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EXISTENCE OF
WEAK SOLUTIONS TO THE STEADY TWO-PHASE FLOW∗

SENMING CHEN† AND CHANGJIANG ZHU‡

Abstract. In this paper, we prove the existence of weak solutions to the steady two-phase flow.
The result holds in three dimensions on the condition that the adiabatic constants γ,θ>1 and γ > 7

3
,

θ= 1. By constructing a special example, we show that the weak solutions are non-unique. It turns
out that the uniform approximation scheme restricts the type of weak solutions, which leads to some
open problems.
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1. Introduction
In this paper, we are concerned about the steady problem of two-phase flow in

a bounded domain Ω∈R3, which is described by the Navier-Stokes equation with a
pressure law in two variables

div(ρu) = 0, (1.1)

div(nu) = 0, (1.2)

div[(ρ+n)u⊗u]+∇p(ρ,n)−µ∆u−(µ+2λ)∇divu= (ρ+n)f, (1.3)

with the boundary condition

u|∂Ω = 0, (1.4)

and the mass conservations∫
Ω

ρ dx=M>0,

∫
Ω

n dx=N >0. (1.5)

Here p(ρ,n) =ργ +nθ is the pressure with the adiabatic constants γ≥1, θ≥1, ρ and n
denote the densities of the two phases, u is the velocity of the fluid, f stands for the
external volume force; µ and λ are fixed constant viscosity coefficients, which satisfy
thermodynamic constraints µ>0, 2µ+3λ≥0.

If we only consider a single density, the model becomes the well-known steady
compressible Navier-Stokes equations:

div(ρu) = 0, (1.6)

div(ρu⊗u)+∇ργ−µ∆u−(µ+2λ)∇divu=ρf. (1.7)

For the general large data, Lions [12] used the method of weak convergence to obtain the
existence of the global renormalized weak solutions for all γ > 5

3 in 3D. He established
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the delicate approximation scheme

α(ρ−h)+div(ρu) = ε∆ρ, (1.8)

α(ρ+h)u+
1

2
div(ρu⊗u)+

1

2
ρu ·∇u+∇ργ +δOρβ−µ∆u−(µ+2λ)∇divu=ρf, (1.9)

which not only keeps the mass conservation, but also helped us to obtain energy in-
equality. Adapting the concept of oscillation defect measure developed in [6], Novo
and Novotný [15] were able to show the existence result for γ> 3

2 if f is a potential.
The following works focused on how to improve the integrability of the density and
reduced the condition to the physical limit γ≥1. The breakthrough came from the
work [7] and [18], in which they both obtained L∞-estimate of the inverse Laplacian of
the pressure to improve the estimate of the density. The methods were developed by
Březina and Novotný [3], which enabled them to show the existence of weak solutions

to the spatially periodic case in 3D for γ> 3+
√

41
8 if f is a potential, or γ > 1+

√
13

3 if
f ∈L∞(Ω). In papers [8] and [9], Frehse, Steinhauer, and Weigant extended their local
weighted estimate for the pressure to a global estimate to treat the case γ> 4

3 in 3D
and γ≥1 in 2D. The first result for γ>1 in three dimensions was due to the work of
Jiang and Zhou [11], in which they established a new coupled estimate for both kinetic
energy and pressure. The method was generalized to solve the case of slip boundary
condition by Jessle and Novotny [10] and finally Plotnikova and Weigant [19] extended
it to the case of Dirichlet boundary condition for all γ>1. To our best knowledge, the
problem γ= 1 in three dimensions is still left open.

Recently, there came out a lot of results about the weak solutions for the two-phase
model in three dimension. Most of the models can be seen as a special case of the
following system:

α+ +α−= 1, (1.10)

∂t(α
±ρ±)+div(α±ρ±u±) = 0, (1.11)

∂t(α
±ρ±u±)+div(α±ρ±u±⊗u±)+α±∇p(ρ±) = div(α±τ±), (1.12)

where α+≥0, α−≥0 are the volume fractions of the fluid + and the fluid −, respectively.
Moreover, ρ±, u±, p and τ± stand for the densities, the velocity of each fluid, the
pressure, the strain, respectively. For more details about the model, we refer to [1].

