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ON WELL-POSEDNESS OF TIME-HARMONIC PROBLEMS IN
AN UNBOUNDED STRIP FOR A THIN PLATE MODEL*

LAURENT BOURGEOISt, LUCAS CHESNEL!, AND SONIA FLISS$

Abstract. We study the propagation of elastic waves in the time-harmonic regime in a waveg-
uide which is unbounded in one direction and bounded in the two other (transverse) directions. We
assume that the waveguide is thin in one of these transverse directions, which leads us to consider a
Kirchhoff-Love plate model in a locally perturbed 2D strip. For time-harmonic scattering problems
in unbounded domains, well-posedness does not hold in a classical setting and it is necessary to pre-
scribe the behaviour of the solution at infinity. This is challenging for the model that we consider
and constitutes our main contribution. Two types of boundary conditions are considered: either the
strip is simply supported or the strip is clamped. The two boundary conditions are treated with two
different methods. For the simply supported problem, the analysis is based on a result of Hilbert basis
in the transverse section. For the clamped problem, this property does not hold. Instead we adopt
the Kondratiev’s approach, based on the use of the Fourier transform in the unbounded direction,
together with techniques of weighted Sobolev spaces with detached asymptotics. After introducing ra-
diation conditions, the corresponding scattering problems are shown to be well-posed in the Fredholm
sense. We also show that the solutions are the physical (outgoing) solutions in the sense of the limiting
absorption principle.

Keywords. Waveguide; Kirchhoff-Love model; thin plate; radiation conditions; modal decompo-
sition.

AMS subject classifications. 74J20; 74B15; 74H20; 35Q74; 35B40.

1. Introduction

The Kirchhoff-Love model for thin elastic plates has now a quite long history and is
of practical use in the field of mechanical engineering. From the mathematical and the
numerical point of view, there are a considerable amount of contributions concerning the
static case. In this field, we can for example refer to the monographs [6,7,9,17]. Many
authors have also analyzed the behaviour of Kirchhoff-Love plates in the dynamic case,
at least in the time domain. Here, we can refer for example to [1,22]. In particular,
the various models for plate problems in the time domain are derived and justified
n [22]. However, the number of contributions concerning time-harmonic problems for
infinite Kirchhoff-Love plates at non-zero frequencies seems much smaller. From the
theoretical point of view, the scattering solutions in the restricted case of purely radial
inhomogeneities are analytically computed in [37], while well-posedness in the presence
of a potential is rigorously established in [42] for a large enough frequency. From the
numerical point of view, some finite element computations with the help of Perfectly
Matched Layers can be found in [11]. Let us also mention the studies concerning the
so-called platonic crystals [10, 15, 16, 39, 40] (by analogy with photonic, phononic or
plasmonic crystals). In these works, the authors investigate the propagation of time-
harmonic waves in waveguides which consist of rigid pins embedded within an elastic
Kirchhoff plate.
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Our paper focuses on a two dimensional waveguide which is infinite in one direction
and bounded in the perpendicular direction: it will be referred to as the strip in the
following. We consider the Kirchhoff-Love model in such strip. We acknowledge that the
Kirchhoff-Love model is the simplest possible one to describe plates — see for instance [22]
where various models for plate problems are derived and justified. However, to the best
of our knowledge, well-posedness of time-harmonic problems in a strip for such model
has not been investigated up to now. This study can be considered as a first step for
the analysis of richer plate models.

The standard Helmholtz equation in a waveguide has been extensively studied (see
for example [4,5,13,14,23]). Let us remind the reader of the main results for this simpler
case. In the classical functional framework (L?), existence of a solution may fail (the
physical solution may propagate towards infinity without attenuation). If we extend
the framework to only locally L? functions, in turn uniqueness may fail. To cope with
this problem, one has to additionally prescribe the behaviour of the solution at infin-
ity imposing so-called radiation conditions. These radiation conditions are expressed
thanks to a modal decomposition which is obtained by using the self-adjointness of the
Laplace transverse operator, so that the corresponding eigenfunctions form a Hilbert
basis. Some Dirichlet to Neumann operators, enclosing the radiation conditions, can
then be introduced to reduce the problem to one set in a bounded domain. Finally, well-
posedness in the Fredholm sense can be proved (see [26] for more details on the Fredholm
theory). More precisely, if uniqueness holds (which arises except for a countable set of
frequencies, which corresponds in part to the trapped modes, see for example [8,25])
then existence holds as well. The solution is said to be physical if it satisfies the limiting
absorption principle: it is the limit, in a certain sense, of the solutions to the Helmholtz
equation in the presence of a damping term, when this damping term tends to zero.

In the present paper, for the strip governed by the Kirchhoff-Love model, we in-
troduce radiation conditions and prove that the corresponding scattering problem is of
Fredholm type, both in the case of a clamped strip and in the case of a simply supported
strip. Let us mention that some analyses of modal solutions in a strip for various bound-
ary conditions have already been conducted (see for example [18,36]). But a rigorous
existence and uniqueness analysis of the scattering problem, whatever the boundary
conditions, seems to not exist.

In our article, we propose two angles of attack, depending on the boundary con-
dition. In the case of the simply supported strip, we benefit from the factorization
of the transverse underlying differential operator to decompose any scattering solution
in terms of the modes of the waveguide. Then we prescribe the radiation conditions
with the help of these modes and introduce Dirichlet-to-Neumann operators — based
on these radiation conditions — in order to reduce the analysis to the one of a problem
set in a bounded domain. Such strategy also offers a method to compute the solution
numerically. However this approach is not applicable to the case of a clamped strip,
see Section 5.1 for more details. For this problem, we shall obtain the result of modal
decomposition needed to express the radiation conditions at infinity using a different
approach due to Kondratiev [19] (see also [20,21,24,32]). It consists in applying the
Fourier transform in the unbounded direction. Then working in weighted Sobolev spaces
and using the residue theorem, we shall get our decomposition. In a second step, in
order to impose radiation conditions, we shall integrate it to the functional space in
which we look for the solution. To proceed, we shall work with spaces with detached
asymptotics introduced in [31] (see also the reviews [28,29]). Let us mention that the
methodology we follow to study the clamped problem could be used also to deal with
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the simply supported problem. We would obtain completely similar results. The goal
of the present paper is first to investigate problems of thin plates in unbounded strips,
as mentioned above, but also to show that when the result of Hilbert basis in the trans-
verse section is not available, we can still use an alternative route. We hope that the
successive presentation of the two methods will help the reader to get familiar with the
second approach which may be less known and which requires a slightly longer analysis.
For application of the technique to other situations, one may consult [2, 3,30, 33, 34].
In [27,35], periodic problems are also considered.

The outline of the article is as follows. First, we describe the setting of our problems
in Section 2. Then in Section 3, we compute the modal exponents both for the simply
supported and clamped cases. The results of these computations are summarized in
Proposition 3.2 and Proposition 3.6. In Section 4, we detail the analysis for the simply
supported problem. Section 5 is dedicated to the study of the clamped problem. Note
that Sections 4 and 5 can be read quite independently from Section 3. Finally, we justify
the selection of the outgoing modes in Section 6 before giving some short concluding
remarks in Section 7. The main results of this article are Theorem 4.2 (Fredholmness
in the simply supported case) and Theorem 5.4 (Fredholmness in the clamped case).

2. Setting of the problem

Fic. 2.1. Domains Q2 (left) and D (right).

We consider a waveguide Q= {(z,y) € R x (0;1)}, the boundary of which is denoted
0Q. Let 0CQ be a €Y' domain such that ¢ CQ. We define D:=Q\ & (see Figure
2.1). We assume that the domain D is occupied by a thin elastic plate described with
the help of the Kirchhoff-Love model in the purely bending case. We will consider two
kinds of boundary conditions on 0€2: the plate is either simply supported by 99 or
clamped on 02, while & is a hole within it. In our analysis, we will study the following

source term problem: find » in D such that

A?y—k*u=f inD
u=Cu =0 on 0

Mu=Nu=0 on 00
u satisfies (RC).

(2.1)

Let us describe this system. From the physical point of view, the first equation of (2.1)
comes from the equation of the motion of the strip

0%u

DA*u+ph—

P o

=p

in the time-harmonic regime. Here, we have D = Fh3/12(1 —1v?), where E is the Young’s
modulus, v €[0;1) is the Poisson’s ratio and h is the thickness of the strip. Moreover, p
refers to the density and p corresponds to the pressure applied to the strip. Hence the
wavenumber k is defined by k* = phw?/D and the volume source f by p/D.
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In the third equation of (2.1), M and N are the boundary differential operators
defined by

7] 7]
Mu=vAu+(1—v)Myu, Nu:—%Au—(l—V)%Nou, (2.2)
where n=(nz,n,) is the outward unit normal to D and s=(—ny,n,). Above, we use
the notation

7 0 0 0 0 0

an "oz Ty 95 or Mgy

Moreover, in (2.2), the operators My and Ny are respectively defined by

u 0%u o’u Pu , 5 0?u  9*u
Mou:@nw+2ax—aynzny+7n( NoUZM(%— y)_<8x2_8y?>n$ny'

In order to interpret the boundary conditions in (2.1), we recall that D x Mu is the
bending moment while D x Nw is the transverse force. The boundary condition Mu =0
and Nu=0 on 00 corresponds to a free obstacle, that is a hole.

Concerning the boundary condition on 99 (i.e. the second equation of (2.1)), we
shall consider the following two cases.

(1) When C =M, we have u=0 and Mu=0 on 9. This corresponds to the simply
supported strip.

(i4) When C'=9,, we have u=0 and d,u=0 on 9. This corresponds to the
clamped strip.
It should be noted that simplified expressions of Mu and Nw on straight parts of the
boundary are

u  0%u Bu &u

This implies that in the case of a simply supported strip, the boundary condition can
by simplified as ©=0 and 0,,u=0 on 92, or equivalently u=0 and Au=0 on 9f2.

Finally, (RC) stands for the radiation conditions which will be specified later on,
for the simply supported and the clamped cases.

The goal of the present article is to study the well-posedness of Problem (2.1). For
k larger than a given threshold, in order to obtain well-posedness for (2.1), we will have
to impose radiation conditions to prescribe the behaviour of the solution at infinity.
To proceed, we will show that every function satisfying the first two equations of (2.1)
decomposes on what we call the modes of the waveguide. These modes are computed
in the next section, for the simply supported case and then the clamped case. Later on,
they will be helpful to define the radiation conditions.

3. Computation of modal exponents

The modes of the waveguide are defined as the functions of the form
u(z,y) =e*¢(y), where A\€C and where ¢ is a function to determine, which
satisfy the equations A%u—k*u=0 in Q (the reference strip without the obstacle) and
u=Cu=0 on 0. In this section, we compute the modal exponents, that is the values
of AeC such that u(z,y) =e**¢(y) is a mode. The results of the computations are
summarized in Proposition 3.1 and Proposition 3.3. The reader who wishes to skip
details can proceed directly to Sections 4 and 5.
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Setting I:=(0;1), one finds that wu(x,y)=e**p(y) is a mode if and only if, the
pair (\,) € C x H2(I)\ {0} solves, depending on the problem considered,

) (A2 +dyy) 2o —k*'o =0 in I . (N2 +dyy)o—k*'o =0 inI
(@) { p=dyyp =0 on dl () { p=dyp =0 on 0I.
(3.1)
The first problem is related to the simply supported plate while the second one is
related to the clamped plate.

Defining the Hilbert spaces H{(I):={weH'(I)[)=0o0n dI} and HZ(I):={y e
H%(I)|¢=dy)=0 on 01}, the variational formulations of these two spectral problems
write

(i) Find (\,) € Cx HY(I)NH2(I)\ {0} such that

/I(A290+dyy90)(>\2@+dyﬂ)—k4<ﬂdy=0, vy e Hy(I)NH*(I).  (3.2)

(ii) Find (\,¢) € C x HZ(I)\ {0} such that
/I()‘QQD"‘dyy‘P)()‘Q@"‘dyy@)_k490@dy:0a VwGH?J(I)- (3.3)

Denoting (H(I)NH2(I))* (resp. H™2(I)) the topological dual space of H}(I)NH?(I)
(resp. H3(I)), the underlying fourth-order differential operator . (\) appearing in the
analysis of (3.2), (3.3) is, alternatively:

(i) Z(N): Hy(I)NH?(I) — (H{(I)NnHA(I))*
= LNp=(N+dy,)’p—k'e

or

.. L(N\):H3(I) - H2()

) o= L(N)p= (N +dyy)*p— k. (34)
For any of the two spectral problems, if (A, ) is a solution then \ is called an eigenvalue
of the symbol .Z while ¢ is called an eigenfunction of .. We denote A the set of all
eigenvalues of .Z. This set will be referred to as the set of modal exponents. Let us now
solve these two spectral problems. We begin with the first one which, by using a fac-
torization of the operator .£(\) and the very special nature of the boundary condition,
is much simpler.

