
COMMUN. MATH. SCI. c© 2019 International Press

Vol. 17, No. 5, pp. 1257–1289

ASYMPTOTIC-PRESERVING SCHEMES FOR TWO-SPECIES
BINARY COLLISIONAL KINETIC SYSTEM WITH DISPARATE

MASSES I: TIME DISCRETIZATION AND ASYMPTOTIC ANALYSIS∗
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Abstract. We develop efficient asymptotic-preserving time discretization schemes to solve the
disparate mass kinetic system of a binary gas or plasma in the “relaxation time scale” relevant to the
epochal relaxation phenomenon. Since the resulting model is associated to a parameter given by the
square of the mass ratio between the light and heavy particles, we develop an asymptotic-preserving
scheme in a novel decomposition strategy using the penalization method for multiscale collisional kinetic
equations. Both the Boltzmann and Fokker-Planck-Landau (FPL) binary collision operators will be
considered. Other than utilizing several AP strategies for single-species binary kinetic equations, we
also introduce a novel splitting and a carefully designed explicit-implicit approximation, which are
guided by the asymptotic analysis of the system. We also conduct asymptotic-preserving analysis for
the time discretization, for both space homogenous and inhomogeneous systems.

Keywords. two-species kinetic system; disparate mass; epochal relaxation; asymptotic-preserving
method.
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1. Introduction
We are interested in the numerical approximation of a disparate mass binary gas

or plasma system, consisting of the mixture of light particles and the heavy ones. De-
pending on different scalings, such a mixture exhibits various different and interesting
asymptotic behavior which poses tremendous numerical challenges due to both the
strongly coupled collisional mechanism, described by the nonlinear and nonlocal Boltz-
mann or Fokker-Planck-Landau (FPL) collision operators, and multiple time and space
scales. In the case of plasma, a mixture of electrons and ions, the equalization of elec-
tron and ion temperatures is one of the oldest problems in plasma physics and was
initially considered by Landau [24]. See [2,3,12,14,22,23] for more physical description
of gas mixtures. By introducing the small scaling parameter, which is the square root
of the ratio between the masses of the two kinds of particles, one can obtain various
interesting asymptotic limits by different time scalings of the equations, see [3, 7, 8] for
both the Boltzmann and FPL collisions. In particular, under the so-called “relaxation
time scale”, both particle distribution functions are thermalized and the temperatures
evolve toward each other via a relaxation equation. This is the epochal relaxation phe-
nomenon first pointed out by Grad [13], and is the asymptotic regime we are interested
in here. For recent numerical studies of the disparate mass problems, see [17,31].

One of the main computational challenges for multiscale kinetic equations for bi-
nary interactions is the necessity to resolve the small, microscopic scales numerically
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which are often computationally prohibitive. In this regard, the Asymptotic-Preserving
(AP) schemes [15] have been very popular in the kinetic and hyperbolic communities
in the last two decades. Such schemes allow one to use small-scale independent com-
putational parameters in regimes where one cannot afford to resolve the small physical
scalings numerically. Such schemes are designed such that they mimic the asymptotic
transition from one scale to another at the discrete level, and also use specially de-
signed explicit-implicit time discretizations so as to reduce the algebraic complexity
when implicit discretizations are needed. See review articles [6, 16]. For single species
particles, in order to overcome the stiffness of the collision operators, one could penal-
ize the collision operators by simple ones that are easier to invert, see [10, 21], or use
exponential Runge-Kutta methods [9,26], or via the micro-macro decomposition [1,25].
See also [28]. However, for binary interactions in multispecies models, one encoun-
ters extra difficulties due to the coupling of collision terms between different species.
The Cauchy problem for the full non-linear homogeneous Boltzmann system describing
multi-component monatomic gas mixtures has been studied recently in [11]. For rel-
atively simpler scalings which lead to hydrodynamic limits, multispecies AP schemes
were developed in for examples [17, 20, 27]. See also [29], where a spectral-Lagrangian
Boltzmann solver for a multi-energy level gas was developed. However, none of the
previous works dealt with the disparate mass systems under the long-time scale studied
in this paper.

The main challenges to develop efficient AP schemes for the problems under study
include: 1) the strong coupling of the binary collision terms between different species;
2) the disparate mass scalings; so different species evolve with different time scales thus
different species needed to be treated differently and 3) the long-time scale. In fact,
other than utilizing several existing AP techniques for single species problems, we also
introduce two new ideas: a novel splitting of the system, guided by the asymptotic anal-
ysis introduced in [7], which is a natural formulation for the design of AP schemes, and
identifying less stiff terms from the stiff ones, again taking advantage of the asymptotic
behavior of the collision operators. We will handle both the Boltzmann and FPL colli-
sion terms, thanks to their bilinear structure, and in the end the algebraic complexity,
judged by the kind of algebraic systems to be inverted, somehow similar to the single
species counterparts as in [10] and [21].