By taking u+ =u−, ρ=α+ρ+ and n=α−ρ−, we obtain the system (1.1)-(1.3) with
time development

ρt+div(ρu) = 0, (1.13)

nt+div(nu) = 0, (1.14)

[(ρ+n)u]t+div[(ρ+n)u⊗u]+∇p(ρ,n)−µ∆u−(µ+2λ)∇divu= 0. (1.15)

Vasseur, Wen, and Yu [20] prove the existence of weak solutions to the above system for
γ> 9

5 , θ> 9
5 . Moreover, if the initial data satisfies the equivalence condition 1

c0
ρ≤n≤

c0ρ, c0≥1, the result can be improved to γ> 9
5 , θ≥1. Considering another type of the

pressure, D. Bresch, P. Mucha, and E. Zatorska in [2] study the two-fluid Stokes system

ρt+div(ρu) = 0, (1.16)

nt+div(nu) = 0, (1.17)

∇p(ρ,n) =µ∆u+(µ+2λ)∇divu. (1.18)
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Here the pressure p(ρ,n) is given by

A−ρ
θ
−=A+ρ

γ
+, (1.19)

ρρ−+nρ+ =ρ−ρ+, (1.20)

A− and A+ are positive constants. They obtain the global weak solutions for γ,θ>
1, without the equivalence condition. Very recently, using the equivalence condition,
Novotný, and Pokorný [16] improve the result of Vasseur, Wen, and Yu [20] to general
pressure and allow γ≥ 9

5 , θ>0. The pressure includes p(ρ,n) =ργ +nθ and even the
non-monotone functions.

There are also some papers considering the related problem of the two-phase flow.
For some special initial data, Dong, Zhu, and Xue [4] show the blow up of smooth
solutions to the Cauchy problem of (1.13)-(1.15). Following the work of [2], Li, Sun,
and Zatorska in [14] study a special case of (1.10)-(1.12) with a common velocity and
algebraic pressure closure. They prove the existence, uniqueness and stability of global
weak solutions in dimension one with arbitrarily large initial data. Moreover, Wen, and
Zhu [21] consider a two-phase system with magnetic field and show global existence and
uniqueness of strong solution as well as the time decay estimates. However, the pressure
is p(ρ,n) =ργ +n. Li, and Sun [13] derive from a two-dimensional compressible MHD
model to obtain a (1.13)-(1.15)-type system with the pressure term p=ργ +n2. They
prove the global weak solution for γ>1 with the initial density away from vacuum and
the initial magnetic field bounded.

The goal of this paper is to show the existence and non-uniqueness of weak solutions
for the two-phase model. Using an approximation scheme similar to (1.8)-(1.9), we
establish the existence of weak solution and prove that the densities are equivalent. In
order to obtain γ >1, θ>1, we adopt the weighted estimates of the energy and pressure
developed by [18] and cut-off function developed by [15]. The restriction on the adiabatic
constants γ> 7

3 , θ= 1 is due to the fact that we use Bogovskii operator to improve the
integration of the density, see Lemma 3.3 for the details. An example of non-uniqueness
is constructed, which describes two independent bubbles at vacuum. Solutions of this
type are also called rest states or equilibria since u= 0 everywhere. The above analysis
inspires us to find a new scheme to approximate the constructed solution. We list it as
some open problems in the final section. Throughout this paper, we denote the sense
of distributions by D′, C∞0 by D and positive constant (possibly different) by C.

2. Main result
We begin our discussion with the following definition.

Definition 2.1. We shall call (ρ,n,u) a renormalized weak solution of (1.1)-(1.5) if

(1) ρ≥0, n≥0, (ρ,n,u)∈Lγ(Ω)×Lθ(Ω)×W 1,2
0 (Ω);

(2) Equations (1.1)-(1.3) hold in D′(Ω), (1.1) and (1.2) hold in D′(R3), provided (ρ,n,u)
is prolonged to zero in R3/Ω;

(3) Equations (1.1), (1.2) are satisfied in the sense of renormalized solutions, i.e.

div(b(f)u)+[b′(f)f−b(f)]divu= 0 in D′(Ω), (2.1)

for any

b∈C0[0,∞)∩C1(0,∞), (2.2)

sup
t∈(0,1)

|tk1b′(t)|<∞, for some k1∈ (0,1), (2.3)
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sup
t∈(1,∞)

|t−k2b′(t)|<∞, for some k2≤
γ

2
−1, (2.4)

where f =ρ,n.

