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Abstract. Synchronous neuronal network oscillations are a ubiquitous phenomenon with great com-
plexity of manifestations. We focus on coupled point-neuron models with increasing complexity to
explore the similarities and differences in the underlying network mechanisms producing synchronous
oscillations. Using simulations and coarse-grained descriptions, we illuminate mechanisms or mathe-
matical structures that may be responsible for three stages of synchronous oscillations in the presence
of noise: subthreshold dynamics, initiating a firing event, and synchronous termination of the event.
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1. Introduction

Neuronal networks exhibit synchronized, oscillatory behavior occurring within and
across several regions in the brain, from sensory areas such as the visual and olfac-
tory cortex to higher-level processing centers such as the hippocampus and prefrontal
cortex [11,74]. These oscillations can occur at many frequencies, reflecting a wide vari-
ability in the time scale of communication between neurons, as well as in the integration
time scales within a single neuron [3,5,6,15,21,29,33,39,65,67]. Changes in properties of
oscillations often underlie neurological disorders, motivating a necessity in understand-
ing the mechanisms that give rise to oscillations occurring in a normally-functioning
brain [28,79].

In this work, we study the emergence of oscillatory behavior in a variety of neuronal
network models. Together with detailed network models, following the philosophy of our
late mentor and friend David Cai [58], we propose possible parsimonious mechanisms
underlying the network dynamics that give rise to these synchronous oscillations. In
particular, we use ideas from kinetic theory and Fokker-Planck equations [12,13,32,48],
firing rate networks [12,62,70], and reduction of Hodgkin-Huxley (HH) neuron models to
integrate-and-fire (I&F) neuron models [1,22,31] to coarse-grain the dynamics, leaving a
minimal, yet sufficient, model that explains the underlying mechanism or mathematical
structure.

The remainder of the paper is organized as follows. We begin in Section 2 with an
event-driven all-excitatory current-based I&F model that analyzes how quasi-periodic
behavior can arise in such a network. Then, in Section 3, we introduce a conductance-
based I&F model including both excitatory and inhibitory neurons, with an additional
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inhibitory timescale reflecting calcium dynamics in the insect olfactory bulb. In this
model, we show how the interaction of excitation and inhibition (PING) can lead to
oscillatory behavior, with a slow inhibitory conductance modulating the frequency of
the oscillations. Finally, in Section 4, we describe a conductance-based HH model of the
prefrontal cortex, containing both excitatory and inhibitory neurons, as well as electrical
coupling through gap junctions. Using this model, we show that gap-junction coupling
among inhibitory neurons can initiate and sustain synchronized oscillations in a mean-
dominated regime. Section 5 contains a discussion of the similarities and differences
between such mechanisms across the different neuron models.

2. I&F excitatory network
Neuronal networks consisting of all excitatory neurons are ubiquitous in the devel-

oping cortex and have been shown to exhibit synchronous oscillations, usually through
bursting, which are essential for normal development of cortical circuitry [21, 46, 50,
72, 73]. These bursts tend to emerge from a quiescent state and are believed to be
quenched by a refractory period caused by either synaptic depression [73] or an adap-
tation current [46, 72], resulting in a cascade of neuronal firing followed by a period of
silence.

Using the simplistic current-based I&F neuron model [10,71], we demonstrate that
a network of excitatory neurons with instantaneous synaptic connectivity is capable of
producing synchronous cascades of spiking activity. These cascades of activity can occur
regularly or sporadically in time depending on the magnitude of the fluctuations in the
external drive. Using such a simple model allows us to analytically describe the mecha-
nism underlying the emergence of each cascading event in the presence of noise [47–49].
Also, we calculate the time between cascading events, or network firing rate, and pro-
pose a mechanism underlying the maintenance of regularly-repeated synchronized firing
events, or oscillations, in the all-excitatory network.

2.1. Model: Current-based I&F neurons. The I&F network of N excitatory
neurons is governed by the following system of differential equations

dvi
dt

= −gL(vi − VR) + Ii(t), i = 1, . . . ,N, (2.1a)

where vi is the membrane potential of the ith neuron, gL is the leakage conductance, VR
is the resting voltage, and Ii(t) is the injected current. The voltage vi evolves according
to Equation (2.1a) for values below the firing threshold, VT . When vi reaches VT , the
ith neuron is recorded to have spiked and vi is reset to VR. In this work, note that we
use the non-dimensional values VR = 0, VT = 1 and gL = 1.

The currents appearing in Equation (2.1a) are modeled by the expression

Ii(t) = f∑
l

δ(t − sil) +
S

N
∑
j≠i
∑
k

Ajiδ(t − τjk), (2.1b)

where δ(⋅) is the Dirac delta function. The first term in Equation (2.1b) describes
the current due to spikes arriving from an external source. These external spikes are
modeled such that the receiving neuron’s voltage is increased by an amount f at each
spike time t = sil, where the spike times are generated by a Poisson spike train with rate
ν. The second term in Equation (2.1b) corresponds to the current received by the ith

neuron from all other network neurons j ≠ i. If the adjacency matrix element Aji = 1,
then neuron i receives input from neuron j modeled by a Dirac delta function, which
causes the voltage of neuron i to increase by S/N at each spike time τjk of neuron
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j. Otherwise, Aji = 0 and no input from the jth neuron is received by neuron i. The
numerical simulations we present are for an all-to-all coupled network with Aij = 1 for
all i ≠ j, but the analysis we present is independent of the network structure. An event-
driven algorithm is used to simulate the system described in Equation (2.1), similar to
the one discussed in Sec. 2.4.1 of [9].

2.2. Synchronous oscillations. For the model described in Equation (2.1),
network oscillations emerge when the excitatory coupling is large enough to synchronize
the network through cascading firing events. A cascading firing event occurs when
all neuron voltages are positioned sufficiently close to the firing threshold such that a
spike from one neuron in the network is sufficient to induce firing in all other neurons
in the network at that same time. Since all neurons spiked at the same time, their
voltages are all reset to rest at the same time. Then, all neurons evolve (approximately)
independently while their voltage remains pre-threshold, and the process repeats when
one of the neurons’ voltages reaches threshold again. Figure 2.1 shows two example
networks that exhibit cascading events with different inter-event intervals. Assuming
the voltage of each neuron evolves independently between each cascading event (since
none of them are spiking), we can compute this time between firing events independently
from the network structure and coupling strength [47–49].

