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SHARP INTERFACE LIMIT OF
A DIFFUSE INTERFACE MODEL FOR TUMOR-GROWTH*

MINGWEN FEIf, TAO TAO*, AND WEI WANG?

Abstract. We consider the asymptotic limit of a diffuse interface model for tumor-growth when a
parameter £ proportional to the thickness of the diffuse interface goes to zero. An approximate solution
which shows explicitly the behavior of the true solution for small ¢ will be constructed by using the
matched expansion method. Based on the energy method, and a spectral condition in particular, we
establish a smallness estimate of the difference between the approximate solution and the true solution.
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1. Introduction
In this paper we consider the singular limit, as € — 0, of the solutions of the following
system for (u®,0°):

uf — Apf =20° +uf —pus, in Qx(0,7),

0§ — Ao =—(20° +u® — p), in Qx(0,7),

ep = A + f/(u), in Qx(0,7), (1)
u(z,0)=u§(z), o°(z,0)=05(x), on Qx {0},
%ﬁz%—’fz%‘fz& on 00 x (0,T).

Here Q CRY is a bounded smooth domain, n is the unit outer normal to 99, £? is the
diffusivity corresponding to the surface energy, u® is the tumor cell concentration, p®
is the chemical potential, ¢ is the nutrient concentration, and f is a double equal-well
potential taking its global minimum value 0 at u=41. Without loss of generality we
take f(u)=(u?—1)%

The morphological evolution of tumor progression has been an area of intense re-
search interest recently (see, for instance [5,9, 15, 16,20, 22, 25-30] and the references
therein). System (1.1) is introduced to study the evolution of a growing solid tumor
which coexists with the host tissue. The dynamics can be divided into two stages.
During the first stage, two species are segregated according to the initial data and an
interface appears around the common boundary of two species. After a very fast time
the dynamics enters the second stage in which the interface begins to evolve, which
takes a much longer time than the first one.

In this paper we are interested in the latter stage and assume that the interface
has been formed initially, while the study on the generation of interface will be left in
the forthcoming paper. There are two well-known approaches to describe the motion
of the interface so far. The classical modeling approach is the so-called sharp interface
approach which treats the interface between two phases as a N —1 dimensional suffi-
ciently smooth surface with zero width. The second modeling approach (the so-called
diffuse interface approach) treats the tumor/host tissue interface as a transition layer
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with finite (small) width. Comparing with the sharp interface model, the diffuse inter-
face model has many advantages in numerical simulations of the interfacial motion(see,
for instance, [11] and the references therein). Equation (1.1) is a diffuse interface model
related to the dynamics of tumor growth which consists of advection-reaction-diffusion
equation coupled with the Cahn-Hilliard equation.

One of the important and natural problems is to investigate whether the diffuse
interface model can be related to the corresponding sharp interface model in the asymp-
totic limit (i.e., the sharp interface limit) when the interfacial width tends to zero. Some
formal asymptotic analyses regarding the sharp interface limits of some different tumor-
growth models can be found in [17,18,21] for instance. However, to the best of our
knowledge, only a few rigorous results are set up for such coupled systems. The authors
in [32] re-wrote (1.1) as a gradient flow and used the techniques related to gradient flow
to prove that (1.1) converges to the corresponding sharp interface model in the sense
of T-convergence as ¢ —0. One can see [12] for some rigorous sharp interface limit for
a model which is introduced in [8] and coupled with the velocity field in a simplified
case. More recently, the authors in [31] consider the Cahn-Hilliard-Darcy system (first
neglecting the nutrient o) that models the tumor growth and prove that weak solutions
tend to varifold solutions of a corresponding sharp interface model when the interface
thickness goes to zero. One can see [1,10,23,33] for instance for more works on the
convergence in the sense of I'-convergence or varifold solutions, and [2] for the sharp
interface limit of the Stokes-Allen-Cahn system.

This paper focuses on the rigorous analysis of the sharp interface limit of the local
classical solutions to (1.1). In [3] the authors proved that the classical solutions of the
Cahn-Hilliard equation tend to solutions of the Mullins-Sekerka problem (also called the
Hele-Shaw problem) assuming the classical solutions of the latter exist. By employing
the method used in [3], we will show more explicitly the asymptotic behaviors of the local
classical solutions (u®,0%,1f) in the pointwise sense when € goes to zero and establish
the convergence which is stronger than the convergence in the framework of I'-limit and
varifold solutions in some sense. In particular we can characterize the evolution laws of
(uf,0%, %) in the transition region, a small neighbourhood of I', in which the behaviors
are different from the ones in the two phase spaces.

The sharp interface model of (1.1) is the following two-phase flow (Theorem 5.8 and
Theorem 5.9 in [32]):

-Ap+p=20%1, in Q,
0o —Aoc+20=pF1, in Qi,
[u] =lo]=0, on T,
[%]:—QV, on T, (1.2)
[%2]=0, on T,
u:mfil \/Wdu, on I,
g = 82 =, on 0.

Here T is a closed sharp interface, 2_ and Q. are the interior and exterior of I' in 2
respectively, n is the unit outer normal to I' from Q_ to Q4 or to 092, V is the normal
velocity of the sharp interface I,  is the mean curvature of I" and [f] denotes the jump
condition of f from Q4 to Q_ defined by [f]= f|a, — flo_. We can note that if 0 =0
then (1.2) would be the Hele-Shaw problem in [3].

Now we explain the strategy of our proof. Firstly, we use the Hilbert expansion
method to construct an explicit approximate solution to (1.1) around the local classical
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solution of (1.2) by assuming the latter exists and this process also can recover the
sharp interface model (1.2). This method has been used in [3,4,6,13,19,34] and the
references therein. In this paper the Hilbert expansions will be performed in the two
phase spaces 2+, the transition layer and the region near the boundary 02. A kind of
inner-outer matching condition will be imposed to ensure the outer expansions in 4
and inner expansions in the transition layer match in the overlapped region. The same
approach applies to the case wherein the outer expansions in 24 and the boundary
layer expansion near the boundary 92 should match. Such a method is also called the
matched asymptotic expansion method.

To deal with the difficulty coming from the coupling term 20°+uc—p® in (1.1),
we introduce the auxiliary function ¢® =u®+0¢°. Our first result is the existence of an
approximate solution.

THEOREM 1.1.  Given a smooth solution (u,0,T") in Qi x [0,T] to (1.2), then for any
positive integer k>2, there exists (o, 0, ™, u?) which satisfies

0o — Apt — Ao =0, in Qx(0,T),
0y — Ao = — (204 +ut —p?), in Qx(0,T),
pA = —eAut + e (ut)+ Ry,  in Qx(0,7), (1.3)
ut =t — o + Ry, in Qx(0,T),
Y =Y =% =0, on 90 (0,7),
where u” is close to +1 in Q4 respectively, and

9‘{1 :€k_20(1), 9%2 ZEk_lO(l),
where O(1) are uniformly bounded functions in €.

Secondly, based on the energy method, we derive the smallness of the error between
the approximate solution and the true solution. Consequently we can prove rigorously
that (1.1) converges to (1.2) as € —0. To estimate the error we mainly need to prove
that the following inequality

/<|Vv|2+12f"(u‘4)v2)dx20/ vidx
Q € Q

holds for any small ¢ and v€ H(2). This inequality has been proved in [7] and used
to prove the convergence of the Cahn-Hilliard equation to the Hele-Shaw model in [3].
According to the structure of u* there holds

ut ~+1, in Qy,

then = £ (u™)v? is non-negative in Q4 due to f”(+1) >0 and thus we only need to con-
trol siQ f"(u)v? in the transition layer. To deal with the singularity we will draw the
support from the diffusion term and use the estimates of the first eigenvalue, the corre-
sponding eigenfunction and the second eigenvalue of the following Neumann eigenvalue
problem

d%q 11 1

94 1 _ —(_—_ ). / ) —
ﬁfq_ dz2 +f (9)(] )‘qv Ze[e ( 5’6)7 Q(ie) Oa (14)

where
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The problem has been studied in [7] (also by a new method in [14]).
Then we apply the energy method to estimate the errors ¢° — ¢4 and o —o4. Our
main conclusion is:

THEOREM 1.2. Given a classical solution (u,o,T) of (1.2) in Qx (0,T) which satisfies
dist(,00) >0, te[0,T]. (1.6)

Then there exist €9 >0 and C >0 such that the following hold: for any 0 <e <egg, there

exist u§(xz), of(x) such that if (u,0°) is the solution of (1.1) in Qx (0,T), we have

€

[|u <Ck,

—u’ ||C471(§><[O.T]) +of —o” ||C271(ﬁ><[O.T]) +|pf —pt Hcm(ﬁx[o.ﬂ)

u?, 0, 12 is the approzimate solution in Theorem 1.1 for k fairly large.

where (
Aa a corollary we have

COROLLARY 1.1.  Given a classical solution (u,0,T') of (1.2) as in Theorem 1.2, there
exist u§(x), of(x) such that the solution (u®,0°) of (1.1) in Q2 x (0,T") satisfies, as € —0,
-0, (1.7)

0
u® —G(d() +d(1)>
€ o(T(8))

—0, (1.8)

[Ju® = (£1) ||C(Qi\1"(6)) —0,

HO'E _UHC(QX[O.T]) + HIJ'E _MHC(QX[OT])

here and in what follows § is a small positive constant satisfying § < %dist(F,@Q) for
te[0,7].