In this article, the complex square root will be chosen so that for z=pe®, with
p>0 and v €[0;27), we have /z=,/pe’/2. In particular, we always have Sm./z > 0.

3.1. Modal exponents in the simply supported case. In order to solve
(3.1)-(4), or equivalently (3.2), first we introduce the eigenvalues p,, and eigenfunctions
0,, of the auxiliary spectral problem: find (1,6) € C x H*(I)\ {0} such that

(3.5)

dyy0+p0 =0 in [
0 =0 on Ol

A straightforward computation leads to u, =7?p? and 6, (y) = v/2sin(7py) for pe N*:=
{1,2,...}. Let us remark that the u, form a positive and increasing sequence of real
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numbers that tends to +o0o while the family (6,) forms a complete orthonormal basis of
L2(I).

PROPOSITION 3.1. Assume that k>0. Then the set of modal exponents A for (5.1)-(i)
s given by

A={xin,,peN"}U{t,,peN*} with n,:=+/k?—n2p? and v, :=+/k>+72p%. (3.6)

Proof. Let us consider some solution (A, p) to the spectral problem (3.1)-(4) and let
us define

p1= (N +dyy)p— k¢, 9= (N +dyy)p+ k.
Using that dy,p =0 on 0I, we observe that ¢ and ¢ satisfy the following problems:
(A2 +dyy)p+k*¢ =0 in I and (N2 +dy))p—k*¢ =0 in I
@$=0 ondl @»=0 ondl.

Introducing the solutions (u,,6,) to Problem (3.5), we only have two possibilities: either
N2 =, — k2, @:CN’GP, =0 for some pe N*, CeC, or A2 =, + k2, a,b:C’@p, @=0 for
some peN*, Ce€C. Conversely, for any value A such that either A\? =y, —k? or \>=
pp+ k2, by choosing p=0,, one finds that (\,p) is an eigenpair of (3.1)-(4). |
Now let us focus our attention on the set ANRi. The reason is that if A€ ANR:\ {0}
and ¢ corresponds to a non-zero element of ker Z(\), then the so-called mode (z,y)—
e p(y) is propagating. Such modes play a particular role in the definition of the
radiation conditions and the well-posedness of the initial problem. Let us first remark
from Proposition 3.1 that 0€ A if and only if there exists n€N* such that k=nmr.
These particular values are the so-called threshold wavenumbers. We have the following
proposition, the proof of which is straightforward. We denote |-| the floor function.

PROPOSITION 3.2.  For k€ (0;7), we have ANRi=0. For k>r, we have
ANRi={=%in,, p=1,---,|k/7|}.

This implies card (ANR:) =2n when k € (nm; (n+ 1)), n€N* and card(ANRi) =2n—1

when k=nm, neN*.

3.2. Modal exponents in the clamped case. In this paragraph, we solve
(3.1)-(4), or equivalently (3.3). We assume that k>0 is given. We remark that for
A €C such that A\*#k?%, the linearly independent functions a;, as such that

in(vVA2+k? in(vVA2—k?
a1(y) = SlH(\/iy) _ sin( y)’ as () = cos(v/ A2 + k2y) — cos(V/A2 — k2y)
VA2 K2 VAZ—k? 37

3.7

satisfy the first equation of (3.1)-(i¢) as well as the boundary conditions ¢(0) =d,¢(0) =

0. On the other hand, for A€ C such that A* =k*, the linearly independent functions
b1, by defined by

m@)sm(f*g”y, ba(y) = cos(vVEAY) — 1. (3.8)

are solutions of the first equation of (3.1)-(7) satisfying ¢(0) =d,¢(0)=0. In the anal-
ysis below, we will meet the following two sets
v

H = {ﬁ\/ m2—n2, with m,n€N*, m>n, such that m—n is even} (3.9)
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T
Apart == {ﬁ\/ m2+n2, with m,neN* m >n, such that m —n is even}. (3.10)

In the proposition below, we give a characterization of the set of modal exponents A
for the clamped problem. We remind the reader that the geometric multiplicity of an
eigenvalue A of .Z is by definition equal to dimker.Z(\).

PrROPOSITION 3.3. Assume that k>0. Let A refer here to the set of modal exponents
for (5.1)-(i1).
(1) The number X\ € C such that \*# k* belongs to A if and only if X satisfies

)\2+k2 )\2_]{2
+ sin(v/ A2 + k2)sin(v/ A2 — k2)

)\27]{:2 )\2+k2

=2—2cos(V/ A2+ k2)cos(v/ A2 —k2). (3.11)

Moreover, if k¢ X (see definition (3.9) above), then for all A€ A, we have ker Z(\) =
span(yg) (geometric multiplicity equal to one) with vo(y)=A1a1(y)+ Asas(y). Here
(A1, A5) 7 is an eigenvector of the matriz A()\) defined in (3.13).

If ke, then for A€ Apare NA (see (3.10)), we have ker £ (\) =span(a1, a2) (geometric
multiplicity equal to two). For A€ A\ Apary, we have ker £ (\)=span(pg) (geometric
multiplicity equal to one) with po(y)=Aia;i(y)+ Azas(y) (again here (A1, A)T is an
eigenvector of the matriz A(X)).

(2) The number A€ C such that \* =k* belongs to A if and only if X satisfies
V2Asin(v/2X) =2 —2cos(V2)). (3.12)

In that case, we have ker £ (\)=span(pg) (geometric multiplicity equal to one) with
©0(y) = B1b1(y)+ Baba(y). Here (By,Bs)" is an eigenvector of the matriz B()\) defined
in (3.14).

Proof.

(1) First we study the eigenvalues A € C of .# such that A*# k*. Since the solutions
to the equation (A\?+d,,)%p—k*p=0 in I consists of a space of dimension 4, we have

dim {0, (A +dyy 20— ko =0, (0) =/ (0) =0 } =2.

Hence if ¢ satisfies Z(\)¢=0, there are constants A;, A;€C such that ¢(y)=
Ara1(y)+ Asaz(y) where ay, as are defined in (3.7). Writing the two boundary condi-
tions at y =1, we obtain that ¢ is a non-zero function satisfying £ (\)p =0 if and only

if the matrix
AN = <a,1(1) afﬂ;) (3.13)

has a non-trivial kernel. An explicit computation shows that det A(A)=0 if and only
if (3.11) holds. Moreover, one sees that the geometric multiplicity of A coincides with
dimkerA(X). Clearly, if A€ A, then dimkerA(A)=1 except if A(A)=0 (in this case
dimker A(A)=2). Assume that A(\)=0. Then in particular, we must have a;(1)=
a%(1)=0. Using expressions (3.7), this implies sin(v/ A2 4+ k2) =sin(v/ A2 — k2) =0 leading
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to k=mv/m2—n2//2 and A=71vm?+n2/v/2, where m, n€N* are such that m>n.
The additional constraint az(1)=a/ (1) =0 imposes that m, n must have same parity.
This leads to the definition of the set 2" in (3.9) and to the statement of the proposition.

(2) Then we study the eigenvalues A€ C of . such that \*=k?. If ¢ satisfies
Z(AN)p=0 then there are constants Bj, Bs€C such that ¢(y)=B1bi(y)+ Baba(y)
where by, by are defined in (3.8). Writing the two boundary conditions at y=1, we
obtain that ¢ is a non-zero function satisfying £ (\)¢ =0 if and only if the matrix

[ ba(1) b2(1)
B(\) = <b,1(1) b’2(1)> (3.14)

has a non-trivial kernel. An explicit computation shows that detB(A\) =0 if and only if
(3.12) holds. Moreover, one can check that one has always B(\) 75 0. As a consequence,
if A is an eigenvalue of . such that \* =k*, then dimker.#()\) = d

In the remaining part of the paragraph, we focus our attention on the set ANR3,
in other words on the propagating modes.

From (3.3), we remark that if A belongs to A, then —\ is also an element of A.
Therefore, it is sufficient to study AN[0;+ioc). In the proof of Lemma 5.1 below, we
will see that AN[ik;+ico) =0. As a consequence, we can look for A € A writing as A=141k
with 7€[0;1). From (3.11), we see that we must have hy(7)=0 with

\/1—1—7’2 \/lJrT sin(kv/1—72)sinh(kv/1+472)

1—72

—(2—2cos(kv/1—712)cosh(kv1+72)). (3.15)

In Corollary 5.1, we show that such dispersion relation is satisfied only by a finite
number of 7€ [0,1). From Proposition 3.3, we know that if A belongs to ANRi, then its
geometric multiplicity is equal to one. In the following, we will also need to know the
algebraic multiplicity of A (see the definition e.g. in [20, §5.1.1]).

PROPOSITION 3.4. Assume that k>0 is given. If N\e ANRi\ {0}, then its algebraic
multiplicity is equal to one. If A\=0€ A then its algebraic multiplicity is equal to two.

Proof.  We remind the reader that for A€ C, we denote Z(\):HZ(I)—H=2(I)
the operator such that £ (X\)g=dyp+2X2d2o+ (A* —k*)@. Assume that g€ A. Then
there is ¢o #0 such that & ()\O)gpo =0. Assume that the algebraic multiplicity of \g is
larger than one. By definition, this means that there is @1 € H3(I), with ¢ #0, such
that

d¥
f()\o)gol-i-ﬁl)\:,\o (p(]:O = 4)\0(dy<p0+)\0(p0) X()\o)gol. (316)
Multiplying by ®g the identities of (3.16) and integrating by parts, we obtain
Ao (lldypollacry = Aollwolltz(ry) = —(L (No)er,P0)1 = (L (No)To, 1)1 (3.17)

where (-,-); stands for the bilinear duality pairing between H=2(I) and H3(I). Assume
that A\g € ANR:\ {0}. Then we have .Z(Ao)@o =-Z(Ao)po=0. Therefore, since identity
(3.17) leads to ¢o=0. This is absurd and shows that the algebraic multiplicity of the
elements of ANRi\ {0} is equal to one.
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Now, let us focus on the algebraic multiplicity of A\g =0, assuming that A\g=0 be-
longs to A. From Equation (3.16), by taking 1 =pp, we see that its algebraic multi-
plicity is at least two. Assume that it is larger than two. Then there is @9 € H3(I), with
w2 Z0, such that

d¥ g
3(0)@2+K‘)\:o<ﬁ1+w|)\=0§00=0 & 4d§<po=—$(0)<p2. (3.18)
Multiplying by %o the identities of (3.18) and integrating by parts, this implies

4”%%“%2(1) =(Z(0)p0,p2)1=(ZL(0)p0,92)1 =0.

Thus, we obtain a contradiction and we can conclude that if \j =0 is an eigenvalue of
%, then its algebraic multiplicity is equal to two. ]

REMARK 3.1. We specify the algebraic multiplicity of modal exponents in the previous
proposition because it will be required in the proof of Proposition 5.1 (where the residue
theorem is used).

In the following, for a given k>0, we will need to know the cardinal of the set
ANRi. From (3.15), we find that 0 belongs to A if k>0 is such that

hi(0)=0 & cos(k)cosh(k)=1. (3.19)

The set of k>0 such that (3.19) holds (threshold wavenumbers) forms an increasing
unbounded sequence

0<ki<ko<--<k,<... such that kn, ~ w/24nm. (3.20)

n—-+00

Taking A=0 in (3.1)-(ii), we observe that k} corresponds to the n‘" eigenvalue of the
problem

d*o—pp =0 inI
y
{ p=dyp =0 on 0I. (3.21)

In the proposition below, we prove that for all n € N*  the threshold wavenumbers k&,
for the clamped strip are larger than the threshold wavenumbers nm for the simply
supported strip.

ProrosITION 3.5. For all n € N*, we have k,, > nr.

Proof. By the min-max principle, the n'" eigenvalue of the problem (3.21) is given
by

||dyy90‘|%2(1)
min max ———s———=
Vn€Vn (HZ(I)) $EVR ||<P||L2(I)

i

where V,,(H) denotes the set of all n dimensional subspaces of H. Since HZ(I) CH}(I)N
H2(I), we have

dyy0||?
o zine min max it lizm
Va€Vn (MO 9EVn [[@]IF2 ()
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We observe that fi,, coincides with the n'” eigenvalue of the problem

dip—pe =0 inI
p=dyyp =0 on dl,

that is fi, =n*7*. We end up with k, = (un)l/4 >nm for all n>1. 1]

The approximated values of the first k,, are given in Figure 3.1.

kn T/24+nm
n=1 | 4.730040745 | 4.712388981
n=2 | 7.853204624 | 7.853981635
n=3 | 10.99560784 | 10.99557429
n=4 | 14.13716549 | 14.13716694
n=>5 | 17.27875966 | 17.27875960

Fic. 3.1. Approzimated values of the first ky.

PROPOSITION 3.6.  For k€ (0;k;y) < k* < puy where py is the first eigenvalue of Problem
(5.21), we have ANRi=0. For k€ (kn;kn+1), n€N*, we have card (ANRi) =2P where
P is the number of zeros of the function hi(-) defined in (3.15) on (0;1). For k=ky,
neN*, we have card(ANR:)=2P —1 where P is the number of zeros of the function
hi () on (0;1).