Note that the definition is quite similar to the Navier-Stokes system, we may con-
struct an approximation scheme similar to (1.8)-(1.9), i.e.

α(ρ−h)+div(ρu) = ε∆ρ, (2.5)

α(n−k)+div(nu) = ε∆n, (2.6)

α(ρ+n+h+k)u+
1

2
div[(ρ+n)u⊗u]+

1

2
(ρ+n)u ·∇u

+∇ργ +∇nθ+δO(ρ+n)β−(ρ+n)f =µ∆u+(µ+λ)∇divu, (2.7)

which is completed by the boundary conditions(
ε
∂ρ

∂ν
, ε
∂n

∂ν
, u

)∣∣∣∣
∂Ω

= 0. (2.8)

Here h=M/|Ω|, k=N/|Ω| and the additional term δ∇(ρ+n)β is used to improve the
adiabatic constant γ and θ. Further investigation shows that the uniform approximation
scheme only gives a solution with equivalent densities, which leads to our main result.

Theorem 2.1. Let Ω be a bounded domain with C2 boundary and f ∈L∞(Ω). Then
for γ,θ>1 or γ> 7

3 , θ= 1, approximation system (2.5)-(2.8) only allows a renomalized
weak solution such that

n=C0ρ a.e. in Ω,

where C0 =N/M .

Remark 2.1. We will only give the proof for the case γ> 7
3 , θ= 1. For γ,θ>1, we

can use the equivalence of the densities and follow the work [15], [18] to obtain the weak
solution.

The problem seems to be solved. However, it is easy to construct a solution with
independent densities.

Example 2.1. Let u≡0 and f =∇φ, we deduce from (1.3) that

∇ργ +∇nθ = (ρ+n)∇φ. (2.9)

Here φ∈W 1,∞ be a function satisfying:

(1) There are t,T ∈R, t<T , such that for any s∈ (t,T ) the level sets {x∈Ω;φ(x>s)}=

A
(s)
1 ∪A

(s)
2 , where A

(s)
i (i= 1,2) are nonempty disjoint domains;

(2) There always holds that A
(T )
i =∅;

(3) There always holds that A
(s2)
i ⊂A(s1)

i if s1,s2∈ (t,T ), s1<s2.

Then we have the following weak solution to the problem (2.9):

ρk1(x) =

[
γ−1

γ
(φ(x)−k1)+

] 1
γ−1

I
A

(k1)
1

, (2.10)

nk2(x) =

[
θ−1

θ
(φ(x)−k2)+

] 1
θ−1

I
A

(k2)
2

. (2.11)
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Here the unknown constant k1, k2 are determined by M , N respectively. It is easy to
show that the mass functions m1(k) =

∫
Ω
ρk, m2(k) =

∫
Ω
nk are continuous decreasing

functions on (t,T ) with m1(T ) =m2(T ) = 0, Thus, for any M ∈ (0,mc), N ∈ (0,mc),
mc= min{m1(t),m2(t)}, we can find k1∈ (t,T ), k2∈ (t,T ) such that∫

Ω

ρk1 dx=M,

∫
Ω

nk2 dx=N. (2.12)

The above analysis shows that the weak solutions of the steady two-phase flow
are non-unique. Then we wonder what kind of system can approximate the solution
with densities independent. We will return to this topic in Section 4 and give two new
schemes for this problem.

3. The proof of Theorem 2.1
We will first prove the existence of the system (2.5)-(2.8) and then show equivalence

of the two densities. The method for the existence theorem can also be employed
in the approximation scheme (4.1)-(4.3) with a little modification. The condition of
equivalence will reduce the problem into Navier-Stokes equations with a pressure ργ +
C0ρ+δρβ . The following work is to pass to the limit ε→0+, α→0+, δ→0+. And we
will adopt the concept of renormalized solution and the smooth property of the effective
viscous flux to establish the strong convergence of the density.

3.1. The existence of the approximation system. The existence of the
approximation system (2.5)-(2.8) can be proved by using the Schaefer’s fixed point
theorem.

Theorem 3.1. [5] Let X be a Banach space, and Γ is a continuous and compact map-
ping Γ : X 7−→X, such that the set

{u∈X|u= tΓu for some 0≤ t≤1}

is bounded in X. Then Γ has a fixed point.

