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REPRESENTING CONDITIONAL GRANGER CAUSALITY BY
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Abstract. Granger Causality (GC) has been widely applied to various scientific fields to reveal causal
relationships between dynamical variables. The mathematical framework of GC is based on the vector
auto-regression (VAR) model, and the GC value from one variable to the other is defined as the
logarithmic ratio of the variance of two prediction errors obtained by excluding and including the
second variable in the VAR model respectively. Besides its definition, GC shall also be reflected in
the regression parameters of the VAR model, e.g., larger regression coefficients indicate stronger causal
interactions in general. Yet an explicit description of how the GC value depends on the VAR parameters
for a general multi-variable case remains lacking. In this work, we aim to bridge this gap by expressing
conditional GC using the VAR parameters, which provides an alternative interpretation of GC with
novel intuition. The analysis developed in this work may also benefit the study of the VAR model in
the future.
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1. Introduction
As a popular method to reveal causal relationship among multiple dynamical vari-

ables, Granger Causality (GC) [12, 14] has been widely applied in various fields, e.g.,
economics [4, 14], neuroscience [6, 8, 22], ecosystem [24] and climate science [20]. In
general, GC is based on the vector auto-regression (VAR) modeling of observed time
series (see an exception in [19] for non-linear GC). To identify GC, one compares the
prediction of a variable xt from the VAR model using all variables (known as joint-
regression, full VAR, or simply VAR) and that using all but one variable yt (known as
“auto”-regression, or partial VAR). If the prediction is improved in the full VAR model,
i.e., the variance of the prediction error of the full VAR model is smaller than that
of the partial VAR model, then the variable yt excluded in the partial VAR model is
interpreted as having a “causality” to the variable xt being predicted. To quantify the
level of causality, the GC value from yt to xt is defined as the logarithmic ratio of the
variance of the two prediction errors from the partial and full VAR models respectively.

GC can be applied to many systems of different types. The applicability of GC to a
system relies on the validity of the VAR modeling of the system. In fact, a large number
of systems can be reasonably described by the VAR model, as proved by using the
multivariate Wold decomposition (Theorem 6.11 in [26]) which states that every wide-
sense stationary multivariate time series can be decomposed into a one-sided moving
average of white noise and a deterministic time series. By further assuming that the
time series is purely nondeterministic with its power spectrum being bounded, the time
series can be exactly represented by a VAR model.
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The importance of GC partially attributes to its close relation with transfer en-
tropy (TE) — an information-theoretic quantity being capable of detecting causality in
general systems beyond the VAR model. GC has been proven to be equal to TE for
Gaussian variables [3]. Although TE has a wider range of application in theory, GC can
outperform TE in practice. For instance, for any system with a long memory, TE will
suffer from the curse of dimensionality while GC can overcome the dimension issue.

Despite the simple framework of GC based on linear regressions of sample data, the
interpretation of GC is often difficult to explicitly obtain in practice. The lack of an
interpretation of the GC value largely lies in the fact that the relation between the GC
value and the full VAR model is implicit. Although an approximate relation between
the GC value and the VAR model has been derived in [11] and [29] for a two-variable
system, it fails to be directly applied to multi-variable large systems. Therefore, in this
work, we aim to establish a general relation between GC and the VAR model for high
dimensional systems consisting of multiple variables.

The establishment of the relation between GC and the VAR model will make the GC
value easy to understand. Note that the VAR model has a close relationship to the true
dynamics of a system under certain conditions. In fact, the VAR model can be viewed
as the (linearized) dynamics of a system when its underlying true dynamics is unknown
or difficult to obtain. In both situations, an explicit relationship between GC and the
VAR parameters could link the GC value to the system dynamics described by the VAR
model, thus greatly simplifying the interpretation of the GC analysis associated with
the dynamical system. In addition, it will provide an alternative way of investigating
GC, different from the traditional way of computing GC from the second order statistics
of the dynamics.

The establishment of the relation between GC and the VAR model will make GC
easy to compare with other causality measures. In addition to GC, several other mea-
sures based on the VAR model have been proposed to detect the causal relations between
dynamical variables. Among these quantities, partial directed coherence (PDC) [2] and
its generalization gPDC [1] are defined explicitly using the VAR parameters. Interest-
ingly, these methods behave similarly as GC in some cases but not in others. At present,
the comparison between the performance of these extensively used methods and that
of GC largely resorts to numerical computations. Therefore, the establishment of the
relation between GC and the VAR parameters will allow one to to compare these meth-
ods analytically, i.e., the similarity and difference among these methods with respect to
VAR parameters.

In this work, we derive both exact and approximated formulas of conditional GC
using VAR parameters — the regression coefficients and the variance matrix of the pre-
diction error in the full VAR model. Section 2 introduces the definition of conditional
GC. Section 3 gives an exact formula of conditional GC semi-explicitly expressed by
the VAR parameters. Section 4.1 gives an approximation of the GC value explicitly
expressed by the VAR parameters in the frequency domain. Section 4.2 gives an alter-
native approximation of GC in the time domain which is more accurate than that in
Section 4.1 but with a similar form, and its convergence to GC is proved. Section 4.3
numerically validates the approximations of GC derived from the theoretical analysis.
Section 5 compares GC with other measures of “causality”, notably gPDC. Section 6
discusses and summarizes these results. Appendix gives detailed proofs of lemmas and
propositions used in the main text.
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2. Definition of Granger causality
In this work, we focus on the general case when a system is composed of more

than two dynamical variables. Here we first introduce the definition of conditional GC,
i.e., the GC value from one variable to another variable conditioned on the remaining
variables. Unless otherwise specified, in the following, GC is referred to as conditional
GC.

Suppose we have a p-variate time series Xt=
[
x

(1)
t x

(2)
t ·· · x

(p)
t

]T
. For the ease of

illustration below, we set xt=x
(1)
t , yt=x

(2)
t and zt=

[
x

(3)
t ·· · x

(p)
t

]
, where xt and yt are

scalars, zt is a vector containing p−2 elements.1 Assume E(xt) = E(yt) = 0, E(zt) =O,
O= [ 0 0 ·· · 0 ]T . To define the GC value from y to x conditioned on z, we need to fit
the following full and partial VAR models,

xt=

m∑
j=1

a
(xx)
j xt−j+

m∑
j=1

a
(xy)
j yt−j+

m∑
j=1

a
(xz)
j zt−j+ε

(x|y,z)
t , (2.1)

xt=
m∑
j=1

c
(xx)
j xt−j+

m∑
j=1

c
(xz)
j zt−j+ε

(x|z)
t , (2.2)

where all variables are scalars except a(xz)
j , c

(xz)
j ∈R1×(p−2), zt−j ∈R(p−2)×1. The pa-

rameters a(xx)
j , a(xy)

j , a(xz)
j , c(xx)

j , and c
(xz)
j for j= 1,. ..,m are solved by minimizing

var(ε
(x|y,z)
t ) and var(ε

(x|z)
t ). In theory, the fitting order m is infinite, yet in practice

with finite data length, a finite m is determined by certain criteria such as Akaike
information criterion (AIC) [5] or Bayesian information criterion (BIC) [21].

The GC value from variable y to variable x in the time domain is defined as

Fy→x|z = ln
var(ε

(x|z)
t )

var(ε
(x|y,z)
t )

, (2.3)

as x is assumed to be a scalar, or

Fy→x|z = ln
det
(

var(ε
(x|z)
t )

)
det
(

var(ε
(x|y,z)
t )

) .
if x is multivariable (Ref. [12]).

By exchanging the variable indices, we can calculate the GC value for all pairs of
variables. According to the definition of GC (Eq. (2.3)), it is evident that the relation
between GC and the VAR model is implicit, which impedes one to understand the
interpretation of the GC value in terms of the underlying dynamical system. This
motivates us to express the GC value by the VAR parameters in this work.

It is worth mentioning that, in order to keep Equation (2.3) mathematically mean-
ingful, in this work, we focus on the case that the time series is wide-sense stationary
and purely non-deterministic [12, 26]. By non-deterministic we require Xt to lie out of

1In this paper, subscript denotes the time index of an element in a matrix or a time series; super-
script denotes the index of variables; subscript with a square bracket denotes a block matrix with the
number of blocks indexed by time.
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the space spanned by all its history {Xt−1,Xt−2,. ..}. This ensures var(ε
(x|y,z)
t )>0 in

Equation (2.3). By purely non-deterministic we additionally require that the projection
of Xt to its history {X−k,X−k−1,. ..} converges to a zero vector as k→∞, i.e., the
deterministic part of Xt in the Wold decomposition vanishes. This ensures that Xt can
be represented by a one-sided moving average

Xt=
∞∑
j=0

Bjεt−j , (2.4)

where Bj ∈Rp×p, B0 = I, and εt is white noise. Under the condition of Xt being purely
non-deterministic with bounded power spectrum density (PSD), we have the VAR rep-
resentation for the observed time series of the system

∞∑
j=0

AjXt−j =εt, (2.5)

where Aj ∈Rp×p, A0 = I. Equation (2.5) serves as the mathematical foundation of Eqs.
(2.1) and (2.2).

3. Exact expression of GC by VAR parameters
We first introduce an exact formula of GC semi-explicitly expressed by VAR pa-

rameters derived in the following theorem.

Theorem 3.1. Assume the power spectrum density S(w) of Xt has an upper bound
Smax and a lower bound Smin, i.e.,

σmin (S(w))≥Smin>0, σmax (S(w))≤Smax ∀w∈ [0,2π].

And {Xt} is fitted by an order m VAR model. Then the GC value defined in Equation
(2.3) can be expressed in the quadratic form of the VAR parameters:

Fy→x|z = ln

(
1+

a(xy)
(
Q(yy)

)−1(
a(xy)

)T
var(ε

(x|y,z)
t )

)
, (3.1)

where

a(uv) ,
(
a

(uv)
j

)
j=1...m

, for u,v∈{x,y,z}, (3.2)

and Q(yy) is a matrix coming from

Q=

Q(xx) Q(xy) Q(xz)

Q(yx) Q(yy) Q(yz)

Q(zx) Q(zy) Q(zz)

,R−1, (3.3)

with

R,

R(xx) R(xy) R(xz)

R(yx) R(yy) R(yz)

R(zx) R(zy) R(zz)

 (3.4)

and

R(uv) ,
(
E(ut−jv

T
t−k)

)
j,k=1...m

, for u,v∈{x,y,z}. (3.5)
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Here (gj)j=1...m is a row vector (a block matrix if gj is a matrix) with its j-th element
being gj, and (gjk)j,k=1...m is a matrix with the element in its j-th row and k-th column
being gjk. And the superscript ·T means matrix transpose, σmin (S(w)) (σmax (S(w)))
means the smallest (largest) singular value of S(w).2

Proof. By the definition of GC (Equation (2.3)), we have

Fy→x|z = ln
var(ε

(x|z)
t )

var(ε
(x|y,z)
t )

= ln

(
1+

var(ε
(x|z)
t )−var(ε

(x|y,z)
t )

var(ε
(x|y,z)
t )

)
.