REMARK 3.2. Numerically, it seems that P=mn as in the simply supported case.

4. Well-posedness in the simply supported case
In this section, we suppose that k is not a threshold wavenumber, i.e. k¢ Nr.

4.1. Construction of Dirichlet-to-Neumann operators. In order to study
Problem (2.1) in the case when C'=M, let us first consider the following system of
equations set in the reference strip (without hole):

A%y —k*u =0 in Q
{ u=Au =0 on 9. (4.1)
We remind the reader that since 02 is made of straight lines, we have u=Mu=
0 on 0N < u=Au=0 on 9 (see (2.3)). In (4.1), we do not prescribe any behaviour at
infinity. As a consequence, this problem can have non-zero solutions. Let us compute
them. Noting (again) that A? —k*= (A —k?)(A+k?) and defining

:=(A—k?)u, i:=(A+k?)u, (4.2)
we see that u,% solve the problems

{Aﬂ+ma:01n9
and

=0 on I

At—k*4 =0 in Q
% =0 on 0N.

Using that the family (6,) of the eigenfunctions of Problem (3.5) forms a Hilbert basis
of L2(I), we can decompose @, i as

+o00 400
a(z,y) =) ()0, (y), i(z,y) =Y ()0, (y).



L. BOURGEOIS, L. CHESNEL, AND S. FLISS 1497
Then we find that the a,, 1, satisfy
Ao+ (K> — )i, =0  and  dypty — (k>4 )i, =0 in R,

Since k ¢ N7, we obtain that @, @ are given by

—+oo —+oo
u(x,y)= Z (ape™* +b,e” ") 0, (z) and u(z,y)= Z (cpe " +dpe™) 0, (u),
p=1 p=1

where 1,7, are defined in (3.6) and where ay,b,,c,,d, are complex numbers. Observing
that u=(1—a)/2k? (see (4.2)), we deduce that the general form of the solutions to
Problem (4.1) is

+oo
u(z,y)= Z (apemf"r +bpe” T 4 c e 4 dpe™™™) 0, (y), (4.3)
p=1

with new complex numbers a,,b,,cp,dp.

REMARK 4.1.  We see that (4.3) is an expansion on the modes e**p(y) computed
in §3.1 (here X belongs to A, the set of modal exponents given in Proposition 3.1, and
peker.Z(N)). Note that this strong result of modal decomposition has been obtained
thanks to the fact that the family (6,) forms a Hilbert basis of L(I).

For k€ (0;7) all the modes appearing in (4.3) are exponentially growing at one
end of Q and exponentially decaying at the other end. In this case, we shall look for
solutions to (2.1) which are exponentially decaying at infinity. For k€ (nm;(n+1)n)
with n €N*, the modes eii"ﬂ@,(y), p=1,...,n, are propagating while the other ones
are exponentially growing at one end of €2 and exponentially decaying at the other end.

In the sequel, we will say that

for some L >0 and some complex numbers a; ,b;,
P . . +00
u is rightgoing iff () :Z (a;reﬂ-%m —&—b;fe*'“"m) 0, (y) for 2> I, (4.4)
p=1

for some L >0 and some complex numbers a_,b

pVp>
. . . +oo

u is leftgoing iff w(z,y) :Z (a;e_im’m —I—b;e%z) 0, (y) for 2 <—L, (4.5)
p=1

u is outgoing iff u is rightgoing and leftgoing. (RC)

This terminology will be justified in Section 6. Equivalently, a function u satisfies the
radiation conditions or is outgoing.

Now, we introduce adapted Dirichlet-to-Neumann (DtN) operators in order to en-
close this outgoing behaviour. On the transverse sections ¥y, :={£L} x (0;1), we define
for je{—-3/2,—-1/2,1/2,3/2}, the spaces

H/ (i) ={uls,, [u€ B ({£L} xR)}, B (Syp)={uecH ({£L} xR)[supp(u) € T1.}.
It is well-known (see [26]) that (H/(3.7))*=H"7(21.). We define the two operators

Ty :HY2(S1p) xHY2(S1) = H32(01) x HV2(24 )
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9+ Nuy |Ej:L
T = ,
(i) ()
where u4 (resp. u_) is rightgoing as defined in (4.4) (resp. leftgoing as defined in (4.5)),
satisfies (4.1) and is such that (uy,0zut )]s, =(9+,h4) on Ep, (resp. (u—,—0pu_)|z_, =
(9—,h_) on ¥_1). Let us give an explicit definition of uy leading to an explicit expres-

sion for Tx. We detail the computation for T'y. Since 8, =0J, and d;=0, on X, we
have

62U+ 82U+ __83U+ _( _ ) 8SU+
ox3 v Ox Oy?

on EL.

Decomposition (RC) and the fact that u4 is rightgoing imply the following expansion
for uy

“+oo
wi ()= (ape @D e @) g (). (4.6)
p=1
Hence we have
+o00 8u+ +o00
Uyly, = Z(ap +0,)0,(y) and |l = Z(inpap —Ypbp) 0y (y).
p=1 3L p=1
By using the decompositions
00 au+ +o0
g+:U+\zL:Z£7;9p, h+:% :Zh;fé’p,
p=1 XL p=1

we obtain g =a, +b, and hf =in,a, —pb, for all pe N*. Inverting this system gives

B mEE
bp 'yp—f—inp Mp —1 hp

From the above expressions of Mwu and Nu, is follows that

+oo —+oo
MU+|§:L = Z(_ngap+72bp)9p(y) _VZ(Npap"‘ﬂpbp)gp(y)a
—1 =1
b 400 ) ) v —+00
Nuy |2L == Z(*in;jap - ’ngp)op(y) +(2-v) Z(Zﬂpnpap — 1pYpbp)Op (1)
p=1 p=1

‘We hence have

+ . .
( Nuyls, > :f (anJrz(Qz/)ppnp ’VS(QV)MP"}/I,> (ap>0 .
Muyly, o _(773+Vﬂp) ’712,—1/;@ by )"

We are now in position to obtain the expression of 77 :

“+o0 +
9+ \ _ g
n(1)-En (o
p=
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where the 2 by 2 matrices T}, are given by

__ ! (i773+i(2—1/)up77p T = (2—V)up7p> ( W 1 )
Yoty \ (1 Vi) Vo= VHp inp —1

Using (3.6), we deduce that

p

T = <i’y?"77p(7p_inp) i’ypnp—f/,up) (4.8)
P Yplp — vy —(Yp —inp)

Concerning T, we prove similarly that for

= _ ou_
gf:“f|z_L:ZQp Op; hf:—%
p=1

X1

+oo
=Zh];9p,
p=1
we have
g +oo 9
r(12)=Sn (g o
_ = »

where the matrix T}, is defined by (4.8). This concludes the construction of the Dirichlet-
to-Neumann operators Ty which enclose the outgoing behaviour for Problem (2.1) with
C=M as x— £oo. In the following, we explain how to use these operators to reduce
the analysis of (2.1) to a bounded domain and establish Fredholmness.

4.2. Source term problem in the reference strip with radiation condi-
tions. Before addressing Problem (2.1) for C'=M with a hole, let us consider the
simpler problem in the reference strip €2 without hole. For some compactly supported
function f€L2(Q), this problem states: find u in H2 (£2) such that

loc
Aly—ktu=f inQ
u=Mu =0 on 02 (4.9)
u satisfies (RC).

Here H2 .(©2) denotes the set of distributions u in  such that ¢(z)u(x,y) € H2(), for
all p€65°(R). Again, we assume that k € (nm;(n+1)m) for some neN.

For k € (0;7), the radiation conditions (RC) imply that the solution is exponentially
decaying at £oo. In this case, the analysis is a bit simpler. We can prove the following

proposition.
PROPOSITION 4.1.  When k€ (0;m), for all f € (HL(Q)NH2(Q))*, the problem
{AQU—k4U =f inQ
u=Mu=0 on 0Q
admits a unique solution in H(Q)NH2(Q).

Proof. Using the integration by parts formula given in Lemma 4.1 and the Lax-
Milgram theorem, one finds that proving the well-posedness of the problem amounts to
showing the coercivity in H}(2) N"H?(Q) of the sesquilinear form given by

Pud®v  _u v Pud*w
— [ vAuATdzd 1= 5555425 55 5 T57357 ) dvd
a(u,v) /Ql/ uAvdzx y—&-/ﬂ( V)(al_g 5‘1:2+ 91y 3x3y+3y2 5y2> ray

—/ Krutdzdy.
Q
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We can easily check that
0%u 0*u 0%u 0%u 0%u 0%u
, o drdy= | 2555 dxdy= A s
q 0x0y 0xdy q 022 dy q Oy? Oz
where we have used that u € H} () so 9,u=0 on 9 and that v, =0 on 9. This implies

that
/,

By using successively (4.11) and the Poincaré inequality [[ul|72q) <7 *[|0yullf2 g for
all w e H}(Q)NH2(Q), we can write

a(u,u) :/Q|Au\2dfcdy7/gk4|u\2dfcdy

Yu € Hy(Q)NH?(Q) dxdy (4.10)

2 2

N
Oy?

0%u
0xdy

o
02

2
dxdy:/ | Au|? dady. (4.11)
Q

+2‘

> / |Au\2dxdy—(k/7r)4/ |0yyul® dedy > (1—(k/77)4)/ |Aul? dxdy
Q Q Q
> a/(\Au|2+|u|2)dmdy.
Q

for some o> 0 since k € (0,7). The identity (4.11) can be rewritten |u|%{2(m = ||Au||iz(ﬂ).
Moreover, we have

RO — / Autidedy < (1/2) (| AulZ gy + )

Thus, for k€ (0;7), there exists &> 0 such that a(u,u) 207||UH%12(Q), for all ue H{(Q)N

H2(Q). O
—_— - FL —_— - —_— - FL —_— -
Y
Y. T YL @ T L)x
—_— - QL —_— - —_— - DL —_— -
FL I1L

F1G. 4.1. Domains Q, (left) and Dy, (right).

Now, for general k¢ Nn, we use the DtN operators we have constructed in the
previous paragraph to derive a problem equivalent to (4.9) set in a bounded domain
Qp:=(—L;L) x (0;1). Here L >0 is chosen so that we have supp(f) C (—L;L) x [0;1]. In
what follows, we set T', ;=00\ (X, UX_1) (see Figure 4.1 left). Classical operations
allow one to check that Problem (4.9) is equivalent to finding u € H?(Qz) such that

Au—k*u = f in Qp,
U/:MU =0 on FL

N
(M’Z) :Tj:<a:u) on EiL.

Let us give an equivalent variational formulation to Problem (4.12). Define the Hilbert
space Vi, :={u€H?(Qz)|u=0 on I'}. We have the following integration by parts for-
mula:

(4.12)
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LEMMA 4.1.  For all ue Vi, NH*(Qr) and for all ve Vy,

/QL A%vd:cdy:a(u,v)*/ (Mu)gflds/zﬂ <(Nu)v+(Mu)gZ> ds,

'

where

(82u 0%v 5 0%u 0%°v 0%ud*v

a(u,v):/uAuAdedy—i—/Q(l—l/)

Qr L

The above integration by parts formula is still valid for w€ Vg such that A*ueL?(Qy)
provided we interpret the integrals with the help of suitable duality brackets. In par-
ticular it is true if (Mu)|r, €H-Y2(TL), (Mu)|s,, €H-Y2(311) and (Nu)|s,, €
H=3/2(S41). In this case the integral on T'1, has to be understood in the sense of duality
pairing between H-1/2(I'p) and HY?(T'L) while the integrals on Y11 have the sense of
duality pairing on the one hand between H=3/2(X11) and H3/2(X4r) and on the other
hand between H=Y/2(S1r) and HY/2(Z1p).

REMARK 4.2. The integration by parts formula given in Lemma 4.1 is justified in [17]
for €1! domains. Note that our domain €2, is not %! but is polygonal, which is why
we need compatibility conditions at corners (see for example [12]). Here, due to the
chosen spaces for the traces of u on the different edges, such compatibility conditions
are satisfied.

By Lemma 4.1, Problem (4.12) is equivalent to the following variational formulation:
find u € V, such that for all veVp,

a(u,v) —k*(u,v)120, ) —t(u,0) =£(v), (4.14)

where

t(u,v)z/zﬂ Ty (8:u> . (8:1)) do and é(v):/QL fodxdy. (4.15)

Define the linear and bounded operator A°"*:V, — V3 such that
(A% u, D), =a(u,v) —k*(u,v)12(0,) —t(u,v), V(u,v) €V x V. (4.16)

Here (-,-)q, refers to the bilinear duality pairing between V; and V.

Let us prove that the operator A°"* defined in (4.16) is Fredholm of index 0. We
first need the following Poincaré-type lemma.

LEMMA 4.2. There exists co >0 such that for allveVy,

[vle2(0,) > collvllaz (L),

where |-|u2(q,) and |||z, stand for the semi-norm and the norm in H*(Qr), re-
spectively.