Given ε>0,α>0,δ >0, we define the space W 1,∞
0 ={g∈W 1,∞(Ω), g= 0 on ∂Ω}

and operator

Γ : (W 1,∞
0 )3→ (W 1,∞

0 )3,

with u=ΓU being a solution of the following system

ν∆u+(ν+λ)∇divu=−F (ρ,n,U) in Ω, (3.1)

where

F (ρ,n,U) =α(ρ+h)U+
1

2
div(ρU⊗U)+

1

2
ρU ·∇U

+∇ργ +∇n+δ∇(ρ+n)β−(ρ+n)f, (3.2)

and ρ=S1U , n=S2U are given by the following proposition.

Proposition 3.1. [17] Let α,ε>0, Ω be a bounded domain of class C2. Then there
exist mappings

Si : (W 1,∞
0 )3→W 2,p, 1<p<∞, i= 1,2
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such that ρ=S1U , n=S2U and for any η∈C∞(Ω),

ε

∫
Ω

∇ρ ·∇η dx+α

∫
Ω

(ρ−h)η dx−
∫

Ω

ρU ·∇η dx= 0, (3.3)

ε

∫
Ω

∇n ·∇η dx+α

∫
Ω

(n−k)η dx−
∫

Ω

nU ·∇η dx= 0. (3.4)

Moreover, ∫
Ω

ρ dx=

∫
Ω

h dx,

∫
Ω

n dx=

∫
Ω

k dx, ρ,n≥0, (3.5)

‖ρ‖W 2,p(Ω) +‖n‖W 2,p(Ω)≤C(1+‖U‖W 1,∞(Ω)). (3.6)

Similar to the case in Navier-Stokes system [17], it is easy to show that Γ is a
continuous and compact mapping from (W 1,∞

0 )3 to (W 1,∞
0 )3. And the approximation

system can be solved by means of the Schaefer’s fixed point theorem as soon as the
following lemma holds.

Lemma 3.1. Assume that t∈ [0,1] and u∈ (W 1,∞
0 )3 satisfies u= tΓ (u). Then

‖u‖W 1,∞(Ω)≤C, t∈ [0,1],

where C is independent of t.

Proof. Testing the momentum equation by u and integrating over Ω, we have

αt

∫
Ω

(ρ+n+h+k)u2 dx+
αγt

γ−1

∫
Ω

(ρ−h)(ργ−1−hγ−1)dx

+
αδβt

β−1

∫
Ω

(ρ+n−h−k)
(
(ρ+n)β−1−(h+k)β−1

)
dx

+βδεt

∫
Ω

(ρ+n)β−2|∇(ρ+n)|2 dx+µ

∫
Ω

|∇u|2 dx+(µ+2λ)

∫
Ω

|divu|2 dx

≤
∫

Ω

(ρ+n)fu dx+
αγ

γ−1

∫
Ω

(h−ρ)hγ−1 dx+
αδβ

β−1

∫
Ω

(h−ρ)hβ−1 +

∫
Ω

ndivu dx. (3.7)

By the virtue of the imbeddings W 1,2 ↪→L6, L3β ↪→L
6
5 , L3β ↪→L2, one gets

‖∇u‖2L2(Ω) +‖∇(ρ+n)
β
2 ‖2L2(Ω)≤C(ε,α,δ,Ω,f,h,k)

(
1+‖ρ+n‖2L3β(Ω)

)
. (3.8)

On the other hand, using the Poincaré inequality, we obtain

‖ρ+n‖
β
2

Lβ(Ω)
≤C

(
‖∇(ρ+n)

β
2 ‖L2(Ω) +‖ρ+n‖

β
2

L
β
2 (Ω)

)
. (3.9)

Note that
∫

Ω
(ρ+n) dx=M+N , by interpolation inequality and Sobolev imbedding

W 1,2 ↪→L6, we arrive at

‖ρ+n‖L3β(Ω)≤C(ε,α,δ,Ω,f,h,k), (3.10)
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which, combined with (3.8) and boundary condition, implies

‖u‖W 1,2(Ω) +‖ρ‖L3β(Ω) +‖n‖L3β(Ω)≤C(ε,α,δ,Ω,f,h,k). (3.11)

Next, we consider the following elliptic equation

ε∆ρ=α(ρ−h)+div(ρu), in Ω, (3.12)

∇ρ ·ν= 0, in ∂Ω. (3.13)