Due to the complexity of the systems under study, we split our results in several
papers. In the current paper we focus on the time discretization, which is the most
difficult part for the design of AP schemes for such a system. We will conduct an AP
analysis for a simplified version of the time discretization, as was done for their single-
species counterpart in [10]. Given the length of the paper, we will leave the numerical
experiments in a forthcoming paper.

This paper is organized as follows. In Section 2, we present the physical equations
and outline their basic properties and the scalings. We also review the asymptotic anal-
ysis in [7] for the space homogenous case, under the relaxation time scaling. In Section
3, an AP time discretization for the space homogeneous equations will be presented,
with an asymptotic analysis of its AP property. Section 4 extends the scheme and anal-
ysis to the space inhomogeneous case, by combining with the idea of diffusive relaxation
schemes in [18, 19] to handle the (also stiff) convection terms. Conclusions and future
work will be given in Section 5.

2. An overview

In this section we present the physical equations which include both Boltzmann
and FPL collisions, their scalings and fundamental properties, and the asymptotic limit
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conducted in [7].

2.1. The equations and scalings. Let fL(t,x,v) and fH(t,x,v) be the prob-
ability density distributions of the light and heavy particles at time t, position x with
velocity v. The rescaled, space inhomogeneous equations are given by

∂fL

∂t
+vL ·∇xfL+FL ·∇vLfL=QLL(fL,fL)+QLHε (fL,fH), (2.1)

∂fH

∂t
+ε
(
vH ·∇xfH +FH ·∇vHfH

)
=ε
[
QHH(fH ,fH)+QHLε (fH ,fL)

]
, (2.2)

where FL, FH stand for the force fields. The definitions of collision operators QLL,
QHH , QLHε and QHLε representing the binary collisions between light (‘L’) and heavy
(‘H’) particles, are given in the Appendix, since only some of their properties, not
their specific forms, will be used in this paper. Moreover, we assume these are binary
interaction operators with transition probability rates presenting the natural symmetries
that give rise to the classical conservation laws for mixtures. ε is the square root of the
mass ratio between the light and heavy particles.

Define n, u and T as the density, bulk velocity, and temperature

n=

∫
R3

f(v)dv, u=
1

n

∫
R3

f(v)vdv, T =
1

3ρ

∫
R3

f(v)|v−u|2dv, (2.3)

and denote Mu,T the normalized Maxwellian

Mu,T (v) =
1

(2πT )3/2
exp

(
−|v−u|

2

2T

)
. (2.4)

In [7], three different time scales were introduced which lead to different hydrody-
namic limits. We are interested in the third time scale, namely the “relaxation time
scale” studied in [7]. The macroscopic limit under this scaling, as well as the design of
AP schemes, are the most challenging. The AP schemes that preserve the other two
asymptotic limits are easy to design by classical AP strategies so will not be discussed
here.

The collision time for the light and heavy species are denoted by tL0 and tH0 , re-
spectively. We define t0 = tL0 as the basic time scale. Introduce the long-time scaling
t′0 = t0/ε

2 and change of variables t′=ε2t, x′=εx, F ′=F/ε, at which both distribution
functions will be thermalized and temperatures influence each other via a relaxation
equation. Then the evolution equations are given by

∂fL

∂t
+

1

ε

(
vL ·∇xfL+FL ·∇vLfL

)
=

1

ε2

[
QLL(fL,fL)+QLHε (fL,fH)

]
, (2.5)

∂fH

∂t
+
(
vH ·∇xfH +FH ·∇vHfH

)
=

1

ε

[
QHH(fH ,fH)+QHLε (fH ,fL)

]
. (2.6)

Inserting the ansatz

QLHε =QLH0 +εQLH1 +O(ε2), QHLε =QHL0 +εQHL1 +O(ε2)

into (2.5)–(2.6), one has

∂fL

∂t
+ε−1

(
vL ·∇xfL+FL ·∇vLfL

)
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=ε−2
(
QLL(fLε ,f

L
ε )+QLH0 (fLε ,f

H
ε )
)

+ε−1QLH1 (fLε ,f
H
ε )+QLH2 (fLε ,f

H
ε )+O(ε), (2.7)

∂fH

∂t
+vH ·∇xfH +FH ·∇vHfH

=ε−1
(
QHH(fHε ,f

H
ε )+QHL0 (fHε ,f

L
ε )
)

+QHL1 (fHε ,f
L
ε )+O(ε). (2.8)

Clearly the dynamics of (2.7)–(2.8) have stiff terms associated to the electron-ion mass
ratio that naturally enables the development of asymptotic-preserving schemes.

We first give a summary of the propositions and lemmas on the properties of the
collision operators given in [5, 30] and summarized in [7] that will be useful in our
paper. We call “inter-particle collisions” and “intra-particle collisions” to distinguish
binary collisions between different species and like particles in the sequel.