Note that the synchronous cascading events do not occur periodically, but rather at
random times governed by the time it takes the first neuron to reach the firing threshold
and trigger a total cascading firing event. The oscillations can appear periodic as in
Figure 2.1A, or sporadic as in Figure 2.1B, depending on the relative size of the variance
to the mean of the random time between synchronous events. The power spectral
densities (PSDs) in Figure 2.1 confirms the nearly periodic nature of the oscillations in
Figure 2.1A, showing a concentrated peak near one frequency (along with the higher
harmonics) in contrast to the lack of a peak frequency in Figure 2.1B. In general, quasi-
periodic oscillations tend to arise in the presence of large external firing rates, as is the
case in Figure 2.1.

In the remainder of this section, we calculate the mean time between synchronous
firing events as a function of network parameters and use this calculation to predict
which type of oscillations might arise, regular or sporadic. To begin, we consider the
mean-driven regime in which the network neurons are driven over the threshold on
average and have little variation in their firing times. Then, we consider the fluctuation-
driven regime and compute the full distribution of the random time between synchronous
events, which mathematically corresponds to the minimum first passage time of the
collection of N independent voltages from VR to VT [47, 48]. In both cases, we employ
a mean-dominated approximation of the Poisson spike train, taking a very large firing
rate, ν ≫ gL, and small strength, f ≪ gL(VT −VR). We keep fν ∼ O(1) so that it takes
many external spikes to enable a neuron’s voltage to reach the threshold and the input
can be approximated by Gaussian fluctuations around its mean drive.

2.2.1. Mean-driven network firing rate. In this section, we compute the
mean time between synchronous firing events (the inverse of which is approximately
the network firing rate) when the neurons are driven past threshold on average, i.e. the
superthreshold regime. In this regime, the mean time between synchronous firing events
can be approximated by the time it takes the voltage of the maximum of the N neuronal
voltages to reach threshold, since this neuron will then excite all other neurons to spike
as well, creating a synchronous event. The mean time between synchronous events is
then computed by noting that no neurons fire in the time period between events when
the network is in the perfectly-synchronous state, and thus all of the input to any given
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Fig. 2.1. Power spectral density for two examples networks of excitatory current-based I&F
neurons as described in Equation (2.1) with raster plot shown in the inset. (A) high external rate:
f = 0.005, fν = 1.06 and S = 1.1. (B) low external rate: f = 0.005, fν = 0.86 and S = 1.1.

neuron is only from the external spike train.
With the assumption that input is coming only from external sources, the solution

to Equation (2.1) for the voltage of the ith neuron during the time between events can
be written as

vi(t) = VR +
M(t)
∑
l=1

fe−gL(t−sil), (2.2)

ignoring the reset mechanism when the voltages reach threshold. The number of external
spikes, M(t), arriving at the ith neuron before time t is random and Poisson-distributed
with mean νt. Taking the mean-dominated approximation of the Poisson spike train for
large ν, we arrive at an equation for the voltage in Equation (2.2) as a sum of a large
number of independent random variables.

In [48] we used a central-limit argument to evaluate this random sum, showing
that the PDF of the neuronal voltage, vi(t), which is not reset to VR when it reaches
threshold, is well approximated by the Gaussian PDF and corresponding CDF,

pv(x, t) ∼
1√

2πσ(t)
exp(−(x − µ(t))

2

2σ2(t) ) and Fv(x, t) ∼
1

2
[1 + erf(x − µ(t)√

2σ(t)
)] , (2.3a)

where erf(z) = 2√
π ∫

z
0 e

−t2 dt and the average voltage and variance are given by

µ(t) = VR +
fν

gL
(1 − e−gLt) and σ2(t) = f

2ν

2gL
(1 − e−2gLt) . (2.3b)

Considering the N neuron voltages as independent between total synchronous events,
the distribution of the maximal of the N voltages in the network is given by

p(N)v (x, t) = Npv(x, t)Fv(x, t)N−1. (2.4)

Since we are operating in the superthreshold regime, one in which the neurons are driven
past threshold on average, the standard deviation of the maximal neuronal voltage is
small in comparison to the mean of its distribution, and the time τ when the first neuron
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crosses threshold can be approximated by the deterministic time it takes for the average
of the maximal voltage to reach threshold, i.e.,

VT = ∫
∞

−∞
xp(N)v (x, τ)dx. (2.5)

Solving Equation (2.5) for τ , we obtain the firing rate of the network as τ−1. This
approximated firing rate is shown in Figure 2.2A as the black-dashed curve, which is a
function of the average external drive, fν.

2.2.2. Fluctuation-driven network firing rate. The above calculation
breaks down when Equation (2.5) has no solution, i.e. when the average maximum
voltage never reaches the firing threshold. Even when Equation (2.5) has a solution,
it can be a bad approximation for the mean time between firing events if the neuron
behavior is driven by fluctuations in maximum voltage, rather than the average. This
most noticeably happens in the subthreshold regime, a regime in which the neuronal
voltages are just below the threshold on average and are only pushed above the threshold
by a large fluctuation in the external input. In this section, we rework the calculation
of the time between synchronous events by taking into account large fluctuations in the
external drive.

Since the neurons still behave independently between synchronous firing events (few,
if any, are firing), the time between synchronous firing events can be calculated as the
minimum of N independent first-passage times for a single, uncoupled neuron voltage to

reach threshold from rest. The PDF p
(1)
T (t) of this minimum exit time T (1) is therefore

given by

p
(1)
T (t) = NpT (t)(1 − FT (t))

N−1
, (2.6)

where pT (t) is the PDF of a single neuron’s exit time and FT (t) = ∫
t
0 pT (t′)dt′ is the