Applying the elliptic regularity theorem, we have

‖ρ‖W 1,p(Ω)≤C(ε,α,δ,Ω,f,h,k)(‖ρu‖Lp(Ω) +‖u‖Lp(Ω)), (3.14)

where p= 6β/(β+2). Then by the imbedding W 1,2 ↪→L6 and (3.11), one gets

‖ρ‖W 2,2(Ω)≤C(ε,α,δ,Ω,f,h,k). (3.15)

Similarly, we have

‖n‖W 2,2(Ω)≤C(ε,α,δ,Ω,f,h,k). (3.16)

Taking the advantage of the bootstrapping via

F (ρ,n,u) =α(ρ+n+h+k)u+
1

2
div[(ρ+n)u⊗u]+

1

2
(ρ+n)u ·∇u

+γργ−1∇ρ+∇n+δβ(ρ+n)β−1∇(ρ+n)−(ρ+n)f, (3.17)

we finally obtain

‖ρ‖W 2,q(Ω) +‖n‖W 2,q(Ω) +‖u‖W 2,q(Ω)≤C(ε,α,δ,Ω,f,h,k), 1<q<∞. (3.18)

Now, we summarize what we have proved and give the following proposition on the
weak solutions of the approximation (2.5)-(2.8).

Proposition 3.2. Suppose β>max{3,γ}, α,ε,δ >0. Then there exists a weak solution
(ρ,n,u) with the following properties:

(1)

‖ρ‖W 2,q(Ω) +‖n‖W 2,q(Ω) +‖u‖W 2,q(Ω)≤C(ε,α,δ,Ω,f,h,k), 1<q<∞; (3.19)

(2) ∫
Ω

ρ dx=M,

∫
Ω

n dx=N, ρ,n≥0. (3.20)

3.2. The equivalence of the two densities. We observe that the two continu-
ity equations have the same velocity, boundary condition and approximation parameters
ε, α. Moreover, the solution of the continuity equation is nonnegative (if h,k≥0), which
enables us to show the equivalence of the density.

Lemma 3.2. Assume that (ρ,n) is the solution stated in Proposition 3.2, then

n=C0ρ a.e. in Ω, (3.21)



1706 WEAK SOLUTIONS TO THE STEADY TWO-PHASE FLOW

where C0 =k/h=N/M .

Proof. Multiplying the Equation (2.5) by C0 and then subtracting (2.6) from the
resultant equation, we have

α(C0ρ−n)+div[(C0ρ−n)u] = ε∆(C0ρ−n). (3.22)

By Proposition 3.1, one obtains

C0ρ−n= 0 a.e. in Ω. (3.23)

Now the approximation system reduces to steady Navier-Stokes equations with an
additional pressure term C0ρ, namely

α(ρ−h)+div(ρu) = ε∆ρ, (3.24)

α(1+C0)(ρ+h)u+
1+C0

2
div(ρu⊗u)+

1+C0

2
ρu ·∇u

+∇ργ +C0∇ρ+δ∇ρβ =µ∆u+(µ+2λ)∇divu+(1+C0)ρf, (3.25)

with the boundary conditions (
ε
∂ρ

∂ν
, u

)∣∣∣∣
∂Ω

= 0. (3.26)

Following the work of [17], we are able to pass to the limit ε→0+, α→0+ to obtain
the existence of weak solutions to the following system:

div(ρδuδ) = 0, (3.27)

(1+C0)div(ρδuδ⊗uδ)+∇Pδ(ρδ) =µ∆uδ+(µ+2λ)∇divuδ+(1+C0)ρδf, (3.28)

with the boundary condition

uδ
∣∣
∂Ω

= 0, (3.29)

where Pδ(ρδ) =∇ργδ +C0∇ρδ+δ∇ρβδ . In summary, we have

Proposition 3.3. Let δ∈ (0,1]. Then the approximation system (3.27)-(3.29) has at
least a weak renormalized solution (ρδ,uδ) satisfying the following properties:

(i) ρδ≥0, ρδ ∈L2β(Ω), uδ ∈W 1,2
0 (Ω),

∫
Ω
ρδ =M>0;

(ii) Equation (3.27) holds in the renormalized sense, i.e.∫
Ω

{ψ(ρδ)uδ ·∇ξ+ξ[ρδψ
′(ρδ)−ψ(ρδ)]divuδ}dx= 0, (3.30)

for any ξ∈C∞(Ω) and ψ∈C1[0,∞) with

|ψ(t)|+ |tψ′(t)|≤C(1+ |t|β), t∈ [0,∞); (3.31)