REMARK 1.1.  u§(z) and of(z) will be defined in (3.10). The initial data like this
form is often called the sharp interface initial data since we assume the interface has
been formed initially. One can refer to [3,24] for this kind of data.

We organize this paper as follows. In Section 2, we do the £*(k=0,1)-order asymp-
totic expansion and get all the zeroth order terms and some first order terms. In Section
3 we turn to establish a spectral condition and give a smallness estimate on the error
between the approximate solution and the true solution, and then we complete the proof
of Theorem 1.2 and Corollary 1.1. The general ¥(k >2)-order asymptotic expansion
and the construction of approximate solutions will be left to Section 4.

Through this paper C' denotes a generic positive constant independent of small e.

2. Matched asymptotic expansion

In this section we will perform a matched asymptotic expansion for (u®,0¢,u) and
get all the zeroth order terms and some first order terms of the approximate solution.
In particular we can deduce the sharp interface model (1.2).

Let I'* be a smooth surface centered in the transition layer. For any t€ [0,7] for
fixed T >0, let d*(x,t) be the signed distance from z to I'*. Then d° is smooth and
|Vdf|=1 in a neighborhood of T'*. We assume

d°(2,t) =d O (z,t) +edV (z,t) +2dP (2, t) + -, (2.1)

where d¥(i>0) is to be determined later.
Since

+o0 k
1=|Vd ) =|VdO [ +2:vd® . vdM ) " (Zw@ -Vd““‘“)

k=2 =0
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“+o0 k
=1+2:Vd® . v +) e (Zw@ -Vd<’“‘>> ,
k=2 =0

then |[Vd(®|=1 and

0, k=1,

Vd®?.vd® =D, (k>1)2 k1 . (2.2)
—13vd®.vdk-D g>2.
=1

Let T'={(2,t):d®(z,t) =0} and Qi ={(z,t):d®(z,t)=0}. As |[Vd®|=1, then
d® is the signed distance to T, V = —d,(go) and k=—Ad®. Defining

L(0)={(z,t) e x (0,T):d (x,t)| < 6} (2.3)

Now we do the outer expansion in {4, the inner expansion in I'(¢) and the boundary
layer expansion in 0Q(0) = {(z,t) : dist(x,00) < 6,2 €Q,t€[0,T]}. For clarity we only
match zero-order and e-order, and solve all the zero-order terms and some 1-order terms
in this section. Matching £ (k > 2)-order and all the remaining terms will be presented
in Section 4.

2.1. Outer expansion in Q4. In Q4, we set

ut=u (O)Jrsug) +e u(2)+ (2.4)

pf=pQ peut +e2 P 4 (2.5)

o :J(i)—l—sa(il)—i—s 0(2)—1— (2.6)

Moreover, by using the Taylor expansion we write in )4

7y = £ ) e f @yl ot (£ @l g () )

where g(u(io),--- ,u(ik*l)) depends on ui)), uf 2

Substituting (2.4)-(2.6) into (1.1) and collecting all terms of the zeroth order we
have

0l — Ap® =260 40 ® — 1),
Ol = Aol =~ (208 +ul) — u),
I (@) =o0.

We take
W =11 (2.7)
Then
AP 4P =200 £1, (2.8)

010 — Ao 200 = 0 1. (2.9)
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Substituting (2.4)-(2.6) into (1.1) and collecting terms of order £ we have

(0)
W HE
= F'(u (0))
_A (1)+H(1) 20(1)+U$)—8ﬂt$)
010 — A 200 D ),

2.2. Inner expansion in I'(§). Let z:dg € (—00,+00). In T'(4), we set

u (z,t) =0 (z,t,2) = ms )(ac,t,z)+Eﬂ(1)(ﬂc,t,z)+€2ﬂ(2) (,t,2)+-, (2.10)
12 (I‘,t) ,LL (‘T t Z) /L( )(x,t,z)+5ﬁ(1)(x,t,z)+62ﬁ(2)(z,t,z)+m, (211)
o (x,t) =5°(x,t,2) =5V (2,t,2) + eV (x,t,2) + 25D (2,8, 2) + -, (2.12)

and the following inner-outer matching conditions: there exists a fixed positive constant
v such that as z — d-co there hold

D:Dfpg(a@)(x,t,z) o, t)):O(e_”|Z|), (2.13)
D D7D (0 t,2)  p (,1) ) = O(e 14, (2.14)
DeDeDY (&@') (,t,2) —agg’)(m,t)) —0(e V) (2.15)

for (z,t)eT() and 0<a,B,y<N with N depending on the order of expansions we
need.
Using the Taylor expansion and (2.10) one has

F1 @) = @) +ef" @NaW ... ek (f//(g(o))a(k) +g(@®,- ﬂ(k—l))) o,

(2.16)
where g(u®, -, u*~Y) depends on a®,... g1,
Noting that
s (z,t,2) = 0u° +e 10,0, d°,
At (x,t,z)=¢" 20,05 426 IV 00 - Vo d® +e 1005 A pd® 4+ AL TiE,
then in the new coordinates (z,t,z) the first equation in (1.1) becomes
O, te (éLﬂE@tds OV OVt — a;mzdf)
£2 (atas — A — (25° T —,76)) —0. (2.17)

Similarly, the second equation and the third equation in (1.1) become respectively
= 0.25° +2(0.5° 0~ 29,0.5° Vo — 0.5° A, )
e (atas — AT 25 T —,76) —0, (2.18)

— 0, + f () —5(2Vx62175-vmd8 O A+ ﬁ5> — 27,7 =0. (2.19)
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In general, the inner-outer exponentially decaying matching conditions (2.13)-(2.15)
may not necessarily hold. To ensure them, we will modify (2.17)-(2.19) as follows,
motivated by [3]. We choose a smooth non-decreasing function 7 such that n(z)=0 for
z<—1,n(z)=1 for z>1 and define

7t (z)=n(-M=z), z€R,

where the constant M = ||d[|cor(s)) +2-
The system (2.17)-(2.19) is then modified as follows

s +g(azafatdf OV, 0,0 VdE —a;mmda)
2 (94" — A fi° — (257 + 0 ~ ) )
+0/'p°(d° —ez) +en'g°(d° —ez) —*(sonT +s5n7) =0, (2.20)
—9,,5¢ +£<8Z588td5 —9V,0.5° -V, d —8255A$d5)
£2 (&55 AL 255 T — ﬁE)
+0" ¢ (d° —e2) +en'he(d° —e2) —*(rSnt +1<n7) =0, (2.21)

—0..0° + f (W) —e(2V 0.0 - Vod® + 0,0° Ayd® + 1°) — 2 A, 0°

+en'I5(d° —e2) =0, (2.22)
where
+oo
Zal O (x,t), he(z,t) Ze R le(x,t):ZEil(i)(a: t
i=0
Zaz (¢ ) Zé.z (7,
Zs’ @ ) :ZEi (atui) — A,ugz) — (205? +u$) —/ng))) (1),
:Zesirg?(:c t) Za (0 0 (20( 2 u&? —ugi)))(x,t).
i=0

REMARK 2.1. As z:da—e, then d® —ez=0. Moreover, since M = ||d(1)||00(p(5)) +2, we
can find rint+r<n~ =0 for (x,t)€I'(d) and small . One can refer to Remark 4.2
n [3] for the details. Therefore (2.17)-(2.19) are the same as (2.20)-(2.22) respectively.
However, through the modifications, we have changed the equation of every order such
that the matching conditions (2.13)-(2.15) hold.

For clarity we divide into two subsections to proceed.

2.2.1. Matching zeroth order. Substituting (2.1) and (2.10)-(2.12) into (2.20)-
(2.22) and collecting all terms of the zeroth order we have

8zzﬁ( )_7] p(O)d(O (2.23)

8,.5 = pq(@ 4@ (2.24)
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9..u0 = f'@®). (2.25)
Now we argue in this subsection according to the following order:
(ﬁ(O)ﬁ(O)) N (p(0)7q(0)7 [M(O)L [0(0)] ) 70

o (7 50)
From (2.23) we can write

A0 (z,2,6) =n(2)p"” (,1)d (2,0) + a(z,t)z +b(x,t)

for some a(z,t) and b(z,t). Since the inner-outer matching condition (V) (z,z,t)—

ug? (z,t) as z— +00 needs to be satisfied, we obtain

a(z,t) =0, b(z,t)=p"(x,t)

and
PO (2, t)d O (x,t) = u(f) (x,t)— 1 (z,t). (2.26)
Thus we have
A0 (@ t.2) = () (.0 + (1-n(2))n (a1) (2:27)

and
DgD; D} (ﬁ(o)(x,t,z) — Y (x7t)) —0(e V)

for any «,3,7y€N and v >0.
Similarly, we get

¢ (2,6)dO (z,t) =o' (2,t) — 0V (2, 1) (2.28)
and
0 (z,t,2)= n(z)a(f) (x,t)+ (1 - n(z))a(,o) (z,t) (2.29)

which implies
D3 D! DY (50 (21,2) 0 (2.1) ) = O(e ™)

for any «,3,y€N and v >0.

o (p9 ¢, [M(O)L [U(O)D
Moreover, according to (2.26) and (2.28) there hold on I’

(O] 2,9 O =0, [0©@]250 6@ =0. (2.30)

And we can define smooth functions p(®) and ¢(©) in T'(§) as follows

;A(Jro)—/t(,o) .
o Gy in T(O)\T,
20— (2.31)

vwd(O) Vx(,uf) _M(i)))’ on F7
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and

(0 _ 50 i TN\
(0) — 9 mn 9
¢ = d (2.32)

Vzd(0)~vm(af)—a@), on T.
o u(®)
By (2.25) and the inner-outer matching condition, u(?) satisfies
0.0 = (@), 7O (o) =ul =£1, @ (0)=0,

where the condition () (0)=0 is imposed to ensure %(®) is unique. Therefore %(®) is

independent of (x,t) and then @(®)(z,t,2) =6(z) which is defined in (1.5). In fact, we
can get

4 (z,t,2) =0(z) = tanh(v/2z) (2.33)

and for ke NU{0}

dk V32 dk V3l
E(H(z)—i—l):O(e 21, as z— —o0; ﬁ(é’(z)—l):O(e 21, as z — +o0,

which implies
D3 D} D7 (70 (2,1, 2) ) (2,)) = O~ V?H])

for any «, 3,y €N.