CDF. The expected time between total firing events is simply

⟨T (1)⟩ = ∫
∞

0
tp
(1)
T (t)dt, (2.7)

and the network firing rate is approximately ⟨T (1)⟩−1.
To approximate the single-neuron exit time distribution, pT (t), we consider the

evolution of a single neuron voltage that is removed from the system when its voltage
reaches the threshold, i.e., it is “absorbed” at VT . Then, the probability at time t that
the neuron has not yet fired is the probability that it is still in the domain, VR ≤ x < VT .
In [47,48] we give a detailed treatment of computing this probability and subsequently
the PDF, pT (t), and summarize the result here. With the mean-driven approximation
of the Poisson process as Gaussian fluctuations about the mean, the evolution of a single
neuron is approximately the solution to the following stochastic differential equation

dv = [−gL(v − VR) + fν]dt + f
√
νdW. (2.8)

Then, the function G(x, t) for the probability that the solution to Equation (2.8) has
not yet crossed the threshold VT given that it started at position x at time t = 0 satisfies
the Kolmogorov Backwards Equation

∂

∂t
G(x, t) = [ − gL(x − VR) + fν]

∂

∂x
G(x, t) + f

2ν

2

∂2

∂x2
G(x, t), (2.9)
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with the boundary and initial conditions ∂
∂x
G(x, t)∣x=VR

= 0, G(VT , t) = 0 and G(x,0) =
1. We compute the pT (t) using a finite-difference approximation for the derivative of
the CDF FT (t) = 1 −G(VR, t), having solved system (2.9) numerically with the Crank-
Nicolson scheme for G(x, t).

The network firing rate, approximated by ⟨T (1)⟩−1, as a function of fν is shown
in Figure 2.2A, along with the network firing rate calculated in the previous section
by solving Equation (2.5). Notice that this network firing rate found by taking the
fluctuations into account is approximately equivalent to the mean-driven network firing
rate, Equation (2.5), in the superthreshold regime (fν > 1) but begins to deviate signif-

icantly in the subthreshold regime (fν < 1). The corresponding PDFs of p
(1)
T (t) in the

superthreshold and subthreshold regimes are shown in Figure 2.2B. Notice that, in the
superthreshold regime, the variance is small relative to its mean, creating oscillatory
behavior seen in the raster plot in Figure 2.1A. In contrast, when this mean-driven

assumption is no longer valid, e.g., in the subthreshold regime, the distribution p
(1)
T (t)

is wide, leading to scattered or intermittent firing that emerges from a quiescent state
as in Figure 2.1B.
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Fig. 2.2. (A) The network firing rate as a function of mean external input (gain curve) computed
for the synchronized network using the methods described in Sections 2.2.1 and 2.2.2. (B) For the
two indicated points on the gain curve in (A), the single neuron first passage time distribution and
minimum first passage time distribution are shown. For both panels, f = 0.005,N = 100. For the
numerical simulations in (A), a value of S/N = 0.041 was chosen to ensure total synchronous events
occur with high probability and the firing rate was averaged over a run of 800 non-dimensional time
units.

This all-excitatory network model has both an instantaneous response to spikes, as
well as an instantaneous refractory period. Once a neuron has fired, its voltage is held
at rest until the remainder of the cascading firing event has been resolved. Without
this mechanism, due to the high coupling required for the network to exhibit total
cascading firing events with high probability, the first neuron to fire in Figure 2.1A
would receive enough input (S(N − 1)/N = 1.089 > VT − VR) to fire again during a
cascading firing event, perpetuating the cycle indefinitely. Realistically, neurons do
not respond to spikes instantaneously and the refractory period has some finite length.
In the next section, we implement a more realistic network model of conductance-
based I&F neurons including both excitatory and inhibitory neurons, with realistic
coupling probabilities and strengths, and non-instantaneous responses to spikes. With
non-instantaneous responses, the cascading firing events observed in this section are
no longer possible; however, the network still exhibits oscillatory behavior due to the
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interaction between the inhibitory and excitatory neurons.

3. I&F excitatory and inhibitory network
One of the next simplest network models introduces conductance, rather than cur-

rent, as the mode of communication between neurons, as well as the inclusion of in-
hibitory neurons, necessitating the expression of both an excitatory and inhibitory con-
ductance. While still minimal, these anatomical and physiological assumptions are
sufficient to reproduce experimentally-observed phenomena such as orientation selectiv-
ity and the line-motion illusion in large-scale modeling of the pinwheel structures in the
primary visual cortex [57–59, 66]. In this section, we show that, with the inclusion of
an additional inhibitory current with a slow time scale to mimic the effects of calcium
currents, I&F neurons can reproduce the behavior of the insect olfactory bulb with
odor-specific bound triplets of neurons [56].

In the insect olfactory bulb of the honeybee and locust, where odor input is initially
processed, synchronized oscillations appear to emerge prominently in three stages. Upon
receiving the stimulus from the olfactory receptor neurons, the olfactory-bulb network
begins generating synchronized oscillations with a frequency of ∼ 20 Hz [29,33,34]. These
oscillations then subside for a period of time, after which the oscillations reemerge and
modulate slowly (much less than 20 Hz) in a manner determined by the stimulus for
about 1 second until they reach a steady state [76].

In this section, we show through simulations that one mechanism for the modulation
of network oscillations in the olfactory bulb can be explained by the addition of a slow
inhibitory conductance in the network I&F model neurons. We then coarse-grain this
model into a time-varying firing-rate model and show that this coarse-grained model
possesses a limit-cycle-like object in two of its variables, with the slow conductance
variable directing the dynamics to undergo a slow passage through a saddle-point-on-a-
circle bifurcation.

3.1. Model: Conductance-based I&F neurons. Similarly to Equation
(2.1a), the voltage of the ith neuron in the conductance-based I&F network is governed
by

τ
dvi
dt

= −gL (vi − εR) − gEi (t) (vi − εE) − gFi (t) (vi − εF ) − gSi (t) (vi − εS) , (3.1a)

for i = 1, . . . ,N . The voltage evolves according to Equation (3.1a) while vi < vT , and
upon reaching vT is immediately reset to εR. In this model, the current coming from
network neurons are modeled through time-dependent excitatory, fast inhibitory, and
slow inhibitory conductances, gEi (t), gFi (t), and gSi (t), respectively. These conductances
multiply the voltage difference from εR, εE , εF , and εS , which are the reversal potentials
corresponding to leakage, excitatory, fast inhibitory, and slow inhibitory conductances,
respectively, with the condition that εS < εF < εR < VT < εE . A more detailed discussion
of modeling the post-synaptic response to action potentials through the conductances
can be found in [56].