(iii) Equation (3.28) holds in the sense of D′(Ω), i.e.∫
Ω

[(1+C0)ρδuδ⊗uδ :∇φ+Pδ(ρδ)divφ−µ∇uδ :∇φ

−(2µ+λ)divuδdivφ+(1+C0)ρδf ·φ]dx= 0, (3.32)

for any φ∈D(Ω) and in particular, for any test function φ∈W 1,2
0 (Ω).
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(iv) Moreover, we have∫
Ω

(|∇uδ|2 + |divuδ|2) dx≤C
(∫

Ω

ρδf ·uδdx+

∫
Ω

ρδdivuδdx

)
, (3.33)

where C is independent of δ.

3.3. Limit passage. In this subsection, we will pass to the limit δ→0+ and
complete the proof of Theorem 2.1. In order to obtain the limit function in L1(Ω)
for the pressure term, it still needs a better estimate for the density. By the energy
inequality (3.33), we have

‖uδ‖W 1,2(Ω)≤C
(
1+‖ρδ‖L2(Ω)

)
. (3.34)

Then we introduce the Bogovskii operator, which is a linear integral operator satisfying

B :

{
ϕ∈Lp(Ω) :

∫
Ω

ϕ= 0

}
→W 1,p

0 , (3.35)

divB[ϕ] =ϕ, B[ϕ]|∂Ω = 0, (3.36)

‖B[ϕ]‖W 1,p(Ω)≤ c(p)‖ϕ‖Lp(Ω) for any 1<p<∞. (3.37)

By denoting

φ=B
[
ρσε −

∮
ρσε

]
,

∮
ρσε =

1

|Ω|

∫
Ω

ρσε dx, (3.38)

we have φ∈W 1,2
0 (Ω), which enables φ to be a test function for the momentum Equation

(3.28). It leads to the following result.

Lemma 3.3. Assume γ> 7
3 , (ρδ,uδ) be a solution given by Proposition 3.3, then

‖ρδ‖Lγ+σ(Ω)≤C, (3.39)

‖uδ‖W 1,2(Ω)≤C, (3.40)

where C is independent of δ and σ= 2γ−3.

Proof. Taking the test function φ in the momentum Equation (3.28), we have the
following identity∫

Ω

ργ+σ
δ +C0ρ

1+σ
δ +δ

∫
Ω

ρβ+σ
δ

=

∫
Ω

ργδ

∮
Ω

ρσδ +

∫
Ω

ρδ

∮
Ω

ρσδ +δ

∫
Ω

ρβδ

∮
Ω

ρσδ

+ν

∫
Ω

∇uδ ·∇B
[
ρσδ −

∮
ρσδ

]
+(ν+λ)

∫
Ω

divuδ

(
ρσδ −

∮
ρσδ

)

−
∫

Ω

ρδuδ⊗uδ :∇B
[
ρσδ −

∮
ρσδ

]
−(1+C0)

∫
Ω

ρδf ·B
[
ρσδ −

∮
ρσδ

]
=

7∑
i=1

Ji. (3.41)



1708 WEAK SOLUTIONS TO THE STEADY TWO-PHASE FLOW

(i) As for J1, we have

|J1|≤C‖ρδ‖σLγ+σ(Ω)‖ρδ‖
γa(γ)
Lγ+σ(Ω), (3.42)

where we have used Hölder’s inequality and the interpolation ‖ρδ‖Ls(Ω)≤
C‖ρδ‖1−a(s)

L1(Ω) ‖ρδ‖
a(s)
Lγ+σ(Ω),

0<a(s) =
(γ+σ)(s−1)

s(γ+σ−1)
<1. (3.43)

(ii) Analogously, one gets

‖J2‖≤CM‖ρδ‖σLγ+σ(Ω), (3.44)

‖J3‖≤Cδ‖ρδ‖σLβ+σ(Ω)‖ρδ‖
(β+σ)(β−1)
β+σ−1

Lβ+σ(Ω)
. (3.45)

(iii) In view of (3.34) and L2 ↪→Lγ+σ, together with Hölder’s inequality,

|J4|+ |J5|≤C‖uδ‖W 1,2(Ω)‖ρσδ ‖L2(Ω)