2.2.2. Matching the first order. Substituting (2.1) and (2.10)-(2.12) into
(2.20)-(2.22) and collecting all the terms of e-order we have

— 0,0 + (8Zﬁ(0)8td(0) —2v,0.1 . v,d® — 3217(0)Azd(0))

" (DO £ pOdD) — " 2p® 4y gOg® —g, (2.34)
=050+ (9.509,d) ~29,0.50) - 7,d® — 0,50 2,4

+1 (q(l)d(o) + q(o)d(l)) —"2q® 49/ hOq® =0, (2.35)
0.+ @AY — (29,0.50 - V,d 0 + 0.7 A d® + 1)

+7'104d© =0, (2.36)

Next we argue according to the following order:

~ op© ~ o) ~
1) 400 s (5D pO) |22 s (M g 0
<M g 7|: 8n :|) <U 7h a|: 81’1 :|> (U al 7:u’j: |F)

~ (0)
(100 5]

For (z,t) €T'(0), we write (2.34) as

_(ﬁm —n(pVd® + p<0>d<1>))

= 1" zp @ —n'g0d® - 9,3 5,a"

z
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+2V,8.0 . V,d® + 8,7 A, d®
200, (2.37)

It follows from Lemma 4.3 in [3] and direct computations that if

+oo
/ ©9,1(z,t,2)dz =0, (2.38)

then (2.37) has a bounded solution
A (@t 2) =n(z) (pVdO +p@dW) (1)

z +oo
—|—/ O01 (2" x,t)dz"dz’ + M (z,1)

—ooJz!

which and (") (400,z,t) :,ug_l)(x,t) imply
+oo p+too
(p(l)d(O) +p(0)d(1)) (2,1) Zugrl)(w,t) _/ @0,1(2/’,m,t)dz"dz/ —ug)(x,t).
—oo Jz!
Hence we obtain
AD (@,t,2) =)l (2,) + (1=n(2)) ) (2,0)
+

+
+00 %) z “+o00
/ Oo.1(2" z,t)dz"dz’' Jr/ / 0.1 (2" x,t)dz"dz’'

and

“+o0 +oo
[Mm]éu$>_ug>:p<o>d(1>+/ Oo1 (=", 2,8)d="d' on T.

—00 z!

According to the results obtained in Subsection 2.2.1 one has for any «, 3,7 €N,
DD D10y, =0(e 1#l), for some v>0,
and thus
DeDP DY (ﬁ(l) (x,t,2)— u(il) (w,t)) =0(e "), for some v>0.

Moreover, by (2.38), (2.30), (2.31) and direct computations we can get

©)
[8gn }Avm(u‘f)u@).vrd@2d§°“2v, onT, (2.39)

and define a smooth function g(® in T'(§)

(1 =) 80 d O 2, () —p) ¥, d ) —p®—20,d(

e , in T(S\T,
(0) _
S0 (2.40)
V.d© -V, (1 = 1) A, dO +2v, (1) — ). v ,d©
—p0— 23td(0))’ on I

. (5(1)’;1(0), [8572”])
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Applying a similar argument as above to (2.35), we obtain that if
+oo
©,2(x,t,2)dz =0, (2.41)

— 00

then (2.35) has a bounded solution
D (2,t,2) =n(2)0\ (@,) + (1—=n(2)) oD (2,1)
oo ptoo % Foo
—n(z)/ @0,2(x,t,z")dz"dz’+/ / Oo.2(x,t,2")dz"d2’,
—co Jz! —ooJ 2/
and for any «, 3,7 €N,
DeDY DY (5(1)(33 t,z) —0(1)(m t)) =0(e "), for some v>0
z -t Mz [Ad) + ’ - ) 5

and
—+o0 —+oo
[0(1)] éasrl) — oM =g @gqm —|—/ O2(z,t,2")dz"dz', on T,
where
0227 2¢0 = hOd® — 5,5 9,d +2v,0,6 . V,d® + 9,50 A,d0.

Moreover, it follows from (2.41), (2.30), (2.32) and direct computations that

9o
{ gn ]éV(USFO)—o(O)) -Vd® =0, onT, (2.42)
and
ROBMONPN NP (0D o)y, a@ 0
(09— )(2,d ~0,d d):g)W(+ ) Vad “ i DN,
hO = (2.43)

v,d0.v, ((Uf) _ U(P))(Amd(o) —0,d®)
+2V, (00 —6').v,d® —¢%),  on T.

° (a(l)vl(o)vﬂ(io)h‘)
Based on the method of variation of constants for ODE and direct computations
(or Lemma 4.3 in [3]), we find that if

+oo
| enstwt 0 Gz, (2.44)
then the solution to (2.36) with 7" (0,z,t) =1 is

o)
7'(0)

z +oo
+9’(z)/0 (0'(s) ™2 Oo.3(z,t,7)0' (1)drds

S

aW (z,t,2) =

where

©0,3:=2V,0,0 " - V,d + 0,7V A,dO + 1 — 11O =0’ A, d© + 1@ —1/1°9©)
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and for any «,3,7€N,
DeDP DY (ﬁ(l) (x,t,2)— ugtl) (x,t)) =0(e7"#l), for some v>0.

Due to (2.44) there holds

1O (,8) = —2,d©) / )= / o)y

+oo - 1 -
=2k 3 f(G(z))dz:fi/_lxﬂf(u)du, on T, (2.45)

where we have used ¢'(2) =/2f(0(2)).
Furthermore, by (2.44) a smooth function 1) is defined as follows:

1 0) [+ g2 o0 ~(0 i
T (Bed® [T 0P+ [T 00 az), in T(O\T,
100 — (2.46)
1 V,d® .V, (A dO [T02dz+ [T 00¢ dz on T.
o ok :

jj;’j n'0'dz *

2.3. Boundary layer expansion in 9§2(§). Let dp(x) <0 be the signed distance
from z to 9 and z = dBT(x) € (—00,0]. In 9N(8)={z€Q: -6 <dp(z) <0}, we set

uf () =g (2,1, 2) =ufy) (2,1, 2) +euly (2,t,2) +e2uf) (2,8,2) ++-, (2.47)
pe(2,t) = pp(w,t,2) ::u‘(BO) (z,t,2) +5ug)(z,t,z) +52M(]5) (z,t,2)+-, (2.48)
0% (z,t) =05 (,t,2) =0\ (2,1, 2) + 0D (2,t,2) + 20D (2,8, 2) +- -, (2.49)

and the following boundary-outer matching conditions: there exists a fixed positive
constant v such that as z — —oo there hold

D D7D (uf) (2,t,2) ) (.6) ) = O(e "), (2.50)
DD DY () (2.4,2) — n (1)) = O(e~), (251)
DD DY (0 (@,t,2) =0 (w,0)) =014, (2.52)

for (z,t) € 9Q(J) x [0,T] and 0 < o, 8,7 < N with N depending on actual expansion order.
Using the Taylor expansion and (2.47) one has

F(ui) = 1)+ e G e (1 @ )uly) g, (0w ) )

here the function g, (ug),--- ,ugfl)) depends on ug),~~~ ,ugfl).

We write (1.1) in 0€(4) in the new coordinates (z,t,z) as follows
S - (2vmaz,fB Vadp + aszAmdB) +e? (atueB

Aoy~ (205 +ui—pE)) =0, (253)

—8,.05 —g(szazag V.dp +aZU%Ade) ye (8,5053
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— A0S +205 +u§3—/ﬁ3) =0, (2.54)
—0up+ f(u%) —5(2V182u53 Vaedp+0.u5A,dp —l—/fB) — 52Axu% =0. (2.55)

Moreover, homogeneous Neumann boundary conditions in (1.1) imply that, on 9 x
(0,77,
0, (2.56)
odp(z,t) =0, (2.57)
0 (2.58)

.56)-(2.58), and collecting

M%(fﬂ £,0)+eVapp(,t,0)
og(x,t,0)+eVyo5(2,t,0)-
azuB(x,t,O) +5Vzuj§( )
(

all the terms of the zeroth order we have
(0)

2ty =0,
zzog)) =0,
zzuB +f ( )

and on 99 x [0,
O-pig (2,1,0) =0,
82(7%)) (z,t,0)=0,
azug)(x,t,()) 0.