Therefore, to prove the theorem, it is sufficient to prove that

var(ε
(x|z)
t )−var(ε

(x|y,z)
t ) =a(xy)

(
Q(yy)

)−1(
a(xy)

)T
. (3.6)

The coefficient a(xy) in Equation (3.6) comes from the following full VAR model,

xt=
m∑
j=1

a
(xx)
j xt−j+

m∑
j=1

a
(xy)
j yt−j+

m∑
j=1

a
(xz)
j zt−j+ε

(x|y,z)
t , (3.7)

which can be solved by the Yule–Walker equations (see Appendix A for the detailed
derivation),

[
a(xx) a(xy) a(xz)

]R(xx) R(xy) R(xz)

R(yx) R(yy) R(yz)

R(zx) R(zy) R(zz)

=
[
r(x|x) r(x|y) r(x|z) ] , (3.8)

where

r(u|v) =
(
E(utv

T
t−k)

)
k=1..m

, u,v∈{x,y,z}. (3.9)

Note that the matrix R is a symmetric matrix 3. Therefore, the fitting coefficients
a(xy) can be solved in the following two ways derived from Equation (3.8) and its
transposed version respectively,

a(xy) =
[
r(x|x) r(x|y) r(x|z) ]Q(xy)

Q(yy)

Q(zy)

,
(
a(xy)

)T
=
[
Q(yx) Q(yy) Q(yz)

][
r(x|x) r(x|y) r(x|z) ]T .

(3.10)

By right-multiplying xTt to both sides of Equation (3.7) and taking expectation, we get

var(xt) =a(xx)
(
r(x|x)

)T
+a(xy)

(
r(x|y)

)T
+a(xz)

(
r(x|z)

)T
+var(ε

(x|y,z)
t ).

Together with Equation (3.8), we get the prediction error

var(ε
(x|y,z)
t ) = var(xt)−SS(xyz), (3.11)

2Theorem 3.1 also applies to complex-valued time series by replacing the transpose operator to the
conjugate transpose operator.

3R is a Hermitian matrix in the case of complex-valued time series.
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where

SS(xyz) ,
[
r(x|x) r(x|y) r(x|z) ]R(xx) R(xy) R(xz)

R(yx) R(yy) R(yz)

R(zx) R(zy) R(zz)

−1 [
r(x|x) r(x|y) r(x|z) ]T . (3.12)

The inverse of R in Equation (3.12) exists because σmin(R)≥Smin>0 (see Proposition
E.1 in Appendix E).

Similarly, by solving the partial VAR model in the absence of the variable y (Equa-
tion (2.2)), we get the prediction error

var(ε
(x|z)
t ) = var(xt)−SS(xz),

where

SS(xz) ,
[
r(x|x) r(x|z) ][R(xx) R(xz)

R(zx) R(zz)

]−1 [
r(x|x) r(x|z) ]T . (3.13)

The inverse matrix in Equation (3.13) exists because it is a principal submatrix of R.
Now the left-hand side of Equation (3.6) becomes

var(ε
(x|z)
t )−var(ε

(x|y,z)
t ) =SS(xyz)−SS(xz).

Before calculating SS(xyz)−SS(xz), we first calculate the difference between the
following two terms, and express it in terms of the VAR coefficients a(xy),

I1 ,
[
r(x|x) r(x|y) r(x|z) ]Q(xx) Q(xy) Q(xz)

Q(yx) Q(yy) Q(yz)

Q(zx) Q(zy) Q(zz)

[r(x|x) r(x|y) r(x|z) ]T
−
[
r(x|x) r(x|z) ][Q(xx) Q(xz)

Q(zx) Q(zz)

][
r(x|x) r(x|z) ]T

=
[
r(x|x) r(x|y) r(x|z) ] O Q(xy) O

Q(yx) Q(yy) Q(yz)

O Q(zy) O

[r(x|x) r(x|y) r(x|z) ]T
=a(xy)

(
r(x|y)

)T
+r(x|y)

(
a(xy)

)T
−r(x|y)Q(yy)

(
r(x|y)

)T
. (3.14)

The last equality in Equation (3.14) holds by applying the decomposition O Q(xy) O
Q(yx) Q(yy) Q(yz)

O Q(zy) O

=

O Q(xy) O
O Q(yy) O
O Q(zy) O

+

 O O O
Q(yx) Q(yy) Q(yz)

O O O

−
O O O
O Q(yy) O
O O O


and Equation (3.10).

We next calculate the difference between the following two terms denoted by I2,
and express it in terms of the VAR coefficients a(xy),

I2 ,
[
r(x|x) r(x|z) ]([Q(xx) Q(xz)

Q(zx) Q(zz)

]
−
[
R(xx) R(xz)

R(zx) R(zz)

]−1
)[
r(x|x) r(x|z) ]T

=
[
r(x|x) r(x|z) ][Q(xy)

Q(zy)

](
Q(yy)

)−1 [
Q(yx) Q(yz)

][
r(x|x) r(x|z) ]T
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=
(
a(xy)−r(x|y)Q(yy)

)(
Q(yy)

)−1
((
a(xy)

)T
−Q(yy)

(
r(x|y)

)T)
. (3.15)

HereQ(yy) is invertible because it is a principal submatrix ofQ=R−1, σmin(Q(yy))≥
σmin(Q) =σ−1

max(R)≥S−1
max. In Equation (3.15), the second equality holds because[

R(xx) R(xz)

R(zx) R(zz)

]−1

=

[
Q(xx) Q(xz)

Q(zx) Q(zz)

]
−
[
Q(xy)

Q(zy)

](
Q(yy)

)−1 [
Q(yx) Q(yz)

]
obtained by applying Theorem B.1 in Appendix B, and the last equality holds due to
Equation (3.10).

Combining Equations (3.14) and (3.15), now we can express the difference SS(xyz)−
SS(xz) in terms of the VAR coefficients a(xy),

SS(xyz)−SS(xz) = I1 +I2

=a(xy)
(
r(x|y)

)T
+r(x|y)

(
a(xy)

)T
−r(x|y)Q(yy)

(
r(x|y)

)T
+
(
a(xy)−r(x|y)Q(yy)

)(
Q(yy)

)−1
((
a(xy)

)T
−Q(yy)

(
r(x|y)

)T)
=a(xy)

(
Q(yy)

)−1(
a(xy)

)T
.

This completes the proof.

Theorem 3.1 can be extended to the general case of multivariable xt and yt as
follows.

Proposition 3.1. Under the same condition in Theorem 3.1, for multivariable xt
and yt, we have

Fy→x|z = lndet

(
I+
(

var(ε
(x|y,z)
t )

)− 1
2

a(xy)
(
Q(yy)

)−1
((

var(ε
(x|y,z)
t )

)− 1
2

a(xy)

)T)
where M

1
2 means the decomposition of the positive definite matrix M such that

M
1
2

(
M

1
2

)T
=M .

Proof. By the definition of the GC value, and noting that var(ε
(x|y,z)
t ) is positive

definite, we have

Fy→x|z

=ln
det
(

var(ε
(x|z)
t )

)
det
(

var(ε
(x|y,z)
t )

) = ln
det
(

var(ε
(x|y,z)
t )+

(
var(ε

(x|z)
t )−var(ε

(x|y,z)
t )

))
det
(

var(ε
(x|y,z)
t )

)
=lndet

(
I+
(

var(ε
(x|y,z)
t )

)− 1
2
(

var(ε
(x|z)
t )−var(ε

(x|y,z)
t )

)((
var(ε

(x|y,z)
t )

)− 1
2

)T)
.

Then by following Equation (3.6) and thereafter, it is straightforward to complete the
proof of the proposition.

Theorem 3.1 gives a semi-explicit formula of GC, and the non-explicit part lies
in Q(yy) which, in principle, can be determined by the VAR parameters also. Yet it
provides several additional information of GC that cannot be gained from the original
GC definition (Equation (2.3)):
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• Q(yy) is a positive definite matrix. This implies that a(xy)
(
Q(yy)

)−1(
a(xy)

)T
is approximately quadratic (skewed by

(
Q(yy)

)−1
) when

∥∥a(xy)
∥∥

2
is small, thus

Fy→x|z is also a quadratic function of a(xy) approximately.
• Assume the variance of prediction error Σ is a diagonal matrix. Then af-

ter whitening Xt by causal filters on each variable and normalizing Xt so
that Σ = I — a process that does not change GC [10, 12], if the interaction
among x, y and z is weak (

∥∥a(uv)
∥∥

2
�1, ∀u,v∈{x,y,z}), then we have the

approximation R≈ I, Q≈ I, thus Q(yy)≈ I. In this case, GC is approximately
Fy→x|z≈a(xy)

(
a(xy)

)T
=
∥∥a(xy)

∥∥2

2
, a clean quadratic function of a(xy).

• Equation (3.1) provides a more accurate way to compute GC numerically than
using its original definition by Equation (2.3). In particular, when the interac-
tion is weak, var(ε

(x|z)
t ) and var(ε

(x|y,z)
t ) would be close, thus the ratio between

them in Fy→x|z will lose significant digits. Equation (3.1) avoids this prob-
lem. For example, in some extreme cases, the GC value computed by Equation
(3.1) can achieve the order of accuracy of 10−30 when using double precision
arithmetic, in contrast to 10−16 when computed by Equation (2.3).
• Equation (3.1) substantially saves computation time by avoiding computing the

partial VAR model Equation (2.2). Note that, for a large dynamical system, a
substantial amount of partial VAR models need to be calculated according to
GC definition (Equation (2.3)) in order to identify the causal relation between
all pairs of variables in the system. Therefore, Equation (3.1) can lead to fast
algorithms of conditional GC.
• The finite regression order requirement in Theorem 3.1 can be dropped. In

fact, as the regression order m→∞, we can show that the computed Fy→x|z
will converge to its theoretical limit due to the convergence of the monotone
sequences var(ε

(x|z)
t ) and var(ε

(x|y,z)
t ). We can modify the proof in Theorem 3.1

for the case of m=∞ by replacing matrices with linear operators since these
matrices are all norm bounded regardless of m.
• R is a block Toeplitz matrix, correspondingly Q and Q(yy) can be proved to

be approximately Toeplitz matrices. Therefore, Q(yy) can be approximated by
its power spectrum [16], which inspires us to approximate GC in the Fourier
domain. We will discuss this issue in Section 4.1.