Here, we summarize the modeling choice to include two inhibitory conductances. As
shown in experiments [35] and more realistic models [3,53,54] (using HH neuron-models),
the action potentials generated in olfactory neurons are prolonged due to voltage-gated
calcium channels. Therefore, in this model, to capture the proper spike-timing due to
calcium dynamics, we incorporate a fast inhibitory conductance, gFi (t), with a decay
constant that is larger than the typical value (4 ms vs. 1-2 ms) used in spiking neuron
models. Additionally, experiments have determined the existence of a slow inhibitory
current in insects such as the honeybee [2] and moth [43,44] and have seen evidence for
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a similar current in the locust [35]. Therefore, we include a slow inhibitory conductance,
gSi (t), in a style similar to previous models [3, 53,54].

Here, we summarize the modeling choice to include two inhibitory conductances. As
shown in experiments [35] and more realistic models [3,53,54] (using HH neuron-models),
the action potentials generated in olfactory neurons are prolonged due to voltage-gated
calcium channels. In our I&F model we give up accurate modeling of the action potential
and rather incorporate two inhibitory currents with adjusted time-scales to accurately
capture the possible post-synaptic responses. The first, a fast inhibitory conductance,
gFi (t), has a decay constant that is larger than the typical value (4 ms vs. 1-2 ms) used
in spiking neuron models. The second, a slow inhibitory conductance, gSi (t), models
experimentally observed slow responses to the calcium action potentials in insects such
as the honeybee [2] and moth [43, 44] and possibly in the locust [35]. To exaggerate
this slow response and mimic the overall insect spiking dynamics, we further lengthen
the rise and decay time-scales (420 ms and 800 ms vs. 100 ms and 200 ms) of this
post-synaptic response in comparison to previous models [3, 53,54].

The excitatory, fast inhibitory, and slow inhibitory conductance responses for the
ith neuron are governed by

σP
dgPi (t)
dt

= −gPi (t) + hPi (t) (3.1b)

σE
dhEi (t)
dt

= −hEi (t) + S
E
i

NE
∑
j≠i
AEji∑

µ

δ(t − tjµ) + fi∑
k

δ(t − τ ik) + fori ∑
l

δ(t − τ il )(3.1c)

σF
dhFi (t)
dt

= −hFi (t) + S
F
i

NI
∑
j≠i
AFji∑

µ

δ(t − tjµ) (3.1d)

ρS
dhSi (t)
dt

= −hSi (t) +
SSi
NI
∑
j≠i
ASji∑

µ

δ(t − tjµ), (3.1e)

where P = {E,F,S} and δ(⋅) is the Dirac-delta function. The rise and decay times of
the excitatory and fast inhibitory conductances are σE = 1 ms and σF = 4 ms. For
the slow inhibitory conductance, we model a distinct rise time, ρS = 420 ms, and decay
time, σS = 800 ms, to mimic the prolonged spike response. The synaptic connection
strengths, denoted as SEi , SFi and SSi , take one of two values depending on the ith

neuron’s type (E or I) and are scaled by the size of the corresponding population (NE
or NI). The ratio of excitatory to inhibitory neurons in the network is kept constant
at NE/NI = 3 [36]. The adjacency matrices AE , AF , and AS are sparse, with the
off-diagonal entries chosen randomly with the following probabilities: pEE and pEI for
excitatory connections to excitatory and inhibitory neurons, respectively, pFE and pSE
(pFI and pSI ) for fast and slow inhibitory connections to excitatory (inhibitory) neurons.

Similar to Equation (2.1), Equation (3.1) also includes spikes of strength fi arriving
from a background external drive with arrival times, τ ik, generated by independent
Poisson processes, all with the same rate ν. We allow for fi to take one of two values, fE
or fI , depending on the ith neuron type (E or I). In addition, we model the presentation
of an odor to about 1/3 of the neurons in the network with an additional set of external
spikes of strength fori at rate νor.

The model is normalized such that εR = 0, εE = 14
3

, εF = − 2
3
, εS = − 9

5
, and VT = 1.

We solve the model equations numerically using an algorithm developed by Shelly and
Tao [63] for solving I&F neuron models accurately and efficiently.
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3.2. PING oscillations. Our insect-olfaction model (3.1) produces oscillations
with three similar stages of behavior as was observed experimentally. As shown in Figure
3.1A, initial oscillations (from 0 to 500 ms) are followed by a period of quiescence (from
500 ms to about 1500 ms), then slower oscillations arise (from 1500 ms to 2500 ms).
The network oscillations emerge when the external input is sufficiently mean-driven
such that many of the excitatory neurons arrive at threshold around the same time
and slightly before the inhibitory neurons (external strength fE > fI). A majority of
the excitatory neurons fire an action potential, exciting the inhibitory neurons to fire,
which then, in turn, suppresses the excitatory neurons from firing for a period of time
after the firing event. Once inhibition is released, the excitatory neurons again receive
mean-dominated input that drives their voltages to the threshold, and the cycle repeats.
This interaction between excitatory and inhibitory spiking is the fundamental principal
underlying the pyramidal-interneuronal network gamma (PING) type oscillation [8,77],
which is thought to be the basis for many oscillations in the cortex, particularly those
in the high-beta and gamma range [7]. This underlying PING mechanism between the
excitatory and fast inhibitory conductances may explain the initial formation of fast
oscillations observed in the olfactory bulb in response to the presentation of an odor,
while slow inhibitory conductance modulates the frequency of these oscillations as the
odor is processed.

The initial oscillations that arise during the first 300ms in Figure 3.1A can be
reproduced using only excitatory and fast inhibitory conductances, as shown in the inset
of Figure 3.1B, providing evidence that odor detection relies on the PING mechanism.
Taking the PSD of the average voltage of the system shows that these oscillations occur
at around 20Hz, as determined experimentally. Now, if we change the slow inhibitory
conductances from zero to a fixed value of gSi = 0.1 for all neurons (i = 1 . . .N), we can
reproduce the slow oscillations that emerge during the last 1000ms of Figure 3.1A, shown
in the inset of Figure 3.1C. Notice that the peak in the PSD shifts to the left as the
slow inhibition is turned on, see Figure 3.1C as compared to Figure 3.1B. We verify that
the oscillations (at both frequencies) stem from cyclic dynamics between the inhibition
and excitation in Figure 3.1D and E by plotting the average voltage of the excitatory
and inhibitory neurons, as well as the excitatory fast inhibitory conductances. Next, we
analyze a coarse-grained firing-rate model and show that these oscillatory dynamics are
governed by a slow-conductance-modulated limit cycle, where large values of the slow
conductance destroy the limit cycle (stop the initial 20Hz oscillations) and suppress
neuronal firing (quiescent state).

