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INVISCID LIMIT FOR
AXISYMMETRIC NAVIER-STOKES-BOUSSINESQ SYSTEM*

HAMMADI ABIDIT AND GUILONG GUI

Abstract. Consideration herein is the inviscid limit of the 3-D incompressible axisymmetric
Navier-Stokes-Boussinesq system with partial viscosity. We obtain uniform estimates of the solutions
of this system with respect to the viscosity. We then provide a strong convergence result in the H*~2
norm of the viscous solutions of this Navier-Stokes-Boussinesq system to the one of Euler-Boussinesq
equations.
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1. Introduction

In this paper we deal with the 3-D incompressible anisotropic Navier-Stokes-
Boussinesq equations

Opu+uy-Vpu—Ap,=0,  (t,z)€ Ry xR3
Oty +uy, - Vuy, —u@?uu +Vpu=pue:,
divu, =0,

u,u‘t:O:uO, p#‘t:():po'

(1.1)

These equations include the temperature p,, (or the density in the modeling of geophys-
ical fluids), the solenoidal velocity field u, = (u,1,u,2,u,3)", and the fluid pressure p,,.
The term p,e, with e, = (0,0,1)T takes into account the influence of the gravity and
the stratification on the motion of the fluid. And the partial viscosity coefficient p is
a positive constant. Note that when the initial density p° is identically a nonnega-
tive constant, the system (1.1) reduces, in general, to the following 3-D incompressible
anisotropic Navier-Stokes system

Ou+u-Vu—vApu—pd?>u+Vp=0 in RT xR3
divu=0, (1.2)

U|t:0:uoa

where the usual Laplacian in the classical Navier-Stokes equations is substituted by the
anisotropic Laplacian vAy, + pd? with v, u >0, which appears in geophysical fluids (see
for instance [9]). The system (1.2) has been extensively studied by many mathematicians
recently (see [4,8,10,18,26,33,37] etc.).

The system (1.1) is an anisotropic version of the classical n-D incompressible Navier-

*Received: August 29, 2018; Accepted (in revised form): July 1, 2019. Communicated by Song
Jiang.

fDépartement de Mathématiques, Faculté des Sciences de Tunis Université de Tunis E1 Manar, 2092
Tunis, Tunisia (hamadi.abidi@fst.rnu.tn).

fCorresponding author. Center for Nonlinear Studies, School of Mathematics, Northwest University,
Xi’an 710069, China (glgui@amss.ac.cn).

1625


mailto:hamadi.abidi@fst.rnu.tn
mailto:glgui@amss.ac.cn

1626 INVISCID LIMIT FOR AXISYMMETRIC NS-BOUSSINESQ SYSTEM
Stokes-Boussinesq equations (n =2, 3)

Op+u-Vp—rAp=0, (t,z)e Ry xR™
Oru+u-Vu—pAu+Vp=pe,,
divu =0,

ul—o=u",  pli—o=0",

(1.3)

which are widely used to model the dynamics of the atmosphere or the ocean [29], and
arise from the density-dependent fluid equations by using the Boussinesq approxima-
tion which consists in neglecting the density dependence in all the terms but the one
involving the gravity. This Boussinesq approximation can be rigorously justified from
compressible fluid equations by a simultaneous low Mach number/Froude number limit
(see [15]).

In two dimensions, the standard energy method enables us to establish the global
existence of regular solutions of (1.3) for the case where p and x are positive constants.
But, for the case p=x=0, the global well-posedness of (1.3) for some non constant pg
is still a challenging open problem. For the case >0, k=0, or k>0, x>0, the global
well-posedness of (1.3) was independently obtained [1,7,19, 20, 25], see also [21,22] for
the global well-posedness in the critical spaces.

In three dimensions, R. Danchin and M. Paicu [14] proved the global existence
of Leray weak solution of the system (1.3) and its global well-posedness with small
initial data, and also obtained an existence and uniqueness result for small initial data
belonging to some critical Lorentz spaces in [13]. As the outstanding open problem in
the 3-D incompressible Navier-Stokes equations, there are few results about the global
well-posedness of (1.3) for large initial data in 3-D.

Many mathematicians are devoted to the study of some special large initial data
which may globally generate the smooth solution of the 3-D incompressible Navier-
Stokes or Euler systems. There is an interesting case of the global well-posedness result
for both the three-dimensional Navier-Stokes and Euler systems (see [34]) corresponding
to large initial data but with special geometry, called axisymmetric without swirl, which
means that they have, in cylindrical coordinates (e, eq,e,), the following structure:
v(t,z)=v"(t,r,z)e, +v*(t,r,2)e.. Note that we assume that the velocity is invariant by
rotation around the vertical axis (axisymmetric flow) and that the angular component
v? of the vector field v is identically zero (without swirl).

Inspired by this, more recent works are devoted to the study of the three-dimensional
axisymmetric Boussinesq system for different viscosities, here the velocity field v is
axisymmetric without swirl, and the axisymmetric scalar temperature p means p(t,z) =
p(t,r,z) independent of the angle # in cylindrical coordinates. In [23], H. Abidi, T.
Hmidi and S. Keraani proved the global well-posedness for the Navier-Stokes-Boussinesq
system (1.3) with x>0 and £ =0 with smooth axisymmetric initial data without swirl.
In [30,31] global well-posedness of (1.3) with axisymmetric initial data without swirl
was established in the case when the viscosity only occurs in the horizontal direction.
For the case 4=0 and x>0, the system (1.3) reduces to the 3-D incompressible Euler-
Boussinesq system

Oip+u-Vp—Ap=0, (t,r)e Ry xR3
Ou+u-Vu+Vp=pe,,
divu=0,

—,0 — 0
Ujt=0=1U", Pit=0=pP"
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which couples the Euler equation with a transport-diffusion equation governing the
5

temperature. Recently, under the assumptions that s> 3, u® € H* is an axisymmetric
divergence-free vector field without swirl, and p® is an axisymmetric function belonging
to H*~2NL™ with m>6 and such that r?p° € L?, T. Hmidi and F. Rousset [24] proved
the global well-posedness for the three-dimensional Euler-Boussinesq system (1.4). In
[35], S. Sokrani investigated the global well-posedness of the 3-D incompressible Navier-
Stokes-Boussinesq system with partial viscosity and axisymmetric data without swirl.

In this paper we study the persistence of the Sobolev regularity H® with s> g for
the 3-D incompressible anisotropic Navier-Stokes-Boussinesq Equations (1.1) uniformly
with respect to the viscosity u, and then investigate its inviscid limit problem (towards
(1.4) as the partial viscosity coeflicient p goes to zero).

Our main results are as follows.

THEOREM 1.1 (Uniform boundedness of the velocity). Let pe(0,1], s> 3, u®€ H* be
an azisymmetric divergence-free vector field without swirl and let p° be an azisymmetric
function belonging to H*"2N L™ with m>6 and such that r2p° € L?. Then there exists
a unique global solution (u,,p,) to the system (1.1) satisfying

(1) €CR4H) x (CRAE AL NEL ReiH) ), PoucCBAL). (15)

Moreover, there holds

190l -2+ 197 g+ Tl e < 0506, (L6)
with

ér(t) = Coexp(...exp(Cot?)...),
—_———

ktimes

where Cy depends only on the involved norms of the initial data and not on the viscosity
L

The proof relies on the uniform estimate of the Lipschitz norm of the velocity. For
this purpose we use the method developed in [24] for the inviscid case. However, the
situation in the viscous case is more complicated because of the appearance of dissipative
term. We especially have to check that it doesn’t undermine some geometric properties
of the vorticity.