4. Approximation of GC by VAR parameters
Equation (3.1) links the GC value Fy→x|z with the VAR coefficient a(xy), which

provides an intuitive interpretation for Fy→x|z. For instance, Fy→x|z takes a large value
when a(xy) is large. However, there is still an implicit part Q(yy) in the expression of the
GC value in Equation (3.1). This section aims to develop expressions that approximate
Q(yy) and further derive the GC value using VAR coefficients and prediction variances
explicitly.

4.1. Asymptotically equivalent approximation of GC. We note that Q(yy)

is approximately a Toeplitz matrix, which has a tight relationship to the Fourier trans-
form [15, 16]. In fact, the Fourier transform has become an effective tool to solve time
series problems involving a Toeplitz matrix [9]. This subsection utilizes this idea to
link Q(yy) with the VAR parameters and eventually derive an approximation of GC
expressed by VAR parameters.
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4.1.1. Notation of the power spectrum of time series. Let S(w) denote the
power spectrum density of Xt. By Wiener–Khinchin theorem [26], under the condition
of Xt being purely non-deterministic, we have

S(w) =FDTFT

[
{Rj}j∈Z

]
(w),

where
Rj,E

(
XtX

T
t−j
)
, (4.1)

and the discrete-time Fourier transform (DTFT) is defined as

FDTFT

[
{Rj}j∈Z

]
=
∑
j∈Z

Rje
−ijw.

More details of DTFT on a matrix function can be found in Appendix C. In the following,
to simplify the notation, we use Ã to denote the DTFT of a (matrix) time series {Aj}.

According to Section 2, a time series Xt with bounded PSD has a VAR representa-
tion

m∑
j=0

AjXt−j =εt, (4.2)

where

Aj =−

a
(xx)
j a

(xy)
j a

(xz)
j

a
(yx)
j a

(yy)
j a

(yz)
j

a
(zx)
j a

(zy)
j a

(zz)
j

, A0 =

I 0 0
0 I 0
0 0 I

, A−j =

0 0 0
0 0 0
0 0 0

, ∀j >0,

and m can be ∞. According to Lemma 3.8 in Ref. [27], we have

S(w) = Ã−1(w)Σ
(
Ã−1(w)

)H
, (4.3)

where ·H means conjugate transpose, and Σ =var(εt) is the variance of the prediction
error. We denote the inverse of S(w) as

Q̃(w),S−1(w) = ÃH(w)Σ−1Ã(w). (4.4)

4.1.2. Derivation of asymptotically equivalent approximation of GC. In
this subsection, we will derive an asymptotically equivalent approximation of GC in the
following theorem.

Theorem 4.1. Under the same condition of Theorem 3.1, for small GC value Fy→x|z,
we have the approximation relation

Fy→x|z≈
1

2π

∫ π

−π
f

(app)
y→x|z(w)dw,

where

f
(app)
y→x|z(w), Ã(xy)(w)

(
Q̃(yy)(w)

)−1

Σ(xx)

(
Ã(xy)(w)

)H
. (4.5)

Here Σ(xx) = var(ε
(x|y,z)
t ), Q̃(yy) is the second-row-second-column element of Q̃ (Equa-

tion (4.4)), similarly Ã(xy) is the first-row-second-column element of Ã.4

4·(uv) means extracting the submatrix corresponding to a pair of variables u and v.
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Proof. To define the mathematical meaning of the approximation in the theorem,
we first introduce the concept of asymptotic equivalence [16] as follows.

Suppose we have two sequences of matrices Bm, Cm∈Cm×m, if ‖Bm‖2 and ‖Cm‖2
are bounded 5 (irrelevant to m), and if

‖Bm−Cm‖F√
m

→0 as m→∞,

then we define the sequences {Bm} and {Cm} as asymptotically equivalent, denoted by
{Bm}∼{Cm}.

Our aim is to approximate
(
Q(yy)

)−1
in Equation (3.1) by an asymptotically equiv-

alent matrix, such that the matrix can be explicitly expressed by the AR parameters.
We start from a block Toeplitz matrix R[m] by permuting the entries in R to group
variables of the same time index together

R[m] ,


R0 R1 ·· · Rm−1

R−1 R0
. . .

...
...

. . . . . . R1

R1−m ·· · R−1 R0

, (4.6)

where Rj is defined in Equation (4.1). Then
{
R[m]

}
∼{Cm(S)} according to Lemma

6.1 in Ref. [16], where Cm is an operator that constructs a block circulant matrix using
elements from the inverse discrete Fourier transform,

Cm(S),


c0 c1 ·· · cm−1

cm−1 c0 ·· · cm−2

...
. . . . . .

...
c1 c2 ·· · c0


and

ck =
m−1∑
j=0

S(2π
j

m
)e2πijk/m. (4.7)

By applying Theorem 6.4 in Ref. [16], we also have{
R−1

[m]

}
∼
{
Cm(S−1)

}
=
{
Cm(Q̃)

}
. (4.8)

The matrix Q(yy) in Equation (3.1) is a permuted submatrix of R−1
[m], let’s denote

its size in subscript Q(yy)
[m] . Similarly, Cm(Q̃(yy)) is a permuted submatrix of Cm(Q̃), we

thus have {
Q

(yy)
[m]

}
∼
{
Cm(Q̃(yy))

}
.

Note that Q̃(yy)(w) is continuous and invertible, and according to Proposition E.1 in
Appendix E we have

σmin

(
Q

(yy)
[m]

)
≥σmin

(
R−1

[m]

)
=

1

σmax

(
R[m]

) ≥ 1

Smax
,

5‖·‖2 means the matrix 2-norm, ‖·‖F means the Frobenius norm.
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i.e.,
∥∥∥∥(Q(yy)

[m]

)−1
∥∥∥∥

2

is bounded. Therefore, by using Theorem 6.4 in Ref. [16], we have

{(
Q

(yy)
[m]

)−1
}
∼
{
Cm
((

Q̃(yy)
)−1

)}
,

which is the desired asymptotically equivalent matrix of
(
Q(yy)

)−1
, since Q̃(yy) can be

explicitly expressed by AR parameters as shown in Equation (4.4).
With the help of the approximated

(
Q(yy)

)−1
, we derive the approximation of GC in

the following. Note that the product of a circulant matrix and a vector can be computed
from the circular convolution of the matrix element and the vector. For our case, we
have

Cm
((

Q̃(yy)
)−1

)(
a(xy)

)T
=C1,m

((
Q̃(yy)

)−1(
Ã(xy)eiw

)H)
, (4.9)

where C1,m is defined as

C1,m (S),
[
c0 c1 ·· · cm−1

]
,

with ci defined in Equation (4.7). The factor eiw appears due to the fact that the index
for elements in a(xy) starts from zero instead of one when performing DFT.

By applying Parseval’s theorem of DFT, from Equation (4.9) we obtain

a(xy)Cm
((

Q̃(yy)
)−1

)(
a(xy)

)T
=
m−1∑
j=0

Ã(xy)(wj)
(
Q̃(yy)(wj)

)−1(
Ã(xy)(wj)

)H
,

where wj = 2πj
m . And in the limiting case

a(xy)Cm
((

Q̃(yy)
)−1

)(
a(xy)

)T
→ 1

2π

∫ π

−π
Ã(xy)

(
Q̃(yy)

)−1(
Ã(xy)

)H
dw as m→∞.

(4.10)
Based on the right-hand side of Equation (4.10), we define f (app)

y→x|z(w) as Equation
(4.5). For small Fy→x|z such that

Fy→x|z = ln

(
1+

a(xy)
(
Q(yy)

)−1(
a(xy)

)T
var(ε

(x|y,z)
t )

)
≈
a(xy)

(
Q(yy)

)−1(
a(xy)

)T
var(ε

(x|y,z)
t )

,

by using Equations (4.5) and (4.10), we can approximate GC as

Fy→x|z≈
a(xy)

(
Q(yy)

)−1(
a(xy)

)T
var(ε

(x|y,z)
t )

≈ 1

2π

∫ π

−π
f

(app)
y→x|z(w)dw, (4.11)

which ends the proof.

Theorem 4.1 shows that f (app)
y→x|z is in fact an approximate frequency-domain decom-

position of time-domain GC Fy→x|z. It is now straightforward to write down f
(app)
y→x|z

expressed fully by parameters in the full VAR model, by combining Equation (4.4) and
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Equation (4.5)

f
(app)
y→x|z(w) =

(
Σ(xx)

)− 1
2

Ã(xy)


Ã(xy)

Ã(yy)

Ã(zy)

HΣ−1

Ã(xy)

Ã(yy)

Ã(zy)



−1((

Σ(xx)
)− 1

2

Ã(xy)

)H
.

(4.12)
The approximation of GC can be further simplified by assuming Σ is diagonal as

often observed in practice. In such a case, we have

Q̃(yy) =
∑

u∈{x,y,z}

(
Ã(uy)

)H (
Σ(uu)

)−1

Ã(uy). (4.13)

Therefore, we can obtain a second approximation of GC in the frequency domain as

f
(app2)
y→x|z ,

Ã(xy)
(
Σ(xx)

)−1
(
Ã(xy)

)H
∑
u∈{x,y,z}

(
Ã(uy)

)H (
Σ(uu)

)−1
Ã(uy)

. (4.14)

With Equation (4.14), it becomes evident how GC depends on the VAR parameters.
For instance, some coefficients will not affect GC, e.g., Fy→x|z is only affected by Ã(xy),
Ã(yy), Ã(zy), and Σ, but not, say Ã(yx) and Ã(yz).

4.2. Tight convergent approximation of GC. It is mathematically challeng-
ing to estimate the accuracy of the approximation of GC given by Equations (4.11),
(4.12) and (4.14), which could limit its application. In this subsection, we aim to derive
an alternative GC approximation using VAR parameters in a similar form. Importantly,
we prove that our derived GC approximation becomes exact in the limit of the regression
order m being infinity.

The key to derive the GC approximation lies in representing the inverse covariance
matrix R−1

[m] by VAR parameters. Ref. [28] and Ref. [13] provide ways to calculate R−1
[m]

using VAR parameters for a simple univariate AR process. We next generalize the
result to the multivariable case, and finally derive a convergent approximation for GC.
In this subsection, the main theorem of GC approximation is Theorem 4.3, and its proof
requires proving Theorem 4.2 and Corollary 4.1 as follows.