3.3. Firing-rate model and limit cycle. To gain further mathematical insight
into the existence and modulation of the oscillations, we coarse-grain the I&F model to
a firing-rate model for the excitatory and inhibitory populations, writing equations for
the four conductance variables: excitatory gE(t), fast inhibitory gF (t), slow inhibitory
gS(t) and the intermediate variable hS(t). We assume for simplicity that the excitatory
and fast conductances have infinitely fast rise times so that the secondary variables
hE(t) and hF (t) are adiabatically eliminated. Then, the time-dependent neuronal firing
rates, mE(t) and mI(t), for the excitatory and inhibitory populations, respectively, are
derived in terms of these network conduction variables, which are then fed back into
the evolution of the network conductance variables, closing the system.

We heuristically derive the firing-rate model with the following additional assump-
tions: (i) We are operating in the mean-driven regime, in which both network-generated
and external-drive spikes are small and arrive at high rates. Then, summations over in-
coming spike trains become continuous functions representing the incoming firing rates.
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Fig. 3.1. (A) Oscillations in the model of insect olfaction given by Equation (3.1). (B) PSD of
the raster plot shown in the inset holding gSi = 0 for all neurons (C) PSD of the raster plot shown

in the inset holding gSi = 0.1 for all neurons. (D)/(E) The average voltage for the excitatory and
inhibitory populations corresponding to the raster plot in (B)/(C). In all panels the network size is
NE = 3NI = 75, the time-scales are σE = 1ms, σF = 4ms, ρ = 420ms, σS = 800ms, the coupling strengths
are SE

E /NE = 0.08, SE
I /NE = 0.315, SF

E /NI = 1.75, SF
I /NI = 0.35, SS

E/NI = 3.15, SS
I /NI = 0.63, the

background drive rate is ν = 4000Hz with fEν = 8 and fI = 0, one third of the neurons are additionally
driven with a rate of νor = 6000Hz, forE νor = 6.9, forI νor = 6.6 to simulate the presentation of an odor,

the network edges are randomly chosen with probabilities pEE = 2/15, pEI = 1/15, pFE = 0.15, pFI = 0.75
and the slow-conductance network is the same as the fast-conductance network in this case.

(ii) Individual synaptic connections are replaced by the corresponding connection prob-
abilities so that firing rates are scaled by the average number of connections. Together
with the coupling strengths, the network drive terms are SEi p

E
i mE(t), SFi pFi mI(t), and

SSi p
S
i mI(t). (iii) We assume mE(t) and mI(t) vary slowly in comparison to changes in

the membrane potential and further speculate that the total conductance is very high,
allowing us to treat the voltage in Equation (3.1) as a constant coefficient differential
equation. We can then directly solve for the two population firing rates, mE(t) and
mI(t), as the multiplicative inverses of the time for the corresponding voltage solutions
to reach threshold from reset.

Under these assumptions, the evolution of the four network conductance variables
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gE , gF , gS , and h are given by

σE
dgE

dt
= −gE+mE , σF

dgF

dt
= −gF +mI , σS

dgS

dt
= −gS+h, ρS

dh

dt
= −h+mI , (3.2a)

with mE and mI given by

mQ(t) =
1 + SEQpEQgE + fQν + SFQpFQgF + SSQpSQgS

τ ln [MQ] , (3.2b)

where

MQ = (SE
Qp

E
Qg

E+fQν)(εE−εr)+SF
Qp

F
Qg

F (εF−εr)+SS
Qp

S
Qg

S(εS−εr)
{(εr−VT )+(SE

Q
pE
Q
gQ+fQν)(εE−VT )+SF

Q
pF
Q
gF (εF−VT )+SS

Q
pS
Q
gS(εS−VT )}

+ , (3.2c)

with Q ∈ {E, I}. Here, {x}+ = x if x > 0 and zero otherwise. When the denominator
in ME (MI) is zero, we define the corresponding firing rate mE (mI) to also be zero.
Since the voltage and therefore the firing rate is driven by these conductance variables,
we proceed to look for limit cycles in the gE − gF plane as proxies for oscillations in the
firing rates of the excitatory and inhibitory populations.

The dynamics of (3.2) shown in Figure 3.2A reproduces the three stages of the
behavior of the full I&F model shown in Figure 3.1A. As before, we hold gS = 0 constant
to produce fast oscillations in the gE and gF variables (Figure 3.2B) and gS = 0.005
constant to produce slower oscillations (Figure 3.2C). These oscillations are indeed limit
cycles in the gE-gF plane, shown in Figure 3.2D, that shift downward with increasing gS

and lengthen their period as shown in Figure 3.2E. At about gS = 0.007 the limit cycle
hits the point (0,0) in the gE −gF plane, the period goes to infinity, and a saddle-node-
on-a-circle bifurcation occurs. The remaining stable fixed point is (0,0) corresponding
to no firing. With gS allowed to change as described by (3.2), the dynamics pass through
this bifurcation point, only to return back through it producing oscillations at a slower
rate; see Figure 3.2A.

Having shown that the PING oscillation modulated by a slow inhibitory conduc-
tance is sufficient to well-explain the mechanism underlying the three stages of oscil-
lations in the insect olfactory bulb, we proceed in the next section to understand the
effect of electrical coupling on the emergence of synchronous oscillations. Experimen-
talists have shown that electrical coupling exists between the pyramidal cells in the
olfactory cortex of the Drosophilia and are essential in generating odor-specific synchro-
nized patterns [78].