REMARK 1.1.  Under the assumptions in Theorem 1.1, there exists a unique global
solution (u,p) to the system (1.4) satisfying (1.5) and (1.6).

In effect, in view of the proof of (1.6), all the estimates in it are independent of the
viscosity coefficient p, so we may repeat the argument in the proof of (1.6) in Theorem
1.1 to get the same estimates for the solution of the system (1.4).

Our second main result deals with the inviscid limit.

THEOREM 1.2 (Rate convergence). Let (p,,u,) and (p,u) be respectively the solution of
the Navier-Stokes-Boussinesq Equations (1.1) and Euler-Boussinesq systems (1.4) with
the same initial data (p°,u") satisfying the conditions of Theorem 1.1. Then we have
the rate of convergence

ot =l e e+ o= 7 e 10— pll 1 < (1) 06 0). (L7)
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The proofs of Theorems 1.1 and 1.2 are completed in Sections 4-5. We now present
a summary of the principal difficulties we encounter in our analysis as well as a sketch
of the key ideas used in our proof.

Note that in view of the proof for the 3-D axisymmetric Euler equations, the crucial
part of the proof of Theorems 1.1 is to get an a priori estimate of w,, in L, where w,,
is the angular component, the only component, of the vorticity (curlu,) of the velocity
field u,, i.e., V xu, =w, eq, which satisfies

T

u
Vatwu+uM~VwH—u@fwuz—&pu—i—?“ww (1.8)

In view of the method in [3], the quantity ||w,(¢)| L~ may be bounded if we control the
quantity ||u7“||Loo, which conversely can be bounded by the Lorentz norm [|“*||s.1.

In effect, according to (1.8), the evolution of the quantity wT“ is governed by the
equation

Wp _

1
(0t+uu'V—u8§)7——; mPu- (1.9)

As mentioned in [24], the first main difficulty is to find some strong a priori estimates
on p, to control the forcing term f% pu in the right-hand side of (1.9), which can
be thought as a Laplacian of p,, because of the appearance of the the singularity % on
the axis =0, and thus one may try to use smoothing effects of the diffusion system
of p,, to control it. Unfortunately, because of the lack of the complete Laplacian of the
velocity u,, when we want to use this argument to deal with the advection term in the
system, it is not sufficient to obtain an estimate for %arp# in L}, .(L?) by considering
the convection term as a source term and by using the maximal smoothing effect of
the heat equation. To handle it, we turn to use more carefully the structure of the
coupling between the two equations of (1.1) in order to find suitable a priori estimates
for (uy, pu). Indeed, in order to cancel the source term on the right-hand side in (1.9),
we apply the operator %A’l to the equation of the density to show

1 1 1
(Or+uy,- V)(;(')TA_lpu) = ;&pu — [;&A‘l,uu “Vpu, (1.10)
where the term %ar pu appears in the right-hand side of (1.10) with the opposite sign of
the one in the right-hand side of (1.9). Motivated by [24], we introduce a good unknown
I, as

w, O
r,=-+t4+=LA"!
a r + r P
which, thanks to (1.9) and (1.10), satisfies
2 Or 1 200 A1
Oy VT = 02 =—[—=A ,uM.V]pM—u8Z(7A Pu) (1.11)

with the commutator term [Z=A~!w,-V]p,=2=A" (u, Vp,)—u, - V(ZA1p,).
(1

T
Thus the basic energy estimate of the Equation (1.11) gives us that for every p € (1,+00)

O\
ITu@llee ST e + 152 A™ we- Vipull oy + 1100l 320 (1.12)
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Compared with the estimate of I',, in [24] for the axisymmetric Euler-Boussinesq
equations (where the control of ||I',| 3.1 can be obtained directly by using the interpo-
lation inequality), the additional term p[|0;pp||p2(Lry in (1.12) can not, in general, give
the estimate of ]|, .|| 13 (15.1) according to Lemma 2.4, more precisely, L7 ((L*, L”](p,1))
can not be embedded in [L?(L?),L7(L")] 0.1)
directly estimate |||z 51 and then [|“%|[Ls1 but use the interpolation inequality to
bound

for any p>3. For this reason, we do not

2(p—3)

ITuller SITLlE 2T, Hs(p ? for some p>3. (1.13)

Note that H*"?(R3)< L2NLP(R?) for s> 5 and some 3 <p near 3, where ||I',,|| ;2 and
|T.|lzr are controlled by (1.12), we may achieve (1.13) from the initial data viewpoint
since u® € H* and p® € H*"2NL™ with m>6 and r2p° € L?. In this process, the com-
plicated commutator estimate ||[‘9’A_l ,vu-V]p#HL}(Lp) will be treated more carefully.
For this, we give Proposition 3.2 in Section 3, and then deduce (1.6). In order to prove
Theorem 1.2, we use the uniform bounds of the velocity in H® combined with some
smoothing effects on the viscosity and vorticity, which will be done in the last section.

The rest of the paper is organized as follows. In Section 2 we recall some basic
ingredients of Littlwood-Paley theory. Following basic definitions above, in Section
3, we derive some qualitative and analytic properties of the flow associated with an
axisymmetric vector field and an axisymmetric scalar function. In Section 4 we first
give some necessary global a priori estimates, and then prove Theorem 1.1. The proof
of Theorem 1.2 is completed in Section 5

Let us complete this section with the notations we are going to use in this context.

Notations: Let A, B be two operators, we denote by [A4, B]= AB — BA, the commutator
between A and B. For a <b, we mean that there is a uniform constant C, which may
be different on different lines, such that a <Cb and Cy denotes a positive constant
depending on the initial data only.

For X a Banach space and I an interval of R, we denote by C(I; X) the set of
continuous functions on I with values in X, and by Cp(I; X) the subset of bounded
functions of C(I; X). For g€ [1,+00], the notation L?(I; X) stands for the set of mea-
surable functions on I with values in X, such that ¢+ ||f(¢)||x belongs to L%(I).
We also denote by v, = (Ul,Ug)T the horizontal components of the vector field v, and
z=(xp,73)T €R? with z, = (z1,72)T. The operator R;; (i,7=1,2,3) means the Riesz
transform: Rij = 82@ AL

2. Littlewood-Paley analysis and Lorentz spaces
The proof of Theorem 1.1 requires Littlewood-Paley decomposition. Let us briefly
explain how it may be built in the case ¥ €R3 (see e.g. [5]). Let ¢ be a smooth func-

tion supported in the annulus cd {§€R3 <[¢]< 8} and x(§) be a smooth function

supported in the ball B (¢ € R?, |¢|< 4} such that

D e =1 for ££0 and x(&)+» @27 %) =1 for all R,

JEZ q20
Then for ue S’(R3), we set

def

VgeN, Aju=p(279D)u, A_lud:efx(D)u and Sud—ef Z Agu,

—1<¢'<q-1
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we have the formal Littlewood-Paley decomposition
u= Z Aju VueS'(R?).
q=—1
Moreover, the Littlewood-Paley decomposition satisfies the property of almost orthog-
onality:
AjAu=0 if |j—k[>2 and A;(Sp_1uldpu)=0 if |j—k[>5.