Proof. By contradiction, assume that for all n € N* there exists some v, €V
such that

1
[Un|H2(0,) < Ellvnlle(Qw
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Setting u, = vy, /||vnlln2(0,), We obtain that

1
|un|H2(QL)§E and ||un||H2(QL):1.
We conclude that there exists some subsequence of (uy, ), still denoted (u, ), such that
u, —u in H3(Qr) and up, —u in HY(Q).

Hence, (u,) is a Cauchy sequence in H?(Qy,), that is (u, ) converges to some w € H2(€2r.),
which coincides with u. Then u, —u in H?(Qy), which then satisfies |u|gz2(q,)=0. In
other words, all the second derivatives of u vanish. Therefore, we get u(z,y) =ax+by+c
for some constants a,b,c. From the boundary condition in the space Vi, we have
u(z,0)=0 and u(z,1)=0for all z € (—L; L), hence a=b=c=0, that is u=0. We obtain
a contradiction with ||ul|p2(q,)=1. 0

We also need the following lemma.

LEMMA 4.3.  There exists ¢c1 >0 such that for allueVy,

—Ret(u,u) > —cF|ullfz (s, ,)- (4.17)

Proof. Let u be an element of V. Using the obvious decompositions t =t +1_
and (u,0;u) =3 (gp,hp)0p on Xy, we find

+oo
) = () @)
p=1
+oo
= Z {i’YpUp(’Yp - mp)|gp|2 —(w _inp)|hp|2 +2(ivpnp — Vﬂp)Re(gphp)} ‘
p=1

Assume that k€ (nm;(n+1)7) with n€N* (the case k € (0;7), simpler to study, is left
to the reader). Since n,=+/k?—7n%p? (see (3.6)), we observe that for p=1,...,n, the
number 7, is purely real, while for p>n+1, we have n, =i, with 8, =+/n2p? — k2 €R.
Hence

n

ty(u,u) = Z {Z.’anp(’}/p - i’?p)‘gp|2 - (Vp - Z.7717)|hp|2 +2(i7p77p - Vﬂp)Re(ng)}
p=1

- Z {’Ypﬂp(’YpﬁLﬂp”gp‘z+('Yp+Bp)|hp|2+2(7pﬂp+Vﬂp)Re(9pr)}-
p>n+1

We show that

n —+oo
—Ret+(u7u):Zup—|— Z Up (4.18)

p=1 p=n+1

where

{up = _7p77;27|9p|2+’7p‘hp|2+2VMpRe(ng)
Up = W’pﬁp('yp"‘ﬁp)‘gpﬁ+(’Yp+ﬂp)|hp‘2+2(7p5p+VUp)Re<ng)
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Since we have 2vu,Re(gph,)> fyp|h 1> —~, P ullga], we deduce wu,>—(ypni+

v, 2 12)|gp|?. Therefore, for p=1,...,n, we obtain

up > —cilgyl” (4.19)
for some constant ¢; >0. On the other hand, we can write
Up:(7p+ﬁp)(7pﬁp|gp|2+|hp‘2+20pRe(ng)) with ¢, = (B +Vip) / (Vp+ Bp)-

This gives v, > <7p+ﬁp)('7p6p|gp‘2+|h |2_C2|9p|2 |hpl?) = '7p+/8p)('7p5p_c )gpl*.
Using the fact that 72 =k* 4, 82 = pp —k?* and v €[0;1), we find

YBp iy Wt +8)/2 1
= Yo+ By Yo+ Bp =50+ Bp)-

Hence, we get 7,8y — 2> 1pBp— 1 (0p+Bp)? = — 5 (7p — Bp)?, and so

19017 > — k3| g, |?

1
Z(’Vp"‘ﬁp)( ﬁp) |9p‘2:_,yp+ﬂp

where the last inequality is due to v, >k and 8,>0. As a consequence, there is a
constant ¢; >0 such that for p>n+1, there holds

vp 2> —cilgp*. (4.20)

Using (4.19) and (4.20) in (4.18), we get —Ret (u,u)>—¢i> >, |gp|2:—cl||u||i2(EL).
Working analogously with —Ret_ (u,u), we obtain the desired result (4.17). O

Let us now state the main result of this section.

THEOREM 4.1.  Assume that k € (nm;(n+1)7) with n€N. The operator A°"* defined
in (4.16) is an isomorphism. As a consequence, for any compactly supported function
fE€L2(Q), Problem (4.9) has a unique solution in HZ ().

Proof. Let us decompose the operator A°"* defined in (4.16) as

A%t = Ao+ A,
Wlth <AOU,E>QL = a(u,'U) —t(U,U)‘FC%(U/,U)L?(EiL) VU UEVL
(Acu,0)q, = _k4(uﬂv)L2(QL) _c%(u’U)LQ(EiL% ,

From Lemma 4.2 and Lemma 4.3, we have, for all ue Vp,

Re(Aou,w)a,, > a(u,u) > (1=v)|ulfzq,) > g (1=v)||ullfzq,)-

Due to Lax-Milgram theorem, the operator Ag is an isomorphism. Since the operator A,
is compact, we conclude that the operator A°" is Fredholm of index 0. In particular,
injectivity implies surjectivity. It remains to prove injectivity. By definition of the
operator A°"" and since we have equivalence between problems (4.9) and (4.12), any
element u of ker A°"" satisfies Problem (4.9) with f=0, that is in particular Problem
(4.1). The solutions to that problem are given by (4.3). The radiation conditions (RC)
eventually imply that u=0. ]
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4.3. Source term problem in the perturbed strip with radiation condi-
tions.  Let us now address the source term Problem (2.1) (with a hole) when C'=M.

We remind the reader that this problem states, for a compactly supported function
feL?(D), find v in HZ (D) such that

loc

Au—k*u=f inD
u=Mu =0 on 0

Mu=Nu=0 on d0
u satisfies (RC).

(4.21)

Again, we assume that k€ (nm;(n+1)7) with n€N (note that when k€ (0;7), using
the result of Proposition 4.1, one can prove Fredholmness of (4.21) in {u € H?(D)|u=
0 on 00}). We define the domain Dy, :={(z,y) € D||x| <L} where L is chosen large
enough so that both the hole ¢ and f are supported in Dy, (see Figure 4.1 right).
We use the DtN operators Ty defined in §4.1. Problem (4.21) is equivalent to finding
u€H?(Dy) such that

A%y—ktu = f in D,
u=Mu =0 onI'y,
Mu=Nu =0 on 90 (4.22)

N
(MZ) = Ti<83u> on E:ﬁ:L~

We now introduce a variational formulation of (4.22) exactly as we did in the reference
strip. First we define the Hilbert space Wy :={u€H?(Dr)|u=0onT'y}. Problem
(4.22) is equivalent to the variational formulation: find u € Wy, such that for all ve W,

b(u,v) — k*(u,v)12(p, ) — t(u,0) =m(v). (4.23)

Here ¢ is defined in (4.15) while the sesquilinear (resp. antilinear) form b (resp. m) is
analogous to a (resp. ¢) defined in (4.13) (resp. (4.15)) with Qf, replaced by Dy,. Define
the linear and bounded operator B°": W, — W7 such that

<Boutu,E>DL :b(u,v)_kA(u’v)Lg(DL) —t(u,v), \V,(U,U) EWL ><VVL- (424)

Here (-,-)p, refers to the bilinear duality pairing between W} and W,. Working as in
the proof of Theorem 4.1 (in Lemma 4.2, replace the space Vp by W) and using the
Fredholm theory, we obtain the main result of this section.

THEOREM 4.2.  Assume that k € (nm;(n+1)7) with n€N. The operator B defined
in (4.24) is Fredholm of index zero. As a consequence,

(a) If ker B°"* ={0}, then B°" is an isomorphism.

(b) If ker B =span(z1,...,z4) for some d>1, then the equation B*"*u=F € W}
admits a solution (defined up to an element of ker B®™) if and only if F satisfies the
compatibility conditions (F,zZ;)p, =0 for j=1,...,d.

REMARK 4.3. From Theorem 4.2, we deduce that if Problem (4.21) for f =0 has only
the zero solution in H2 (D), then Problem (4.21) has a unique solution in H2 (D) for

loc loc
any f€L2(D) which is compactly supported.
REMARK 4.4. Assume that v € HZ (D) satisfies Problem (4.21) with f=0. Then u is

a trapped mode, in the sense that u € H?(D). Indeed, if m =0, setting v=w in (4.23),
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we obtain

Imt(u,u)=0.

—+oo

Using the decomposition (u,dyu) =3 " 1 (g5 hiE )0, on Sy p, we find

Imt(u,u) Zan wp\g |2+|h“|2+27pRe ggh“ Zanhpg —HL“|2
p=+xp=1 p=xp=1

We deduce that vpgi + hi 0 for p=1,...,n. Then working as in (4.7), we find that the
coefficients a in (RC) satlsfy ai 0 for p=1,...,n (the projection on the propagating
modes is null) We infer that u is exponentlally decaying for |z| > L. As a consequence,
u belongs to H2(D).

4.4. Scattering problem in the perturbed strip with radiation conditions.
Finally, we use the results of the previous paragraph to study the following scattering
problem: find the total field v such that

A%y—k*u =0 in D
u=Mu =0 on 99

Mu=Nu=0 on 00
u—u; satisfies (RC)

(4.25)

where u; is an incident field which solves

AQui —k‘4ui =0 in Q
u;=Cu; =0 on 9.

In the following, we take k € (nm;(n+1)7) with n € N* and u; € {ngE |[p=1,...,n}, where
wg is the propagating mode such that

wE(z,y) = (2np) "/ 2eE Mg, (y) =0, 2V TP gin (1py). (4.26)

The normalization in (4.26) is chosen so that the scattering matrix below is unitary.

THEOREM 4.3.  Assume that k€ (nm;(n+1)7) with neN*. Then for u;=w}, p=
1,...,n, Problem (4.25) admits a solution ujE This solution is uniquely defined if and
only if trapped modes are absent at the wavenumber k.

Proof. Let ¢ be a smooth cut-off function which depends only on x, which vanishes
in a neighborhood of the hole &', and which is equal to one for |z| > L —e for some small
given £ >0. Theorem 4.2 guarantees that there is a function v€H$ (D) which solves
the problem

Av—k*v=f inD
v=Mv =0 on 0f)

Mv=Nv=0 ond0
v satisfies (RC)

(4.27)

with f:=—(A%(Cu;) —k*(Cu;)). Indeed, first we observe that f belongs to L?(D) and
is compactly supported. Now, if trapped modes are absent at the given wavenumber £k,
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B°U is an isomorphism and the existence of v is clear. If ker B°"* =span(z1,...,2q) for
some d > 1, one observes that for j=1,...,d, we have

fEdedy =— / (A2 (Cus) — K4 (Cus)) Zyddy

DL DL

——/E:EL <(Nul)2]—|—(MUl)an) dS_I_/giL (UiNZj—FanMZ]) ds

A Cui(A?*Z; — k*Z;) dady =0.

To obtain the second identity, we used twice the integration by parts formula of Lemma
4.1 (observe that ¢ vanishes in a neighborhood of &, { depends only on x so that the
integrals on T'y, vanish and finally ¢ is equal to 1 in the neighborhood of ¥4,). To
obtain the third equality, we used the formulas (2.3), the orthonormality of the family
(6,) in L?(I) and the fact that the trapped modes z; satisfy (4.27) with f=0 and do not
decompose on the propagating modes (see Remark 4.4). Once we have the guarantee
that v is well-defined, we can set u:=v+(u;. One can verify that u is a solution to
problem (4.25). d

For p=1,...,n, denote ¥, the solution of (4.25) for u, =w, and V¥,, the solution
for u; =w} . Introduce Xt €€ (R?) a cut-off function equal to one for +2 > 2L and to
zero for £z <L, for a given L>0. Decompose the ¥, as

n n
v, :X+w; +x+zspmwf2+x_ Zspn—&-mwn_m"'quv

m=1 m=1

n n
\Iln_,'_p =X w;r +XJF Z 5n+pmw:rn, +Xx Z 5n+pn+mw;L+\Ijn+p7

m=1 m=1

where the \i'p, p=1,...,2n, are functions which are exponentially decaying at infinity
and where the sp,,, 1 <p,m <2n, are complex numbers. Define the scattering matrix

S:= (Spm)1§p7m§2n ECZnXZn. (428)

THEOREM 4.4. For all ke (nm;(n+1)m), neN*, the scattering matriz (4.28) is

uniquely defined (even in presence of trapped modes), unitary (SgT =1d*"*?") and sym-
metric (ST =S).