Theorem 2.1.
(1) For the FPL collision operator,

QLH0 (fL,fH) =nH q0(fL), q0(fL) =∇vL ·
[
B(vL)S(vL)∇vLfL(vL)

]
, (2.9)

QHL0 (fH ,fL) =−2∇vHfH(vH) ·
∫
R3

B(vL)

|vL|2
vLfL(vL)dvL.

For the Boltzmann collision operator,

QLH0 (fL,fH) =nH q0(fL), q0(fL) =

∫
S2
B(vL,Ω)

(
fL(vL−2(vL,Ω)Ω)−fL(vL)

)
dΩ,

(2.10)

QHL0 (fH ,fL) =−2∇vHfH ·
∫
R3×S2

B(vL,Ω)
(vL,Ω)2

|vL|2
vLfL(vL)dvLdΩ.

(2) For any function fH ,

(i) if fL is a function of |vL|, then QLH0 (fL,fH) = 0,

(ii) if fL is an even function, then QHL0 (fH ,fL) = 0.

(3) The conservation properties of the inter-particle collision operators are given by∫
R3

QLHε dvL=

∫
R3

QHLε dvH = 0, (2.11)∫
R3

QLHε
(
vL

|vL|2
)
dvL+ε

∫
R3

QHLε
(
vH

|vH |2
)
dvH = 0,∫

R3

QLHi dvL=

∫
R3

QHLi dvH = 0, ∀i∈N, (2.12)∫
R3

QLHi vLdvL+

∫
R3

QHLi vH dvH = 0, ∀i∈N,∫
R3

QLHi |vL|2dvL+

∫
R3

QHLi−1 |vH |2dvH = 0, ∀i∈N, i≥1,∫
R3

QLH0 |vL|2dvL= 0. (2.13)

(4) Introduce the operator

QL0 (fL) :=QLL(fL,fL)+nHq0(fL).
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For all sufficiently regular f , ∫
R3

QL0 (fL) lnf dv≤0,

and

QL0 (f) = 0⇔∃(n,T )∈ [0,∞)2 such that f =nM0,T , (2.14)

where M0,T is the normalized Maxwellian defined in (2.4) with u= 0.

(5) Define ML
0 :=nL0 (t)M0,TL0 (t). ΓL0 is a non-positive self-adjoint operator associated

with the inner product

〈φ,ψ〉=
∫
R3

φψML
0 dv

on the space χ={φ(v),〈φ,φ〉<∞}, and is such that

ker ΓL0 ={φ(vL) such that ∃(a,b)∈R2, φ(vL) =a+b|vL|2}.

For ψ∈χ, the equation ΓL0 φ=ψ is solvable if and only if∫
R3

ψ

(
1
|vL|2

)
ML

0 dv
L= 0.

Then the solution φ is unique in
(
ker ΓL0

)⊥
.

2.2. The macroscopic approximation. For clarity of the presentation, we
first consider the space homogeneous case of (2.7)–(2.8), so the spatial and velocity
gradients on the left-hand side of the equations are omitted. Inserting the Hilbert
expansions

fLε =fL0 +εfL1 +ε2fL2 + ·· · , fHε =fH0 +εfH1 +ε2fH2 + ·· ·

and equating terms of ε leads to: order ε−2:

QLL(fL0 ,f
L
0 )+QLH0 (fL0 ,f

H
0 ) = 0; (2.15)

order ε−1:

0 = 2QLL(fL0 ,f
L
1 )+QLH0 (fL0 ,f

H
1 )+QLH0 (fL1 ,f

H
0 )+QLH1 (fL0 ,f

H
0 ), (2.16)

0 =QHH(fH0 ,f
H
0 )+QHL0 (fH0 ,f

L
0 ); (2.17)

order ε0:

∂fL0
∂t

= 2QLL(fL0 ,f
L
2 )+QLL(fL1 ,f

L
1 )+QLH0 (fL0 ,f

H
2 )+QLH0 (fL1 ,f

H
1 )+QLH0 (fL2 ,f

H
0 )

+QLH1 (fL0 ,f
H
1 )+QLH1 (fL1 ,f

H
0 )+QLH2 (fL0 ,f

H
0 ), (2.18)

∂fH0
∂t

= 2QHH(fH0 ,f
H
1 )+QHL0 (fH0 ,f

L
1 )+QHL0 (fH1 ,f

L
0 )+QHL1 (fH0 ,f

L
0 ). (2.19)

First consider the equation for the heavy particles. By (2.9) and (2.10), we know

QLH0 (fL,fH) =nH0 q0(fL),
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with different q0(fL) definitions for the Boltzmann and FPL equations respectively.
Using (2.14), Equation (2.15) gives fL0 =ML

0 . By statement (2)(ii) in Theorem 2.1,
since fL0 is an even function, thus

QHL0 (fH0 ,f
L
0 ) = 0,

and (2.17) reduces to

QHH(fH0 ,f
H
0 ) = 0.