We recall now the definition of inhomogeneous Besov spaces and Bernstein-type

inequalities from [5].

DEFINITION 2.1 (Definition 2.15 of [5]).  Let (p,r) €[1,+c]?, s€R and ueS'(R3),
we set

d .
lulls;, < (271 85ulss ),

def

We define B, { eS'(

For the convenience of the reader, in what follows, we recall some basic facts on
Littlewood-Paley theory, one may check [5] for more details.

Bs <oo}.

LEMMA 2.1 (Bernstein inequalities, [5]).  Let B be a ball and C an annulus of R®. A
constant C exists so that for any positive real number , any non-negative integer k, any

smooth homogeneous function o of degree m, and any couple of real numbers (a, b) with
b>a>1, there hold

Supp @C8B= sup ||0%u| s <CFHEFHNGE=) ||| L,

lee|=k

Supp 4 CC=C17F % ||lu||pa < sup ||0%u||pe <CFEF||ul|Lq, (2.1)

lel=k

Supp @ C6C= ||lo(D)ul|pp < Comd™ N

“ 70 |ul| o

We also recall Bony’s decomposition from [6]:
w=Tw+Tiu=T,w+Tyu+ R(u,v),

where

T, vd—efZSj,luAju T,éud:efZSj+2/UAju7
JEZ JEZ
def X def

R(u ZA uA v with Aju= Z Ajrv.

JEL li' =411

In order to obtain a better description of the regularizing effect of the transport-diffusion
equation, we need to use Chemin-Lerner-type spaces L7 (B ,.(R?)) from [5].

DEFINITION 2.2.  Let (r,\,p) € [1,+00]® and T € (0, +o00]. We define z%(B;r(Rd)) the
space of all functions u satisfying

1
P

lullzy a0 < (D2 27 ( / C1asu ) ) <o

j>—1
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with the usual change if r=o00. For short, we just denote this space by Z%(B;T).

The relationships between these spaces are detailed in the following lemma, which
is a direct consequence of the Minkowski inequalities.

LEMMA 2.2.  Let s€R,e>0, r>1 and (p1,p2) € [1,00]%. Then we have the following

embeddings

T DS Tr ps r ps—e€  :
LTBP17P2 = LTBPh:Dz = LTBPh:Dz JAf 7 <py,

LyBse, <~ LyBS, < LyBs

P1,P2 P1,D2 P1,p27 if r>ps.

To prove Theorem 1.1, we also need to use Lorentz space LP'4(R?). For the conve-
nience of the readers, we recall some basic facts on LP4(R3) from [17,27,32]:

DEFINITION 2.3 (Definition 1.4.6 of [17]).  For a measurable function f on R, we
define its non-increasing rearrangement by

770 Fint {s>0, u({z, |£(@)| > 5}) <t},

where p denotes the usual Lebesque measure. For (p,q) € [1,4+00]?, the Lorentz space
LP9(R3) is the set of functions f such that || f||Lr.« < o0, with

T (/ow(t;f*“))qit)éa forl<q<oc

supt%f*(t), forq=oo.
>0

We remark that Lorentz spaces can also be defined by real interpolation from
Lebesgue spaces (see for instance Definition 2.3 of [27]):

(LPo, [Py )(Byq) =LPA,

where 1 <pg<p<p; <oo, [ satisfies %zlp_—oﬂerﬁl and 1 <g<oo.
To establish some functional inequalities involving Lorentz spaces the following
classical calculus will be very useful.

LEMMA 2.3 (see pages 18-20 of [27]). Let 1<p<oo and 1<g<oo, we have the
following assertions.

o For the Riesz transform R :aiajA—l, i,7=1,2, there holds
IRij flleea S fzea-
11,1 11,1
° ]fg—pflﬁ‘pfz and E_qil—’_qiz’ then

Ifglloa SIfllrvallgllzee.az

o If1<p<oo, %—Fl:p%—&—i andl:q%—&—q%, then

P2 q
Ifgllzea SIfllLerarllgllLeeae,

for p=oo, and q%—i_q%:l’ then

1 #gllLee SNl zoran gl rz-oe.
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e For 1<p<oo and 1<q <gs <00, we have
P9 s [ P92 and LPP=LP.

The following Lions-Peetre formula for the space-time interpolation has made a
special contribution to the proof of Theorem 1.1.

LEMMA 2.4 ( [11,28]). Let (Ao, A1,.A) be an interpolation triple. Then
(1) for po,p1 €[1,+00], 0€(0,1), there holds

[Lpo (A0)>Lp1 (Al)] (6,9) = Lq(<A07A1](9,q))

) o . 1 _ 16 0 .
provided q=p(0) with p(0) — po +E’

(i) for 1 <qg<p<+o0, 8€(0,1), there holds

[Lp(Ao),Lp(Al):l (0,9) ‘—)Lp((Ao,Al](qu)),

and the reverse inclusion holds for 1 <p<qg<-+oo.

In order to estimate the convection terms in (1.1) and (1.4), we need to state some
useful commutator estimates.

LEMMA 2.5 (Lemmas 2.7 and 2.8 in [24]).
(1) Given (p,t,q,m)€[1,4+oc]* such that

1 1 1 1 1
I+—=—-+-+—, p>t and ¢>3(1—-).
p t q m t

Let f, g and h be three functions such that Vf€ L9, g€ L™ and x F*he L. Then
I1A(D), flgllzs < CllzF = hll e |V fllzallgl - (2.2)

where C is a constant independent of f, g, and h.
(2) Given (p,t,m) € [1,+0c]® such that % =1+ -L. Then there exists C >0 such that
for VfeLt, ge L™ and for every qe NU{0}

I1Aq: Flgllirr <CIV Izt llg]

with the definition ||@||yi1., = ||Vl v

L (2.3)

3. Some estimates on axisymmetric functions

This section is concerned with the study of actions of some operators over axisym-
metric functions.

Let’s recall first the identity about the action of the operator %A‘l over axisym-
metric functions in [24].

PROPOSITION 3.1 (Proposition 2.9 in [24]).  For every azisymmetric smooth scalar
function f, we have

Or

x2 x? T1T
7A’1f:7§7€11f(z)+7217222f(r)*2 =2

2 Riaf(x) (3.1)

with Rij :6¢j(—A)_1 fori,j=1,2.
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With the aid of the identity (3.1) and the commutator estimate (2.2), similar to
but more complicated than the proof of Theorem 3.1 in [24], we have

PRrROPOSITION 3.2.  Let 2<p<6, v be an azrisymmetric smooth and divergence-free
without swirl vector field, curlv=wey and p an azrisymmetric smooth scalar function.
Then we have, with the notation xp = (x1,x2), that

0,
=

A0 Viploe Sllw/rllze (lollzsa +llpllze +lpznl r2nse, )
+llw/rllzz (el po,, el +llpzall oo ). (3.2)
e

Proof.  Since the functions p and v-Vp are axisymmetric, an application of the
identity (3.1) of Proposition 3.1 shows that

2
—A ( ): Z ai](m)RUp(a?)
and
— AT (v Vp)(z) = Z aij(2)Rij(v-Vp)(z)
with
1'2 12 LBQ
all(ilf):7;,(1412(50):agl(x):frT,agg(I):7;. (33)