Therefore we can take

WO D 00 0o (259)
which satisfy (2.50)-(2.52) in the case of i=0.

Next, substituting (2.47)-(2.49) into (2.53)-(2.55) and (2.56)-(2.58), and collecting
all the terms of e-order we have

- azz,ug) = 07
- 82z0g) =0,

*azzug) +f”( ) ) _N’(BP)v
and on 99 x [0,T

8M(O)

1

Oepiy)(a.4,0) == =5,
30(0)

azag)(xvtvo):_ 8; )

azug) (2,t,0)=0,
where n is the unit outer normal vector on 9€2. Thus, we can take

(1) (1) n_ @ @ _, @

=py, Op'=0,", Up =Ul’,

which satisfy (2.50)-(2.52) in the case of i=1 and imply that, on 9Q x [0,T],

9 (0) b (0)
i Sk —) (2.60)
on on
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2.4. Solving the leading order terms. ugg) and 79 are determined by (2.7)
and (2.33) respectively. Collecting (2.8), (2.9), (2.30), (2.39), (2.42), (2.45) and (2.60)
one has

—Ap 4+ 50 =20 £1, in QL
3t0$)—Aai +2U:(t)—ﬂ(0):F1 in Qy,
(1] =[c®] =0, on T,
[ag—:)] =-2V, on I
[ag:)] =0, on I,
u(io)f/ifl V2f (u)du, on T,
8;:) =2 Y o, on 99,

which is just the sharp interface model (1.2) of (1.1). Therefore we recover the sharp
interface model by the above matched asymptotic expansion method.

Let ( 2) has a local smooth solution (p,0,T") which satisfies (1.6). Let ,u(o)—
,u‘ﬂ ,O'i O"Q and d® be the signed distance to I'. Then I'={(x,t)€Qx (0,T):
d©(z,t)=0} and Qy = {(x,t) €Qx (0,T):d (x,t) Z0}. p@,¢® g hO) and I are
determined by (2.31), (2.32), (2.40), (2.43) and (2.46) respectively. (®) and (@ are
determined by (2.27) and (2.29) respectively. And M(O) 053),ug)) are determined by
(2.59). Moreover, the inner-outer matching conditions (2.13)-(2.15) and the boundary-
outer matching conditions (2.50)-(2.52) hold for ¢=0.

REMARK 2.2. We can extend (u(i()),u(i()),a(i)) smoothly from Q4 to Q as Remark 4.1
in [3].

3. Spectral condition and error estimates

For clarity we leave the higher order expansions and the complete construction of
the approximate solution (u?,u?,04,p4) to Section 4, see (4.38) for the explicit form.
In this section we firstly establish a spectral condition and estimate the error between
the approximate solution and the true solution. Then Theorem 1.2 and Corollary 1.1

can be proved.

3.1. Spectral condition.
THEOREM 3.1 (Spectral condition). There exist two positive constants g9 and C' such
that for any 0<e <eg, ve€ HY(Q) and we H*(Q) with Aw=wv there holds

/<£|Vv|2+1f”(uA)v2)dm>—C/ |Vw|?dz, (3.1)
Q € Q

where u? is the approzimate solution which will be constructed in Section 4.5.
Thanks to Theorem 3.1 in [7] we only need to prove the following lemma.

LEMMA 3.1. There exist two positive constants €9 and C' such that for any 0<e <eg
and ve HY(Q) there holds

/Q(|Vv|2—|—Elzf”(uA)U2>dx2—C/Qv2dx. (3.2)
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In fact, if

1
/ (|VU|2 + 82f”(uA)112) dz >0,
Q

then (3.1) holds obviously. If

1
/ (|Vv|2 + Ezf”(uA)v2> dz <0,
Q

and w € H?(Q) with Aw=v, then the assumptions of Theorem 3.1 in [7] hold, hence we

have
75/ vzdefC/ |Vw|?dx
Q Q

which together with (3.2) immediately implies (3.1).

Theorem 3.1 and Lemma 3.1 have been used to prove the convergence of the Cahn-
Hilliard equation to the Hele-Shaw model in [3]. However the proof of Lemma 3.1 was
established in another paper [7]. Here we write the details in a concise way which shows
clearly how to deal with the singular terms.

In order to prove Lemma 3.1 we show the following proposition on the spectral
analysis of Neumann eigenvalue problem (1.4). The proof has been given in [7] and
proved by a new method in [14].

PRrROPOSITION 3.1 ( [7]).
(1) (Estimate of the first eigenvalue of Ly)

)\f— inf / ((q’)2+f’/(0)q2)dz:0(e*?), (3.3)

llgll=1

here C'is a positive constant independent of small € and ||ql|= ([, ¢*(z)dz)>.

(2) (Estimate of the second eigenvalue of Ly)

A2 inf /I((q’)2+f”(9)q2)d226f>07 (3.4)

lall=1,qLq]

here qJ_q{ @fl qq; dz—O q1 is the normalized eigenfunction corresponding to )\f and
cf s a positive constant independent of small €.

(3) (Characterization of the first normalized eigenfunction of Ly)

_c
laf —ab'|?=0(e™ %), (3.5)

here o= .
6”1l

Let
d® (z,t) =dO (z,t) +ed™ (2,t) 4 2d D (z,t) +-- -+ Fd P (z,1),

then dl¥l (z,
t):

(k>1) is a k-th approximate of the signed distance from z to the interface
g = {(x,t):d"

t)
d"(z,t)=0} in the following sense.
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LEMMA 3.2.  For every fized t€[0,T], let r(x) be the signed distance from x to I,.
Then for small €

Hrt(x) — (] ($7t)"01(rt(5)) :O(5k+1). (3.6)
Proof. Noting that |Vd*|?=1+0(e**1), then for small ¢ one gets

Wy g VAR =1

Since 74(x) is the signed distance, then |Vr;|=1 and Vr; is parallel to Vd*. Conse-
quently, we obtain

|Vri(x) — VdF (z,8) > = |Vry(2)]2 = 2VdF (1) - Vi (z) + [ VP (1) 2
=1-2|Vd¥ (z,t)| 4 |Vd¥ (z,t)?
= (1= |Vd¥(z,)])
:0(62(l€+1))'
Choosing zg €%, i.e., 7(z0) = d¥(x0,t) =0, then
re(a) —d™ (@, 1) = [re(z) — d¥) (2,8) = 74 (0) +dM (20, 1)]
1
/ (Vrt(t’x+ (1—t)ao) — VM (t'z+(1 —t’)xo),t)> (x—xg)dt’
0

S C€k+1’

thus the proof of this lemma is complete. 0

Let s¢(x) be the projection of x on I'} along the normal of I',. Then the trans-
formation z+— (ri(x),s.(z)) is a diffeomorphism in I'}(4) for small §. Let J(ry,s;) =

det 9z (re,54)

I be the Jacobian of the transformation, then J|p: =1 and 2Z |p: =0. Thus
£,5¢) k ory Lk

oJ
J’f"t,(rtrst)éi(rhst) SC|Tt| (37)

0<Cr < J(rg,84) <Co, or
t

In view of (2.36) and the similar arguments as those on page 199 in [3] we obtain
LeEMMA 3.3. InT(5), a1V can be expressed as

aW(x,t,2)
€

=p<st<x>>el(”(”) - q(z) =p(s:())f1 (=) + (),

p—rt(@)
€

where 01 € L (R), pe L>(I'($)) and

+o00o
/ f”’(@(z))ﬁl(z) ((9’(2))2dz:O7 ’(j(x)’ <Cle+ |7’t(m)|) <Ce(1+]z|)-

— 00
Now we focus on the proof of Lemma 3.1.

Proof. (Proof of Lemma 3.1.) For clarity we divide the proof into three steps.
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Step 1. Noting that f”(41) >0, then for small ¢ there holds

1
/ <|Vv|2+2f”(uA)112>dx
Q S
1
2/ (Vv|2+2f”(u‘4)112>d:v
I5(6) <

:5’2/5 /(ES <|5‘zv\2+f”(uA)vz>J(rt(x),st(x))dzds

LICINS

zng/E/J (1020 +£7(60:))0% ) (o). (@)=

5
+€_1/ / f'"(@(z))ﬂ(l)(x,t,z)sz(rt(x),st(x))dzdS—C/ vida,
P2 o
where the following fact is used: in I';(9), there holds

7wy = 1" (6(2)+ 27D (2,1, 2) + O(?))

= f"(0(2)) +ef" (8(2))a (z,t,2) + O(?)

="(0(2)) +ef" (6(2))a (,t,2) + O(?)

srt(@)
€

Set d=v.J?%, from Lemma 5.8 in [14] (the proof is presented in the Appendix for com-
pleteness of the paper), we deduce that

/ /i (\3zv|2+f”(9(z))02>J(rt(:z:),st(x))dzdg
r:J_s

s
zé/ / <|8z@\2+f”(0(z))ﬁ2>dzd5’—052 vida. (3.8)
4 re _3 Q
Consequently
/<|Vv2+12f”(u’4)v2)dm>€_2/ IdS+€_1/ IIdS—C/ v?dr, (3.9)
Q € s rs Q
where
gt 5
1:1/_§ (190 + £ (6(2))9) d=. I[:/_éf’”(H(z))ﬂ(l)(x,t,z)ﬁde.