Using the classical theory of the Boltzmann equation [4], ∃(nH0 (t),TH0 (t))∈ [0,∞)2,
uH0 (t)∈R3, such that

fH0 =nH0 (t)MuH0 (t),TH0 (t) :=MH
0 .

By statement (2)(i) in Theorem 2.1,

QLH0 (fL0 ,f
H
1 ) = 0,

since fL0 =ML
0 is a function of |vL|. Then (2.16) is an equation for fL1 , which can be

solved by setting

φL1 =fL1 (ML
0 )−1

and

ΓL0 φ
L
1 =−(ML

0 )−1QLH1 (ML
0 ,f

H
0 ), (2.20)

where ΓL0 is an operator defined by

ΓL0 φ= (ML
0 )−1

[
2QLL(ML

0 ,M
L
0 φ)+nH0 q0(ML

0 φ)
]
. (2.21)

According to statement (5) in Theorem 2.1, ΓL0 φ=ψ is solvable if and only if∫
R3

ψ

(
1
|vL|2

)
ML

0 dv
L= 0. (2.22)

Therefore, we have

ψ=−(ML
0 )−1QLH1 (ML

0 ,f
H
0 )

in (2.20), and (2.22) is satisfied thanks to statement (5) in Theorem 2.1, thus (2.20) is
solvable and its unique solution in (kerΓL0 )⊥ is given by

fL1 (vL) =
1

TL0
ML

0 (vL)uH0 ·vL.

Since again QHL0 (fH1 ,f
L
0 ) = 0, (2.19) is an equation for fH1 , which can be written in

terms of φH =fH1 (MH
0 )−1 with

ΓH0 φ
H = (MH

0 )−1

[
∂MH

0

∂t
−QHL0 (MH

0 ,f
L
1 )−QHL1 (MH

0 ,M
L
0 )

]
, (2.23)

where ΓH0 is the linearization of QHH around a Maxwellian MH
0 :

ΓH0 φ= 2(MH
0 )−1QHH(MH

0 ,M
H
0 φ).
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The necessary and sufficient condition of solvability of Equation (2.23) is given by

∫
R3

[
∂MH

0

∂t
−QHL0 (MH

0 ,f
L
1 )−QHL1 (MH

0 ,M
L
0 )

] 1
vH

|vH |2

dvH = 0. (2.24)

The calculation in [7] gives

∫
R3

[
QHL0 (MH

0 ,f
L
1 )+QHL1 (MH

0 ,M
L
0 )
] 1

vH

|vH |2
2

dvH =

 0
0

−3
λ(TL0 )

TL0
nL0 n

H
0 (TH0 −TL0 )

.
Inserting it into (2.24), one finally has

d

dt

 nH0
nH0 u

H
0

nH0 ( 1
2 |u

H
0 |2 + 3

2T
H
0 )

=

 0
0

−3
λ(TL0 )

TL0
nL0 n

H
0 (TH0 −TL0 )

.
Therefore the macroscopic limit of the heavy particles, as ε→0, is

d

dt
nH0 = 0,

d

dt
nH0 u

H
0 = 0,

d

dt

(
3nH0 T

H
0

2

)
=−3

λ(TL0 )

TL0
nL0 n

H
0 (TH0 −TL0 ).

Now we consider the light particles. Equation (2.19) is an equation of fL2 which can
be written in terms of φL2 =fL2 (ML

0 )−1 with

ΓL0 φ
L
2 = (ML

0 )−1SL,

where ΓL0 is defined by (2.21) and

SL=
∂ML

0

∂t
−QLL(fL1 ,f

L
1 )−QLH0 (fL1 ,f

H
1 )

−QLH1 (ML
0 ,f

H
1 )−QLH1 (fL1 ,M

H
0 )−QLH2 (ML

0 ,M
H
0 ). (2.25)

According to statement (5) in Theorem 2.1, the necessary and sufficient condition for
the existence of fL2 should be∫

R3

SL(vL)

(
1
|vL|2

)
dvL= 0. (2.26)

The first equation leads to dnL0 /dt= 0. By statement (3) in Theorem 2.1,∫
QLH0 (fL1 ,f

H
1 )|vL|2dvL= 0,∫

QLH1 (ML
0 ,f

H
1 ) |vL|2dvL=

∫
QHL0 (fH1 ,M

L
0 )|vH |2dvH = 0.

The remaining terms on the right-hand side of (2.25) give∫ [
QLH1 (fL1 ,M

H
0 )+QLH2 (ML

0 ,M
H
0 )
]
|vL|2dvL
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=−
∫ [
QHL0 (MH

0 ,f
L
1 )+QHL1 (MH

0 ,M
L
0 )
]
|vH |2dvH

=6
λ(TL0 )

TL0
nL0 n

H
0 (TH0 −TL0 ).