Hence, since the velocity v is divergence-free,

2
[%A‘l, = Z d1v<Rij,v~V]p>,

which immediately, according to the fact |a;;(z)| <1 (Vz €R3, i,j=1,2), gives us that

Oy
I=rAn p||Lp<ZHdw i7:019) || o (3.4)

3,j=1

Let’s now bound the LP norm of terms in div([R;;,v]p)= Zk 10k ([Rij,v%]p) step by
step.
Since an application of the Biot-Savart law shows

0! = A7 (cos(0)daw) = A7 (217), 0? = A7 (sin(0)dsw) = A1 (),

the terms 0 ([R;;,v']p) and 95([Ri;,v%]p) can be treated in same way and hence, we
shall prove the estimate of the first one only.

e Estimates of 9;([R;;,v']p). Before proceeding, let us split the term 9 ([Ri;,v']p)
into thirteen terms by using Bony’s decomposition d; ([R;;,v']p) = Zéil I, with

Ii=Ras(w/r)LYp, ly=03A"" (w/r)OLEp, Is=01 Y [Rij,Sq-1(L(w/T))]Agp,

q=0



1634 INVISCID LIMIT FOR AXISYMMETRIC NS-BOUSSINESQ SYSTEM

14_;)817%” L(w/T))Sq=1p), Is =— ;)alm L(w/T))RijSq—1p}

Iﬁ—qal;[mm L(w/r))Agp, I = io[almj,A( L(w/r))Aqp,
q;Zq@chq(w/r)Rqup, Iy =8_1qi>‘6m75q 1(BA7H (w/r))]Ag (1),

hozaé[_Rij,Aq(ag Hw/r)IA (azlp)q

Iu=alq1<2<omij,Aq<asA1<w/r>>]Aq<w1p>,

hzzgo[ Ay (1387 Hw/r)))Sq-1(21p),

hszq;mij,AqwaA1(w/r>>}618q_1<z1p>,

where E}j =—201A7'R;; +51-18jA’1 +5j18iA’1 with d;; denotes the Kronecker symbol,
Lij=—2R;;A™ and L=—2R;3A~. We estimate them term by term.

For I, since R13 is a Rlesz operator and the operator LZ has a convolution kernel
whose behavior looks like IEH ‘2 (€ L3/%), we deduce from Lemma 2.3 that

1)l zr = Ras(w/r)LpllLe < 1R1s(w/m) e 1£550) Lo Sllw /|l ellpl o

Similarly, for I, =03A"! (w/r)alﬁl]p, 81£l1j is a Riesz operator and the behavior of
d3A~" is similar to the one of £j;, then we use Hélder’s inequality and Sobolev embed-
dings to show

122l or < (10587 w/m) el Lijpll | oo SIVOA™ w/r)ll2llpll | e

<
Slw/rllzzlloll e -
In order to estimate I3, we first get that there exists a function 1 € S(R?) such that

L= 01{[g(D), Sq-1(L(w/r)]Agp} (3.5)

q>0

with 1hg =2343)(29-). As for 2<p < oo, we have Bl , — L? (see [36]), then by using Bern-
stein inequalities (2.1), it follows

130170 <D 101{[0q(D), Sq-1(L{w/r)]Agp} I

q>0

<322 [y (D), Sy (L(w /)] A3

q>0
Thanks to Lemmas 2.3 and 2.5, we find

101{[t0g(D), Sq-1(L(w/r))]AgpHLr S 2% |xtbgl [ IVL(w /) o Agpl] | co
SIVZL@/T) 21 Bgpll | oo S llw/rllz2 A
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which leads to

sllLe S llw/rl2llpl po,
2

6—p’

By using the Hélder inequality and Bernstein’s inequalities (2.1) again, we show

IZallZe + 151120 Y22 AG(L(w/r))Sq-1pl70 + Y 2% Ag(L(w/r))RijSq-1plI2s

q>0 q>0
S22 Ay (L(w/r) T (1Sg-1pll7 + 1 RijSq-1p]7)
q>0
Slw/rl70 Y 272 (1Sg-1pll7 + R Sq-1pll7) S lw/rll7ollpl 7 m,

q=0

for 3<m, and in particular,
[Lallze +11sll e Sllew/rl|Le [0l o

To estimate I, using Bernstein’s inequalities (2.1) yields, VkeNU{-1},

||AkIGHLP<2k Z [[Rij, Ag(L (w/r))]AqPHLP'

q>k—4
‘While
1R, Ay (L /r))Agpll o
SIAGL@/ N el Bapll oo +18g(Le/r) 2o RisBapll oo
<2 w/r 2 Bgpll s,

it follows from the embedding 32,2 — L that

6ll e Slleo/rllz2llpll po,,

G-p

Let’s now turn to handle I7. In view of Lemma 2.5, we deduce that

101Rij, Ag (L(o/T)Agplle S [l 2 IVL@/) Lol Agpllz2,

where h(€) =& 554 ®(¢) and ®€D(R®). An application of the well-known Mikhlin-

Hormander theorem shows that
[h(2)| S (1+]a]) ™, VoeR?,
which leads to zh € L7%3 and then
1R, Ag(L(w/r)AgpllLr SIVPLw/r) 22l Agpllzz Sllw/rllzz [ Agpll o
Therefore we get that

Ml < D0 M01Ry, Ag(L(w/r)Agpllze Sllw/rllzllpll -

~1<¢<0
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We directly estimate by the Holder inequality and Sobolev embeddings

1 sllzr S D 101 £8(w/r)RijAgpllLe SI1O1L@w/T)|ollpl] | o

~1<4<0
SIVOLLw/r)lc2lpll e Sllw/rllzzllpll oo

For Iy, as in (3.5), Ig:Zq>081{[wq(D),Sq_l(83A’1(w/r))]Aq(:c1p)}, thanks to
Berstein’s inequalities (2.1), we write that

101{[10q(D),Sq—1 (032~ (w/r)]Ag(x19) }I e
S29|{[1q(D),Sq-1 (02 (w/r))]Ag (1) }| Lo,
which follows from Lemmas 2.3 and 2.5 that

[01{[t0q(D),Sq—1(03A (w/r))]Ag(x19) }| e
2|zl 127 Vs AT w/r) | o | Ag (z19) ] e S llw/7| Lo | Ag(@10)]| £os

Thus, we deduce

o llze <> 101{q(D),S-1 (0587 w/r))Ag(w1p) 2o S llw/rll Lollz1pll o, -

q>0

Note that I;0=04 Zq>1[Rij,Aq(83A* (w/m)]A4(x1p), without using the structure of
the commutator, one has VkeNU{-1}

1AkTolle S2F D7 (I[Rigs Ag(93A7 (w/r))]Ag (x1)] Lo

q>k—4

<2F I A, (054 w/r»nm(nA (w1012~ + [Rus A, <x1p>||mo)

q>k—4

S2° ) 27 w/rllellAg(z1p) | L

q=k—4

Hence, we infer

Iolle $2° Y [Rij, Ag (@387 w/r))|Ag(210) v

q>k—4

28 ) 11A(@sA W/T))IILP<IIA (@10) ]|z +[RijAq (xlp)llmo>

q>k—4

Slw/rlee D > 27 U8 (@1p) o= Slw/rllollzipll e, -

k>—1g>k—4
While the continuity of the Riesz transform on L* for V1< A < oo shows us that