Theorem 4.2 (Representing the inverse of covariance matrix by VAR parameters).
Under the same condition of Theorem 3.1, in addition, assume the time series Xt

matches an order mtrue VAR model exactly, we then have the following representation
of R−1

[m] when choosing the regression order m≥mtrue in the full VAR model (Equation
(2.1)),

R−1
[m] =V −1

[m] −L[m]C
−1
[m]L

H
[m], (4.15)

where R[m],V[m],L[m],C[m]∈Rmp×mp, R[m] is defined in Equation (4.6), and V[m] is
defined as

V[m] , À
−1
[m]Γ[m]

(
À−1

[m]

)H
,
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and À[m] and Γ[m] are defined by VAR parameters

À[m] ,


A0 A1 ·· · Am−1

O A0
. . .

...
...

. . . . . . A1

O ·· · O A0

, Γ[m] ,


Σ O ·· · O

O Σ
. . .

...
...
. . . . . . O

O ·· · O Σ

 (same size as À[m]),

Aj is defined in Equation (4.2) and Aj =O for j >mtrue, O means a zero matrix, and
R[m] is defined in Equation (4.6).

In addition, L[m] has the structure

L[m] =

[
O(m−mtrue)p×mtruep O(m−mtrue)p×(m−mtrue)p

L[mtrue] Omtruep×(m−mtrue)p

]
, (4.16)

where Om×n is an m×n matrix of zeros and
∥∥∥C−1

[m]

∥∥∥
2
is bounded regardless of m.

Proof. For any VAR process with a finite regression order m≥mtrue, the Z-
transform representation of Equation (4.3), or the so-called spectral polynomial satisfies

∞∑
k=−∞

Rkz
k =

(
m∑
k=0

Akz
k

)−1

Σ

(
m∑
k=0

AHk z
−k

)−1

,

where Rj , defined in Equation (4.1), are the covariance matrices of time series generated
by {Aj} and Σ through Equation (4.2). Rearranging terms( ∞∑

k=−∞

Rkz
k

)(
m∑
k=0

AHk z
−k

)
=

(
m∑
k=0

Akz
k

)−1

Σ

and matching the coefficients of zj in both sides gives

m∑
k=0

Rk+jA
H
k =

{
BjΣ j≥0

O j<0
, (4.17)

where Bj is defined as

∞∑
k=0

Bkz
k =

(
m∑
k=0

Akz
k

)−1

. (4.18)

Note that Bj is well defined because
∑m
k=0Akz

k does not have any zero roots within
the unit disk on the z-complex plane, i.e., it is minimum-phase [25]. By defining

R[m] ,


R0 R1 ·· · Rm−1

R−1 R0
. . .

...
...

. . . . . . R1

R1−m ·· · R−1 R0

, R?[m] ,


R−m ·· · R−2 R−1

R−m−1 R−m R−2

...
. . . . . .

...
R1−2m ·· · R−m−1 R−m

, (4.19)
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ÀH[m] ,


AH0 O ·· · O

AH1 AH0
. . .

...
...

. . . . . . O
AHm−1 ·· · AH1 AH0

, ÀH?[m] ,


AHm ·· · AH2 AH1
O AHm AH2
...

. . .
...

O ·· · O AHm

,

B̀[m] ,


B0 B1 ·· · Bm−1

O B0
. . .

...
...

. . . B1

O ·· · O B0

, Γ[m] ,


Σ O ·· · O

O Σ
. . .

...
...
. . . . . . O

O ·· · O Σ

 (m×m blocks),

Equation (4.17) can be cast into block matrix form

[
R[m] R

H
?[m]

][ ÀH[m]

ÀH?[m]

]
= B̀[m]Γ[m], (4.20)

[
R?[m] R[m]

][ ÀH[m]

ÀH?[m]

]
=O. (4.21)

Here we introduce the notation of “ ` ” such that À[m] and B̀[m] are special forms of

block Toeplitz matrix6, and the notation of “?” such that
[
R?[m] R[m]

]
and

[
ÀH[m]

ÀH?[m]

]
are Toeplitz. Note that in Equation (4.18), only the first m terms of {Bj} instead of
infinite terms are needed to form a complete set of linear equations with {Aj}, i.e.,
B̀[m]À[m] = I. Therefore

B̀[m] = À−1
[m], (4.22)

where the inverse of À[m] exists because S(w) is bounded. For simplicity, now we omit
the subscript [m] in Equations (4.20)-(4.22). From Equations (4.20)-(4.22) we get

RÀH +RH? À
H
? = À−1Γ, (4.23)

R?À
H +RÀH? =O. (4.24)

In Equation (4.23), by left-multiplying À, and replacing ÀRH? by taking the conjugate
transpose of Equation (4.24), we arrive at

ÀRÀH−À?RÀH? = Γ. (4.25)

By defining

G, À−1À?, (4.26)

Equation (4.25) becomes

GRGH−R+V = 0, (4.27)

6There is one exception of Q̀ defined in Equation (4.32).
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which is known as the discrete Lyapunov equation.
Applying binomial inverse theorem [7] to Equation (4.27) to solve R−1, we get

R−1 =
(
V +GRGH

)−1

=V −1−V −1G(R−1 +GHV −1G)−1GHV −1

=V −1−ÀHΓ−1À?(R
−1 +ÀH? Γ−1À?)

−1ÀH? Γ−1À. (4.28)

The proof of Equation (4.15) completes by defining

L[m] , À
H
[m]Γ

−1
[m]À?[m], (4.29)

C[m] ,R
−1
[m] +ÀH?[m]Γ

−1
[m]À?[m], (4.30)

and substituting L[m] and C[m] into Equation (4.28).
To examine the structure of L[m] described by Equation (4.16), let’s first focus

on Equation (4.29). For any m≥mtrue, the non-zero blocks of À? will be located at
its lower left corner, and the non-zero blocks of À will be located around its upper
diagonal. Hence the non-zero terms of ÀHΓ−1À? form a lower triangular block matrix
of size mtrue×mtrue blocks located in its lower left corner. These nonzero elements do
not change as m changes. This proves the structure of L[m] (Equation (4.16)).

For the bound on
∥∥∥C−1

[m]

∥∥∥
2
, we have

σmin

(
C[m]

)
≥σmin

(
R−1

[m]

)
=σ−1

max

(
R[m]

)
, (4.31)

∥∥∥C−1
[m]

∥∥∥
2

=σ−1
min

(
C[m]

)
≤σmax

(
R[m]

)
.

Due to Proposition E.1 in Appendix E, σmax

(
R[m]

)
is bounded regardless of m, so is∥∥∥C−1

[m]

∥∥∥
2
.

Based on Theorem 4.2, we have the following remarks:
• The error of estimating R−1

[m] by V
−1
[m] is a low-rank and sparse matrix due to

the sparse structure of L[m], which will be further seen in Proposition 4.1. This
provides us a way to approximate Q by only VAR parameters through V −1

[m] .

• It happens that only the upper left of Q (including Q(yy)) is important for
GC computation, because GC can be computed from vector-matrix product
a(xy)

(
Q(yy)

)−1
and aj→0 as j→∞ under the condition of Theorem 3.1. The

convergence of V −1
[m] under this type of vector-matrix product will be discussed

in Corollary 4.1.
• According to Equation (4.28), we can design an iterative scheme to compute

the full matrix R−1
[m] accurately by choosing m≥2mtrue.

• Another version of Theorem 4.2 can be proved by reordering the elements ac-
cording to variable index instead of time index in R−1

[m], À[m], and Γ[m], which
is concluded in Proposition 4.2.
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Proposition 4.1 (Element-wise approximation to R−1
[m]). Under the condition of

Theorem 4.2, R−1
[m] can be approximated by V −1

[m] according to

R−1
[m] ◦ 1̂[m] =V −1

[m] ◦ 1̂[m],

where ◦ means Hadamard product (element-wise product), and 1̂[m] is defined as

1̂[m] ,

[
1(m−mtrue)p×(m−mtrue)p 1(m−mtrue)p×mtruep

1mtruep×(m−mtrue)p Omtruep×mtruep

]
,

in which 1m×n is an m×n matrix of ones.

Proof. By Theorem 4.2, we have

R−1
[m] =V −1

[m] −L[m]C
−1
[m]L

H
[m].

The non-zero elements of the L[m]C
−1
[m]L

H
[m] is a block matrix of size mtrue×mtrue lo-

cated at its lower right corner, independent of the value of R−1. Therefore, R−1 equals
V −1

[m] except its lower right mtrue×mtrue blocks. The Hadamard product ◦1̂[m] picks out
all the identical elements in the two matrices. We point out that m=mtrue is a trivial
case.

Proposition 4.2 (Element-wise approximation to Q). Under the condition of Theo-
rem 4.2, the inverse covariance matrix Q can be approximated by Q̀ according to 7

Q◦ 1̂[xyz] = Q̀◦ 1̂[xyz], (4.32)

where we define

Q̀,
(
À[xyz]

)T (
Γ[xyz]

)−1

À[xyz],

À[xyz] ,

 À(xx) À(xy) À(xz)

À(yx) À(yy) À(yz)

À(zx) À(zy) À(zz)

, Γ[xyz] ,

Γ(xx) Γ(xy) Γ(xz)

Γ(yx) Γ(yy) Γ(yz)

Γ(zx) Γ(zy) Γ(zz)

,

À(uv) ,


a

(uv)
0 a

(uv)
1 ·· · a(uv)

m−1

0 a
(uv)
0

. . .
...

...
. . . . . . a(uv)

1

0 ·· · 0 a
(uv)
0

, Γ(uv) ,


E(ε

(u)
t ε

(v)T
t ) 0 ·· · 0

0
. . . . . .

...
...

. . . . . . 0

0 ·· · 0 E(ε
(u)
t ε

(v)T
t )

,

and here Γ(uv) is an m×m block matrix, a(uv)
0 = δuvI, u,v∈{x,y,z}, and 1̂[xyz] is a

permuted 1̂[m] following the same way as permuting À[xyz] to À[m]. (The proof is omitted
here.)

7The superscript ·[xyz] means rearranging the matrix in the order of variables x, y and z (variable-
major order), instead of time-major order (·[m]). Note that this subscript is omitted if self-evident, for
example, Q is equivalent to Q[xyz].
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We comment that although Q contains additional information of a(uv)
m for u,v∈

{x,y,z} compared with Q̀ by their definitions, both of them contain identical VAR
information when m≥mtrue +1. In addition, Q̀ consists of blocks

Q̀(uv) =
∑

j∈{x,y,z}

∑
k∈{x,y,z}

(
À(ju)

)H((
Γ[xyz]

)−1
)(jk)

À(kv). (4.33)

Here
((

Γ[xyz]
)−1
)(jk)

means the block submatrix in the j-th row k-th column of(
Γ[xyz]

)−1
following the same partition order as Γ[xyz]. We can prove the convergence

relation between Q(uv) and Q̀(uv) as well as the inverse case in Corollary 4.1 below.