Proof.  If trapped modes are absent at the wavenumber &, the ¥,’s are uniquely
defined and the scattering matrix as well. In the presence of trapped modes, assume
that Problem (4.25) admits two solutions u! and u? for a given u; € {w [p=1,...,n}.
Then u! —u? is a trapped mode which, according to Remark 4.4, does not decompose
on the propagating modes. This is enough to show that S is uniquely defined. The
unitarity and the symmetry of S will be established in the clamped case (see Theorem
5.3). The proof is exactly the same here. ]

5. Well-posedness in the clamped case

In this section, we suppose that k is not a threshold wavenumber, i.e. k#k, for
n €N, where k,, is defined in (3.20).
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5.1. Preliminaries. In this section, our goal is to study Problem (2.1) with
clamped boundary conditions. To proceed, first we shall work on the problem set in the
reference strip, without hole:

2, 14, _ ¢
{Au k*u=f in Q (5.1)

u=0d,u =0 on 09,

where f is a given source term in a space to determine. In order to define radiation
conditions at infinity, we will have to establish a modal decomposition for the solutions
of (5.1) with f=0 similar to (4.3) for the simply supported case. Expansion (4.3) was
derived thanks to a result of Hilbert basis (see Remark 4.1). For the clamped problem,
we do not know if the family of eigenfunctions of the symbol . defined in (3.4) forms
a Hilbert basis of L?(I). As a consequence, as mentioned in the introduction, we will
establish the modal decomposition with a different strategy based on the joint use of
the Fourier-Laplace transform in the unbounded direction, of weighted Sobolev spaces
defined in Section 5.1.1 and of the residue theorem. The foundation of the theory is due
to Kondratiev [19]. For a modern presentation of the technique, one may consult the
monographs [20,21,32]. To help the reader, below we try to give enough details to get
a self-consistent presentation of the approach. Again, we emphasize that the method
we develop in this section to study the clamped problem can also be used to consider
the simply supported problem.

5.1.1. The weighted Sobolev spaces. For &R, define the space W%(Q) as
the completion of 65 () for the norm

1/2
lehws@=( > lePoroquliag) - (5.2)

a,vEN, a+y<2

Observe that for 8=0, we have W2(Q)=H2(Q) where H2(Q) stands for the usual
Sobolev space. We denote W% (€)* the topological dual space of W%(Q) endowed with
the norm

_ (£, 9)al
||f||v°vg(ﬂ)* =  sup W
veWZ(@)\{0} IMIWE(Q)

Here (-,-)q refers to the bilinear duality pairing between W% (©)* and W%(Q) For S eR,
define the linear and bounded operator Ag W%(Q) —>W2_B(Q)* such that

<A5u,@>Q:/AuM—k4uwxdy, V(u,v) € WE(Q2) x W2 4(Q). (5.3)
Q

Define the partial Fourier-Laplace transform £, _,) with respect to the variable x such
that, for AeC,

0(A,-)

I
—~
)
8
1
>
(4
N—
—
}’
li
chl
>
8
4
ﬁ
N—
QL
=2

It is an isomorphism between

W3(Q) and Wg:{@eﬁ(z_ﬂ,ﬂg(m,/ ||@(A,.)||§{2(,M)dx<+oo}

f_[g
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where (_g={A=—pF+is, seR}, for all 5€R and where

1/2
lelwapn:=( > INGelian) o VeeHD.  (54)
a,veN, a+~v<2

Note that for a fixed A, the norms ||-||g2(z, 5y and ||-|ln2(r) are equivalent on HE(I).
However the constants of equivalence depend on |A|.

We have also the Plancherel formula

1
211

1ol 0 /Z||@<A,->||%w,w>dx=||@|\3AV§, (5.5)

and the inverse E;i 5 is given by

= 1. 1 o -
vvew%v ( wi)kv)(xa):?m/e 6)\ ’U(Aa)dA
-8B

Let us denote W%* the topological dual space of W% which can be characterized as
Wi ={GeL2(0a,H2(1), | 190 B dA <+o0)

Lp

where

(9, 9)1] _
lgll—=2r,ap:=  sup VgeH (1), (5.6)

ez oy [l xy

{-,-)1 being the duality product between H=2(I) and H%O(I ). The Fourier-Laplace Trans-
form £, can be defined by duality for functions in W%(Q)* as

VfEVOV%(Q)*,’[A)EW%7 <£:L’~>)\f>ﬁ>fz: <fa£71 {)>Q

T—A

where (-,-)q refers to the bilinear duality pairing between Wl% (Q)* and W%(Q) and (-,-)¢

refers to the one between \/N\%* and W% Finally, we have also a Plancherel formula

1 A
e ALLLCY - Y (57)

We can now apply L, to the equation Agu=f, one is led to study the symbol
L(N):H2(I1,|\]) =H2(1,|)\]) for A€ —3+iR, defined in (3.4) and such that

<-3’(/\)s0ﬂ/}>1Z/I(/\2<P+dyy90)(k2@+dyﬂ)—k“ﬂdy, Vo, eHg(I).  (5.8)

In the following, we shall denote (-,-); the usual inner product of L2(I). Studying the
properties of the symbol Z(-) defined in (5.8) leads to considering 1D problems set on
I depending on a complex parameter A.
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5.1.2. Properties of the symbol. In this paragraph, we study the properties of
the symbol .Z(-) defined in (5.8). For a fixed A, as the norms |||,z and ||+ [|g2(r)
are equivalent on H3(I), it suffices to study #(-) as an operator from H3(I) in H=2(1)
and establish estimates in the A dependent norms of H?(I,|A|) and H=2(I,|)|).

LEMMA 5.1.  There is 7 >0 such that for \=1it with |7| >, £ (\):H3(I)—H"2(I)
s an isomorphism.

Proof. For A=1ir, we have
<$(i7_)907$>1 :/dyy@dyya+27—2dy90dya+74wafk490$dy' (5.9)
I

Therefore, the result is a consequence of the Lax-Milgram theorem (take 79 =k). 0

We remind the reader that we say that A€ C is an eigenvalue of & if there is a
non-zero € H3(I) such that Z(A\)p=0. We denote A the set of eigenvalues of .Z.
From Lemma 5.1, according to the analytic Fredholm theorem, we deduce the following
result.

COROLLARY 5.1.  For all \€ C, Z(\):HZ(I) = H~2(I) is an isomorphism if and only
if A is not an eigenvalue of £. The set of eigenvalues of £ is discrete and does not
have any accumulation point in C.

In order to apply the inverse Fourier-Laplace transform, we need estimates for
Z(A)~! on lines {\ € C|ReA= 3}, BER, in the parameter dependent norms (5.4), (5.6).

T SmA

- ReA=9m A .-
\/;V

Fic. 5.1. Lemma 5.2 ensures that the eigenvalues of £ are located in an infinite bow tie of the
complex plane.

LEMMA 5.2.  There are real positive constants p, § such that for all A€ C satisfying
[Al>p and [ReA| < |SmA|
(see Figure 5.1), £L(N):H3(I)—H2(I) is an isomorphism. Moreover, if p€HZ(I)
satisfies £ (N p=geH™2(I), then there holds
lellnzcr,any S Cllglla-2cr, 1M (5.10)
where C' >0 is independent of g and .

Proof. Lemma 5.1 together with identity (5.9) ensure that (5.10) holds for A€
iR with |[A\|>2k. Now let us consider the case A¢iR. We write \ as \=i|\|e?
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with ¢ € (—7/2;7/2). Set A==i|)\|. Since |[A|=|A|, by definition of the parameter
dependent norm (5.4), for ¢ € H3(I), we have lellaz2(r,1x) = 1@llgz(r, 5. Define g=

.Z(S\)ap Assume that |[A|>k. In that case, according to the first step of the proof, we
have

lellmz(r, A = ||<P||H2(1,\x|) SCHQHH*Z(L\:\D' (5.11)

Here and in what follows, C' > 0 is a constant which can change from one line to another
but which is independent of A, ¢. Now we can write

1912, 15 = N9lla-2(2, 13 < Ngllm=2(r,12) + 19— glla-2(2, 17 -

A direct calculation gives, for all ¢ € H3([),

<§—gﬂ>1:<=2”(;\)<P—$(>\)soﬂ>1:(V—A2)</s0(/\2ﬂ+2dyy@)dy+/sO(XQE)dy)-

I I

‘We deduce that

15— glla—2cr, 2 < CIN = X2 lollra(ry < C1e*™ =1 @llmz(r, ap- (5.12)

Thus for all ¢ >0, there is § small enough so that one has [|§—g|lg—2(7,|x)) << el A
for all A=4i|\|e?¥ such that |1)| <J. Gathering the latter estimate, (5.11) and (5.12)
leads to

lollaz ) S Cllglla—=r, 3y +Cs llellaz,a)-
Taking ¢ sufficiently small (¢=1/(2C) for example), finally we obtain (5.10). d

From this lemma, we deduce the following result.

THEOREM 5.1.  Let BER be such that £ has no eigenvalue on the line ReA=—p.
Then the operator Ag:W3(2) = W? 5(Q)* defined in (5.3) is an isomorphism.

REMARK 5.1.  Proposition 3.6 guarantees that for k€ (0;k1) (k1 is the first positive
threshold defined in (3.20)), we have ANRi=0. From Theorem 5.1, we deduce that
when k € (0;k1), the operator Ay is an isomorphism from HZ(Q) to H=2(Q).

Proof. Assume that £ has no eigenvalue on the line feA=—p3. Let us first
suppose that uEW%(Q) is such that Agu=0. Applying the partial Fourier-Laplace
transform with respect to x, we obtain

ZL(Na(A,)=0, VAeC.

From Corollary 5.1, we deduce that for all A€ /_g, 4(A,-)=0. From the properties of
the inverse Fourier-Laplace transform, we deduce that w=0. This shows that Ag is
injective.

We prove now that Ag is onto. Let fEWQ_ﬁ(Q)* Lemma 5.2 guarantees that for
A €C such that ReA=—0 and |SmA| >vg, we have the estimate

1L F O T2, S C IO -2, 140 (5.13)

where C >0 is independent of A and vz depends only 3. For A € [— —ivg;— S +ivg], the
operator .Z () is invertible according to Corollary 5.1. The continuity of A+ .Z()\)~1,
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ensured by the analytic Fredholm theorem, guarantees that Estimate (5.13) also holds
for A in the compact set [—f —ivg;—B+ivg]. Therefore (5.13) is valid for all A such
that e A= — with a constant C' >0 independent of .

By definition

. 1
2 Q* /
JEWS,(W" = 55/

||f()‘7)||12_1—2([7ul)d)\< —+00.
B

We deduce that

() = —— /g ML) € W) (5.14)

211

is solution of Agu=f with, by the Plancherel formulas (5.5) and (5.7), ||u||W§(Q) <
Cllif vz, -

5.2. Source term problem in the reference strip with radiation condi-
tions.  For k <k (ky is the first positive threshold defined in (3.20)), as noticed in
Remark 5.1, Problem (5.1) is well posed in H3(£2) in particular for locally supported L?
source term. For k> k;, the problem is not well posed in this setting. Indeed, since in
that case .Z has an eigenvalue on the line ReA=0, one can show that the range of Ag
is not closed. For §+#0, the solution to Problem (5.1) defined via the operator Ag is
a priori exponentially growing as x — 400 or as £ — —o0. The results of the previous
section do not provide a solution which is physically acceptable. In what follows, we
explain how to impose radiation conditions at infinity to construct a solution to Prob-
lem (5.1) which decomposes as the sum of outgoing propagating modes (defined later)
plus an exponentially decaying remainder.

In order to measure exponentially growing or decaying behaviours as |x] = £o0, for
B €R, introduce the weighted Sobolev space WE () defined as the completion of €5°(£2)
for the norm

_Blal aa 1/2
lelwz=( > Nl MagapeliEa)) -

o, v€EN, a+y<2

Remark the absolute value in the weight e=#ll. Due to this absolute value, observe
that

BL<pr = WL(Q)CWRL(Q). (5.15)

Note that this property is not true for the spaces W%(Q) introduced in (5.2). Observe

also that we have Wg(Q):H%(Q) Let (-,-)q stand for the bilinear duality pairing
between WE(Q)* and WE(Q), where WE(Q)* is the topological dual space of WE(Q)
endowed with the norm

W3 ()~ p

0 (5.16)
veW3(Q)\{0} ||”||W§(Q)

Due to (5.15), we have

Br<p? = WL(Q) WL ()" (5.17)
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For n e N*, pick k€ (kn;kn+1), the threshold wavenumbers k, being defined in (3.20),
and choose >0, once for all, small enough such that {A€A| —F<ReA< S} =ANRI\
{0}. According to Corollary 5.1 and Lemma 5.2, we know that such a /8 exists. We
denote 1y <--- <np the positive real numbers (belonglng to (0;k) according to the proof
of Lemma 5.1) such that

ANRi={xin,}),. (5.18)
For p=1,...,P, we define the propagating modes w;[ as
wy (2,y) =" g, (y), (5.19)

where ¢, is a non-zero element of ker.#(in,). Observe that we have (A% — k%) gzo.
We normalize the ¢, so that

i, / dyon@) P+l Py =1. (5.20)

This special choice for the normalization will appear naturally in (5.28). In the next
step of the analysis, we shall use the following decomposition result. It can be proved
exactly in the same manner as Theorem 5.4.2 of [20]. For the sake of self-containment,
we recall the sketch of the proof in Appendix B. It uses the fact that all modal exponents
have an algebraic multiplicity of 1, since the wavenumber is not a threshold wavenumber
(see Proposition 3.4). In this statement and in what follows, y* € €>°(R?) is a cut-off
function equal to one for x> 2L and to zero for +x < L, for a given L > 0.