≤C‖ρδ‖1+σ
Lγ+σ(Ω), (3.46)

provided γ+σ≥2, γ>1.
(iv) Similarly, by the interpolations

‖ρδ‖
L

3(γ+σ)
2γ−σ (Ω)

≤C‖ρδ‖
2γ−σ−3

3(γ+σ−1)

L1(Ω) ‖ρδ‖
γ+4σ

3(γ+σ−1)

Lγ+σ(Ω) , (3.47)

‖ρδ‖L2(Ω)≤C‖ρδ‖
γ+σ−2

2(γ+σ−1)

L1(Ω) ‖ρδ‖
γ+σ

2(γ+σ−1)

Lγ+σ(Ω) , (3.48)

we have

|J6|≤C‖ρδ‖
L

3(γ+σ)
2γ−σ (Ω)

‖u2
δ‖L3(Ω)

∥∥∥∥∇B[ρσδ −∮ ρσδ

]∥∥∥∥
L
γ+σ
σ (Ω)

≤C‖ρδ‖
σ+ γ+4σ

3(γ+σ−1)

Lγ+σ(Ω)

(
1+‖ρδ‖

γ+σ
2(γ+σ−1)

Lγ+σ(Ω)

)2

, (3.49)

provided σ≤2γ−3 and γ> 7
3 .

(v) Furthermore, the imbedding L
γ+σ
σ (Ω) ↪→L

γ+σ
γ+σ−1 (Ω) implies

|J7|≤C‖ρδ‖σLγ+σ(Ω)

(
1+‖ρδ‖Lγ+σ(Ω)

)
. (3.50)

By Lemma 3.3 and the compact imbedding W 1,2 ↪→Lp1 , p1∈ [1,6), one has the
following limits:

δρβδ →0 in D′(Ω), (3.51)

uδ→u weakly in W 1,2
0 (Ω), (3.52)

uδ→u strongly in Lp1(Ω), (3.53)
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ρδ→ρ weakly in Lγ+σ(Ω), (3.54)

ργδ→ργ weakly in L
γ+σ
γ (Ω), (3.55)

ρδuδ→ρu weakly in L
6γ

6+γ (Ω), (3.56)

ρδuδ⊗uδ→ρu⊗u weakly in L
3γ

6+γ (Ω). (3.57)

In summary, the limit of (ρδ,uδ) satisfies the system:

div(ρu) = 0, (3.58)

(1+C0)div(ρu⊗u)+∇ργ +C0∇ρ=µ∆u+(µ+2λ)∇divu+(1+C0)ρf. (3.59)

And what is left to prove is that

ργ =ργ a.e. on Ω, (3.60)

which needs the strong convergence of the density. Then we consider a series of cut-off
functions

Tk(z) =kT (
z

k
) for z∈R, k= 1,2,3, ·· · , (3.61)

where T ∈C∞(R) is a concave function satisfying

T (z) =

{
z, z≤1,

2, z≥3.
(3.62)

It follows that

Tk(ρ)→ρ in Lp(Ω) for any 1≤p<γ, as k→∞, (3.63)

since

‖Tk(ρ)−ρ‖Lp(Ω)≤ liminf
δ→0

‖Tk(ρδ)−ρδ‖Lp(Ω), (3.64)

and

‖Tk(ρδ)−ρδ‖pLp(Ω)≤2pkp−γ‖ρδ‖γLγ(Ω)≤C2pkp−γ . (3.65)

Similarly,

Tk(ρ)→ρ in Lp(Ω), 1≤p<γ as k→∞. (3.66)

Next, by denoting the effective viscous flux

Hδ :=ργδ +C0ρδ−(2µ+λ)divuδ,

H :=ργ +C0ρ−(2µ+λ)divu,

we have the following lemma on Hδ and H.

Lemma 3.4. For any φ∈D(Ω), we have

lim
δ→0+

∫
Ω

φHδTk(ρδ)dx=

∫
Ω

φH Tk(ρ)dx. (3.67)
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Proof. The proof is very similar to the work of [15]. The details are omitted.

Finally, let Lk ∈C1(R) satisfy

Lk(z) =


z logz, 0≤z<k;

z logk+z

∫ z

k

Tk(s)

s2
ds, z≥k.