Before the corollary, we first introduce the permutation matrices P [xyz]
[m] and P (u)

[m] to
reorder matrices such that

R=P
[xyz]
[m] R[m]P

[xyz]T
[m] ,

and

R(uv) =P
(u)
[m]R[m]P

(v)T
[m] , (4.34)

where R and R[m] are defined in Equation (3.4) and Equation (4.19) respectively. We
will use the permutation matrices to prove Corollary 4.1 in the following.

Corollary 4.1 (Approximation to Q under vector multiplication). Under the same
condition as Theorem 4.2, for any vector b=

[
b0 ·· · bm−1

]
,
∑
j≥0‖bj‖

2
2<∞, we have

the following element-wise convergence relation

bQ̀(uv)→bQ(uv), (4.35)

b
(
Q̀(uu)

)−1

→b
(
Q(uu)

)−1

, (4.36)

for m→∞, u,v∈{x,y,z}. Here bj has the same matrix size as a(uu)
j (see also Equation

(3.2)).

Proof. According to Theorem 4.2, we have

R−1
[m] =V −1

[m] −L[m]C
−1
[m]L

H
[m]. (4.37)

In addition, the matrices Q(uv) and Q̀(uv) can be expressed through a reordering of the
elements in R−1

[m] and V
−1
[m] according to variable index

Q(uv) =P
(u)
[m]R

−1
[m]P

(v)T
[m] , (4.38)

Q̀(uv) =P
(u)
[m]V

−1
[m]P

(v)T
[m] , (4.39)

where P is the permutation matrix that has been used previously in Equation (4.34).
Now we are ready to prove Equation (4.35). From Equations (4.37)-(4.39), we have

Q(uv)−Q̀(uv) =−P (u)LC−1LHP (v)T , (4.40)
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where the subscript [m] in all matrices are omitted in the proof to further simplify the
notation.

From Theorem 4.2 we know P (u)L and LHP (v)T are low rank (at mostmtrue×mtrue
nonzero blocks) matrices. Actually,

P (u)LC−1LHP (v)T =

[
O[(m−mtrue)×(m−mtrue)] O[(m−mtrue)×mtrue]

O[mtrue×(m−mtrue)] M

]
,

whereM is a submatrix of the same size as O[mtrue×mtrue], O[m×n] means a block matrix
of zeros withm×n blocks, and each block has the same size as a(uv)

j (size can be different
depending on u and v). Therefore, we have

b
(
Q(uv)−Q̀(uv)

)
=
(
b◦
[
O[1×(m−mtrue)] 1[1×mtrue]

])(
Q(uv)−Q̀(uv)

)
.

Correspondingly, we can estimate the bound of b
(
Q(uv)−Q̀(uv)

)
as∥∥∥b(Q(uv)−Q̀(uv)

)∥∥∥
2
≤
∥∥b◦[O[1×(m−mtrue)] 1[1×mtrue]

]∥∥
2

∥∥∥P (u)LC−1LHP (v)T
∥∥∥

2
,

where
∥∥P (u)LC−1LHP (v)T

∥∥
2
≤
∥∥C−1

∥∥
2

∥∥P (u)L
∥∥2

2
.

Clearly the nonzero elements in L[m] are always located in a block L[mtrue] which does
not change asm increases. Therefore

∥∥L[mtrue]

∥∥
2
and

∥∥L[m]

∥∥
2
is upper bounded, regard-

less ofm. Because the operation of permutation P (u) does not increase matrix 2-norm of
L[m], and the bound on

∥∥C−1
∥∥

2
has been given in Theorem 4.2,

∥∥P (u)LC−1LHP (v)T
∥∥

2
is bounded.

Note that we also have
∥∥b◦[O[1×(m−mtrue)] 1[1×mtrue]

]∥∥
2
→0 as m→∞, because∑

j≥0‖bj‖
2
2<∞. Therefore,

1
√
p

∥∥∥b(Q(uv)−Q̀(uv)
)∥∥∥

F
≤
∥∥∥b(Q(uv)−Q̀(uv)

)∥∥∥
2
→0.

This proves Equation (4.35).
We next prove Equation (4.36). From Equation (4.40), we have

Q̀(uu) =Q(uu) +P (u)LC−1LHP (u)T . (4.41)

By applying binomial inverse theorem to Equation (4.41), we have(
Q̀(uu)

)−1

=
(
Q(uu)

)−1

−
(
Q(uu)

)−1

P (u)L

(
C+LHP (u)T

(
Q(uu)

)−1

P (u)L

)−1

·LHP (u)T
(
Q(uu)

)−1

. (4.42)

We point out that Q(uu) is invertible because Q=R−1 is strictly positive definite,
Q(uu) is a principal submatrix of Q, from Proposition E.1 in Appendix E, we have
σmin

(
Q(uu)

)
≥σmin (Q)>0. Similarly, Q̀(uu) is invertible according to Proposition E.2

in Appendix E.
Correspondingly, we have∥∥∥∥b((Q̀(uu)

)−1

−
(
Q(uu)

)−1
)∥∥∥∥

2

≤
∥∥∥∥b(Q(uu)

)−1

P (u)L

∥∥∥∥
2
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·

∥∥∥∥∥
(
C+LHP (u)T

(
Q(uu)

)−1

P (u)L

)−1
∥∥∥∥∥

2

·
∥∥∥∥LHP (u)T

(
Q(uu)

)−1
∥∥∥∥

2

.

It is straightforward to bound the norms∥∥∥∥∥
(
C+LHP (u)T

(
Q(uu)

)−1

P (u)L

)−1
∥∥∥∥∥

2

= 1/σmin

(
C+LHP (u)T

(
Q(uu)

)−1

P (u)L

)
≤ 1

σmin (C)
, (4.43)

∥∥∥∥(Q(uu)
)−1

P (u)L

∥∥∥∥
2

≤
∥∥∥∥(Q(uu)

)−1
∥∥∥∥

2

‖L‖2 =
‖L‖2

σmin

(
Q(uu)

) . (4.44)

Note that

σ−1
min

(
Q(uu)

)
≤σ−1

min (Q) =σ−1
min

(
R−1

)
=σ−1

max (R) , (4.45)

together with Equations (4.16) and (4.31), the right-hand side of Equation (4.43) and
Equation (4.44) are upper bounded regardless of m.

In order to prove Equation (4.36), now it becomes sufficient to prove that∥∥∥∥b(Q(uu)
)−1

P (u)L

∥∥∥∥
2

→0 (m→∞). (4.46)

This is true because P (u)L picks only the last mtrue of m elements in d=b
(
Q(uu)

)−1
,

and the elements in d=
[
d0 ·· · dm−1

]
have the property of dm→0 as m→∞ due to

‖d‖2≤‖b‖2

∥∥∥∥(Q(uu)
)−1

∥∥∥∥
2

=‖b‖2σ
−1
min

(
Q(uu)

)
<∞ (∀m∈N). (4.47)

A uniformly bounded ‖d‖2 regardless ofm implies that all rows of d are 2-norm bounded
also, thus all rows of dm converge to 0 as m→∞.

Now let’s examine the bound on Equation (4.47). We have seen the bound on
σ−1

min

(
Q(uu)

)
in Equation (4.45). To estimate the bound on ‖b‖2 we need the property

of matrix 2-norm: for any fixedm, there exists a column vector c such that ‖b‖2 =‖bc‖2
and ‖c‖2 = 1. By splitting the vector c to match the partition of b, we have

‖bc‖2 =

∥∥∥∥∥∥
m−1∑
j=0

bjcj

∥∥∥∥∥∥
2

≤
m−1∑
j=0

‖bjcj‖2≤
m−1∑
j=0

‖bj‖2‖cj‖2≤
∞∑
j=0

‖bj‖2<∞,

i.e., ‖b‖2<∞ regardless of m.
Therefore, from Equations (4.43)-(4.46), we have∥∥∥∥b((Q̀(uu)

)−1

−
(
Q(uu)

)−1
)∥∥∥∥

2

→0

as m→∞, which proves Equation (4.36).
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We next introduce the main theorem in this subsection, which gives a convergent
approximation of GC explicitly expressed by VAR parameters.

Theorem 4.3 (Convergent explicit expression of GC). Under the same condition as
Theorem 4.2, we have the following element-wise convergence relations

a(xy)
(
Q̀(yy)

)−1(
a(xy)

)T
→a(xy)

(
Q(yy)

)−1(
a(xy)

)T
, (4.48)

F̀y→x|z, ln

1+
a(xy)

(
Q̀(yy)

)−1(
a(xy)

)T
Σ(xx)

→Fy→x|z, (4.49)

as m→∞. For definitions of symbols in the theorem, see Eq. (3.2) for a(xy), Equation
(3.3) for Q(yy) and Equation (4.33) for Q̀(yy), Σ(xx) = var(ε

(x|y,z)
t ).

Proof. To prove the theorem, we only need to verify that the VAR coefficients

a(xy) satisfy the assumption in Corollary 4.1 i.e.,
∑∞
j=0

∥∥∥a(xy)
j

∥∥∥2

2
<∞.

Because S(w) is lower bounded, we have

1

2π

∫ π

−π

∥∥S−1(w)
∥∥

2
dw≤ 1

2π

∫ π

−π
max
w

(∥∥S−1(w)
∥∥

2

)
dw<∞.

From Equation (4.4) and the relation between norms ‖·‖2 and ‖·‖F , we have

1
√
p

∥∥∥Ã(w)
∥∥∥2

F
=

1
√
p

∥∥∥ÃH(w)Ã(w)
∥∥∥
F
≤
∥∥∥ÃH(w)Ã(w)

∥∥∥
2
≤ 1

σmin (Σ−1)

∥∥S−1(w)
∥∥

2
.

Therefore, we have

∞∑
j=0

‖Aj‖22≤
∞∑
j=0

‖Aj‖2F =
1

2π

∫ π

−π

∥∥∥Ã(w)
∥∥∥2

F
dw<∞,

and
∞∑
j=0

∥∥∥a(xy)
j

∥∥∥2

2
≤
∞∑
j=0

‖Aj‖22<∞.

By Corollary 4.1,

a(xy)
(
Q̀(yy)

)−1

→a(xy)
(
Q(yy)

)−1

, (m→∞)

together with the arithmetic rules of limit, we complete the proof of Equations (4.48)
and (4.49).