1[Ri5, g (0587 (w/r)]Ag(z10)l[ e S[12q(05A7 (w/r))l[ 2o/ Ag (1) o2

Sllw/rll L2

and then

[Tuallzr Sllw/rl[r2llz1pl] oo .
L6-p
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Similarly, we may readily deduce
[Th2llze + 1 Tusll e Slw/r[|Le |21l L2n B, -
Therefore, we obtain

101([Riz, 0 o) Le Sllw/rlize (ol o +llpllze +llzipll 2nme, )
+llw/rllez(llellpo,,  +llollez +llz1pll e ). (3.6)
ﬁ,’z L6-p

We also can show that the same estimate of ||02([Ri;,v%]p)||L» is true, and let us now turn
to estimate the term d5([R;;,v%]p) which has a different structure from 9; ([Ri;,v']p).

e Estimate of 93([R;j,v%]p). We first have the decomposition

—03([Rij,0%lp) = 03(0k A" (w/r)[Rij w]p) +205([Rij ] p)
k=1
+205([Rij, A Ras(w/r)]p) + D 0s([Rij, kA (w/r)) (k)
k=1
=I+II+III.

To estimate the first term I, we use the form
q1,W w W
03(0kA 1(;)[7311',361@]/)):R:ak(;)ﬁfjﬂJr@kA 1(;)335%9

to give
2
ITlze <> (115 ol Ras(w/r)|e + 10687 /)| Lo l10sL5501l  o2)
i=1

Sllw/rllzellplizes +llw/rllzzllpll oo -

As the operator A~'R33 has the same properties as £ = —20;3A72, then the estimates
of the terms I and III are similar to the ones of I, for 3 </ <13. Hence, one finds

105 (IR i, |p) | o Sllw/rllze (ol +llpllze +lz1pll2npe. )

+llwo/rllez(llollso,, +llpllez +[lipll se ). (3.7)

25
Combining (3.6) with (3.7) and (3.4) leads to (3.2), which concludes the proof of the
proposition. 0

In order to bound ||zpp|[L1(po_ ) in Proposition 4.3 in Section 4, we need also to
estimate the commutator about the Littlewood-Paley operator A,.

ProrosiTION 3.3.  Under the assumptions in Proposition 3.2, there holds for every
geNU{-1}

I1Ag,0-Vlpllze Sllw/rllzzllpll oo +llw/rllLellenpllLe +lw/rl|Lellpl s (3.8)
and

I1Ag,0-Vipllzz S lw/rllzea (lollze + llpznllze)- (3.9)
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Proof.  Since the velocity v is divergence-free, we rewrite [Ag,v-V]p as the form

3
[Agv-V]p=> 0;[Ag v ]p=T+II+III.
j=1

For I, we decompose it into the following four terms:

1=0y ([, £(/)|p) +01 ([Dgs A Bs(t/r)] (1)) — (Ruz w/7) 2201 (2%) %
(A (w/r}2M (Do) (20) 5= I,
=1

with £=—2R13A7! and ¢ (z) =z10(z) € S(R?).
Thanks to (2.3), Sobolev embeddings, and Lemma 2.3, we deduce

1lle SUVL@/Mzellpll, oo SUVL/Mz2llpll, eo Sllw/rlzzlloll | on s

12|l o SIVAT O3(w/r) | Lol 210l Lo Sllw/rllLrlz1pl| Lo
and

I Z5|| e + [ 14]| >
SIRs(w/r)|ler 22| ln (27 pl [1oe + 1A D5 (/)| o 2% (Dr01) (27 ) %l o

Sllw/rllzelled] g llpllzs +llw/rll2l|0vprlla o]l eo

Sllw/rllzellpllzs +llw/rllzzllpl] eo .
Thus it follows
2o Sllw/rllzzllpll oo +llw/rllLellzipllie +llw/rllLellpll s
In the same way, we may get that
Hl[ze Sllw/rllzzllpll s +llw/rllzellezpllie +llw/rllLellllcs.

Let’s turn to estimate I11. In fact, we first show

—IIT=0{[Ag, Vi A~ (/)] (np)} +205{[A g, A Ras(w/r)]}
+279(B, V4 A (w/r) (2%90(20) k) + Vi A~ (w/r) (2% (Ban) (29.) 5 p)

4
=Y 111,
=1
with op(2) =2re(2).
Thanks to (2.3) and Sobolev embeddings, we find that

VLo + 11T o SIV2AT @/l o lznpll + VAT Rag(eo/m)lluo ol oo

Sllw/rlleellznpll = +llw/rllzzlloll | e -
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The estimates of 115 and 1114 follow from Bernstein’s inequality (2.1) to show
[ T1I3]| e + || T114]| Lo
27 w/7|| e 2% n (29.) % pl| Lov +||VhA_1(w/7‘)||L623q|\(33<Ph)(2q-)*PI\L%
Sllw/rlleellenll g llollee +llw /7|22 10s@nllLallpll | co

Slw/rllzellpllzs +llw/rllzallpll e -

This completes the proof of (3.8).
The second inequality (3.9) is in Proposition 3.2, [24], we omit its proof.
This finishes the proof of the proposition. 0

4. Proof of Theorem 1.1

4.1. A priori estimate. The existence and uniqueness of the solution to the
system (1.1) was obtained in [35], we just need to give some necessary a priori estimates
for the proof of Theorem 1.1.

In the rest of this paper, we always denote

o1 (t) = Coexp(...exp(Cot?)...),
——
ktimes

where Cy depends on the involved norms of the initial data and its value may vary from
line to line up to some absolute constants and independent of p.

Let’s first recall the following proposition obtained (with a slight modification)
in [24].

PROPOSITION 4.1 (Propositions 4.1 and 4.2 of [24]).  Let (u,,p,) be a smooth solution
of (1.1), then
(1) forpe(l,+0) , g€[l,4+x], and t R, we have
lpu @z +IVpullzes <200°Nc2 and  pullzgerea < [1p°| Loa
(2) for p°c L?, v’ € L?, and t eR,, we have
[ ()| 22 < Co(1+1);
(3) for p° € L? and tER,, we have
19 ()|l < Co(1+¢71);
(4) for p° € L?, zpp° € L?, and t R, we have
lnpull e 2 +11V (@)l g2 < Co(L+£9);
(5) for p° € L™NL? with m>6, x,p° € L%, and t ERy, we have
[0 (8)] | < Colt +£7%);

(6) for |zp)|?p° € L?, p°€ L?, and t R, we have

5
[z l?pull g2 + IV (|2 ? o)l L2 22 < Co(1+17);
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(7) for p° € LS, |xp|2p° € L?, p° € L?, and t e R, , we have
a0 (D)l s < Co(t ¥ +¢7%),
where constants Cy depend only on the norm of the initial data involved in the estimates,

and are independent of .

In order to get the further estimate about |||z5|?p,(t)||L=, we recall the following
Nash-De Giorgi estimate for the convection-diffusion equation.