Step 2. To deal with the term I, we decompose ﬁzvq{+p1, here le_q{ and then
16]1*=7*+|[p1]|*. Thus

= i/_ (10:0 + 17 (6(=))2?) =

-3/ () + 776 ) 5 [ ((@ep)?+ 17 (0())p1? ) a2

€
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3 3
> 57 M+ Ml P > —Ce®y? + AT pal )

>

)
e 3
2—052/ v?Jdz+ Z>\§||p1||27

LYY

where we use (3.3) and (3.4).
Step 3. To estimate I, we use Lemma 3.3 to deduce that

)

/_i 7 (9(2))5(1)(m,t,z)(G’(z))Zdz

—plsi(a)) [ £ 0@ ) a1 (0)a(e) 0 ) s

5

-2 400
=~ p(se(a)) / F7(0(2)) 81 ()(6 (2))%dz — p(si () / F7(0(2))01(2) (8 (2))?d

+ / “P0()) a0 ()2 d
=0(e).

Hence there holds

)

= / F(0(2)) a0 (a1, 2)02d=dS

LIES

s 5
€

=2 [ eE)aV @ Pary [ 6Tl

o]

+/s f///(e(z))a(l)p12dz

=722 [ " (0(2))a(8")2dz+O(e™ S )72 +0(1)||p1 |y +O(1)||p1 |12

=0(e)y* +0(e™ £ )y +O(L)|Ip1 ]| +O(1) 1|2
> (0(e~£)+0()r* — M I P

1
>—Cey’ = =M lpa?

s

B 1
>_C 2Jdz— =M ||p:|?
>-e [ ade- Il

s
€

where we have used @z'yq{ +p1 and (3.5).
Finally, we obtain
e 2 /
r

which together with (3.9) implies (3.2). Thus the lemma is concluded.

IdS+s_1/ 11dS>—C | v%dx
T

H H Q
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3.2. Error estimates. Let u®" =u® —u, u®" =p — pt, 09" =0° — 4, =
©° — A with ¢° =4+ 0° and impose

uj(x) =" (,0) ~ 0§ (), o5 (x) =0 (x,0). (3.10)
Here ( A ut o4, 04) is defined in (4.38).
y (1.1) and (1.3) there hold
atsperr _ A,LLGTT —_Ag¥T = O7 in Qx (O,T),
8t0.er7“ —AgT = _(20.€TT' +uerr _Merr)’ in Qx (O7T)’
Ne’rr:7€Au67”r+%f//(uA)uer’l‘+%]F7%l, in x (07T)7 (3 11)
u TT’:<)06T7“_O.GT‘T‘_ER27 in QX(O7T)’ ’
@ (2,0) = ¢ (2,0) =0, on Qx{0},
agj}m 8/5;” _ 6%:»7. :0’ on aQ % (0,1_,)7
where

F:f/(uerr+uA)_fl(uA)_f//(uA)uerr:4( err) +8'LL ( err)2.
THEOREM 3.2. For small e and large k, there exist v=~(k) € (1,k) which is an increas-
ing function of k and a positive constant C such that

err

<Ce.

H err

HLP (Q2x(0.77)) +||‘PWHLP(Qx(0T))+HU HLP(QX(O.T))

Proof. For the sake of simplicity, we omit the superscript “err” in the proof of this
theorem.
Noting that

/ (t,x)dx= //&(pixdft //AquAJ (t,z)dz =0,
Q

then there exists a function v (t,-)(¢t € (0,T)) which satisfies

—AY =, in €,
9 =, on 99, (3.12)
fﬂw(t,x)dz =0,t€(0,7).

Multiplying the first equation in (3.11) by ¢ and integrating by parts we have

2 " 2
2dt/|w\ da:+/ <6|V<p| F 1) )dx
—/ <5V¢Va+f”(uA)<pa) dl‘—l—l/Fg@dl‘—F/V’(bVUdl‘
Q € €Ja Q
:/wg‘godx, (3.13)
Q

where

wi =wi FeAwd — e (uMwi =0(eF2).
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Multiplying the second equation in (3.11) by o and integrating by parts we get

th/ 2dx+/\Va|2d:r+/ 2dx+/ <6|VU|2+ (o )

1
—/ <€V<pVO’—|—fN(UA)<pCT)dJL‘—/FO’dl‘+/V1/)VO’dJC
Q € €Ja Q
:/wfod% (3.14)
Q

where
wit = —wil —wd —eAwi + e (uM)wd =0 (eF2).

Combining (3.13) and (3.14) we obtain

ld 24 d 2 / 2 / 2
2dt/|V¢| 2dt/QU dx+ Q|VJ| dx + Qa dx

+/Q(5V(@—U)|2—|—if”(uA)(gp—a)z)dx—l—2/QV1/JVadw+i_/@(g@—a)IFdx
:/wégpd:ﬂJr/w?‘de. (3.15)
Q Q

Moreover, we can easily find that
(p—0)F=4(p—0)"+(8u’ +12ws') (p —0)* + (16u”wg +12(w5')?) (p—0)?
+(8ut (wg')? +4(ws)*) (9 —0)

Colo—olP +wi|p—al,

2>—
> = Cplof? = CylofP +wi'lp—al, Vpe(1,3], (3.16)

where the positive constants @,,C’p depend on p and wi =0(*~1). Plugging (3.16)
into (3.15), and using Young’s inequality and the Sobolev inequality, we arrive at

1
24 2 ! 2 2
th/|v¢| th/ dx—|—2/Q|VU| d;v—f—/ﬂo dx

# [ (A9 2w oo o
Q g
§C/QV1/J|2dx+C/chzdx+ip/ |¢de+(“;?/90|de
P % q z P % A g %
+</Q<p| dx) (/Qw9| dm) —&-(/Q|J| dac) (/Q|w10| dac) , (3.17)

where wg' =O0(e%72),wit, =0(e¥~2) and % + % =1
According to the spectral condition in Theorem 3.1 one has for small €

2 1// A 2 2
[ (G964 Lo Javz—c [ [V -oPas, (319

where g is the solution of the following equation

—Ap=o, in ,
0=0, on 01,
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and C' is a positive constant independent of ¢. By the Poincaré inequality, we deduce

/Q|Vg\2dx§C/Qazdx. (3.19)

Plugging (3.18)-(3.19) into (3.17) we obtain

24 o2 2
2dt/|vw| +2dt de+ - /|VU| dm—i—/ dx

<C’/ |Vl dm—i—C/ Qdaj—l——/ |g0\pdx+—/ |o|Pdx
( <p|pdx) ( w§4|qda:> +< |o|pda:) ( wf‘o|qda:> "
Q Q

It follows from the Gronwall inequality that for any ¢ € (0,7

2 2 2 2
Oiu,p< <|‘V¢HL2(Q)+’|‘7||L2(Q)>+||U|‘L2(Qx(o,t))+HVUHL2(Qx(o,t))

SC( 1||‘/’Hm @x(0,6) T H ||LP(Q><(0t +||S"HLP(QX 0t))||w9 HLG(QX(Ot))

+ HUHLP(QX(O,t)) leoHL‘I(QX(O,t)))' (3.20)

Furthermore, by (3.17) and (3.20), we obtain

2
[V(p—0 ||L2(Q><(0 t))

( / / i dmdt>+cg (el o 11 nacony)

+Ce™ (H‘PHLP(QX 0.t )ng HL‘Z(QX(Ot ‘*‘H HLP(QX Ot))leOHLq (Q@x(0, t)))
5_2||‘P_U’|Lp(9x(o,t))“f ut HLOO(QX(O,t))measure{f (ut) <0}~
+C€72<H¢HZLP(QX(0¢))+||J||1£P(Qx(0,t))) +C€71||90||LP (€2 (0,t)) ||WAHLq(Qx(o £)

12 2 2 _
<Ce™! p(’|90||Lp(9x(o,t))+||‘7HLP Qx(o,t)))+05 2<||‘P||Lp (Qx (0, t))+H ||LP(QX Ot)))

+Ce (9]l o 0. 198 o + 17N ooy 18b ooy )
Thus, there holds

2
||V90||L2(Qx(o 1))

<[IVe-o)llz +[ Vol

(2x(0,t))
<Ce™! (H@HLP(QX 0,1)) +|o HLP Qx(0 t)))+05_2(“‘?|‘ (2% (0, t))+H HLP(QX 0 t)))

+Ce” (HSOHLP(QX(Ot) ||w9 HL‘?(QX(Ot))—’_H ||LP (2% (0,¢)) leOHLq(Qx(Ot)))

(Q2x(0,1))

Applying the Sobolev imbedding and the Holder inequality we get

H‘F’HLP(QX Ot))+H HLP (2% (0,1))
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= [ (1l o) 00

(1-90) (
< [l Vel @i+ [ ol 9ol rar

+0 [ ol 200

(—5) (1-0)
<C [ 190l oy IVelcd "2+ [ o2 [l Sy 00

+0 [ ol 100

(1-4%)
<o( [ 1wl dt) (22 Fovr G

t
8o (1-6)
N W e ey W T
<C Il HV |(1—%)p
oiltlp Ul 20 o L2(2x(0,1))
(1-0) p
0 s lolla) 19l 0y +CT (s ol )" 320
Where -|-(N 33\([1 0) 1+(1 z)P —1and 1 +(1 e)p_l
Settmg o(t _H90||Lp(szx(ot))+|‘ HLP(QX(Ot))(tG(O T]), then with the help of

(3.20)-(3.21), we derive a recursive inequality for O(¢):

bp
4

0" (1) < (=70 (1)+ 00t 00

.(5*1*%@2(15)%—2@?()+a—1@ )|

(3-9)»
|”11Hm (Qx(0, t)))
P
— 2
+C (71070 + Ot [ oo (3.22)
where wi} =O(F2). Noting that if we fix p€ (2,3], then

0(p—2)
4

—+2(1—9):1+

p
1.
271 -

2

>1,

By the continuity argument, for small € and large k there exists y=-y(k) € (1,k) which
tends to +o0o0 as k— 400 such that

o(T) <.
Therefore it holds that

H@HLP(Qx(o,T)) + HUHLP(QX(O,T)) <e’,

and

HuHLP(QX(O,T)) = H‘t"_a"‘w?HLp(Qx(o,T))
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< ||90||Lp(9x(o,T)) + HUHLP(QX(O,T)) + ||w5 ||LP (@x(0,T))
<Ce".