Inserting into (2.26), one obtains the evolution equation for TL0 :

d

dt

(
3nL0 T

L
0

2

)
=−3

λ(TL0 )

TL0
nL0 n

H
0 (TL0 −TH0 ). (2.27)

We now summarize the macroscopic equations for the whole system, as ε→0,

d

dt
nL0 = 0,

d

dt

(
3nL0 T

L
0

2

)
=−3

λ(TL0 )

TL0
nL0 n

H
0 (TL0 −TH0 ),

(2.28)

and

d

dt
nH0 = 0,

d

dt
(nH0 u

H
0 ) = 0,

d

dt

(
3nH0 T

H
0

2

)
=−3

λ(TL0 )

TL0
nL0 n

H
0 (TH0 −TL0 ).

(2.29)

3. An asymptotic-preserving time discretization
An AP scheme requires that the discrete version of (2.5)–(2.6) asymptotically ap-

proaches the macroscopic equations (2.28)–(2.29) as ε→0, when numerical parameters
are held fixed. A necessary requirement for such a scheme is some implicit time dis-
cretization for the numerical stiff terms, which can be easily inverted [16]. In this
section, we design such a time discretization for the space homogeneous equations.

The space homogeneous version of Equations (2.5)–(2.6) is given by

∂fL

∂t
=

1

ε2

[
QLL(fL,fL)+QLHε (fL,fH)

]
, (3.1)

∂fH

∂t
=

1

ε

[
QHH(fH ,fH)+QHLε (fH ,fL)

]
. (3.2)

3.1. A splitting of the equation. We first decompose f into f0 and f1,

fL=fL0 +εfL1 , fH =fH0 +εfH1 , (3.3)

and insert into the system (3.1)–(3.2), then

∂

∂t
(fL0 +εfL1 ) =

1

ε2

[
QLL(fL0 +εfL1 ,f

L
0 +εfL1 )+QLHε (fL0 +εfL1 ,f

H
0 +εfH1 )

]
=

1

ε2

[
QLL(fL0 ,f

L
0 )+2εQLL(fL0 ,f

L
1 )+ε2QLL(fL1 ,f

L
1 )

+QLHε (fL0 ,f
H
0 )+εQLHε (fL0 ,f

H
1 )+εQLHε (fL1 ,f

H
0 )+ε2QLHε (fL1 ,f

H
1 )

]
,

(3.4)
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and

∂

∂t
(fH0 +εfH1 ) =

1

ε

[
QHH(fH0 +εfH1 ,f

H
0 +εfH1 )+QHLε (fH0 +εfH1 ,f

L
0 +εfL1 )

]
=

1

ε

[
QHH(fH0 ,f

H
0 )+2εQHH(fH0 ,f

H
1 )+ε2QHH(fH1 ,f

H
1 )

+QHLε (fH0 ,f
L
0 )+εQHLε (fH0 ,f

L
1 )+εQHLε (fH1 ,f

L
0 )+ε2QHLε (fH1 ,f

L
1 )

]
.

(3.5)

Our first key idea is to split (3.4) into two equations for fL0 , fL1 respectively,

∂

∂t
fL0 =

1

ε2

[
QLL(fL0 ,f

L
0 )+QLH0 (fL0 ,f

H
0 )

]
,

∂

∂t
fL1 =

1

ε2

[
1

ε

(
QLHε (fL0 ,f

H
0 )−QLH0 (fL0 ,f

H
0 )
)

+2QLL(fL0 ,f
L
1 )+εQLL(fL1 ,f

L
1 )

+QLHε (fL0 ,f
H
1 )+QLHε (fL1 ,f

H
0 )+εQLHε (fL1 ,f

H
1 )

]
, (3.6)

and split (3.5) into two equations for fH0 , fH1 respectively:

∂

∂t
fH0 =

1

ε

[
QH(fH0 ,f

H
0 )+QHL0 (fH0 ,f

L
0 )

]
,

∂

∂t
fH1 =

1

ε

[
1

ε

(
QHLε (fH0 ,f

L
0 )−QHL0 (fH0 ,f

L
0 )
)

+2QHH(fH0 ,f
H
1 )+εQHH(fH1 ,f

H
1 )

+QHLε (fH0 ,f
L
1 )+QHLε (fH1 ,f

L
0 )+εQHLε (fH1 ,f

L
1 )

]
. (3.7)

This splitting is motivated by the asymptotic analysis presented in Subsection 2.2, and
plays the central role in the AP time discretization, which will be introduced in the next
subsection.