4. HH gap-junction network
One of the most realistic point-neuron models is the Hodgkin-Huxley (HH) neuron

model, which can accurately describe the action potential of a spiking neuron in addi-
tion to the pre-threshold dynamics. In this section, we consider the oscillation-enhancing
effects of direct electrical communication between neurons through sites called gap junc-
tions (GJs) for those occurring between inhibitory interneurons, or “electrotonic” junc-
tions (EJs) for those occurring between excitatory pyramidal cells [6, 16, 75]. Electrical
junctions allow for the continuous flow of ions and small molecules between the con-
nected cells, coupling the voltages of these cells through all stages of membrane depo-
larization. One implication is that an action potential in the pre-junctional cell will
result in a quick rise in the voltage of the post-junctional cell almost instantaneously to
the occurrence of the action potential. This event is called a spikelet and, together with
the direct exchange of ions, is hypothesized to aid in synchronizing the network, though
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properties of this spikelet differ by neuron type and location. Interruption of the GJ
electrical signaling between interneurons has been linked to diseases such as Ischemia
and Alzheimer’s Disease [17,26], while computational studies suggest that EJ coupling
between excitatory neurons may generate fast-frequency oscillations and play a role in
inducing epileptic states [45,67,69].

In this section, we use a HH neuron model to show that the addition of GJ coupling
among interneurons can promote the generation of synchronous oscillations, but the
addition of EJ-coupling between excitatory neurons has little effect on global network
properties. Then, we show that a coarse-grained version of the HH model, i.e., the I&F
model, despite losing the ability to describe the voltage during an action potential, and
therefore the details of a spikelet, is still capable of reproducing oscillation-enhancing
effects when interneurons are coupled through weak, slow GJs.

4.1. Electrical coupling in cortex. Electrical junctions have been exper-
imentally observed in several regions of the mammalian brain, most recently in the
neocortex [41], and have been shown to exhibit different properties in each brain re-
gion. Even within one brain region, the various types of neurons may contain electrical



J. CRODELLE, K.A. NEWHALL, P.B. PYZZA, G. KOVAČIČ 1449

junctions with different properties.
One type of neuron called the fast-spiking (FS) interneuron, is one of the most

ubiquitous inhibitory interneurons in the cortex [60] and has been shown to be widely
coupled by gap junctions [30]. Experiments have determined that GJs occur between
the dendrites of FS cells, occurring with a coupling probability of ∼66% for cell distances
of up to 80 µm [23,24,27]. The strength of the coupling, as determined by the ratio of
the post-junctional voltage change in response to voltage changes in the pre-junctional
cell (i.e., the coupling coefficient), is around 10%, with this coupling being bidirectional
[23]. Experimentalists and computational neuroscientists have shown that GJ-coupling
among these inhibitory neurons can be responsible for the generation and persistence
of synchronous and oscillatory activity in the cortex [5, 15, 37, 65, 68] (for a review,
see [41]), though for some coupling strengths, the inclusion of electric coupling can lead
to asynchrony [25,38].

In the hippocampus, neurons have been shown to contain electrical coupling be-
tween the axons of the pyramidal cells (PCs), or large excitatory cells responsible for
projecting information to neurons in other layers. This coupling was measured to be
extensive and large, forming a network of strongly-coupled excitatory cells [61]. This
type of axo-axonal coupling has not been measured in the cortex; however, cortical cells
have been shown to exhibit synchronized oscillations when GJs among interneurons
are blocked, providing evidence for possible EJs among the cortical PCs [20, 42]. Only
one experimentalist group has successfully measured several instances of EJ coupling
between PCs in the cortex [75], though another experimentalist reported one potential
EJ-coupled cortical pair as well [42]. The cortical EJs were measured to be rare, oc-
curring only pair-wise between cells that have touching or overlapping cell bodies, with
a coupling probability of 5% [75], and exhibiting nearly 25-times higher conductance
strengths than GJs between FS cells. Moreover, action potentials in the pre-junctional
cell were shown to elicit action potentials in the post-junctional cell with a probability
of 50%, a property that has never been measured for GJ-coupled interneurons.

4.2. Model: HH Neurons. We model a network of cortical neurons using a
modified version of the HH equations. Our modeling choice is motivated by the high
conductance of the EJ, which strongly couples the membrane potentials of the pair of
PCs at all times, including during an action potential, which requires us to accurately
model the voltage during an action potential.

The voltage of the ith HH neuron in the network is given by

C
dvi
dt

= − gL(vi − vL) − ḡNam3h(vi − vNa) − ḡKn4(vi − vK) (4.1)

− gC∑
j

(vi − vj) −GEi (t)(vi − vE) −GIi (t)(vi − vI),

where gC is the electrical conductance, gL is the leakage conductance, and ḡNa and
ḡK are the maximal sodium and potassium conductances, respectively. The dynamics
of the gating variables m,n, and h are described by dx

dt
= αx(v)(1 − x) − βx(v)x, with

x =m,n,h, where the voltage-dependent rate variables, α(v) and β(v), are those defined

in [55] for cortical regular-spiking and FS cells. The synaptic conductance, GQi (t) for
Q = {E, I}, is modeled using smooth kinetics as described in Equations (16)-(21) in [64].

All parameters for this model are chosen to qualitatively match voltage clamp ex-
periments for pairs of GJ-coupled FS cells (compared to experiments from [23]) and
EJ-coupled PCs (compared to experiments from [75]). Specifically, for inhibitory neu-
rons: gL = 0.1 mS/cm2, VL = −70 mV, ḡNa = 30 mS/cm2, vNa = 30 mV, ḡKd = 5
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mS/cm2, vK = −90 mV, gC = 0.012 mS/cm2. For excitatory neurons: gL = 0.025
mS/cm2, VL = −70 mV, ḡNa = 60 mS/cm2, vNa = 55 mV, ḡKd = 3 mS/cm2, vK = −80
mV, gC = 0.08 mS/cm2. The reversal potentials for the synaptic currents are vI = −80
mV and vE = 0 mV. The network consists of 400 neurons including 25% FS cells and
75% PCs, on average [4]. The neurons are organized on a 20 × 20 grid with location-
dependent, biologically-motivated connection probabilities and strengths for both the
synaptic connections and electrical junctions. The probability of synaptic connectivity
is location-dependent, decreasing exponentially with distance, as described in [40]. The
electrical connectivity is also location dependent, with FS cells connecting to FS cells
within a radius of ± 9 units with 50% probability, and PCs only connecting to neighbor-
ing PCs with 5% probability. All cells receive external input as described by a Poisson
spike train with rate ν and strength FQ, where Q = {E, I}. More details on the pairwise
matching, as well as the network model parameters, can be found in [18].