PROPOSITION 5.1. Assume that ke(kn,kn+1) n €N, the threshold wavenumbers
kn being defined in (3.20). Assume that uEWﬁ( ) is such that (A* —k*)ue W3()* C

WE (Q)*. Then there holds the following representation

P P
u=X+Z( afwl +ayw,)+x" Zb w, +btw)+1a, (5.21)
p=1 p=1
: : + ot ~ 2 A2
with coefficients a;; , by €C and € W= 4(9).

REMARK 5.2.  Observe that Formula (5.21) for the clamped problem is the equivalent
of (4.3) for the simply supported problem. But again we emphasize that the tools to
derive the two decompositions are different (see the discussion at the beginning of the
section).

In the sequel, we will say that for any u € WE(Q),

u is outgoing iff wu= X+Zapw +x~ Zb w, +1, (RC)
p=1
with coefficients ap, b, € C and aeW? 5(£2). We introduce the space with detached

asymptotic (see, e.g., the reviews [28,29]) W () that consists of functions in Wg ()

that satisfies (RC). The space W°"*(Q) is a Hilbert space for the inner product naturally
associated with the norm

T (Z|ap|2+2|bp|2+uunwz o)
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For u e Weut C WE(Q), the map ¢+ a(u,¢) with

a(u,¢)= | AuA¢—k*updrdy
Q
is well-defined in WEB(Q) Although u§éW35(Q) in general when ueW°", we will
extend it as a map in WE(Q) For ¢ € €5°(2), applying Green’s formula yields

P
a(u,0)=> ap / (AA —K'1d) (x twy) ) pdzdy +Db, / (AA = K*1d) (x " w, ) ddady
p=1 Q Q

+a(@i, ). (5.22)

Since the support of (AA — k:4Id)(Xiwpi) is compact, p=1,..., P, we deduce that there
is a constant C >0 independent of ¢ € €5°(£2) such that

la(u, @) < Cllullwen @) 19wz @)- (5.23)

By density of €5°(f2) in WE(Q), we deduce that ¢+ a(u,$) can be uniquely extended

as a continuous map in Wg (€2). This discussion allows us to define the linear operator
4/°" such that

Ut Wweut(Q) — WA(Q)*

- - (5.24)
u:X+Zapw;+X_prw; +ar— "y '
p=1

p=1
where &/°"y is the unique element of Wg (2)* such that (&°"u,¢)q=a(u,¢) for all
P €65 (). We deduce from (5.22) that for v e Wg(Q), we have

P

(7" u,T)g =Y ap / (AA = K1) (x Tw; ) vdady + b, / (AA—E'1d) (x " w, ) vdady
=1 Q Q
+a(,v).

THEOREM 5.2. Assume that k€ (kp;kny1), n€N*, the threshold wavenumbers ki,
being defined in (3.20). The operator &/°" defined in (5.24) is an isomorphism.

REMARK 5.3. Let us reformulate Theorem 5.2 in order to compare it with Theorem

4.1. For fe WE (Q)*, Problem (5.1) has a unique solution » in W°"*(Q). In particular,
for all 8> 0, any compactly supported function f & L?(Q2) belongs to WE(Q)* while the
solution u € WU (2) belongs to H2 _(2) and satisfies the radiation conditions. Note that
the result of Theorem 5.2 is slightly stronger than the one of Theorem 4.1 concerning
the assumptions for the source term. Indeed the functions of WE(Q)* do not need to

be compactly supported.
In order to prove Theorem 5.2, we need to establish an intermediate result. Define
WH(Q) the space of functions v of W3(Q) that admit the representation
P P
v:x‘LZ(a;w;{ +a,w, ) +x"
p=1 p=

(b, w, +bw)+7, (5.25)
1
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with coefficients a;}t, b;': €C and W2 5(€2). Define also the symplectic (sesquilinear
and anti-Hermitian) form ¢q(-,-) such that for all u, v€WT(Q), we have

go(u,v) = (A% —kYu,0)g — (A% — kM7, u)q. (5.26)

Note that for u, ve WT(Q), the maps (A% —k*)u, (A? —k*)v are defined as elements of
WE(Q)* using an extension similar to what has been done above. As a consequence, we
have

")
+ 4 wEvde + 4 wy)vdx
Zp /QAA E4d) (x T )ddy+b()/Q(AA k'1d) (x " wi ) vdady

ol
T

p=1
P
3 ag () | w(AA—ETd) (x i) dady + by (v) / w(AA - E*1d) (x " wi ) dady
+ p=1 Q
+a(a,v) —a(u, )
Here a;,t (u), b;,t(u) (resp. a;,t(v), bzﬂf (v) ) refer to the constants appearing in (5.25) in the

decomposition of u (resp. v). In the next proposition, we show some biorthogonality
relations for the modes with respect to the form ¢gq(-,-). The proof is a computation, it
can be skipped without altering the understanding.

PROPOSITION 5.2.  Assume that k € (kn;knt1), n€N*, the threshold wavenumbers ky,
being defined in (3.20). For v,p€{+,—}, j,l€{+,~} and m, p€{1,..., P}, for all @,
veW? 5(82), we have

qQ (wagn +aaX“wé +1~}) = 7ijV5V,p.§j,l (;m,p-

Proof. First, integrating by parts, we find that go(x*w’, +ﬂ,x“wé—|—f1) =
go(x’wi,, x"wk) for all i, ﬁEWEﬁ(Q). On the other hand, observing that (AA-—
EYw! =0 for all j€{+,—}, me{l,...,P}, and that x* =1 for +2>2L, we can write

ga(x"wi, xrwh)= [ AA(w,) xFwl — x"wl, AA(xFwl)dedy,  VH >2L.
Qu
Here we use the notation Qg :={(z,y) € Q||z| < H}. Integrating by parts, we get
go(x"wi, X“w )=0u.u 8nAw£nwié—w¥n 8nA@dy
YH

v | Aw), Opwl, — Oyw), Awhdy,  VH>2L,
H

with ¥ :={-H}x (0;1)U{H} x(0;1) and 0, =+, at t==+H. We deduce

q0 (X”wfn%“w;) =0, e (mm=lnp)H 5. VH >2L, (5.27)
where the quantity J is independent of H>2L. Since qg(x’jwf;l,x“wé) is also indepen-
dent of H > 2L, we must have gq(x"w, ,X“w )=0if jn, —in, #0< [j#1 or m#p|. To

conclude the proof, it remains to study the case v=p, j=1 and m=p. Writing more
precisely the quantity J in (5.27), we find

da( W, X wl,) = —digvm, / dy o)+ 12 om@) P dy=—ijv.  (5.28)
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To obtain the second equality in (5.28), we used (5.20). |

Proof. (Proof of Theorem 5.2.) From (5.23), we see that the operator 7"
defined in (5.24) is continuous. On the other hand, if

P P
uzx+zapw;r +szbpw; +u
p=1 p=1

belongs to ker &/°" then qq(u,u)=0. From Proposition 5.2, this implies
P P
iy lapl i) |byl>=0.
p=1 p=1

We deduce that u:ﬂeVo\/zﬁ(Q) and so u is in ker A_g and in ker Ag which are both
reduced to {0} (Theorem 5.1 together with the fact that £ has no eigenvalue on the
lines e A = +3). Therefore, &/°" is injective. To conclude the proof, it remains to show
that @7°" is onto. Consider feWg(Q)* CWz_ﬁ(Q)* Since Ag is onto (Theorem 5.1),

there is some UEW%(Q) CW%(Q) such that Agv=f. According to Proposition 5.1, v
admits the following decomposition

(b, w, +bfwh) 4,

P
=1

P
U:X+Z(a;;w;j+a;w;)+x*
p=1 p

with coefficients a;,t, b]:,t €Cand g€ Wzﬂ (2). Set

P P

— _}: — —_E: ot
U= a, w, bpwp.
p=1 p=1

One can see that u belongs to the space W°' (). On the other hand, observing that
the w[jf satisfy (A2 fk4)w;f =0, we obtain .&7°"*u = f. This shows that «7°" is onto. O

5.3. Problems in the perturbed strip with radiation conditions. We
previously saw that for the simply supported strip, the unperturbed and perturbed
cases where handled quite similarly. In the case of the clamped strip, the perturbed
case is significantly more difficult than the unperturbed one, in the sense that additional
arguments have to be introduced. Let us come back to the original Problem (2.1) with
a hole € in the clamped case:

A?y—k*u=f inD
u=0,u=0 on JN (5.29)
Mu=Nu=0 on d0,
where f will be specified later on. To set ideas, we assume in this paragraph that L

is chosen so that & C (—L;L) x (0;1). Problem (5.29) leads to consider the variational
equality

b(u,v)=m(v),  Voe{d|p|peC®(Q)},

9%u 9%*v O%u 0%t 0%u 0%*w

wih o) = | 922 922 200y 020y T Oy? By

Q

m(v) = (f,9)q-

vAuAv+(1—v) < ) —k*uvdrdy
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Observe that the functions of {¢|p|¢p € E5°(2)} do not necessarily vanish on 9¢'. Now,
we introduce notation similar to the one of the two previous paragraphs in the geometry
D instead of Q. For 5 €R, define the weighted Sobolev space WB( ) as the completion
of {¢|p|pebs°(Q)} for the norm

3 1/2
lelwzoy=( > e Aozl )
a,7EN, a+y<2

Again, remark the absolute value in the weight eI, We denote WE(D)* the topolog-
ical dual space of WE (D) endowed with the norm (5.16), Q being replaced by D. We
define the linear and bounded operator %z : W?,(D) %WEB(D)* such that

(Bou,0)p=b(u,v),  V(u,v)€W3(D)x W2 4(D). (5.30)

One can easily prove that 5 =%_3.

As in the previous section, for n € N*| pick k € (k,,;kn+1). In what follows, the weight
B >0 is chosen small once for all enough such that {A\€A| - < &Ee/\ <p}=AnR:\{0}.
Using again the notation introduced in (5.18), (5.19) for the w , we define the space

Weut(D) that consists of functions v e WE(D) that admit the representation

P P
v:X‘*‘Zan;—i—X_prwg +7,
p=1 p=1

with coefficients ay, b, € C and © € WEB(D) We remind the reader that x* € €>°(R?) is
a cut-off function equal to one for +2>2L and to zero for 4z < L. The space WU (D)
is a Hilbert space for the inner product naturally associated with the norm

ellwest(p) = (Z|ap|2+2|b o0y
Working as we did in (5.24) for «7°%*, we define the linear operator £°"* such that
BN Weut(D) — W(D)*

P P
u:XJ“Zapw;JrX*prw; +0— Py

p=1 p=1

(5.31)

where %°'y is defined as the functional such that for all v € WE(D)
P
(B u,v)p = Zap/ (AA = E'Id) (x Tw;h v dady

P
—|—pr/ AA —E*Td) (x~ w,, Jodrdy+b(i,v).

As in the previous section, in order to prove our main theorem for %°“, we need to
establish intermediate results. Let us define W(D) the space of functions v of WE(D)
that admit the representation

P P
v:X+Z(a Ftayw, ) +xT Z (b, w, +bw})+7,
p=1
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with coefficients a;t, b;,t €C and e W2 5(D). Let us introduce also the symplectic form
qp(-,-) such that for all u, ve WT(D),

qp(u,v) = (Bpu,v) p — (BgU,u)p. (5.32)

Here Zgu and %30 must be regarded as elements of WE (D)* defined using the extension
by continuity process presented in (5.23). Working exactly as in the proof of Proposition
5.2, one can establish the following result.

PROPOSITION 5.3.  Assume that k € (kn;kni1), n€N*, the threshold wavenumbers ky,
being defined in (5.20). For v,pu€{+,~}, jle{+,~} and m, pe{1,..., P}, for all @,
veW? 4(D), we have

ap (X" W], + 1, X w), +0) = —ij V8,1, 0,1 6m,p-

The following theorem is the equivalent of Theorems 4.3 and 4.4 in the simply supported

case. In other words, it solves the corresponding scattering problems. Moreover, such
theorem is used in the proof of the main result of this section, that is Theorem 5.4. We
postpone the proof of Theorem 5.3 to the end of this section.

THEOREM 5.3. Assume that k€ (kn;kny1), n€N*, the threshold wavenumbers ki,
being defined in (3.20).
(1) The operators $Byp are of Fredholm type.