3.2. Time discretization. First, to have a scheme uniformly stable with
respect to ε, it is natural to use the implicit discretizations for all the stiff collision
terms, namely, those that appear to be of O(1) inside the brackets on the right-hand
side of (3.6)–(3.7). We use the notations fnL,0, fnL,1, fnH,0, fnH,1 to denote the numerical

solutions of fL0 , fL1 , fH0 and fH1 at time step tn. Consider the light particles. A naive
discretization for fL,0, fL,1 in (3.6) is

fn+1
L,0 −fnL,0

∆t
=

1

ε2

[
QLL(fn+1

L,0 ,fn+1
L,0 )+QLH0 (fn+1

L,0 ,fn+1
H,0 )

]
, (3.8)

fn+1
L,1 −fnL,1

∆t
=

1

ε2

[
1

ε

(
QLHε (fn+1

L,0 ,fn+1
H,0 )−QLH0 (fn+1

L,0 ,fn+1
H,0 )

)
+2QLL(fn+1

L,0 ,fn+1
L,1 )+εQLL(fnL,1,f

n
L,1)

+QLHε (fn+1
L,0 ,fn+1

H,1 )+QLHε (fn+1
L,1 ,fn+1

H,0 )+εQLHε (fnL,1,f
n
H,1)

]
. (3.9)
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Consider the time evolution for fH,0, fH,1. A naive implicit scheme for (3.7) would be:

fn+1
H,0 −fnH,0

∆t
=

1

ε

[
QHH(fn+1

H,0 ,f
n+1
H,0 )+QHL0 (fn+1

H,0 ,f
n+1
L,0 )

]
, (3.10)

fn+1
H,1 −fnH,1

∆t
=

1

ε

[
1

ε

(
QHLε (fn+1

H,0 ,f
n+1
L,0 )−QHL0 (fn+1

H,0 ,f
n+1
L,0 )

)
+2QHH(fn+1

H,0 ,f
n+1
H,1 )+εQHH(fnH,1,f

n
H,1)

+QHLε (fn+1
H,0 ,f

n+1
L,1 )+QHLε (fn+1

H,1 ,f
n+1
L,0 )+εQHLε (fnH,1,f

n
L,1)

]
, (3.11)

in which the right-hand side is fully implicit, except the terms that are relatively less
stiff due to an extra factor of ε. Inverting the above system is algebraically complex due
to the nonlinearity, nonlocal nature of the collision operators and the coupling between
the two types of particles. Our next key idea is to use the asymptotic behavior of the
operators to identify those terms that are not stiff.

3.2.1. Identifying the less stiff terms. First, as ε→0,

fn+1
L,0 →nL0 M0,TL0

. (3.12)

Since M0,TL0
is a function of |vL|, according to (2)(i) in Theorem 2.1,

QLH0 (nL0 M0,TL0
,fn+1
H,0 ) = 0,

thus

QLH0 (fn+1
L,0 ,fn+1

H,0 ) =O(ε),

which is less stiff and can be implemented explicitly.
Secondly, as ε→0, similarly

QLHε (fn+1
L,0 ,fn+1

H,1 )→QLH0 (fn+1
L,0 ,fn+1

H,1 ) =O(ε),

so the corresponding term is less stiff and can also be discretized explicitly.
For the less stiff terms QLH0 (fL,0,fH,0) and QLHε (fL,0,fH,1) we treat them explicitly,

thus our time discretizations for fL,0, fL,1 are given by

fn+1
L,0 −fnL,0

∆t
=

1

ε2

[
QLL(fn+1

L,0 ,fn+1
L,0 )+QLH0 (fnL,0,f

n
H,0)

]
, (3.13)

fn+1
L,1 −fnL,1

∆t
=

1

ε2

[
1

ε

(
QLHε (fn+1

L,0 ,fn+1
H,0 )−QLH0 (fn+1

L,0 ,fn+1
H,0 )

)
+2QLL(fn+1

L,0 ,fn+1
L,1 )+εQLL(fnL,1,f

n
L,1)

+QLHε (fnL,0,f
n
H,1)+QLHε (fn+1

L,1 ,fn+1
H,0 )+εQLHε (fnL,1,f

n
H,1)

]
. (3.14)

Similarly for fH,0, fH,1, we introduce the following time discretizations for fH,0,fH,1
by taking advantages of some terms that are actually not stiff:

fn+1
H,0 −fnH,0

∆t
=

1

ε

[
QHH(fn+1

H,0 ,f
n+1
H,0 )+QHL0 (fnH,0,f

n
L,0)

]
, (3.15)
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fn+1
H,1 −fnH,1

∆t
=

1

ε

[
1

ε

(
QHLε (fn+1

H,0 ,f
n+1
L,0 )−QHL0 (fn+1

H,0 ,f
n+1
L,0 )

)
+2QHH(fn+1

H,0 ,f
n+1
H,1 )+εQHH(fnH,1,f

n
H,1)

+QHLε (fn+1
H,0 ,f

n+1
L,1 )+QHLε (fnH,1,f

n
L,0)+εQHLε (fnH,1,f

n
L,1)

]
, (3.16)

where the argument (2)(ii) of Theorem 2.1 is used, that is, since fn+1
L,0 is asymptotically

an even function due to (3.12), one has

QHL0 (fn+1
H,0 ,f

n+1
L,0 ) =O(ε),

thus the second term on the right-hand side of (3.10) is not stiff. In addition, as ε→0,

QHLε (fn+1
H,1 ,f

n+1
L,0 )→QHL0 (fn+1

H,1 ,f
n+1
L,0 ) =O(ε).

