ,φ1,φ2) =U(t+
π

ω∗(µ)
,µ,φ1,φ2), SU(t,µ,φ1,φ1) =U(t,µ1,φ1,φ1).

The analysis of the stability of the three families of bifurcated waves are straightforward
by examining the signs of Reb and Reb±Rec.
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Appendices. In the appendices, we collect the center manifold theorem and
normal form theorem. Interested readers can refer to the works [2, 3, 5–8, 14, 15, 24]
and the references therein for further information.

Appendix A. Center manifold theorem. Here we recall a version of the center
manifold theorem with parameters and symmetry adapted to our study.

Theorem A.1 (Center manifold theorem, see [8, 14, 24]). Let the inclusions in the
Banach space triplet Z⊂Y⊂X be continuous. Consider a differential equation in the
Banach space X of the form

dv

dt
=Lv+R(v,µ)

and assume that

(1) (form of nonlinearity) for some k≥2, there exist neighborhoods Vv⊂Z and Vµ⊂Rm
of (0,0) such that R∈Ck(Vu×Vµ,Y) and

R(0,0) = 0, DuR(0,0) = 0.

(2) (spectral decomposition) L :Z 7→X is a bounded linear map and there exists some
constant γ >0 such that

inf{Reλ;λ∈σu(L)}>γ, sup{Reλ;λ∈σs(L)}<−γ,

and the set σc(L) consists of a finite number of eigenvalues with finite algebraic
multiplicities.

(3) (resolvent estimates) for Hilbert space triplet Z⊂Y⊂X, assume there exists a
positive constant ω0>0 such that iλ∈ρ(L) for all real λ such that |λ|>ω0 and ‖(iλ−
L)−1‖X7→X. 1

|λ| ; for Banach space triplet, we need further ‖(iλ−L)−1‖Y 7→X. 1
|λ|α for

some α∈ [0,1).
Then there exists a map Ψ∈Ck(Zc,Zh) where Zc is the center space and Zh is the

hyperbolic space, and a neighborhood Ov×Oµ of (0,0) in Z×Rm such that

(a) (tangency) Ψ(0,0) = 0 and DuΨ(0,0) = 0.

(b) (local flow invariance) the manifold M0(µ) ={v0 +Ψ(v0,µ);v0∈Zc} has the
properties: (i) M0(µ) is locally invariant, i.e., if v is a solution satisfying v(0)∈
M0(µ)∩Oµ and v(t)∈Ov for all t∈ [0,T ], then v(t)∈M0(µ) for all t∈ [0,T ]; (ii)M0(µ)
contains the set of bounded solutions staying in Ov for all t∈R1, i.e., if v is a solution
satisfying v(t)∈Ov for all t∈R1, then v(0)∈M0(µ).

(c) (symmetry) moreover, if the vector field is equivariant in the sense that there
exists an isometry T∈L(X)∩L(Z) which commutes with the vector field in the original
system,

[T,L] = 0, [T,R] = 0,
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then the Ψ commutes with T on Zc: [Ψ,T] = 0.

Appendix B. Normal form theorem. Here we give a version of the normal
form theorem with symmetry.

Theorem B.1 (Normal form theorem [8,14,24]). Consider a differential equation in
Rn of the form

dv

dt
=Lv+R(v,µ)

and assume that

(1) L is a linear map in Rn;

(2) for some k≥2, there exist neighborhoods Vv⊂Rn and Vµ⊂Rm of (0,0) such that
R∈Ck(Vv×Vµ,Rn) and

R(0,0) = 0, DuR(0,0) = 0.

Then for any positive integer p, k>p≥2, there exist neighborhoods V1 and V2 of (0,0)
in Rn×Rm such that for any µ∈V2, there is a polynomial Πµ :Rn→Rn of degree p with
the following properties.

(i) The coefficients of the monomials of degree q in Πµ are functions of µ of class
Ck−q, and

Π0(0) = 0, DvΠ0(0) = 0.

(ii) For v∈V1, the polynomial change of variables

v=w+Πµ(w)

transforms the original system into the normal form

dw

dt
=Lw+Nµ(w)+ρ(w,µ),

such that

(a) (tangency) For any µ∈V2, Nµ is a polynomial Rn→Rn of degree p, with
coefficients depending on µ, such that the coefficients of the monomials of degree q are
of class Ck−q, and

N0(0) = 0, DvN0(0) = 0.

(b) (characteristic condition) The equality

Nµ(etL
∗
w) =etL

∗
Nµ(w)

holds for all (t,µ)∈R×Rn and µ∈V2.

(c) (smoothness) The map ρ belongs to Ck(V1×V2,Rn), and

ρ(w,µ) =o(|w|p)

for all µ∈V2.
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(d) (symmetry) Moreover, if the vector field is equivariant in the sense that there
exists an isometry T :Rn→Rn which commutes with the vector field in the original
system,

[T,L] = 0, [T,R] = 0,

then the polynomials Πµ and Nµ commute with T for all µ∈V2.

We remark that both the center manifolds and normal forms are not unique in
general.
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