(2) Moreover, we have dimker%s—dimkerB_g=2P and there are functions
Vi,...,Vyp ckerBs admitting the decomposition, for p=1,..., P,

P P
v, = X+w; +x* Z Spmwjr_fFX_ Z SpP4m Wy, + W,
m=1 m=1
- ., (5.33)
Upip =X wi+x* Z SP-pm Wi, + X Z SPypP+m Wy +Vpyp.
m=1 m=1

Here, the \ilp, p=1,...,2P, belong to Wzﬂ(D) and the scattering matrix S:=

(Spm)1<pm<2p € CPF*2F s uniquely defined, unitary (SgT =1q2Fx2r

(ST =S).

Now we state the main result of the section, which is the equivalent of Theorem 4.2
in the simply supported case.

) and symmetric

THEOREM 5.4. Assume that k€ (kp;kny1), n€N*, the threshold wavenumbers ki,
being defined in (3.20).

(1) The operator B°"t defined in (5.31) is Fredholm of index zero and ker °"* =
ker#_g. As a consequence,

(a) If ker B_pg={0}, then B°*" is an isomorphism.

(b) If kerB_g=span(z1,...,2q4) for some d>1, then the equation B°"u=f¢c
WE (D)* admits a solution (defined up to an element of ker #_g) if and only if f satisfies
the compatibility conditions (f,zZ;)p=0 for j=1,...,d.

(2) If ue WO (D) is such that %O“tu:fEWZ(D)*, then we have

P P
quJchpw;er*Zcp_‘_pw; GWE[;(D) with ep=1(f,¥p)p, p=1,...,2P,
p=1 p=1
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the U, e ker Bg being defined in (5.33).
REMARK 5.4. When k€ (0;k;), using the result of Remark 5.1, one can prove that

Fredholmness of (5.29) holds in {u€H?(D)|u=0,u=0 on dQ}. In particular, we do
not need to impose radiation conditions.

REMARK 5.5.  From Theorem 5.4, we deduce that if Problem (5.29) for f=0 has only
the zero solution in Wzﬂ(D), then for any fe€W35(D)*, Problem (5.29) has a unique
solution u in WU (D). In order to make the connection with the result of Theorem 4.2,
observe that any compactly supported function f € L?(D) belongs to W%(D)* while the
solution u € W°U(D) belongs to H2 (D) and satisfies the radiation conditions. Notice

loc

also that the equality ker B°" =kerZ_g is the equivalent of the result established in
Remark 4.4. It says that the elements of the kernel of the problem, if they exist, are
exponentially decaying at infinity. In other words, they are trapped modes.

Proof. (Proof of Theorem 5.4.)
(1) (a) First we show that ker " =ker Z_gz. Clearly we have

ker #_p C ker B°".

It is then sufficient to establish that ker #°"* C ker #_g5. Assume that
P P
uzx+zapw;r +szbpw; +u
p=1 p=1
belongs to ker °". Then one has qp(u,u)=0. Using Proposition 5.3, this implies

P P
iZ|ap|2+iZ‘bp|2 =0
p=1 p=1

and shows that u€ker%_g.

(b) Now, let us prove that %°"* has a closed range and that dimcoker #°" =
dimkerZ_g. Theorem 5.3 ensures that %_g is a Fredholm operator. Therefore
ker%_3 is of finite dimension. Assume that ker #_3=span(z1,...,zq) where the func-
tions zi,...,2q are linearly independent. The case ker#_z={0}, simpler to study, is
left to the reader. Consider some f GWE(D)* satisfying the compatibility conditions
(f,Z;)p=0 for j=1,...,d. This is equivalent to f € (ker%_g)*. Since Bz =P* 5 and
since the range of % is closed (because %3 is of Fredholm type), this is also equiv-
alent to the fact that f belongs to the range of %z. Then there is some ’UGW%(D)
such that Bgv = f. Moreover, multiplying v by a well suited cut-off function and using
Proposition 5.1, one obtains that v admits the decomposition

(b, w, +bfwh)+a,
1

U:X+Z(a;w;+aljw;)+)f

P P
p=1 p=

E b eC and aeW?4(D). Set

with coefficients a;;, by

P P

u::vaa;\I'p be;r\I/P_HD.
p=1

p=1
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One observes that u belongs to the space W°" (D). Besides, since the ¥,, are in ker %,
we obtain #°"'u=%Bzv=f. This shows on the one hand that the range of s is
included in the one of %°%. Since W°ut(D) CWE(D) the two ranges coincide and
then the range of #°" is closed. This shows on the other hand that dimcoker #°%t <
d=dimkerZ_z. Now assume by contradiction that dimcoker #°" <d. In that case,
we can find f=2""u with uw€W°" (D) such that (f,z;)p#0 for some j€{1,...,d}.
Then we have (#B°"*u,z;)p =(PBsu,z;)p = (B_pz;,u)p =0 which contradicts the fact
that (f,z;) p #0. Thus there holds dimcoker £°"* = d = dimker #°"* so that ind B°"* =
dimker 2°"* — dim coker Z°1* = (.

Finally, we show statement (2). For f € WE(D)* (satisfying the compatibility con-
ditions if ker _3#{0}), consider

P P
u=x">"cpwy XY cprpw, +AEW (D)
p=1 p=1

a solution to the equation PB°%ty = f. Then for p=1,...,2P, using Theorem 5.3, we find
(f,¥,)p=qp(u,¥,)=—ic,. This leads to the desired result. d

We conclude this section by giving the proof of Theorem 5.3.

w3

—-2L —-L L 2L

F1a. 5.2. Partition of unity used in the proof of Theorem 5.3.

Proof. (Proof of Theorem 5.3.)

(1) First we show that #4p are Fredholm operators. Since %_g is the adjoint
of %3, it is sufficient to establish the result for %, 3. The strategy is the following.
In order to prove that %3 is a Fredholm operator, the first step consists in proving
that range %3 is closed and ker %3 is finite-dimensional. This will be a consequence of
inequality (5.34) and Lemma A.1 in appendix. The second step consists in proving that
coker #3 is finite-dimensional, which will be a consequence of the existence of a right
regularizer of %3 and of [26, Lem. 2.23].

Define the domains
wy = (—o00;—L) x (0;1) we:={(x,y)€D||z|<2L} ws:=(+L;400) x (0;1)
(see Figure 5.2). For v=1,...,3, let ¢, and 1, be € functions (with support in D)

satisfying the conditions

3
supp Cl/ Csupp ¥, Cwy, Gty =Cus Zguzl in D.
v=1

Note in particular that (o=(3=0 for a<—-L, (1=_3=0 for |z|<L and (31 =C(=0
for 2> L. Define the space H2(ws):={p€H?(w2)|¢=0,p="0 on dws\ IO} endowed
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with the inner product of H?(wg). Introduce the unique linear continuous operator
B H2(wo) — H2(ws)* such that for all u, v € H?(ws),
— Pud*w _ 0%u 0*v  0%ud*
PBou, V), = AuA 1- — e t2———— = — | dzd
(oD, /WV ubvt(1-v) (83:2 ox? + Oz0y Oxdy + oy? 83/2) vy
According to Lemma 4.2, we know that for v € [0;1), the operator 4, is an isomorphism.

Let us prove the following a priori estimate:

lullwa o) <C (1Bsulliz oy + 0l o), YueWH(D). (5.34)

For ue WE(D), noticing that Bs(C1u) =A_g(¢1u) and Bs(Czu) = Ag({su) because the
supports of (1u, (3u do not meet 00, we can write

lullwz(p) < C(||41U|\w33(9)+||C2U||H2(W2)+||C3U\|wg(n))
C(lA-s(Gu)llwz o) + 128Gt Iz (ws)- + 1 As(Gu)llw2 ,(@)-)
(||<@5(C1U)||W2 L)+ TBs(Cu) e, (D)*+||=%’5(C3U)HW2 ()*) (5.35)
(Z] 1”@'%13””1/\)2 (D JF”[*@I%CJ]U”W? (D))
C(1%sullyi2 (D)HLZ —111[Zs, CJ]U‘HV\)Qi(D) ).

Here we use the notation [Ag,(;lu=%Bs((;u) —(;ABsu. Now, let us establish the esti-
mate

185, calullyia oy < Clulin oo (5.36)

An algebraic computation using the fact that the support of {; does not meet 00 shows
that for p€{p|p|p € €5°(2)}, we have

(B, il B = /D (WAC 42V V) Ad— Au(¢AG +2V6-VCr ) dady.

Integrating by parts in the term involving Aw, we obtain |([%s,(1]u,¢)p| <
Cllullu1 (w,) H¢||W3ﬂ(D) where C'>0 is independent of u. Taking the suprememum over

{¢lp|P€E5°(2)} leads to (5.36). Dealing with the terms [#3,(2]u and [#g,(s3]u of
(5.35) in a similar manner, we obtain the a priori estimate (5.34). Finally, observing
that the map u+ uly, from ng (D) to H!(ws) is compact (because ws is bounded), one
deduces from Lemma A.1 in Appendix that rangeZg is closed and kerZg has finite
dimension.

Now, let us build a right regularizer (also called a right parametrix), i.e. an operator
R such that 3R —1d is a compact operator of WEB(D)*. According to [26, Lem. 2.23],
this will prove that coker % is finite-dimensional. Define the operator

Ri=C1(A_g) " (1) + G (Bo) " (h2-) + (s (Ag) ™ (¥30).
For all feWEB(D)*, one finds
#s(Rf)
= B (C(Ap) ™ (V1) + B (G2 (o) ™" (Y2f) + B (C3(Ap) ™" (Y3 f))

= A_p(G(Ap) (1)) + Bu (C2(B0) " (¥2f)) + A (G (Ag) ™ (¥sf))
= Y51 G+ A Gl (A—p) T (W1 f) + B0, (B0) T () + (A, o] (As) (W3 f)-
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One can prove working as in (5.36) that [A_g,(1], [#n,(2] and [Ag,(3] are compact as
operators from Wﬁ( ) to W2 5(D)*. Thus, R is indeed a right regularizer and coker g
is finite-dimensional. This concludes the proof that %3 is a Fredholm operator.

(2) Now, we focus our attention on the indices of #4g. Since %3 is the adjoint of
%_3, we have

ind%gz—indf%,lg. (5.37)

On the other hand, [32, Chap. 4, Prop. 3.1, p. 110] guarantees that the quantity
ind%s —indB_z is equal to twice (because of the two outlets at infinity) the sum of
the algebraic multiplicities of the eigenvalues of .Z located in the strip —5 < A < 5. From
Propositions 3.6, 3.4 and 3.3, we infer that

ind#5 —ind #_g =4P. (5.38)

Gathering (5.37) and (5.38), we obtain ind % =—indZ_z=2P. In particular, since
dimcoker Zg = dimker % _g (again we use the fact that Z5=%_3), we get dimker Zg —
dimkerZ_g=2P. Let v1,...,v2p be functions of ker %g which are linearly independent
modulo W2 ﬁ(D). Moreover multiplying the v, by cut-off functions and using Proposi-
tion 5.1, one finds for p=1,..., P, the function v, decomposes as

P P
v  =xT Z (@pm Wiy, +bpmwy,) +x~ Z p P Wiy, +bp P W) + T,
m=1 m=1
P P
vptp = X" Z (apspmwh +bpipmwy,)+ X~ Z (@PtpPrm W +bpippymwy,)
m=1 m=1

+1~)P+pa

with coefficients apm, bpm € C and ﬂpeVOVEB(D). Let us show that the matrix B:=
(bpm)1<m,p<ap € C2P*2P i5 invertible. If it is not, then there is a non-zero U in kerBT.
Define the function v= 21271:31 Upvp €ker Bs. Since anpzl bpm Up=0 for m=1,...,2P,
we find that v belongs to W°"(D). Computing ¢p(v,v) as in the Step 2 of the proof of
Theorem 5.4, one deduces that v € W? 5(D) and so v €ker%_s. But this is impossible

because U #0 and the vy,...,vap are linearly independent modulo W2 5(D). Thus the
matrix B is invertible of inverse B~1: (bpj)1<p j<2p. Then we construct the functions
VU, introduced in (5.33) setting \IJP_Z] 10pjvi, p=1,...,2P.