The proof is completed. O

In order to establish higher order regularity estimates of u®", " and ¢, we
consider the system for (u¢"",0¢™")

atuerr Aﬂerr_’_ﬂerr 2O.err+uer7‘_’_atw5 , in Q X (0”1")7
8,0 — Ag®T 4+ 25T = P —urT in Qx (07T)7

which is a Cahn-Hilliard equation coupled linearly with a heat equation. Using similar
arguments as those in Theorem 2.3 in [3] and the boot-strap method we can give the
desired conclusions. Here we omit the details. In particular we have

THEOREM 3.3. For small € and large k,

errH

err
e I

err“ - SCE

C4v1(ﬁ><[0.T})+H@eMHCz»l(ﬁx[O.T])—FHU C2=1(ﬁ><[O.T])+H'u Cc2.1(Qx[0.71)

Theorem 1.2 can be obtained with the aid of Theorem 3.3 if we take initial data
(u§(x),05(xz)) as (3.10). Next we give a proof of Corollary 1.1.

Proof. (Proof of Corollary 1.1.) Recalling the definition of u# in Section 4, we
easily obtain (1.7). Now we prove (1.8). More concretely we only prove

o _OHC(ﬁx[o.T]) —0, as £—0.

The other one in (1.8) is similar.
The definition of o in Section 4 yields

SSFO)’ (0 (0) (0 n QAL

g5 +oy (1-¢(%),  in (TONT(3)) Ny,
the leading order of ol = 50 in F(%),

~ (0) (0) .

GO +o P (1-¢(%5), i (TE\I(B) N,

o0 in Q_\I'(4).

Based on the inner-outer matching condition we find

H (5(O)C(d?))+of)( C(d(O) ))) — ¥

SC’e_%e—>07 as €—0.
o((renr))nox)

Consequently we only need to prove

HG(O) —0, as £—0.

_"”cw(%))
Note that
o' (x,1), in {(z,t):d™(z,t) >},

7O (x,t,2)= n(z) ELO)(x,t)—F(1—17(2))0(,0)(33775), in {(z,t): —e <d(a,t) <},
o (1), in {(z,t):d¥(z,t) < —e},
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and
O—ELO)(‘/L.Jt)? in Q+7
o(z,t)= nfi1\/2f(u)du, on T,
U(f))(x,t), in Q_.

By mean value theorem we derive that in F(%), there hold

af)(x,t)—ﬁﬁlx/Qf(u)du 0@)(x,t)—K[1\/2f(u)du

Moreover,

<C|d® (x,t)|.

)

{(x,t):d™(z,t) >e}NQ_ C{(2,t):|dO (x,t)| < Ce},
{(z,t): —e <d®™(z,t) <} C{(x,t):|d O (x,t)| < Ce},
{(@,t) :d¥ (z,t) < —e} Ny C{(a,t): |d O (2,t)| < Ce}.
Thus there holds

||&(0)7O'HC(F(%))SC€’

which implies the desired result, and the proof of Corollary 1.1 is completed. ]

4. Matching £*(k>2)-order expansions and construction of an approxi-
mate solution

4.1. Matching k-th order(k>2) outer expansion. Substituting (2.4)-(2.6)
into (1.1) and collecting all the terms of e*-order(k >2) we have

k—1 k—2 0 k—1

Uj: f//(ug?)) , (4.1)
—ApP 4 =20 ) — 0, (4.2)
ataf)—Aof)—l—Qof):u(f)—uf). (4.3)

4.2. Matching k-th order(k>2) inner expansion. Substituting (2.1) and
(2.10)-(2.12) into (2.20)-(2.22) and collecting all the terms of *-order we have

—0.. (ﬁ(k) — n(p(k)d(O) +p(0)d(k))>
k—1
== (0.9, — 2V, 0,50 Vot 0, GO AL a1
=0

_ (atﬁ(k—2) = ALY — (2502 gk ﬁ(k—2>))

k—1 k—1

_nuzp(i)d(k—i)+77//Zp(k—1) _nlzg(i)d(k—l—i)+zn/g(k—2)+ (Sgcf2)n++s(7k72)n—)
=1 =0

é@k—l,lv (4.4)

—a.. (5(k) —n(g®)d® 4 4© d(k)))



M. FEIL, T. TAO, AND W. WANG 1581

k—1
==Y (0:590,d%717 ~2v,0.59 . v,d* 170~ 9.50 4, d ¢ )
=0

. (aﬁ(’“‘?) — A G2 4oz =2) 4 Hk=2) ﬁac—z))

k—1 k-1
_nuzq(i)d(kﬂ) +77//Zq(k71) _nlzh(i)d(kflfi) +Z77/h(k72)
i=1 =0
+ (8 )
L0412, (4.5)

—0,,u™ + f”(g(O))ﬂ(k)

k—1
=— §(ﬂ(0) Lo ,ﬂ(k—l)) + Qszazﬂ(i) . de(kflfi)

=0
k—1 k—1
+ Zazﬂ(z) Axd(kflfi) _’_ﬁ(kfl) + Ama(k72) _n/zl(i)d(kflfi) +Z’I7/l(k72)
i=0 =0
2Ok 13- (4.6)

Step 1. By induction we assume that the inner-outer matching conditions (2.13)-

(2.15) hold for the order up to k—1. It follows from Lemma 4.3 in [3] and direct
computations that if

+oo
Or_1,1(z,t,2)dz=0, (4.7)

—0o0

then (4.4) has a bounded solution

a8 (@t 2) =n(2)p (2,0) + (1—n(2)) u (1)

+oo  ptoo z +oo
_n(z)/ @k_m(x,t,z”)dz”dz’—k/ Ok—11(z,t,2")dz"dz’'

(4.8)
which satisfies
k oo e k
(p(k)d(0)+p(0)d(k))(m7t):'ug_)(x’t)_/ O 11 (,4,2")d="d' — u™) (1),
(4.9)

and

+oo +oo
(0] 2 — ™ = p P 4 / / Or-11(x,t,2")d="dz', on T,  (4.10)

—00 ’

and for any «,5,7€N;,

DeDP DY (ﬁ(k) (x7t7z)—,u£_f) (mzt)) =0(e "l for |z[>1 and some v > 0.
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From (4.9) we can take

Fio] <Nf)(l’7t) )= [T [ Okt 2" )d2" d
—pd®), i TE\I,
= (4.11)
Vo d® -V, (1 (0,0) = ) () = 13 3 Opcra (a2 d2" !
—p(o)d(k)), on I'.

Moreover, by (4.7) we arrive at

20,d* 1)
= — gD _ g=D O 1 957, (4 0) _ (0)).vwd(k—1)_(ugffl)_u(f*))atd(o)
+2v ( (k— 1) (kﬁl)) \V4 d(0)+( (k— 1) (k*1)>Awd(O)

_Z(a i )615 (k—1—1) _ AV 8 ~(7) V$d(k_l_i)—azlj(i)A$d(k_l_i))
=1

k=2 ) ) —+o00 “+o0o
—pk ) 3 g g1y g-2) / 2n'dz+ / (82t 157 )dz
=1 —00 —0o0
+oo
- / (8 u*=2) — A =D — (2502 L k=2 _(k=2))) gz, (4.12)

In particular, for (z,t) €T" there holds
20,dF—1) = — g0 gtk—1) +2[Vmﬂ(0)] VpdFY — [u(kfl)]atd(o)

WH)] - [u]A,d®

v2| e

k—2
-y (3Zg(i)atd(k—1—i) DAV BTION v (Cos (’;’Zﬁ(i)Amd(k‘l‘“)

i=1
k=2

P = 37 g0 k=10 4 gk 2)/ o dz
i=1 >

T g (k—2)
+/ (sy Tt +s 07 )dz

— 00

+oo
— / (0= — A =2 — (252 1 g2 —pE=2))dz. (4.13)
—o0

From (2.30) and (2.31), we deduce that [V,u(®] is parallel to V,d® on T' and
[Vzu(o)] =pOV,d® on T. Thus for (z,t) €T it holds
0, k=2