We should point out that the finite mtrue condition in Theorem 4.3 can also be
dropped by the following observation: the only difference between the condition of
Theorem 3.1 and Theorem 4.3 is that the latter one requires the time series {Xt} to
match a finite order (mtrue) VAR model. However, under the condition in Theorem
3.1, for any infinite order VAR model there is a sequence of finite order VAR models
converging to it, in the sense that their second-order moments (i.e. {Rj}) are eventually
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all matched. Then the limit in Theorem 4.3 is valid for every VAR model in this
converging sequence because they are all finite-ordered. Thus by combining these two
embedded limiting processes, we have the convergence of Equation (4.49) for infinite
mtrue.

By definition, Q(yy)can be explicitly expressed by the parameters of the full VAR
model,

Q̀(yy) =

[(
À(xy)

)H (
À(yy)

)H (
À(zy)

)H](
Γ[xyz]

)−1

À(xy)

À(yy)

À(zy)

.
If we further assume that Γ[xyz] is diagonal as often observed in practice, Q̀(yy) can be
simplified as

Q̀(yy) =
∑

u∈{x,y,z}

(
À(uy)

)H (
Γ(uu)

)−1

À(uy),

which takes a similar form as Equation (4.13).
Based on Theorem 4.3, we have the following remarks,
• In practice, with finite data length, we need to determine a finite value of regres-

sion order for Equation (2.1) by AIC or BIC. Then to accurately approximate
GC using Equation (4.49), we use the VAR parameters in Equation (2.1) with
a sufficiently large m, and set Am= 0 for m being greater than the regression
order determined by AIC or BIC.
• The increase of m does not increase the difficulty of interpreting the GC value.

Note that quadratic part in Equation (4.49) is the same as that in Equation
(4.5). Therefore, all the interpretation or intuition originated from Equation
(4.5) can be applied to Equation (4.49), giving the interpretation of GC as a
function of VAR parameters a solid (convergent) foundation.

4.3. Numerical results. Here we demonstrate the accuracy of our derived
GC approximations Equation (4.12) and Equation (4.49) using the following numerical
example (a model from Ref. [8]),

xt= 0.8xt−1−0.5xt−1 +0.4zt−1 +0.2yt−2 +εt

yt= 0.9yt−1−0.8yt−2 +ξt

zt= 0.5zt−1−0.2zt−2 +0.5yt−1 +ηt

(4.50)

with var(εt) = 0.3, var(ξt) = 1.0, and var(ηt) = 0.2. The theoretical conditional GC value
between x, y, and z are Fy→x|z≈0.06742, Fz→x|y≈0.12360, Fy→z|z≈1.06839 respec-
tively and the GC values for the remaining pairs of variables are zeros. These theoretical
values are calculated by definition using Equations (2.1)-(2.3) with m being sufficiently
large, and with the theoretical covariances defined by Equations (3.5) and (3.9) that are
numerically computed by Equation (4.3) with sufficiently large discrete Fourier trans-
form (DFT) length (1024) and inverse DFT. Then VAR parameters are solved through
Yule–Walker equations. The approximations Equations (4.12), (4.32), and (4.49) are
computed through these VAR parameters.

Figure 4.1a demonstrates the accuracy of the GC approximation in the frequency
domain (Equation (4.12)), which well approximates the ground truth but with visible
error. To verify Equation (4.32), Figure 4.1b shows that Q and Q̀ are approximately
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the same. The difference between them only appears at the lower right block of the
two matrices, and the size of that block is exactly mtruep×mtruep= 6×6, as stated in
Proposition 4.2. To verify Equation (4.49), Figure 4.1c shows the errors of the GC
approximation by Equation (4.49) rapidly converge to zero as the regression order m
increases. In addition, zero GC values have zero error.
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Figure 4.1: (a) Comparison between the exact frequency domain GC (blue) and its approximation by
Equation (4.12) (green). (b) Difference between matrices Q and Q̀, with m= 10 (thus the block matrix
has a size of 30×30). (c) Comparison between the theoretical GC value and its tight approximation
given by Equation (4.49). The abscissa is the fitting order m. The red dotted line indicates the
significance level α= 10−3 for data length 105. There are six GC value curves in total, but the errors
for GC values Fx→y, Fx→z, and Fz→y are below 10−16 thus not visible.

5. Comparison between GC and other causality measures
In addition to GC, several other measurements of causality have been proposed

and extensively applied in practice, for instance, partial directed coherence (PDC) [2],
generalized partial directed coherence (gPDC) [1] and directed transfer function (DTF)
[18]. In this subsection, we introduce the definitions of the three causality measures and
identify the relation between them and GC using our derived GC expressions.

The PDC from variable y to variable x is defined as

πxy(w),
Ã(xy)(w)√ ∑

u∈{x,y,z}

(
Ã(uy)(w)

)H
Ã(uy)(w)

. (5.1)

The gPDC from variable y to variable x is defined as

π(g)
xy (w),

Ã(xy)(w)
(
Σ(xx)

)−1/2√ ∑
u∈{x,y,z}

(
Ã(uy)(w)

)H (
Σ(uu)

)−1

Ã(uy)(w)

. (5.2)

The DTF from variable y to variable x is defined as

γxy(w) =
B̃(xy)(w)√ ∑

u∈{x,y,z}

B̃(xu)(w)
(
B̃(xu)(w)

)H ,

where B̃(xu)(w) is the submatrix of B̃(w) corresponding to variables x and u∈{x,y,z},
and B̃(w) is the DTFT of Bj defined in Equation (2.4). B̃(w) is also called the transfer
function.
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By comparing Equation (5.1) and Equation (5.2) with the GC approximation Equa-
tion (4.14), we immediately see that PDC and gPDC are special forms of frequency
domain GC approximation. Specifically, we have

π(g)
xy (w)

(
π(g)
xy (w)

)∗
=f

(app2)
y→x|z (w)

under the assumptions of Σ being diagonal, where ·∗ means complex conjugate. And
PDC is identical to f (app2)

y→x|z under an additional assumption that Σ has identical entries
along its diagonal. If further assuming Fy→x|z being sufficiently small so that ln(1+

f
(app2)
y→x|z )≈f (app2)

y→x|z , we can reveal the relation between time domain GC and gPDC by

Fy→x|z≈
1

2π

∫ π

−π
π(g)
xy (w)

(
π(g)
xy (w)

)∗
dw.

The relationship between DTF and GC can be revealed by assuming that the inter-
action between variables are sufficiently small but not vanishing (i.e., ‖Aj‖2�1, ∀j≥1)
so that the Taylor expansion

B̀[m] =
(
I−
(
I−À[m]

))−1

≈ I+
(
I−À[m]

)
(5.3)

is relatively accurate. Here À[m] and B̀[m] are defined in Equation (4.22). Note that the
diagonal of I−À[m] are zeros, and the off-diagonal elements of RHS are −A1,−A2,·· ·,
i.e., Bj≈−Aj and B̃(w)≈−Ã(w) due to the approximation Equation (5.3). Thus

γxy(w)(γxy(w))
∗

=
B̃(xy)(w)

(
B̃(xy)(w)

)H
∑
u∈{x,y,z} B̃

(xu)(w)
(
B̃(xu)(w)

)H (5.4)

≈
Ã(xy)(w)

(
Ã(xy)(w)

)H
∑
u∈{x,y,z} Ã

(xu)(w)
(
Ã(xu)(w)

)H . (5.5)

Comparing Equation (5.5) with Equation (4.14), we see that if further assuming Σ = I,∑
u∈{y,z} Ã

(xu)(w)
(
Ã(xu)(w)

)H
�1, and

∑
u∈{y,z}

(
Ã(uy)(w)

)H
Ã(uy)(w)�1, we can

have γij(w)(γij(w))
∗≈f (app2)

y→x|z .
Here we have shown that PDC, gPDC, and DTF are closely related to the frequency

domain GC approximation Equation (4.14) under some conditions. By examining those
conditions we can obtain qualitative and sometimes quantitative differences among these
alternative measurements of causality. For example, the approximation of Bj by Aj in
Equation (5.3) may not be accurate enough and needs to include higher order terms of
Aj if the number of variables is large. Consequently, the DTF value is likely to deviate
from GC when applied to a large system. In contrast, the relationship between PDC
and f (app2)

y→x|z does not depend on the number of variables, and is actually exact.

6. Summary and discussion
In this work, we have derived a new formula of GC (Equation (3.1)), which reveals

a semi-explicit relation between the GC value and the full VAR model. This derived
formula greatly helps interpret the GC value in terms of the underlying dynamics. In
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order to write down a fully explicit relationship between the GC value and the VAR
parameters, we have developed two types of approximations described by Equation
(4.11) and Equation (4.49) respectively, which are summarized in Table 6.1. Equation
(4.11) is easy to interpret and compute, generally a non-convergent approximation.
Equation (4.49) provides an alternative convergent GC approximation with a similar
form as Equation (4.11), thus provides one with novel interpretation and intuition of
GC.

Methodology Fy→x|z “core part”

Original form ln
var(ε

(x|z)
t )

var(ε
(x|y,z)
t )

—

Variance reduction
form ln

(
1+F

(linear)
y→x|z

)
F

(linear)
y→x|z ,

a(xy)(Q(yy))
−1

(a(xy))
T

Σ(xx)

Q(yy) by circulant
approximation ≈ 1

2π

∫ π
−π f

(app)
y→x|z(w)dw f

(app)
y→x|z, Ã

(xy) (Q̃(yy))
−1

Σ(xx)

(
Ã(xy)

)H
Q(yy) by Toeplitz
approximation ≈ ln

(
1+ F̀

(linear)
y→x|z

)
F̀

(linear)
y→x|z ,

a(xy)(Q̀(yy))
−1

(a(xy))
T

Σ(xx)

Table 6.1: Different GC expressions. Note that the last two “core part” can be explicitly expressed
by VAR parameters: for circulant approximation, the expression utilizes frequency domain VAR coef-
ficients; for Toeplitz approximation, the expression involves “Toeplitz-rized” form of coefficients, i.e.,
À and Γ.

The GC approximation Equation (4.49) can be exact for finite m under a proper
assumption and a specific computational procedure, i.e., the time series is zero before
time zero and we do the regression by using its first m data points only, the covari-
ances needed in Yule–Walker equations are computed by taking average over multiple
realizations. From there we get an intuitive understanding of Theorem 4.3. As m goes
to infinity, data at the time zero point becomes a far elder history and tends to be
uncorrelated to most of the m samples. In other words, the difference between the
“positive time” signal and the full time signal is vanished, thus the GC of both time
series coincide.

Noting that both Equation (4.11) and Equation (4.49) can be expressed by simi-
lar operators involving Toeplitz matrices. It is thus possible to further investigate the
difference between Equation (4.11) and Equation (4.49), which may help to derive an
error bound. The methodology used to derive Equation (4.11) is also seen on various
applications in the field of signal processing and time series analysis [9], thus the the-
orems in Subsection 4.2 could be helpful for investigating errors in these applications
also.