LEMMA 4.1 (Lemma A.1 in [24]). Consider the equation

{ Of+(w-V)f—Af=0,F+G, Vt>0,zcR3, 1)

f(0,2) = fo(x).
Let (p,q,p1,q1) €[1,+00]* and r € [2,+00], such that
2 3 2 3
-—+-<1, —4+—<2.
p q P Q1

There exists C'>0 such that for every smooth divergence-free vector field v, for every
Fe Ll LT and for every feL", the solution of (4.1) satisfies the estimate: for every
t€]0,T7,

3 1-(2+43)
1/ @)z <CA+E )| follr +CA+VT IE g, La
2—(Z+)
+O(1+VT Gl 12 o (4.2)

With this lemma in hand, we may deduce that

PROPOSITION 4.2.  Under the assumptions of Proposition 4.1, p° € L™ N L? with m > 6
and |xp|?p° € L?, there exists a constant Co >0 such that Vt€R .,

(1) for pe [2,00],
|@hpullLe < Co(t? +171), (4.3)

(2)
[0 (B)]| L < Co(tT +15). (4.4)

Proof.  The first inequality (4.3) can be immediately obtained by using the inter-
polation inequality, Young’s inequality and Proposition 4.1.

For the second estimate (4.4), denoting g,,:=|zp|?p, and f,:=xpp,, from the p,
equation in (1.1), we know that g, satisfies the convection-diffusion equation

8159# +uy,- Vgu - Ag# =2uyp- fu - Q(alplt +({92p#) —40; (:L’lpﬂ) —4(92(.’[2[)#) +8pu-
Then by Lemma 4.1 and Proposition 4.1, we obtain
=3 1 1
19 ()l SA+ET) 90N 2 + (L +E7) | puyunll e z2) + (L+82) || ppll e (200

1 1
+(L+t2)|znppllLee (poey + (1+23) [ pull oo (L2)
<SCo(tT 13 +17T 441 441) <C(tT +17),
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which completes the proof of the proposition. ]
Let’s now turn to get the estimate of [|znpul|L1p0 -

PRrROPOSITION 4.3.  Under the assumption of Proposition 4.2, there holds Vt € R

t
_3 w
llenppllpipe < Co(1+%)+Co / (T 7 Dlog(2+ ]| Flrere)dr. (45)
’ 0

Proof. Thanks to Proposition 4.1 and Bernstein inequalities (2.1), we find that

lonpullzse / 3 )+ / S 18y (o) ()] [ dr

—1<q<N(r q>N(T)

s/ (% +7 )2+ N (r) dr+/ S 23 )1A (@npp) (7|2 dr

0 g>N(7)

for any positive fixed integer N(7) which will be determined later on. In order to control
the last sum in the above inequality, we localize in frequency the equation of f,=zppu

def
atfu+up’vf,u*Af;L:uu,hpu QVhP/L = EL

to give

atf#’q"’uu'vfu,q _Afu,q: _[Aqﬂu#'v]fu—’_Fu,qu (4.6)

where f, 4 d:equfu, qgeNU{-1}.
A standard energy estimate of the system (4.6) yields that V¢>0

t
—ct229 —c(t—T7)2%9
[ fua @) L2 Se? ||fu,q(0)||L2+/Oe ([ Ags - V] full g2 + | Fugll ) dr

(4.7)
To estimate the commutator in the right-hand side, we can use Propositions 3.3 and 4.2
to give

1[Agyun-VIfu(T)lL2 S \I(%)(T)Hw(lIIthqu(T)IILw +llznpullLs)

SHEH @t +77h),

which shows us, when setting x(7):=71 +71, that

/ S 239 (e (1) | dr

qg>N (1)

<z + ol oo+ / [ (3 20t / =P (N d Y, (48)

q>N(7)
Moreover, thanks to Proposition 4.1, we immediately get

1Fullzrre < VHIVoullz e +lwull e 2 ol pe S1+82.
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Thus, from (4.8), one finds

3

t
lanpulliimo | S (1+2)+ / (rt 7 )N (r)dr
’ 0

/H*HLO@L2 Z 2q2/ —e(r—rh2¥ T’4+7' )dT)d

q>N (T

§(1+t2)+/0t(71+73)1v(7)d7

/H7HL°°L2 7'42 N 4 Z 2‘12/ —c(r—7")2% /—sz)d

g>N(T)
(4.9)

For the term - n(; 203 Joe e=e(T=m)2""2/=% 47’ a change of variables shows us that

2247
Z 2q2/ —c(r—7")2%4 /_ZdT _ Z 24¢ —cT2 q/ ec‘r’T/—%dT/
g>N(T) ¢>N(7) 0
22q 2 T ’ 3 22q 22‘17- ’ 3
— Z 94— CT / eCT 7_lfzd,r/+ Z 929p—CT / RGPS ¥
4€B1(7) 0 4€Bs(7) 0
=:I(1)+1I(7) (4.10)

with
Bo(1)={qlq>N(7) and 72*¢>1} and By(7)={q|q¢> N(7) and 72%¢ <1}.
Using integration by parts, one can see

I(r)gr=t Y 27EgrmigT N0, (4.11)
g>N(T)

While for the second term II(7), one finds

< Y 20K ENG N 9B <o iNMI (14 ), (4.12)

q632 (1) 2—2¢<r—1

Hence, plugging (4.11) and (4.12) into (4.10) yields

Z 2q2/ —c(r—7' 2‘1 /—7d7_/<2—* (T)(1+T_%). (413)
a>N(7)

Therefore, combining (4.13) with (4.9), we obtain
¢
5 w
znpullzrpo | 5(1+t2)+/ (74 +r—%)(N(r)+2+HT“I|L§L22—%N(T>)CJT. (4.14)
’ 0
Choose N(7) in (4.14) such that

w
N(7) =2[logy (2+|=Fllresr2)];
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we have
t
w
|lznpullrpe, SCO(H‘t%)‘FCO/ (7'2"'7'_%)1%(2‘*‘HTMHL?L?)C[T-
‘ 0

This completes the proof of the proposition. 0

Based on Propositions 4.3 and 3.2, we may get the control of [|4|| e 2.
PROPOSITION 4.4. Under the assumptions in Proposition 4.1, let u® € L? be an
0
azisymmetric vector field such that - €L? and p° € L2NL™ for m>6, avisymmetric

and such that |xy|?p° € L2. Then, we have for every t €R
“p
1= g2 < 92(2). (4.15)
Proof.  Recall that the equation of the scalar component of the vorticity V xu, =
wyeg is given by
uT‘
8twu+uM~un—u83wM:fwu—arpu. (4.16)

It follows that the evolution of the quantity 2£ is governed by the equation

T

(at+uu-v—pa§)%:—a’;#. (4.17)

On the other hand, applying the operator %A’l to the equation of the density yields

1 _ Or 1 _
@+, V)0, A7 ) = “E =~ 20,47 u,- Vi (4.18)

Setting I'y, := WT—"—&—%&A_lpM, we infer from (4.17) and (4.18) that the new unknown
I',, satisfies

1 1
(8t+uu-V—,u@f)l“u:—[;&A_l,uu-V]pu—uﬁf;ﬁrA_lpu. (4.19)
The basic L? energy estimate of (4.19) yields
1
ITullger2 +p2 10Tyl 22
0 1 -1 1 1 -1
SIT 2 + 110 A7 - Vipllpype + 12102 0- A7 pull ez 2
1 _ 1
SITON 22 + 1=0r A7 Vil g2+ 1210zl |2 12 (4.20)