Besides, using Proposition 5.3 and the fact that the ¥, defined in (5.33) belong to
ker B3, we find for m, pe{1,...,2P}

2P
=400 )=y~ S oy 5).
j=1

Thus we deduce SgT =1d**?F 1n other words, S is unitary. Using again Proposition
5.3, we also find, for m#p,

0= QD(\I’ma‘ITP) =(Smp — Spm)-

From this, we infer that S is symmetric. ]
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6. Selection of the outgoing modes

For each type of boundary conditions on the edges of the strip (simply supported
or clamped), we defined the outgoing solution, the interesting one from a physical
point of view, as the solution decomposing on the propagating modes w;[ (and not
wzf), p=1,...,P, as x — F+c0. This choice was arbitrary. In particular, let us mention
that a functional framework where we impose to the solution to decompose on the
propagating modes w,, p=1,...,P, as ¥ — +o0 also leads to a Fredholm operator of
index zero. In this section, we explain why our choice is physically relevant in the
case of the clamped strip (the case of the simply supported strip would be treated
similarly). To proceed, we come back to the time dependent equation from which the
harmonic Problem (5.1) has been derived. We prove that the waves associated with the
propagating modes w;,t have a positive group velocity as x — f+oc. In other words, these
waves propagate energy to too. Positive (resp. negative) group velocity is known as the
usual criterion to discriminate what are the outgoing modes as ¢ — 400 (resp. & — —00).
In order to justify that this choice is pertinent, in a second step we prove that it leads
to select the solution with satisfies the so-called limiting absorption principle. The idea
of this limiting absorption principle consists in adding some small loss (dissipation) to
the medium. In this case, we can establish that Problem (5.1) (with k replaced by a
complex k to take into account dissipation) admits a unique solution in W2(Q)  H2(Q)
(to simplify, we shall work in © but everything is similar for Problem (5.29) in D). This
solution decomposes as the sum of a slowly exponentially decaying part plus a rapidly
exponentially decaying component as © — +o0o. The decay of the slowly exponentially
decaying part is characterized by the position in the complex plane of the eigenvalues
of the symbol of the operator with dissipation. What we will do is to study the limit
of this complex eigenvalues to check that they converge to the ones which have been
selected for the problem without absorption (the in,, p=1,...,P).

6.1. Group velocities. In this paragraph, we compute the group velocities of
the waves associated to the propagating modes w?, p=1,...,P, defined in (5.19). Let
us start from the equation of the motion of the plate given by

?w ?w | D
———+DA*W = AW = ith =y —. 1
ph BT + W=0 = 9 +cEA*W =0 with ¢ o (6.1)

Looking for waves with the time-harmonic dependence in e~™* (this is a convention)
leads us to set WE(z,y,t) :=wZ(z,y)e @t =e'Eme=wp (y). Plugging W in (6.1),
we obtain the already known equation for wy:

7w2w§+02A2wpi =0 & A2w§fk4w;,t:0 with  k?:=w/c.

By definition, the group velocity of the waves W]jt (z,y,t)= ei(”“”“’t)cpp(y) with n=4mn,,
is given by
Ow ok
+
vy (W, ):877|n:inp ZQCk%\n:inp- (6.2)

In order to compute vg(Wf), we differentiate the relation .2 (in) = a;jw — 277285904— (nt*—

k%) =0 (see the definition (3.4) of operator .#) with respect to € R to obtain

.0 ok
f(m)(af(;) — (0o —n") —4k3877s0=0~
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Taking 7= +n,, multiplying by % and integrating by parts, we deduce that
2., .2 2 30k 2
+4n, | |ay90p(y)| +77p|90p(y)| dy =4k %‘"Zi"]}) , |<Pp(y)| dy. (6.3)
Gathering (6.2), (6.3) and using the normalisation (5.20), we find
iy [ 10,00 + 72l )Py .

ne / op(4)|2dy ne / lon(y) 2 dy

vg(Wpi) =+2c

This shows that from a physical point of view, W, (resp. W, ) is the outgoing wave
as & — +oo (resp. *— —00). As a consequence, in time-harmonic regime, we have to
look for a solution which decomposes on the propagating modes w;t as x — too. This
explains our choice in (5.24). Let us translate this into a criterion for the symplectic
form ¢q(+,-) defined in (5.26). For v ==+, computation (5.28) gives

W [ lept)dy
ti(x”wf,x”w;t)=i4w7p/1|3y<,0p(y)|2+n§|<pp(y)|2dy=wg(Wi) - ~

Therefore at infinity (x — +00), we have to select the propagating modes providing a
positive value for the form igo(wp,w,). Finally, note that if we define the phase velocity

w
v (Wi):77
¢' P :l:np
we obtain the identities
Ay [ 10,0 (v) P + 71210 (v) P dy 2
L p|Pp %2

va(WiE) vy (WiE) = 20

p

4] lenw)Pay 4 JIZURY

In particular for this problem, we see that the group and phase velocities of the waves
have the same sign.

6.2. Limiting absorption principle. In this paragraph, we add small dissi-
pation, modelled by a parameter 7, to the system. This dissipation ensures that the
problem is well-posed in a usual setting. Then we make v tend to zero. This process
allows us to define the physical solution and we will show that this solution is the same
as the one selected via the group velocity. As a first step, we have to explain how to
take into account dissipation in the time-harmonic Problem (5.1). To proceed, again
we start from the time dependent problem. Consider the damped equation

OPW N oW
oz o
with the boundary conditions W7 =9, W7 =0 on (0;4+00) x 2 and appropriate initial

conditions (compactly supported in space). Multiplying by 0;W” and integrating in €,
we obtain the energy balance

2 2
dB(t) oW~ . _[1fowr 2 AT |2
dt——/ﬂy( 5 ) dxdy with E<t)_/92<8t + AW dxdy.

+AWY=0 in Q (6.4)
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Therefore, we see that v must be chosen positive so that the term involving v in (6.4)
corresponds to some dissipation (loss of energy). Applying the Fourier transform with
respect to the time variable defined by

+oo
w”’(x,y,w)::/ e W (3,y,t) dt

— 00

note the convention of a time-harmonic regime in e~ **). we are led to study the
g ) y

equation
—w2wY —iyw +AEA%WT =0 & A?wY — (K =0 with (K)*:=k*+iv/c®. (6.5)

As a consequence, taking into account dissipation of the system boils down to add a
positive imaginary part to k* (observe that a convention of a time-harmonic regime in
e leads to add a negative imaginary part to k*). Due to the imaginary part of k7, using
the Lax-Milgram theorem, one can prove that Problem (6.5) supplemented with the
same boundary conditions as in (5.29) admits a unique solution w” € W2(Q) C H2(Q).
On the other hand, all the analysis presented in the previous sections for Problem (5.1)
can be adapted to consider this new problem with k replaced by k7. In particular, as
n (5.8), we can define a symbol associated with this problem named .Z7. We let AY
refer to the set of eigenvalues of £7. We denote in), p=1,...,P, the P elements of
A7 which have the largest negative real part. These elements are uniquely defined for
~ small enough and get closer and closer to Ri as y— 0". We assume that they are
ordered so that 0 <|n]|<---<|n}|. Using a result similar to the one of Proposition 5.1,
we obtain the decomposition

P P

in?Y _ —_in?Y ~
w(z,y) =x" (@,9) Y ag el (y) +x (@,y) > bye o) (y) + i (,y)
p=1 p=1

where a}, b} are complex numbers, ¢ is a non-zero element of keréf’y(in;) and @" is
rapidly exponentially decaying as x — +o00. Note that w” is exponentially decaying at
x — F00 because Re (i) <0. The question we are interested in is as follows. Does the
limit of in) as v— 0" equal to in, or to —in,? To answer this question, we compute

6(@'77;)' 1 %|
Ay 70T T 4k3 ok "

(6.6)

We start from the equation
4 202 4 g4\
0y —2n"0,0+(n" —k")p=0.
We differentiate it with respect to k to obtain

Oy

2(im)(G0) -4

(020 —n*p) —4k>p =0.

Taking v=0, multiplying by ¥ and integrating by parts, we deduce by denoting 7, =
lim, o+, that

gm0 [ 0e PP ay =4 [lePd. 61
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O(iny)
Oy
that 772 > 0. Therefore indeed we have 772 =1, and the picture is as illustrated in Figure
6.1: the limiting absorption principle leads us to call outgoing modes the modes w;)t as
x — t+oo. This is coherent with what we got from considerations based on the group

velocity in the previous paragraph.

Since by definition of 7, there holds |ly=0 <0, we deduce from (6.6) and (6.7)

+in) when v—07F 1 SmA
>

OO Finp

> ReA

. X
—)p ?><><>< e
P

—in) when v—07

F1G. 6.1. Schematic view of the behaviour of the eigenvalues of the symbol X7 as the dissipation
v tends to zero.

7. Concluding remarks

In this article, we proved the well-posedness in the Fredholm sense of time-harmonic
problems set in an unbounded strip for a thin plate model. We considered two types
of boundary conditions: either the strip is simply supported or the strip is clamped.
To show these results, we used two different strategies, both relying on some modal
decomposition. In the simply supported case, a strong result of Hilbert basis for the
eigenfunctions of the symbol of the transverse problem (3.2) allowed us to easily obtain
the modal decomposition. For the clamped problem, this result is not freely available
and instead we worked with the Fourier transform in the unbounded direction, with
weighted Sobolev spaces and with the residue theorem (Kondratiev approach). The
second approach is more systematic than the first one. For example, it would allow
one to deal with waveguides of the form Q=R xw, where w is a bounded domain of
R41, d>2. Its main drawback maybe is that it leads to an analysis which is slightly
longer than the one we get with the first method. In this work, we have considered
a setting with a hole in the waveguide. We could also have considered other types of
perturbations (change of material, local perturbation of the geometry,...). Our article
does not address the question of uniqueness of the solution. Can one find conditions
on the geometry and on the wavenumber k so that trapped modes are absent? Can
one show the existence of settings where trapped modes exist? These are interesting
questions to study. A natural direction after this analysis would be to investigate how
to approximate the solutions. For the simply supported case, the fact that we know
explicitly the Dirichlet-to-Neumann operator allows one to adapt the methods used to
deal with the Helmholtz problem. In the clamped case, another technique must be
found. Could the technique of Perfectly Matched Layers be used and justified?

Appendix A. An extension of Peetre’s lemma. In this appendix, we state a
result established in [41] which is an extension of the well-known Peetre’s lemma [38]
(see also [43]), that is particularly useful to prove that an operator is of Fredholm type.

LemMA A1, Let (X, ] 1x), (Y, Iv) and (Z,|| ||z) be three Banach spaces. Let K : X —Z



1526 ANALYSIS OF A THIN PLATE PROBLEM IN AN UNBOUNDED STRIP

be a linear compact map and B:X—Y be a continuous linear map. Suppose that there
exists C' >0 such that

lzllx <C(||Bz|y+|Kzlz), Yz eX. (A.1)

Then dimker B < oo and range B is closed in Y.

Appendix B. Proof of Proposition 5.1. We give in this appendix the ideas of
the proof of Proposition 5.1. As already mentioned in the core of the text, we follow
the presentation of [20, Thm. 5.4.2]. We remind the reader that 5> 0 is chosen small
enough so that {AeA| - <ReA <8} =ANRi\{0}. Moreover 11 <---<np denote the
positive real numbers such that

ANRi={xin, };_,

and for each p, ¢, is a non-zero element of kerL(in,). Proposition 5.1 is a consequence
of the following result.

PROPOSITION B.1.  Let fEVGV2 (Q)* QW%(Q)* and let us denote ﬂ:A_lfGVOV%(Q)
and u:A:éfeVOVEB(Q), There exist complex numbers {c _, such that

P
_ + +in,x ~
u—ZZcpe P op + U

+ p=1

Proof. As f GVOVQ_ﬂ (Q)* OW%(Q)*, one can show that f(),-) is holomorphic in an
open set containing the strip {—8 <ReA<S}. The only singularities of the function
e LA)TEF(N,) in {—=B<ReA< B} are the poles of L(A\)71, i.e. the eigenvalues of
L(A).

Let p be sufficiently large so that {A€ A, —f<ReA<Bfand |ImA| < p}=ANiR. Using
the residue theorem, we get from (5.14) that

I f
1 —B+ip Btip
21 p—+oo —B+ip

+ZZRes )‘zll “LF(A, ), Einy).

+ p=1

The first integral tends to 4. For the second and the third ones, it suffices to extend [20
Lem. 5.4.1] to state that for all N

B+ip
Az
| s L) )d)\HLz(QN)p_>—+>OOO’

where QY =QN{—-N <z <N}. Finally, for the computation of the residues, we apply
[20, Thm. 5.2.1] and Proposition 3.4 to get that in the neighborhood of +in,,

by

£ =)

+U(N)
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where P, is the projector on ¢, and U is an holomorphic operator function in a neigh-
borhood of +in,,. O

Proof. (Proof of Proposition 5.1.) We remind the reader that x* € €>°(R?) is

a cut-off function gqual to one for £z >2L and to zero for imog L, for a given L>0.
Assume that ueW3(Q) is such that (A% —k*)ueW3(Q)* CW?4(Q)*. Then xtue
WEB(Q) and we can prove that (A% —k%)[xtu] GW%(Q)*OW%B(Q)* By Proposition

B.1,

there exist {a}]” | and @ " GW%(Q) such that

P
X+u:22a;teimpm<pp +at.
+ p=1

Similarly, X*uEVOV% (©) and there exist {b;t};f:l and 4~ €W2_5(Q) such that

P
Cum S e, i
+ p=1

It suffices then to write

uw=(x") ut+(x ) ut+1-(x")*—(x")u

P P
:X+[Zza;teimpm<ﬂp] X [Zzbgeim,}xwp] +4

+ p=1 + p=1
where
a=xrat+xTaT (1= ()2 = (H)Hu € W2(Q).
]
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