Furthermore, the Toeplitz structure in Equation (3.1) also allows us to obtain an
approximation of the GC value in the frequency domain given by Equation (4.5), which
is derived by applying the Fourier analysis. As shown in Figure 4.1c, Equation (4.5)
well approximates the conditional frequency domain GC qualitatively. However, several
questions regarding the relation between the frequency domain GC and its approxima-
tion (Equation (4.5)) require further investigations, including (1) analyzing the error
bound of the approximation; and (2) deriving an exact or convergence expression of
frequency domain GC using VAR parameters on the basis of Equation (3.1). To an-
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alyze the error and convergence of the approximation, the difficulty largely lies in the
fact that the inversion of a Toeplitz matrix is no longer Toeplitz, although they are
asymptotically equivalent. To circumvent this difficulty, here we have derived an alter-
native approximation Equation (4.49) to approximate GC in the time domain rather
than the frequency domain. We also comment that, with the development of recent
advances in spectral matrix factorization techniques [17], there is a hope to derive an
exact expression of frequency domain GC using VAR parameters.

As a byproduct, the approximation to the inverse covariance matrix derived in
Theorem 4.2 is also useful in tackling many other problems involving covariance matrix
and linear regression, such as investigating the sparsity of the covariance matrix and
the VAR model.

The theorems in this paper might be generalized to nonlinear GC problems. e.g.,
when the nonlinear regression for the GC can be expressed as a linear combination of
certain nonlinear basis, or when the regression can be linearized after embedding data
points into certain space, i.e., the kernel trick [19].
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Appendix A. Yule–Walker equation. The ordinary least squares problem

xt=

m∑
j=1

a
(xx)
j xt−j+

m∑
j=1

a
(xy)
j yt−j+

m∑
j=1

a
(xz)
j zt−j+ε

(x|y,z)
t ,

can be solved by Yule–Walker equations

[
a(xx) a(xy) a(xz)

]R(xx) R(xy) R(xz)

R(yx) R(yy) R(yz)

R(zx) R(zy) R(zz)

=
[
r(x|x) r(x|y) r(x|z) ] , (A.1)

which is obtained by right-multiplying xTt−k and taking expectation on both sides,

E
(
xtx

T
t−k
)

=

m∑
j=1

a
(xx)
j E

(
xt−jx

T
t−k
)

+

m∑
j=1

a
(xy)
j E

(
yt−jx

T
t−k
)

+
m∑
j=1

a
(xz)
j E

(
zt−jx

T
t−k
)

+E
(
ε
(x|y,z)
t xTt−k

)
.

The least square minimization will lead to E
(
ε
(x|y,z)
t xTt−k

)
= 0 for k= 1,. ..,m, this

leads to Equation (A.2).

E
(
xtx

T
t−k
)

=
m∑
j=1

a
(xx)
j E

(
xt−jx

T
t−k
)

+
m∑
j=1

a
(xy)
j E

(
yt−jx

T
t−k
)

+
m∑
j=1

a
(xz)
j E

(
zt−jx

T
t−k
)
.

(A.2)
By using symbols defined in Equation (3.5) and Equation (3.9), i.e.

R(uv) =

(
E(x

(u)
t−j

(
x

(v)
t−k

)T
)

)
j,k=1...m

, (u,v∈{x,y,z}), (A.3)
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r(u|v) =
(
E(x

(u)
t x

(v)T
t−k )

)row

k=1..m
(u,v∈{x,y,z}), (A.4)

we reach Equation (A.1).

Appendix B. Inverse of submatrix.
Theorem B.1. For a block matrix with known inversion (assume all occurred inver-
sion of matrices are valid)

A−1 =

[
A11 A12

A21 A22

]−1

=B=

[
B11 B12

B21 B22

]
,

the sub-block inverse A−1
11 can be expressed in terms of submatrix of B:

A−1
11 =B11−B12B

−1
22 B21. (B.1)

Proof. A column transform of matrix B to eliminate its lower-left block reads:[
B11 B12

B21 B22

][
I O

−B−1
22 B21 I

]
=

[
B11−B12B

−1
22 B21 B12

O B22

]
.

Then left-multiplying matrix A to both sides, we get[
I O

−B−1
22 B21 I

]
=

[
A11 A12

A21 A22

][
B11−B12B

−1
22 B21 B12

O B22

]
.

Now its upper-left submatrix reveals the desired inverse A−1
11 :

I=A11

(
B11−B12B

−1
22 B21

)
.

In the main context, one more trick is used: a block submatrix follow the same rule
as “single patched” submatrix when performing inversion. e.g. submatrix

A11 =

[
R(xx) R(xz)

R(zx) R(zz)

]
(B.2)

of the whole matrix

R=

R(xx) R(xy) R(xz)

R(yx) R(yy) R(yz)

R(zx) R(zy) R(zz)


is related through column and row permutation I O O

O O I
O I O

 [R(xx)] R(xy) [R(xz)]
R(yx) R(yy) R(yz)

[R(zx)] R(zy) [R(zz)]

 I O O
O O I
O I O

=

[R(xx) R(xz)

R(zx) R(zz)

]
R(xy)

R(zy)

R(yx) R(yz) R(yy)

.
Note the inversion of the permutation here is itself: I O O

O O I
O I O

 I O O
O O I
O I O

=

 I O O
O I O
O O I

.
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Thus the inversion Q=R−1 relates to the inversion of permuted matrix in the same
way:

B=

 I O O
O O I
O I O

R(xx) R(xy) R(xz)

R(yx) R(yy) R(yz)

R(zx) R(zy) R(zz)

−1 I O O
O O I
O I O

=

[R(xx) R(xz)

R(zx) R(zz)

]
R(xy)

R(zy)

R(yx) R(yz) R(yy)

−1

.

Due to Equation (B.1) we know the inversion of the submatrix A11 from Equation
(B.2) can be computed from submatrices of B and thus from the submatrices of Q, i.e.
by defining B by

B11 =

[
Q(xx) Q(xz)

Q(zx) Q(zz)

]
, B12 =

[
Q(xy)

Q(zy)

]
,

B21 =
[
Q(yx) Q(yz)

]
, B22 =Q(yy).

Appendix C. Discrete-time Fourier transform on matrix function.
For any scalar or matrix valued time series Aj ∈Rm×n, we define its discrete-time

Fourier transform (DTFT) Ã(w) as:

Ã(w) =FDTFT

[
{Aj}j∈Z

]
(w),

∑
j∈Z

Aje
−ijw.

And its inverse discrete-time Fourier transform:

Aj =F−1
DTFT

[
Ã
]

(j),
1

2π

∫ π

−π
Ã(w)eijwdw.

For simplicity, we sometimes use the symbol with “tilde” to denote its DTFT, like
the Aj and Ã(w) above.

For DTFT and inverse DTFT to be meaningful, Aj or Ã(w) need to satisfy
some mild condition, such as {Aj} and Ã(w) both being absolutely summable, or∑
j∈Z‖Aj‖

2
2<∞ (‖·‖2 is the matrix spectral norm). Refer to standard text book

(e.g. [23]) for that topic.
Due to Wold’s theorem, DTFT is always valid in our case.
In case of matrix Aj and Ã(w), DTFT and inverse DTFT is defined entry-wise.

But still the convolution theorem applies

FDTFT

∑
j∈Z

AjBk−j


k∈Z

=FDTFT

[
{Aj}j∈Z

]
FDTFT

[
{Bj}j∈Z

]
(C.1)

here Aj ∈Rm×n, Bj ∈Rn×l (and suitable condition for DTFT to exist), the usual matrix
multiplication is used. As a corollary, the Parseval’s theorem in matrix form is∑

j∈Z
AjA

T
j =

1

2π

∫ π

−π
Ã(w)ÃH(w)dw. (C.2)

which can be seen by letting Bj =AT−j in Equation (C.1).
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Lemma C.1. Given power spectrum S(w), for any block vector ~B=
[
B0 B1 ·· ·

]∥∥∥ ~B ~BT∥∥∥
2
finite and its DTFT B̃(w), we have bound

∥∥∥ ~B ~BT∥∥∥
2
min
w
σmin (S(w))≤

∥∥∥∥ 1

2π

∫ π

−π
B̃(w)S(w)B̃H(w)dw

∥∥∥∥
2

≤
∥∥∥ ~B ~BT∥∥∥

2
max
w
‖S(w)‖2

(C.3)

Proof. By definition of norm ‖·‖2,∥∥∥∥ 1

2π

∫ π

−π
B̃(w)S(w)B̃H(w)dw

∥∥∥∥
2

= max
‖~c‖=1

1

2π

∫ π

−π
~cB̃(w)S(w)B̃H(w)~cHdw

≤max
‖~c‖=1

1

2π

∫ π

−π
~cB̃(w)‖S(w)‖2 B̃

H(w)~cHdw

=max
w
‖S(w)‖2

∥∥∥∥ 1

2π

∫ π

−π
B̃(w)B̃H(w)dw

∥∥∥∥
2

.

Due to Equation (C.2) ∥∥∥∥ 1

2π

∫ π

−π
B̃(w)B̃H(w)dw

∥∥∥∥
2

=
∥∥∥ ~B ~BT∥∥∥

2
,

thus we get the right-hand side inequality. Similarly for the left-hand side.

Appendix D. Block circulant matrix and DFT. It is well known that circulant
matrix is diagonalizable by discrete Fourier transform (DFT) matrix. Here we present
a block circulant matrix version of this fact.

For circulant matrix C= (Cjk)
m−1
j,k=0, Cjk =Ck−j , Cj+m=Cj

C=


C0 C1 ·· · Cm−1

Cm−1 C0
. . .

...
...

. . . . . . C1

C1 ·· · Cm−1 C0


We have diagonalization

1

m
FHCF =


C̃0 O ·· · O

O C̃1
. . .

...
...

. . . . . . O

O ·· · O C̃m−1

 (D.1)

where F is the block DFT matrix

F =
(
zjkI

)m−1

j,k=0
=


z0I z0I ·· · z0I
z0I z1I ·· · zm−1I
...

...
...

z0I zm−1I ·· · z(m−1)(m−1)I


z=e−2πi/m (D.2)
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C̃j =
m−1∑
k=0

Cke
−2πijk/m.

This can be proved by straightforward verification.
The unit root z in Equation (D.2) has period m, i.e. zj+m=zj . For any integers l,

n, we have

m−1∑
j=0

z−ljzn(q+j) =znq
m−1∑
j=0

z(n−l)j ,

m−1∑
j=0

z(n−l)j =

{
1−z(n−l)m

1−z(n−l) = 0 n− l -m
m n− l |m

.