From Proposition 3.2, we estimate the commutator in (4.20) to get

Or
[(C-AweVipalle Sllwn/rllz (lopllez + IV pull p2 + lpuwnllL2nsg, ),

which along with (4.20) implies

1
ICullLge 2 + 12 |0-Tul 222
1
SIT Nz + llwi/rllze (loull 2 + 1V pullzz +llppznllznge, ) +12 10=pulloz . (4.21)
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On the other hand, applying Proposition 4.1 shows us that

9
lpullzeerz +11Vpullczre SHP° Nz, louwnlloyre St+t5, (4.22)

which follows

1 Oeeon
T T

|[Lee 2 +pll 22

1 _ 1 _
SICullege 2 +ull0-Tull e + 11~ 0n A pull Lo 12 + pll =0 A1 02y 172
STl o2 +pll0=Tulliz 2 +lloull e L2 +1ll0=pull Lz L2,

and then

Ow
Zr Ellpzre STl Lo 2 4+l 0Tyl 22 +110°| L2 (4.23)

w
”i”Lf"L? + |

r
Combining (4.21) with (4.22) and (4.23) implies

0wy

w
”%HL?L? + | L2z

r
SIT e + 0% 22 +llww /7l 2 (I pyll 2 + IV pll 22 + [l L2nme, )
which, from the Gronwall inequality, gives that

0wy,

222 <C (T2 + 110l 2)

C(”pu’”LtlL2+va“'”L%L2+"p/"'zhllL%(L2ﬁBgo,1)).

12 e o+l
rot T
X e

Therefore, an application of Proposition 4.1 yields

9
Co(Vt+t2 +llpuznll g0 )
t T oo,l N

O,w,,
22 <C(IT)l2 +110° 22 ) e

w”
||7HL;>°L2 + ] ,

which along with Proposition 4.3 gives rise to

w O,w 2
=2 Lge 2+l == N 22 SC (Tl L2 + 1|00 p2) S0
rt r

t
Xexp{CO/ (747 ) log(2-+1|2 |- 2)dr},
0
and then

t
w w
log(2+|=*[|g=2) glogco+co(1+t%)+co/ (7 77 ) log(2+ ||| £2)dr.
0

(4.24)
Therefore, applying the Gronwall inequality to (4.24) gives the desired estimate. 0
ProprosITION 4.5.  Under the assumptions in Proposition 4.1, let % <s50<3, 3<p<
400 satisfy 0 < % — % < 50, u € L? be an azisymmetric vector field without swirl such that
“’70 €L*NLP and p° € By" NL™, for m>6, axvisymmetric and such that |z,|*p® € L?.
Then, we have for every t e R,

w u, w
||7#\|L;?°Lp + ||7”||L;?°L°° + ||7”||L;>°L3=1 Hloulzip: | <¢2(t) (4.25)
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and
[wi (Bl L < ¢3(t). (4.26)

Proof.  Let’s first give some estimates of I', in the L? framework. Multiplying the
I',, Equation (4.19) by |T',[P72T,, and then integrating it over R? yields that

P 1 _ 1
I, 0T E 2 SN0 A - ool
1 _ _
i [ ECOAT DT e
1 _ - 1 _ P p_
SIGOA Dol 0 1020, 871 010, 88

Thanks to the Holder and Young inequalities, we infer that

= IV I E 1 S0 A ™ Vol T 125+ s pu T 252
and then deduce that
Tyl 2o S ITNeo 4100 A7 Vol oo+ 16 [Vl (4.27)
In view of the definition of I',,,
H%HL;”LP <|Tullzse e + H%&”Ailpp”L;"’LP SITullpsere +llpullse e

which along with (4.27) implies
1
1= HL°°LP<CO(1+||[ L Vil + 12 [V oulleze)- (4.28)

Let’s now handle the estimate of H[%@TA_l,uu-V]puHL%Lp. From Proposition 3.2, we
have
ar —1 <
(A" w-Vpaller Sllwu/rlie (loull o + ol ps +llppanllzanss, )
+||w,t/7“||L2(||,0u\|13267pY2 +llpullez +llppanll o). (4.29)
-p

In the second term on the right-hand side in (4.29), applying Propositions 4.1, 4.2, and
4.4 gives rise to

5 _3
llon/rllez (oullso,,  +lloullez +llouzall oo ) Sé2(O)(llopllpe,,  +1+E14+177),

6—p° [t

which follows

w
SV s, ol ol s, 5 [ 62 loulss,dr+6a(0)
6-p2 6—p’
(4.30)
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The control of the Besov norm ||p,|| po,,  remains. In fact, similar to the proof of
6-p2

(4.7), a standard energy estimate in local frequency of the p, equation shows us that
Yqg>0

t
2q —e(t—7)229
1Agpu ()| L2 Se? IIAqPOHLer/O e T [y up- V|| 2dr, (4.31)
which follows, from Propositions 3.3, 4.1 and 4.4, that
loullzy s S 16°ze (146 supl[Ag,w, - Vgl 1o
’ q
t
SHPOIIL2(1+t)+/O lwu /Tl z2(lppllLs +lznpullLe) dr
t
S0+ [ anerierarso®n.  (@3)
0

As a consequence, we get from (4.30) that

¢
[ sl iolon,, +llpulss +ipuzall go, e
<0201+ pulizn,, ) SO0 Houlzim ) Soa(t). (4.33)
An application of (4.31) shows us that

||puH’L'ch;o;2 S ||POHBSOI*2 +22(5073)q||[Aq7uu ’ v]PuHL%B
" q

N|=

<1A°

t
B(;o;z—!-(/o (sup||[Aq,uu-V]pMHLz)QdT) .
= q
Hence, thanks to (3.9), (4.15), Proposition 4.1, and the interpolation inequality, we find
1ol g2 S 1N oo+ o/l s (lollzzee + ol o)

2(p—3) 2] D

5., W — w — w —
ST+ LT |22 S+ 2172 (434)

On the other hand, localizing the p,, equation in frequency in the LP framework
yields for e NU{-1}

1d _ _
77||AQPHH€/P7/ AgApu| Agppl” QAqPAde:*/ [Ags - Vpu| Agppl? 2quudx~
P dt R3 R3

(4.35)
By using the inequality in [12]

22| A fI17,, if ¢>0,

- / Aqu|Aqf|”Aqfdxz{ |
R3 0, if ¢g=-1,

we get from (4.35) that

1Agpullzee Lo+ 22 Agpull i o < 18gp° o + Cll[AG w - VippllLie  (Vg20),
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1A ol o S UAZ1 P o +CNA -1 - Vipallz 1o (4.36)

Therefore, thanks to (4.33) and Propositions 3.3, 4.1 and 4.4, one can obtain from (4.36)
that

loulzsmy <o)+ [ leofrllas (el +lollzs). (437)
By using the interpolation inequality, (4.32) and (4.34), we deduce that
1 1
IVoullsze Sloulhe gy 1l pe SHoule ol
Soa(t) + o (1)]| 22 ||£<o’3>fp)~ (4.38)
Inserting (4.29), (4.33) and (4.38) into (4.28) yields
122 )0 S 62(0) + G20 2 |52 2
/ =5z (lwllzes +llppll e +louznllz2npe, |, + llznpllie +llpllze)dr
and then it follows from Young’s inequality that
==l