Thus the termQHLε (fn+1
H,1 ,f

n+1
L,0 ) in (3.11) is less stiff and can be approximated explicitly.

3.2.2. Handling of the stiff terms. First, we point out the terms
QHLε (fn+1

H,0 ,f
n+1
L,0 ), QHL0 (fn+1

H,0 ,f
n+1
L,0 ) and QHLε (fn+1

H,0 ,f
n+1
L,1 ) in (3.16), although implicit,

can be obtained explicitly since fn+1
L,0 , fn+1

H,0 and fn+1
L,1 are already computed from (3.13),

(3.14) and (3.15).
Now we take care of the truly stiff and implicit collision terms in schemes (3.13)–

(3.14) and (3.15)–(3.16). They will be penalized by an operator that can either be
inverted analytically (for the case of the Boltzmann collision [10]) or by a Poisson-type
solver (for the case of FPL collision [21]).

(i) For the stiff and nonlinear term QLHε (fn+1
L,1 ,fn+1

H,0 ) in (3.14), motivated by [10, 21],

we use QLH0 (fL,1,fH,0) which is the leading order asymptotically for ε small, as the
penalty operator. The rationale for this is that QLH0 (fL,1,fH,0) is much easier to be
inverted than QLHε (fL,1,fH,0), as will be shown below. We substitute QLHε (fn+1

L,1 ,fn+1
H,0 )

in (3.14) by

QLHε (fnL,1,f
n
H,0)−QLH0 (fnL,1,f

n
H,0)︸ ︷︷ ︸

less stiff

+QLH0 (fn+1
L,1 ,fn+1

H,0 )︸ ︷︷ ︸
stiff

.

Integrating both sides of (3.15) in vH , we get that nH0 does not change from tn to
tn+1, so we will drop its dependence on n. Thus

QLH0 (fn+1
L,1 ,fn+1

H,0 ) =nH0 q0(fn+1
L,1 ),

with q0 defined in (2.9) and (2.10) for the Boltzmann and FPL equations respectively.
For the FPL case,

QLH0 (fn+1
L,1 ,fn+1

H,0 ) =nH0 ∇vL ·
[
B(vL)S(vL)∇vLfn+1

L,1 (vL)
]
, (3.17)

thus one only needs to invert a linear FP operator. See [21]. For the Boltzmann case,

QLH0 (fn+1
L,1 ,fn+1

H,0 ) =nH0

∫
S2
B(vL,Ω)

(
fn+1
L,1 (vL−2(vL,Ω)Ω)−fn+1

L,1 (vL)
)
dΩ

=nH0

∫
S2
B(vL,Ω)fn+1

L,1 (vL−2(vL,Ω)Ω)dΩ−nH0 fn+1
L,1 (vL)

∫
S2
B(vL,Ω)dΩ,
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which is still a nonlocal operator. We use the linear penalty method [25] to remove the
stiffness here, that is, substitute the above term by

nH0

∫
S2
B(vL,Ω)

(
fnL,1(vL−2(vL,Ω)Ω)−fnL,1(vL)

)
dΩ−nH0 µfnL,1(vL)+nH0 µf

n+1
L,1 (vL),

where

µ= max
vL

∫
S2
B(vL,Ω)dΩ.

(See discussions in Remark 3.1 for the use of linear penalty here instead of the BGK
penalty of Filbet-Jin [10].)

(ii) To deal with the stiff terms QLL(fn+1
L,0 ,fn+1

L,0 ) and QHH(fn+1
H,0 ,f

n+1
H,0 ) in (3.13) and

(3.15) respectively, the BGK penalty is used for the Boltzmann collision operators [10],
while a linear Fokker-Planck operator will be used to penalize for the FPL collision case,
as done in [21]. Take the term QLL(fn+1

L,0 ,fn+1
L,0 )/ε2 and the Boltzmann equation as an

example. The idea is to split it into the summation of a stiff, dissipative part and a
non-(or less) stiff, non-dissipative part:

QLL(fn+1
L,0 ,fn+1

L,0 )

ε2
=
QLL(fnL,0,f

n
L,0)−P(fnL,0)

ε2︸ ︷︷ ︸
less stiff

+
P(fn+1

L,0 )

ε2︸ ︷︷ ︸
stiff

,

with P(fL,0) a well-balanced relaxation approximation of QLL(fL,0,fL,0) and defined
by

P(fL,0) :=β1(M{n,u,T}−fL,0), β1 = sup
v

∣∣∣∣QLL(fL,0,fL,0)

fL,0−M{n,u,T}

∣∣∣∣,
and the local Maxwellian distribution function is

M{n,u,T}=
n

(2πT )3/2
exp

(
−|v−u|

2

2T

)
, (3.18)

and n, u, T are defined in (2.3) with f =fL,0. How to obtain n, u, T from the moment
systems of fL,0 and fH,0 will be discussed below. See the Appendix for more details of
the penalization for both the Boltzmann and FPL cases.