(Vo] Vod® D=3 "y, (4.14)
—_3 de(i) -Vrd(k_l_i)7 k>3.
i=1
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Combining (4.14), (4.1)(k—k—1), (4.10)(k—k—1), (4.11)(k—k—1) with (4.13) we

obtain

a,u(k—l)
on

1 1
9,d—1) = 3 (p(O)Azd(O) —V,d® . v, p® _9(0)>d(k—1) +5 [ ] +Ag_2q, on T,

(4.15)

where the function A;_2 1 depends only on terms up to order k—2.
And by (4.12) one has

27 (—20:d® D — 9@ a1 27, (1 — ). v,d*D
—(uf_l) (k—l))a 4© +2V ( (k—1) N‘”)-vxd@)
(D pETDY AL A — k- 1)+Ak 22), in T(O\T,

g = (4.16)

Vd(o),v<_23td(k—1) 9@t 127, (1 (0) u(_O)).vxd(k—n

_(u(ffl) (kfl))a d(O)—l—QV ( (k=1) M(fﬂfl))_vmd(o)
D ) Ad® 0y ), on T

where the function Ag_s 2 depends only on terms up to order k—2.
Similarly, if
+oo
O_1,2(z,t,2)dz=0, (4.17)

— 00

then (4.5) has a bounded solution
70 (2,t.2) =n(2)0 (@,0) + (1-n(2)) 0 (2,1)
z 400

“+o0
_n(z)/ @k,l,g(z”,x,t)dz”dz’—l—/ Ok—12(z,t,2")dz" d2’'
—0o0 z

/ —o0oJz!
which satisfies
k k —+o00 “+o0
[a(k)] éai) —ag)zq(o)d(k)+/ Ok—12(z,t,2")dz"dz', on T,
— 00 z

’

and for any «, 3,7 €N,
DEDP DY (5(’“) (x,t,2) faf) (x,t)) =0(e7v#), for |z|>1 and some v > 0.

Furthermore we can obtain

d%(af) (z,t)— o™ (z f+oof Ok—12(z,t,2")dz"dz’'
~¢©d®), i TE\T,
q® = (4.18)
V,d.v, ( f)(:mt) f+oof Ok_1,2(z,t,2")dz"dz’
_q<o>d(k>>’ on T,
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and
9o k=1
[ Uan }(vzd@).vrq(@uh(@)q<0>Amd<°>)d<’“)+Ak_2,g, on I,  (4.19)
and
o (=h@a0D = (0 FD =690 427, (oY — o) 9,40
+(0'5rk71)—0'(,k71))A$d(0)_q(k_1)+Ak7274)7 in T(6)\I
pl=1) —

de(o) .vr 7h(0)d(k71) . (U-(i-k_l) 70(_k—1))atd(0) (4.20)

+2V, (aﬁffl) — U(fkfl)) V,d®

(o =) A — gD A y),  on T

)

where the functions Ag_9 3 and A;_o 4 depend only on terms up to order k—2.
Step 2. Based on the method of variation of constants and direct computations (or
Lemma 4.3 in [3]) we find that if

+oo
Ok—13(,t,2)0 (2)dz=0, (4.21)

— 00

then (4.6) has a bounded solution u®)(x,t,2) satisfying u® (0,2,t)=0 and for any
a?B”y e N7

DeDP DY (ﬂ(k) (x,t,z)—ugf)(a:,t)) =0(e7V1#l), for |z[>1 and some v > 0.

According to (4.8) and (4.21) we get

+o0 oo
uf‘”/ n(z)e’(z)dzw(f‘”/ (1=n(2))¢'(2)d=

+o0 +oo
:fAmd(kfl)/ (9’(2))2dz+l(0)d(k*1)/ n'(2)0 (2)dz

o0 —0o0

—+oo
+ (k=1 g(0) / 0 (2)0 (2)dz+ Ag_2.5, (4.22)

— 00

where the function A;_2 5 depends only on terms up to order k—2. Here we have used
the fact that 71 actually depends only on terms up to order k—2. In particular, for
(x,t) €T there holds

+o0 +oo
pi Y [ ()0 (2)dz 4+~ / (1—=n(2))¢(2)dz

— 00

—+oo —+o0
:—Awd(k‘l)/ (9’(2))2dz+l(0)d(k_1)/ 7' (2)0'(2)dz+Ag_25, on T. (4.23)

oo — 00

It follows from (4.10)(k—k—1) and (4.23) that

1 1 o
ulk 1):7§Axd(k*1) / (9'(2))2dz+§z<0>d<’“*1) / ' (2)0' (2)dz

— 00 — 00

—+oo
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Baa| 1
+p(0)d(k*1)/_ (5—n(z):l:§>9’(z)dz+Af_276, on T (4.24)

where the functions Affzﬁ depend only on terms up to order k—2.
And by (4.22) one has

k—1 +oo k—1 [e'e)
e T 0@ @z [ (L) (2)dz
+A,dD [T2(0'(2)) dz—lm)d(’“’l [ (2)0 (z)dz+Ak,2,7), in T(O)\T,
1D = (4.25)
o Ved® Ve (1 [ 2000 () dz D [T (1-n())0 (2)dz
+AGdHF ) [T (9/(z))2dz—z<°)d<k—1>fjjn/(z)a’(z)dz+Ak,2,7), on T,

where the function A;_2 7 depends only on terms up to order k—2.

4.3. Matching k-th order(k>2) boundary layer expansion. Substitut-
ing (2.47)-(2.49) into (2.53)-(2.55) and (2.56)-(2.58) and collecting all the terms of *-
order(k>2) we have

— 0oy =1, (4.26)
_6zz0’gc):Ek: 1,2 (427)
—0.auly) + " (Dufy) =B 1, (4.28)

and on 09 x [0,7]

0.1\ (2,4,0)=0, 0,1t (2,£,0)= -V 1 (2,£,0)- V,dp(a,1), (4.29)
0.0 (2,4,0)=0, 0,08 (2,t,0)= Vol " (2,£,0)- Vodp(z,1), (4.30)
8zug)(x,t,0):0, 82u%€)(x,t,0): ungc 1)(x,t,0)-V$dB(at,t), (4.31)

where the functions Z5_1,1,2,_1,2 and Zj_1,3 depend only on the terms up to order
k—1. More concretely, we can write

—*k 11—2V 8z,UB 2 Y dB+8z )A dB 6u(k 2 +Aw/)453k72)

—|—20§3 )—|-u(k 2 _ (k 2)

Sho1.2=2V,0.0% .V, dg+0. a““ ”Ade—atog“‘QHAxag“‘?)
(0% ) ko2

Er13=—gy (ul o ul™ 1>)+2v 0. uls ™V, dp+ 0.0V A Ldp

(k—1) k 2)

By induction we assume that the boundary-outer matching conditions (2.50)-(2.52)
hold for the order up to k—1. Then by (4.26)-(4.27), we get that

iy (w.t,2) = / / Sp—1,1(z,t,2")d2"d2’ +u(k)( t), (4.32)

(z,t,2) / / Ep_12(z t,z”)dz”dz'Jraf)(:r,t), (4.33)
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and (2.51)-(2.52) for order k are satisfied by using induction arguments.
In order that u'% defined by (4.32) satisfies (4.29)(k > 2) and o'% defined by (4.33)
satisfies (4.30)(k>2), we only need to assume on 02 x [0,7] that

Vadp(a,t) - Veul ™ (a,1)

0 2
=— (2Vzd3(ac,t).Vz—i—Ade(x,t))/ / Ek—21(m,t,2")dz"d2’'
— 00 — 00

0
—/ (atugﬂ) —Amugfz) —20)(;72) —ugfz) +u(k 2))(x,t,z)dz

éHk—2 1 (434)

)

and

Vadp(z,t)- Vo (a,1)

0 2z’
—(2Vzd3(m7t)'Vm—&—AmdB(x,t))/ / Egp—22(w,t,2")d"d2’

0
—/ <8t0§3k72)—Am0§3]€72)—20g€72)—ug )—i—u(k 2)>(m,t,z)dz
—o0
éﬂkfz,z- (4.35)

In fact, for (x,t) € 92 x [0,7] one has
. 0
ZﬂSB)(xvtvO) :/ Erp-11(x,t,2)dz
(2

— 00

V.dp(x,t) - Vi+ AngB(m,t))ug R (x,t,0)

— (2Vadp () V+ Mg, ) ) D (at)

0
—/ <8tug€72)—Awu§3k72)—20g€72) ugc 2)—|—u(k 2))(a:,t,z)dz

—00

0 2
- (zvggdg(m,t)-vw +Ade(x,t)) / / Zoi(z,t,2")dz" d2’
— 00 — 00

0
—/ <8tu(k 2) Awug72)—20§3]€72) gf 2)+ug72))(aﬁ,t,z)d2

— 00

and

qu(ff D(IJ,O)-deB(x,t):—V dp(x,t)- </ / Ek—21(x t,z”)dz"dz')
+Vadp(a,t)- Vo (2,1).

Then we easily get (4.29)(k >2) with the help of (4.34) and the above equalities. The
other cases can be done similarly.
Finally, we equip (4.28)(k >2) with the following boundary condition at z=0

O.ulf) (2,t,0) = =V, (2,1,0) - V,odp (2, 1) (4.36)
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for (x,t) € 9Q(0) x [0,T]. Obviously (4.36) implies (4.31).