4.3. Oscillations in a GJ-coupled network. Due to the ubiquitous GJ
connectivity of the FS interneurons, the pre-threshold voltage of many interneurons
is similar, leading to synchronized firing of those neurons when they receive sufficient
excitation to spike. When a large portion of inhibitory neurons fire near the same time,
a wave of inhibition is released into the network, leading to a suppression of activity for a
short period after the initial wave of interneuron activity, thus leading to a synchronous
network event. This mechanism is similar to the PING mechanism as described in
the previous section, except that the inhibitory neurons are already synchronized pre-
threshold when they receive excitation from the PC population, leading to a more
synchronous event.

When the external drive is mean-dominated (large ν, small f in the external drive),
the networks containing GJ coupling tend to exhibit oscillatory behavior, while the
networks without GJ coupling, with and without EJ coupling, do not exhibit oscilla-
tions. Figure 4.1 shows raster plots and PSD plots for example networks containing no
electrical coupling (no EC), GJ coupling, EJ coupling and both types of coupling (all
EC). Notice that the PSD for the networks containing no electrical coupling and just EJ
coupling are broad, with no clear peak frequency (Figure 4.1A and Figure 4.1C), while
the networks containing GJ coupling have several peaks in their PSD plots (Figure 4.1B
and Figure 4.1D), indicating oscillations are present in those networks containing GJ
coupling.

To quantify the changes that occur in the network with the addition of each type of
electrical coupling, we measure characteristics of the oscillations and network synchrony.
These characteristics include the number of synchronous network events per second and
the tightness of the synchrony exhibited in each event (termed the SD measure). To
find the number of synchronous events per second, we count the number of times the
average voltage of the network crosses a threshold, measuring the number of times a
large portion of the network fires near the same time. Then, for each synchronous event,
the SD measure calculates the width (standard deviation) of the distribution comprised
of time differences from the event time to each neuron spike time within a window of ±20
ms of the event time. In this way, we observe that the SD measure determines the level
of synchrony exhibited by all of the neurons that participate in each synchronous event,
where low values indicate more tightly synchronized events. We observe that networks
containing GJ coupling exhibit many more synchronous events than those networks that
do not include GJ coupling, see Figure 4.2A, as expected from the raster plots in Figure
4.1. Additionally, each synchronous network event itself is more synchronized in the
networks containing GJ coupling, as described by much lower SD values, than those
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Fig. 4.2. GJ coupling increases network synchrony and oscillations. (A) Number of synchronous
events in the network. (B) The SD measure for all coupling regimes. (C) The PSD for all coupling
regimes. All results are reported for 30 realizations of simulations run for 10 seconds of simulated
time. The parameters are the same as in Figure 4.1 and the thresholds for determining synchronous
events are -41 mV and -47 mV for networks containing GJ coupling and those not containing GJ
coupling, respectively.

networks without GJ coupling, see Figure 4.2B.
To uncover any network synchronizing effects of pair-wise EJ coupling, we measure

characteristics of the PSD for the network containing GJ coupling and compare it to the
network containing both EJ and GJ coupling (since networks without GJ coupling do
not typically exhibit synchrony, we exclude those networks in this comparison). Figure
4.3A shows the frequency of the maximum peak in the PSD, the width of this maximum
peak, and the height of this peak for both coupling regimes. Notice that the results
are very similar, all within one standard deviation after averaging over 30 realizations.
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A B

Fig. 4.3. Comparing networks with GJ coupling and both GJ and EJ coupling. (A) Comparison
of the frequency, width and height of the prominent peak in the PSD for the example network shown
in 4.1. The error bars represent the standard deviation across 30 realizations of simulations each
run for 10 seconds. (B) The average percent change (from GJ to all electric coupling (EC)) of each
characteristic of the PSD for three different external input rate values, ν = 4000,6000,8000. Note that
fν is held constant at fEν = 1850 and fIν = 3200, for all networks.

The percent change in the mean, calculated from the network containing GJ coupling to
both types of coupling, is shown in Figure 4.3B for each characteristic and over several
different external rates, averaged over 30 realizations. Notice that the largest difference
between these two networks is exhibited in the height of the prominent peak of the PSD
for an external drive of 4000Hz, but that this difference is within one standard deviation
and the percent change in the mean from the GJ coupling regime to the all-EC coupling
regime is only 6%.

We have shown here, and in [18] in more detail, that the addition of GJ cou-
pling between inhibitory neurons in cortical networks can aid in the formation of syn-
chronous oscillations. The addition of rare, pairwise, strongly-coupled PCs does not
significantly affect these oscillations, nor are they sufficient by themselves to create os-
cillations in a network without GJ coupling (recall Figure 4.1). However, with some
network modifications, we show in [19] that the pair-wise synchrony induced by the
EJ can lead to a network that has a large variability in its firing patterns and thus an
increased coding capacity. Next, we coarse-grain this cortical HH model to the much
more computationally-efficient I&F model and show that this coarse-grained model can
capture the synchronizing properties of GJ coupling.

4.4. Coarse Graining HH. By coarse-graining the HH model (4.1) to an I&F
model, of the form in Equation (3.1), we lose the ability to describe the voltage during
an action potential. Despite this drawback, several modelers have successfully modeled
the dynamics of a network containing GJ coupling using the I&F model. As we did
in the HH model, the I&F model includes a term in the voltage equation describing
the pre-threshold exchange of ions with the GJ-coupled cell (recall the gC ∑j(vi − vj)
term in Equation (4.1)). Since the I&F model does not resolve action potentials, this
term alone will not result in spikelets in the post-junctional cell as it did for the HH
model. As a fix, modelers have either included an instantaneous jump in the voltage of
the post-junctional cell in response to a pre-junctional action potential [38,51], or they
have inserted a characteristic action potential/spikelet pair using a spiking kernel [14].