Sea(t) /Hi”LP(Hpu”L31+”p;LHLG"*‘HP#thL?ntC,I+||thHL°°+||P||L3)dT~

(4.39)
Thanks to Propositions 4.1, 4.3 and 4.4, it shows
5 3
loullzsr +llpullze +llopenllLe +l@npl Lo +lpllLs < Co(tT +877),
and then follows from (4.39) that
||*||L°°Lp < ¢2(t) / 1= llee (Co(r % +775) + [Jznpu(r)l|pe. A (4.40)
Applying Gronwall’s inequality to (4.40) leads to
9
|| Ellzgerr S 2(t)exp{Co(1+73 + |znpullipe, )}
which follows from (4.15) and (4.5) that
Wi
||7HL§°LP < ¢a(t) (4.41)
and then
IVpullere <@2(t), lpullzipe | S 02(1), (4.42)

where we have used the inequality (4.37).
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Thanks to the fact || ur’

Lo S ||%HL3>1 in [2], we have

U 2(p—3)
IIJIILW<\|*“I\L31<II H“” 2’|| S

)

then a consequence of (4.15) and (4.41) gives

u?"
12 < a().

From the maximum principle for the Equation (4.16), we obtain that

t u”
IIM(lt)IILwSIIwOHLooJr/0 I== el (Tl o dr + IV pull iy e

which follows from the Gronwall inequality that

r

Y
S (1 ol )€

pl

oo @llzee < (1o® | oo + 1V ppll s oo )
By combining Lemma 2.2 and inequalities (4.42) and (4.43), we deduce

u?"
ol <Co(l+llpullzrps ) explll—llryze} S 8s(t).

This ends the proof of the proposition.

(4.43)

T”L}LOO

d

4.2. Proof of Theorem 1.1. Let’s now achieve the proof of Theorem 1.1 by

giving the persistence of the initial regularity uniformly on the viscosity.

Proof. (Proof of Theorem 1.1.) By a standard energy estimate for the system

(1.1), we have
¢ 1
oz S 1+ ol + [ (2 WAt Tl )
q

and

19wl -2+ 12l 1

¢ 1
SHPOIIHH+\|A—1PulngL2+/ (D22 [Ag up - VipylZ2dr) ®.
0
q
We recall the proof of Lemma 2.100 in [5] to estimate commutators in (4.45)

1
(D27 I[Ag, - VIug|F2d7) * S|V [y e

q

and

5, 27D Ag - Vgl S IVl 9l o2 + 1Vl o 1.

(4.44)

(4.45)

Hence, thanks to |A_1pp|L1 2 <t]|p°]| 2, one can show from (4.44) and (4.45) that

Hpu”EgoH572 + HpMHE%HS

t
SHPOHHV‘A’HHPOHLH/O (IVuplloellppll o=z + 1V pull oo (| 22 + ] 2+)) dr,
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and then
”p#HEtoeHs—? + HIO;LHZ,%HS + HUMHEgOHs

t
SIIpOHHs—z+tIIPOIIL2+IIUOIIHS+/O IVoullpoe l[wpll L2 dr

t t
+ [ IFudi s+ [ (19l + 190

Then, an application of the Gronwall inequality gives rise to

1ol Zee ra—e + ol 22 prs + Nl oo g
Sl + 2l o + e = + / 19l dr) CIT om0,
’ (4.46)
Note that, from Proposition 4.1 and inequality (4.42), we have
IVoullzize < HPHHZ%B;‘;,Q@ Sha(t),

and then

t
S 19l lzdr < o),
which along with (4.46) implies

ClIVupll 11100
0l prems + 1ol e -t e e < G3(0)1 T 0 b2 (4.47)

In view of the classical logarithmic Sobolev embedding inequality

5
IVaull e Sllupllzz +llwwl 2 logle+ luullze) - (Vs> 5),

we deduce from the inequality (4.47) and Proposition 4.5 that Vi €R,

¢
IV )= <0801+ [ 19,]1007)
It follows from Gronwall inequality that Vi€ R,

IV (t)l| oo < @a(t).

Plugging this estimate into (4.47) gives

1ol e 190l e+ et e e < 050,

This ends the proof of the theorem. 0

5. The rate convergence

With Theorem 1.1 in hand, we are now in a position to get the convergence rate of
the solution of the Navier-Stokes-Boussinesq Equations (1.1) to the one of the Euler-
Boussinesq Equations (1.4).
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Proof. (Proof of Theorem 1.2.) Let (p,,u,,p,) and (p,u,p) be solutions of
(1.1) and (1.4) respectively, and denote

Ou=pu—0p, Zy:=u,—u and P,:=p,—Dp,
we can easily check that (o,,2,,P,) satisfies the system

8t9u+uu'qu_AQu:—ZH'vp7 (t,z)e Ry x R3
Orzp+uy, V2, +VP,=pdiu, +oue. — 2, Vu,
divz, =0,

Zpjp=0 =0, Opjp=o =0-

Similar to inequalities (4.44) and (4.45), the energy estimate in localized frequency
shows us that

12ull £ge pra—2 SllQull gy ra—e +tpllupllLge e + 12 Vul| Ly pre—2

t
+/ (ZQQq(s—2) I[Ag u- V]%H%sz)
0

q

N|=

(5.1)

and
loullgee gra—z +llQull s g« SNA-10ull L3 L2 + 1120 Vol Ly pre-2

¢ 1
+/(; (Z22q(s_2)||[Aqvuu'V]Q;L“%sz)2. (52)
q

As s> g, according to Bony’s decomposition and Bernstein’s inequality, we get

12 - Vull o2 Slzull o2 Vull o + 2] 2o [Vl g2
Szl s> llullz (5:3)

and for some A>3 (with H5=2— L)

2= VpllLrme-—2 Slzull -2 Vol e +lzu ]l 22 [ Vol

By
P>
Shzulles=2 (IVolle +lloll os g -1)- (5.4)
Recalling the proof of Lemma 2.100, [5], we have
1
(222(1(872) 1[Ag,up- V]Z,uH%? dT) :
a
Va5 el if 5 < 4
IVuullzos llzull -2 + [V 2ull 2l poms - if 5> 3,

then Vs> %7 we have

1
(222(](572) [[Ag,u,- V]ZuH%sz) * S gl s 2l s> (5.5)

q
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Similarly, one can show

S (A g Vel Sl w2 (56)
q

Plugging (5.3)-(5.6) into (5.1) and (5.2), we obtain from Minkowski’s inequality and the
fact [[A—10ullprre Sllopl L frs—2, that

t
Vol e s+l o ey Sl + | ol (14 ) r

t
+/0 Izl zre=2 (lull 2= + 1V pllLoe +llpllov 2 )dr,
which follows from the Gronwall inequality that

||:<7u||zt<>015[sf2 + ”Qu”ftooHs% + ||Qu||Z%Hs
<Ctpllupllee meexp{C(t+t|upllLge e +tl|ull Lo + |Vl L1 po + ||/J’||L%Hs+§—1)}-

(5.7)
Thanks to the fact that s >% and A>3, we get from Remark 1.1 that
tullzeems +1Volly oo +lloll Ly yor g 2 Stllullgerrs +llollzy e < 5(2),
which along with (1.6) implies
el rrems +lloul 7 s ol e < (ut)00),
that is, (1.7) holds. This achieves the proof of the theorem. |
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