Since (4.28)(k>1) is a linear second-order ordinary differential equation with con-
stant coefficients, we can solve it explicitly and conclude that there exists a unique
solution ug) which satisfies (4.36) and (2.50).

4.4. Solving expansions of k—th order(k >1).
Assuming u(k 1)’ ll(f_l)v Gf—1)7 dk=1) | pk=1) - g(k=1), g(kfl), pk=1)  p(k=1)
k=1 gt=1) - Fk—1) ,ugcfl), Ugfl), ugc 1) are known and the inner-outer match-

ing conditions (2.13)-(2.15), the boundary-outer matching conditions (2.50)-(2.52) hold
for order up to k—1. Then ugf) are defined by (4.1). Combining (2.2), (4.2), (4.3),
(4.15)(k—1— k), (4.19)(k—1—k), (4.24)(k—1—k),, (4.34)(k—1—k), (4.35)(k—1—
k), we have

—Apd 4 =20 1l — 0l iy,
908~ Aol 120 =y~ in Qu,
Vd© . vd® =D, _,, in I'(9),
p) = —apAd® +a1d® + AE 1,60 on I,
[7‘93( )} =aod® + Ay 1,35 on I, (4.37)
0y d™®) = a3d™®) + [8“( )}+Ak 1,1, on I,
ou®

aa = Ue-11, on 9%},
5o )

EE ) on 01,
d(k)(x,O)ZO, on Fo,

where ag is a positive constant, the functions aj,as and a3 depend on
p© ¢ g B© 70 and d® and Ty=T|;—p. Giving an initial data Uf)(x,O) and

solving (4.37) leads to u( ) Ui) and d®). Equation (4.37) is a “linearized” Hele-Shaw

problem (P193 in [3]) coupled linearly with a heat equation satisfied by Jf). The first

and key strategy is to get the value of d*) on I'. Here we don’t aim to show the lengthy
details and one can refer to similar arguments in Section 6 of [3].

Then p¥),q*) g(&) AF) 1K) are determined by (4.11), (4.18), (4.16), (4.20), (4.25)
respectively. Moreover ) i®) 5(¥) are determined in Section 4.2, ug),a;), *) are
determined in Section 4.3, and the inner-outer matching conditions (2.13)-(2. lo) and
the boundary-outer matching conditions (2.50)-(2.52) hold for order k.

REMARK 4.1.  We can extend (uf),u(ik),a(i )) smoothly from €24 to Q as Remark 4.1
in [3].

4.5. Construction of the approximate solution. In this section we divide
into two steps to construct an approximate solution and determine the system which is
satisfied by the approximate solution.

Step 1. In Q4L UQ_ we define

(Zel D) o )+ (ZaiuSZ‘)(x,t))xQ(x,t),
(z,t)= (Zs )XQ+(33 t)+ (zkzeiu(_i)(x,t))m(x,f),

=0
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(Z&?z Va )Xm a,t)+ <Z€l e >st (z,1),

where xq, is the characteristic function of Q.
Thanks to the outer matching expansion procedure, we obtain in Q4 U _

Dud — A =208 +ub — b,
005 — Ao =— (205 +up — 13),
ph=—eAup+e 1 (ud) +O(e").

In I'(0) we define
k
— i (4)

t) ZE ' (z,t,2) e’
Za' ~(Z (z,t,2) ,

Z:d[kliz,t)
ZEZU(Z x,t,2) .

Z:d[k'](z,t)

It is direct to check that in T'(9)

opus — Apd =207 +uft — p + 0,
of = Aof == (207 +uf —pu7) +0(e" ),
pit =—eAuf +e ' (uf) +O(e").

In 9Q(6) we define

Zsl () (z,t,2) —skug)(o,%t),
,—d4B(@)
ZE (x,t,2) —g’mg)(o,m),
,—4B(@)
op(x,t) Zs xtz iy E 0'53)(0{1}15)
z=

and we can find in 0§2(J) that
Opuls — Ay =20 +u —pp+0(e" ),
oy — Ao =—(20%+up; — i) +O(e" ),
g =—elup+e ' (uf) +O(E*H)

and

ouy  Ouly  Oop

on ~ on ~ on =0, on 90x(0,7).
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Step 2. We define (ut, A, 04) as follows:

ug, in 69(%)7
uAC(4E ) +ud (1- (%)), in 90(5)\00(%),
e Y in 0\ (92(8)UT(3)),
uf () +ud (1-C(450), in D(§)\I(3),
u‘;‘, in 1"(%)7

and pA,04 are defined similarly, where
1
(eCF(R), ¢=1 for |C|§§7 (=0 for [¢|>1.
Based on the boundary-outer matching conditions (2.50)-(2.52) and inner-outer

matching conditions (2.13)-(2.15), one has for small ¢

d
B ||c2(39(5)\an( 3y

= O(c2e 2s)+0( )

|‘“7_”8HC2(89(5)\39(%)):H(“§ u )¢ (=

and
- d©
o =5 llcaranreen = 107 =10) e anren
fO(s e Zg)-

Similar estimates hold for uA— uo and oA —O'O
Consequently (u4,p4,04) satisfies in Q x (0,7)

Oul — ApA =204 +ut — pA 4w,
oA — AoA = — (204 +uA — pA) 4w,
pA=—eAud 71 (ud) + wi

and
out  opt  doA
On  On  0On
where w* =O0(e*~1)(i=1,2,3) which depends on (ul, uh,o4).
Letting oA =uA + 04, we have

=0, on 900Qx(0,7),

{atw—AuA—AaA:wl +wf, in Qx(0,7),

80’;::0, on 002 x (0,T).

Define the approximate solution (p?,u?,04) as follows:

A (,t) = A (,t) — iy fy Jo (wit +wi) (2,8 davdlt!,
MA(xat):F(xat)_MA(xvt)v

oA (a,1) = (a1, 439
ul(z,t) =ud (2,t) —wi' (z,t) — i (z,1)
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where i (xz,t) satisfies

AﬁAzwlA"i-wéLl_fglz\fQ (wf‘—i—wé“)(x,t)dx, in Qx(0,7),

s ), on 99 x (0,T),
Jo i (z,t)dz =0, te(0,7).
Then it holds that
0o — Apt — Ao =0, in Qx(0,7),
00t — Ao = (204 +ut —p?), in Qx(0,T),
pA = —cAut 47 (ut)+wi, in Qx(0,T), (4.39)
ut =4 — o +wi, in Qx(0,7),

b
A A A
9 =G =% —o, on 992x (0,T),

where wj! =0 (e¥~?) and

1 t
wit = —/ / (Wit +wg) (2, )dodt —wg' — pt =0(e*71).
9 Jo Ja
Thus Theorem 1.1 is arrived by letting R, =wj' and Ry :wg‘.
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Appendix. For completeness, here we give a proof of (3.8) which has been shown
in [14].

Proof. Firstly we observe that

)

/_g ((0:0)*+ f"(0(2))v?) Jdz

+/

Let @:'yqlf—i—pl, then

LYE

s 3

((8217)2+f”(0(z))172)dzfs/5 @azwmrldzfcg/e v2dz. (5.1)

3 s
e €

LI

ol

)

—5/5 08,0, J " \dz

LICS

s s

:_57/5 ﬁ(q{)’JmJ_ldz—s/E 00, p1Jy, J " Ldz
35

3
S S
:757/5@(q{—a9’)/thJ71dz+sa7/ @e“JT,,J*ldz—s/ 00.p1Jy, J Nz, (5.2)

s 3
€ €

lon

oo o

We easily find

ol

s
e

— —0[9”
5
€

—(qf =)+ 1" (O)(a] —ab)=Mal, (of —at)

ol
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Multiplying the above equation by q{ —af’, integrating by parts and using (3.5
have
s s s
= 2 € €
/5 (f —at)'["dz=~ Jf”(9)(q{*a9’)2d2+/\{/Jq{(qf*aﬂ’)dz
d.,,,0 ) )
2l / 21 /
—a”0"(=)0' (- 0" (—=)0'(—=
Q20" (2)0'(2) +a0" (- )0’ (=)
=0(e %).

It follows from (5.3) that

3 S 1 5 1

57/5517(q{—a0’)’thJ1dz<C€'y</l |{]|2dz> (/: (q{—ae’)/|2dz>
o) o)

And from (3.7) one has

)

/ 00", T dz

3
€

o

eary

SCEQaw/E |06" 2|d=

)

¢ 3/ 2 3
§C€2a'y</ |1§|2dz> (/ |9”z|2dz>
_s _s

Using (3.4) we can arrive at
s

[ onlas= [ (10l + @02 )as— [ 770

<c [ (0wl + 1/ @m)?)i:

8
’—5/ 00,p1 gy, J " tdz

s
e

Thus

s s
—5/5 ﬁazleTtJ_ldzz—ng/s UZdZ—f/ ((0.9)%+ £"(6)8°)d.
_ _3 _

s
€
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5), we

(5.3)

(5.6)



1592 SHARP INTERFACE LIMIT FOR TUMOR-GROWTH

Substituting (5.4), (5.5) and (5.7) into (5.2) we have

s s s
75/ ﬁ@ZﬁthJfldzszsz/ vzdzfi/ ((0.0)*+ f"(0)9%)d=
_ _ s

s
e

which together with (5.1) leads to (3.8).
Hence the proof of (3.8) is finished. 0
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