Let Bl,n be the block entry of FHCF = (Bl,n)
m−1
l,n=0

Bl,n=
m−1∑
j=0

m−1∑
k=0

FHlj CjkFnk

=

m−1∑
q=0

m−1∑
j=0

FHlj CqFn,q+j (q=k−j)

=

{
O l 6=n

m
∑m−1
q=0 Cqz

nq =mC̃n l=n
.

This proves Equation (D.1).
As a consequence, F/

√
m is a unitary matrix (proved by letting Cj = δjI).

Another useful fact is, any general block matrix can be thought of as a part of block
circulant matrix.

For example

À[m] =


A0 A1 ·· · Am−1

O A0
. . .

...
...

. . . . . . A1

O ·· · O A0


is part of block circulant matrix (size 2m×2m)

AC[m] =

[
À[m] À?[m]

À?[m] À[m]

]
, (D.3)

where

À?[m] =


Am O ·· · O

Am−1 Am
. . .

...
...

. . . . . . O
A1 ·· · Am−1 Am

.
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As in Equation (D.1), AC[m] is block diagonalizable, where the block diagonal is DTFT
of {Aj}mj=0.

Appendix E. Relation between power spectrum and the covariance ma-
trix.
Proposition E.1 (Norm of covariance matrix). For any wide-sense stationary multi-
variable time series Xt, we have bounds on singular value of its covariance matrix

σmax

(
R[m]

)
=
∥∥R[m]

∥∥
2
≤max

w
‖S(w)‖2 , (E.1)

σmin

(
R[m]

)
≥min

w
σmin (S(w)), (E.2)

where σmin(C) and σmax(C) means minimum and maximum singular values of matrix C.
These are also the bounds for eigenvalues (λmax

(
R[m]

)
, λmin

(
R[m]

)
) due to R[m] =RT[m]

and R[m] positive semidefinite. (This is a multi-variable extension to Equation (2.38)
in Chap. 2.4.1 in [25].)

Proof. Consider a time series Yt as a filter result of Xt by ~B=
[
B0 B1 ·· · Bm−1

]
,

Yt=
m−1∑
j=0

BjXt−j .

Then the “variance” of Yt can be expressed in time domain,

E
(
YtY

T
t

)
=
m−1∑
j=0

m−1∑
k=0

BjE
(
Xt−jX

T
t−k
)
BTk = ~BR[m]

~BT , (E.3)

and in frequency domain (note m finite, so B̃(w) is always well-defined)

E
(
YtY

T
t

)
=

1

2π

∫ π

−π
B̃(w)S(w)B̃H(w)dw (E.4)

By definition of norm ‖·‖2, for c∈R1×mp,∥∥R[m]

∥∥
2

= max
‖~c‖2=1

~cR[m]~c
T

≤ max
‖ ~B ~BT‖

2
=1

∥∥E(YtY Tt )∥∥2
(by Equation (E.3))

≤ max
‖ ~B ~BT‖

2
=1

∥∥∥∥ 1

2π

∫ π

−π
B̃(w)S(w)B̃H(w)dw

∥∥∥∥
2

(by Equation (E.4))

≤max
w
‖S(w)‖2 (by Equation (C.3)).

Similarly for Equation (E.2).

Lemma E.1 (Bounds on À[m] by DTFT). Given white noise Wj ∈Rp×1, E
(
WjW

T
k

)
=

δjkΣ (δjk is Kronecker delta), and filter coefficients Cj ∈Rp×p, in matrix

W[m] =


W0

W1

...
Wm−1


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C[m] =


C0 O ·· · O

C1 C0
. . .

...
...

. . . . . . O
Cm−1 ·· · C1 C0

,

Z=C[m]W

we have bound ∥∥E(ZZT )∥∥
2
≤m‖Σ‖2

∥∥∥~C ~CT∥∥∥
2
,

where

~C=
[
C0 C1 ·· · Cm−1

]
.

Proof. We want to prove E
(
ZZT

)
=C[m]Γ[m]C

T
[m] is bounded, where

Γ[m] =


Σ O ·· · O

O Σ
. . .

...
...
. . . . . . O

O ·· · O Σ

 (m×m blocks).

Zero extend C−j =Cm−1+j =O, for all integers j≥1, and define

C?[m] =


Cm Cm−1 ·· · C1

O Cm
. . .

...
...

. . . . . . Cm−1

O ·· · O Cm

.

Also zero extend the white noise so that W−j =Wm−1+j =~0, ∀j≥1.
The filtering result Yj of Wj by Cj is

Yj =
∑
k∈Z

CkWj−k,

in matrix form

YL[m] =
[
Y T0 Y T1 ·· · Y Tm−1

]T
, YU [m] =

[
Y Tm Y Tm+1 ·· · Y T2m−1

]T
~Y =

[
YL[m]

YU [m]

]
=

[
C[m]

C?[m]

]
W[m].

It is the matrix C?[m] that helped us to express the problem in DTFT. Also note that
we have only finite terms of nonzero {Wj}, so its DTFT always exists:

C̃=FDTFT

[
{Cj}j∈Z

]
,
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W̃ =FDTFT

[
{Wj}j∈Z

]
,

Ỹ =FDTFT

[
{Yj}j∈Z

]
,

Ỹ (w) = C̃(w)W̃ (w).

Denote S(w) =E
(
W̃ (w)W̃H(w)

)
, so E

(
Ỹ (w)Ỹ H(w)

)
= C̃(w)S(w)C̃H(w). Due to

Lemma C.1:∥∥∥~C ~CT∥∥∥
2
min
w
σmin (S(w))≤

∥∥∥∥ 1

2π

∫ π

−π
C̃(w)S(w)C̃H(w)dw

∥∥∥∥
2

≤
∥∥∥~C ~CT∥∥∥

2
max
w
‖S(w)‖2 .

More explicitly, by convolution theorem

E
(
W̃ (w)W̃H(w)

)
=FDTFT

{E(∑
k∈Z

WkW
T
k−j

)}
j∈Z

=FDTFT

[
{δjmΣ}j∈Z

]
=mΣ.

So we get upper bound∥∥∥E(YL[m]Y
T
L[m]

)∥∥∥
2
≤
∥∥∥E(~Y ~Y T)∥∥∥

2

=

∥∥∥∥ 1

2π

∫ π

−π
E
(
Ỹ (w)Ỹ H(w)

)
dw

∥∥∥∥
2

≤m
∥∥∥~C ~CT∥∥∥

2
‖Σ‖2 ,

here Z=YL[m].

Proposition E.2 (bounds of coefficient matrix). For any wide-sense stationary
multi-variable time series Xt that has auto-regression representation

m∑
j=0

AjXt−j =Et (E.5)

where Aj =O ∀j >mtrue. And has bounded power spectrum

0<Smin≤σmin (S(w)), ‖S(w)‖2≤Smax<∞.

Then we have bounds∥∥∥ÀT[m]Γ
−1
[m]À[m]

∥∥∥
2
≤ max
w∈[0,2π]

∥∥S−1(w)
∥∥

2
+
∥∥∥ÀT?[m]Γ

−1
[m]À?[m]

∥∥∥
2
, (E.6)

σmin

∥∥∥ÀT[m]Γ
−1
[m]À[m]

∥∥∥
2
≥ min
w∈[0,2π]

σmin

(
S−1(w)

)
. (E.7)

where

À[m] =


A0 A1 ·· · Am−1

O A0
. . .

...
...

. . . . . . A1

O ·· · O A0

, Γ[m] =


Σ O ·· · O

O Σ
. . .

...
...
. . . . . . O

O ·· · O Σ

 (same size as À[m]),
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and Σ =E
(
EtE

T
t

)
.

In particular, Equation (E.6) is uniformly bounded with respect to m.

Proof. For convenience, redefine Aj←Σ−1/2Aj , where Σ−1/2 is square root of
positive semidefinite matrix Σ. i.e. we only need to prove the case of Σ = I,

∥∥∥ÀH[m]À[m]

∥∥∥
2

is uniformly bounded for ∀m≥mtrue.
Follow the construction of Equation (D.3) in Subsection D. Consider the big upper

left block of ATC[m]AC[m], that is ÀT[m]À[m] +ÀT?[m]À?[m]. Spectral norm of upper left
submatrix and the full matrix AC[m] has relation∥∥∥ÀT[m]À[m] +ÀT?[m]À?[m]

∥∥∥
2
≤
∥∥∥ATC[m]AC[m]

∥∥∥
2
.

Spectral norm of sum of matrices obey triangle inequality∥∥∥ÀT[m]À[m]

∥∥∥
2
≤
∥∥∥ÀT[m]À[m] +ÀT?[m]À?[m]

∥∥∥
2

+
∥∥∥ÀT?[m]À?[m]

∥∥∥
2
.

With Equation (D.1), we have∥∥∥ATC[m]AC[m]

∥∥∥
2

=

∥∥∥∥ 1

2m
FATC[m]F

HFAC[m]F
H 1

2m

∥∥∥∥
2

=
∥∥DHD

∥∥
2

where

D=


Ã0 O ·· · O

O Ã1
. . .

...
...

. . . . . . O

O ·· · O Ã2m−1

,
and ∥∥DHD

∥∥
2

= max
j∈{0,...,2m−1}

∥∥∥ÃHj Ãj∥∥∥
2
≤ max
w∈[0,2π]

∥∥∥Ã(w)HÃ(w)
∥∥∥

2
.

Here Ã(w)HÃ(w) =S−1(w). Together we get∥∥∥ÀT[m]À[m]

∥∥∥
2
≤ max
w∈[0,2π]

∥∥S−1(w)
∥∥

2
+
∥∥∥ÀT?[m]À?[m]

∥∥∥
2
.

Note that
∥∥∥ÀT?[m]À?[m]

∥∥∥
2
will not grow with m when m≥mtrue because its nonzero

submatrix is the same for different m. Therefore the spectral norm
∥∥∥ÀT[m]À[m]

∥∥∥
2
is also

uniformly bounded with regard to m. This give us the conclusion Equation (E.6).
For the lower bound Equation (E.7), due to Equation (4.28), i.e. (note Σ = I, thus

Γ = I)

ÀT[m]À[m] =R−1 +ÀT[m]À?[m](R
−1 +ÀT?[m]À?[m])

−1ÀT?[m]À[m]

where the second term of right-hand side is positive semidefinite matrix. Hence

σmin

(
ÀT[m]À[m]

)
≥σmin

(
R−1

)
= 1/σmax (R).

With help of Equation (E.1), we have

1/σmax (R)≥1/max
w
‖S(w)‖2 = min

w∈[0,2π]
σmin

(
S−1(w)

)
,

which gives Equation (E.7).
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