(3.68)

Note that

Lk =βkz−2k, z≥3k, (3.69)

βk = logk+

∫ 3k

k

Tk(s)

s2
ds+

2

3
, (3.70)

and tL′k(t)−Lk(t) =Tk(t), we use the concept of renormalized solution to obtain

div(Lk(ρδ)uδ)+Tk(ρδ)divuδ = 0 in D′(R3). (3.71)

Integrating this identity over Ω and letting δ→0+, one derives∫
Ω

Tk(ρ)divu dx= 0. (3.72)

Similarly, we have ∫
Ω

Tk(ρ)divu dx= 0. (3.73)

As t 7−→ tγ is convex, Tk is concave on [0,∞], we can make use of (3.72), (3.73) and
Lemma 3.4 to obtain

limsup
δ→0

∫
Ω

|Tk(ρδ)−Tk(ρ)|γ+1 +C0|Tk(ρδ)−Tk(ρ)|2 dx

≤ lim
δ→0

∫
Ω

(ργδ −ρ
γ)(Tk(ρδ)−Tk(ρ))+C0(ρδ−ρ)(Tk(ρδ)−Tk(ρ)) dx

≤ lim
δ→0

∫
Ω

(ργδ −ρ
γ)(Tk(ρδ)−Tk(ρ))+C0(ρδ−ρ)(Tk(ρδ)−Tk(ρ)) dx

+

∫
Ω

(ργ−ργ)(Tk(ρ)−Tk(ρ)) dx

≤ lim
δ→0

∫
Ω

(ργδ +C0ρδ)Tk(ρδ)−ργ +C0ρ Tk(ρ) dx

=

∫
Ω

Tk(ρ)divu−Tk(ρ)divu dx

=

∫
Ω

(
Tk(ρ)−Tk(ρ)

)
divu dx

≤‖Tk(ρ)−Tk(ρ)‖L2(Ω)‖divu‖L2(Ω), (3.74)

which, in accordance with (3.63), (3.66) yields

lim
k→∞

limsup
δ→0

∫
Ω

(
|Tk(ρδ)−Tk(ρ)|γ+1 +C0|Tk(ρδ)−Tk(ρ)|2

)
dx= 0. (3.75)
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Notice that

‖ρδ−ρ‖L1(Ω)≤‖ρδ−Tk(ρδ)‖L1(Ω) +‖Tk(ρδ)−Tk(ρ)‖L1(Ω) +‖Tk(ρ)−ρ‖L1(Ω), (3.76)

in accordance with (3.63), (3.66), we obtain the strong convergence of the density in
L1(Ω).

Therefore we complete the proof of Theorem 2.1.

4. Open problem
(1) Approximation scheme with different parameters

The uniform approximate parameters require the two densities behave similarly and
may only fit some weak solutions. A better treatment is to use different parameters,
i.e.

α1(ρ−h)+div(ρu) = ε1∆ρ, (4.1)

α2(n−k)+div(nu) = ε2∆n, (4.2)

α1(ρ+h)u+α2(n+k)u+
1

2
div[(ρ+n)u⊗u]+

1

2
(ρ+n)u ·∇u

+∇ργ +∇nθ+δO(ρ+n)β−(ρ+n)f =µ∆u+(µ+λ)∇divu. (4.3)

But it will meet a great challenge when solving the pressure in two variables. More
specifically, compared to the Navier-Stokes equations, it will be a question of how to
solve the relationship between a uniform effective viscous flux and two independent
renormalized mass equations.

(2) Equilibria hypothesis
To obtain some solutions with independent densities, we can propose an approxi-
mation system as follows:

α(ρ−h)+div(ρu1) = ε∆ρ, (4.4)

α(ρ+h)u1 +
1

2
div(ρu1⊗u1)+

1

2
ρu1 ·∇u1 +∇ργ−ρf = qLu1, (4.5)

α(n−k)+div(nu2) = ε∆n, (4.6)

α(n+k)u2 +
1

2
div(nu2⊗u2)+

1

2
nu2 ·∇u2 +∇nθ−nf = (1−q)Lu2, (4.7)

where Lui=µ∆ui+(µ+2λ)∇divui, i= 1,2, q(x)∈C1(Ω), s≤ q(x)≤1−s, s∈ (0,1).
Now the main obstacle is whether u1 =u2 almost everywhere. In particularly, we
have the following hypothesis: for arbitrary f ∈L∞(Ω), the scheme (1.8)-(1.9) al-
ways approximates a weak solution for Navier-Stokes equation with u= 0 almost
everywhere.
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