Since the GJ conductance is weak, and the resulting spikelet is small, for FS cells,
we consider the approach that was taken by Patel and Joshi [52], which takes advantage
of the slow time scale of dendro-dendritic GJs. This approach incorporates the average
of the voltage of all pre-junctional cells, v̂j , over the last 50 ms rather than just the
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Fig. 4.4. Hodgkin-Huxley (HH) model of two GJ-coupled FS cells (red, dashed) plotted against the
I&F model FS-cell GJ-coupled pair (black, solid) for one cell receiving a constant external input (pre-
junctional, top) that is GJ-coupled with another FS cell receiving on external drive (post-junctional,
bottom). Note that there is no synaptic coupling in this example. Parameters for this figure are as
follows: II&F

ext = 1.1 µA and II&F
ext = 2.4 µA for the HH and I&F model, respectively.

A B

Fig. 4.5. GJ coupling increases oscillations in I&F network. (A) PSD and associated raster
plot for a network containing no electrical coupling, and (B) a network including GJ coupling. The
parameters for this network can be found in Figure 4.4B.

voltage of the post-junctional cell at time t. With this inclusion, the model system
becomes

C
dvi
dt

= −gL(vi − εR) − gEi (t)(vi − εE) − gIi (t)(vi − εI) − gC∑
j

(vi − v̂j), (4.2)

where v̂j = 1
50 ∫

t
t−50 vj(τ)dτ and the conductances are described as in Equations (3.1b)

and (3.1c). We use this model to demonstrate that even these slow, dendro-dendritic
GJs can enhance oscillations in a cortical network.

The parameters for this model are chosen such that the inhibitory and excitatory
neurons behave similarly to those described by the HH model in the previous section,
with particular attention paid to the GJ-coupled FS cells. Figure 4.4A shows a compar-
ison of a pair of GJ-coupled FS cells in the HH model to a pair in the I&F model, with
the parameters used to create this voltage plot shown in Figure 4.4B. Note that the post-
junctional cell (bottom) as modeled by the HH model exhibits spikelets in response to
action potentials in the pre-junctional cell (top), whereas the I&F model does not fully
resolve those spikelets. Patel and Joshi showed how oscillations and synchrony arise
in the Locus Coeruleus depending on the level of excitation in the network [52]. Here,
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we simply demonstrate that the addition of these slow dendro-dendritic GJs among the
FS cells can increase the power of oscillations in the network. Figure 4.5A shows the
raster plot and PSD plot for the network containing only synaptic connections (no GJs)
and Figure 4.5B shows those plots for the network containing GJs. Observe that the
addition of GJ-coupling among FS cells increases the power of the 15Hz oscillation by
more than a factor of 10.

It is exceedingly difficult to analytically study the HH model equations due to the
severe nonlinearity necessary to describe the dynamics of the action potential. Non-
spiking models such as the I&F model can be an adequate substitute when the com-
munication between neurons is slow, occurring through synapses or dendro-dendritic
gap junctions. Many modelers have shown through simulations that GJ-coupling can
aid in oscillatory and synchronized behavior of neuronal networks, and yet others have
shown through mathematical analysis the effect of changing the coupling strength on
this network synchrony and oscillatory behavior [39]. In networks where the GJ cou-
pling is strong and fast, I&F models need to include a term to model the spikelet (either
through a spiking kernel or a delta function), whereas the HH model very accurately
captures this spikelet without any additional modeling assumptions.

Additionally, in the HH model networks (see Figure 4.1), the addition of GJ coupling
among the inhibitory cells can induce synchrony where there would be none without it
due to the ability of the spikelets to drive the voltage of connected neurons over the
firing threshold. In the I&F model with slow dendro-dendritic GJs, the presence of
the GJs enhances the oscillations that are already present in the network, but their
presence cannot create synchrony in networks that previously had none. However, I&F
models are computationally efficient and easy to analyze, making them a good model
when one’s goal is to capture the global behavior of a network with slow GJs. As we
have demonstrated here, the I&F model, with parameters chosen to mimic the cortical
neurons described by the HH model, is sufficient to capture the enhancement of global
oscillations that occurs due to GJ coupling among inhibitory cells.

5. Discussion

We have presented three models of neuronal networks that exhibit synchronous
oscillations in the presence of noise. For each model, we identify three stages for the
generation of oscillations that unify the underlying network mechanisms: (1) subthresh-
old dynamics, (2) initiating a firing event, and (3) synchronous termination of the event.
In both I&F model networks, Equations (2.1) and (3.1), the mean-dominated external
drive provides the mechanism for a majority of the subthreshold voltages to remain close
to one another. In the HH network (4.1), GJs between the inhibitory neurons couples a
large portion of the inhibitory network, resulting in similar subthreshold dynamics even
in the presence of fluctuations in the external drive.

A synchronized firing event occurs when the spiking of a small portion of the exci-
tatory neurons results in a majority of the network receiving enough excitation to be
put over threshold and spike as well. In the all-excitatory network, this requires large
coupling strengths and network connections to compensate for any differences in the
subthreshold neuronal voltages. With the presence of inhibition in the I&F and the HH
model, the excitatory neurons must arrive at the threshold slightly before the inhibitory
neurons so that they may initiate a firing event. This may occur when the external drive
to the excitatory neurons is slightly larger than the drive to the inhibitory neurons (I&F)
or the net excitation is much larger for excitatory neurons than for inhibitory neurons
(HH).

Oscillations will arise when this firing event is shut down, returning all neurons to a
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similar starting point, and allowing the cycle to repeat. In the all-excitatory network, the
instantaneous refractory period holds the neurons at rest until the majority of neurons
in the network fire. In the networks containing inhibitory neurons, a wave of inhibition
stops the firing event. In the HH model, this synchronized inhibition is enhanced by
the GJ connectivity among the inhibitory neurons. Though the inhibitory neurons are
less synchronized in the case of slow GJ connections due to the lack of spikelets, their
presence is still sufficient to enhance oscillations that already existed in the network.

David Cai’s insight was instrumental in guiding this work; his unique talent for
seeking interesting questions, proposing new mathematical approaches, and fitting the
pieces together to tell a cohesive story was rare and inspirational. His ingenuity and
creativity in bringing theories and ideas from other disciplines to mathematical neuro-
science has bettered and broadened the field, inspiring ourselves, as well as many others,
to do the same.

REFERENCES

[1] V. Barranca, D. Johnson, J. Moyher, J. Sauppe, M. Shkarayev, G. Kovačič, and D. Cai, Dynamics
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