(iii) To deal with the nonlinear collision operators QLL(fn+1
L,0 ,fn+1

L,1 ) in (3.9), since

fn+1
L,0 is already computed from (3.13), this is essentially a linear operator and we use

the classical formula [4]

QLL(fn+1
L,0 ,f

n+1
L,1 ) =

1

4

[
QLL(fn+1

L,0 +fn+1
L,1 ,f

n+1
L,0 +fn+1

L,1 )−QLL(fn+1
L,0 −f

n+1
L,1 ,f

n+1
L,0 −f

n+1
L,1 )

]
.

(3.19)

For each collision term on the right-hand side of (3.19) that has the same argument, we
adopt the linear penalty method as mentioned in [25] to serve the purpose of removing
the stiffness. The reason why the BGK-type penalty method of Filbet-Jin does not
work well here will be explained in Remark 3.1 below. The strategy is to substitute
QLL(fn+1

L,0 ,fn+1
L,1 ) by

1

4

[
QLL(fnL,0 +fnL,1,f

n
L,0 +fnL,1)+µ(fnL,0 +fnL,1)−µ(fn+1

L,0 +fn+1
L,1 )
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−
(
QLL(fnL,0−fnL,1,fnL,0−fnL,1)+µ(fnL,0−fnL,1)−µ(fn+1

L,0 −f
n+1
L,1 )

)]
, (3.20)

where µ is chosen sufficiently large. For the FPL equation, let

µ>
1

2
max
v
λ(D(g)),

where g=fL,0±fL,1 and λ(D(g)) is the spectral radius of D defined by

D(g) =

∫
R3

BL(vL−vL1 )S(vL−vL1 )gL1 dv
L
1 .

For the Boltzmann equation, let µ>QLL,−, where we split the operator QLL in (3.20)
as

QLL(g) =QLL,+(g)−gQLL,−(g),

with the definitions g=fL,0±fL,1 and

QLL,+(g) =

∫
R3

∫
S2
BL(vL−vL1 ,Ω)g′,Lg′,L1 dΩdvL1 ,

QLL,−(g) =

∫
R3

∫
S2
BL(vL−vL1 ,Ω)gL1 dΩdvL1 .

The collision term QHH(fn+1
H,0 ,f

n+1
H,1 ) in (3.16) is dealt in a similar way.

Now with the penalties plugged into (3.13)–(3.14) and (3.15)–(3.16), our scheme
becomes

fn+1
L,0 −fnL,0

∆t
=

1

ε2

[
QLL(fnL,0,f

n
L,0)−P(fnL,0)+P(fn+1

L,0 )+QLH0 (fnL,0,f
n
H,0)

]
, (3.21)

fn+1
L,1 −fnL,1

∆t
=

1

ε2

[
1

ε

(
QLHε (fn+1

L,0 ,fn+1
H,0 )−QLH0 (fn+1

L,0 ,fn+1
H,0 )

)
+

1

2

[
QLL(fnL,0 +fnL,1,f

n
L,0 +fnL,1)+µ(fnL,0 +fnL,1)−µ(fn+1

L,0 +fn+1
L,1 )

−
(
QLL(fnL,0−fnL,1,fnL,0−fnL,1)+µ(fnL,0−fnL,1)−µ(fn+1

L,0 −f
n+1
L,1 )

)]
+εQLL(fnL,1,f

n
L,1)+QLHε (fnL,0,f

n
H,1)+

(
QLHε (fnL,1,f

n
H,0)−QLH0 (fnL,1,f

n
H,0)

)
+QLH0 (fn+1

L,1 ,fn+1
H,0 )+εQLHε (fnL,1,f

n
H,1)

]
; (3.22)

fn+1
H,0 −fnH,0

∆t
=

1

ε

[
QHH(fn+1

H,0 ,f
n+1
H,0 )−P(fnH,0)+P(fn+1

H,0 )+QHL0 (fnH,0,f
n
L,0)

]
, (3.23)

fn+1
H,1 −fnH,1

∆t
=

1

ε

[
1

ε

(
QHLε (fn+1

H,0 ,f
n+1
L,0 )−QHL0 (fn+1

H,0 ,f
n+1
L,0 )

)
+

1

2

[
QHH(fnH,0 +fnH,1,f

n
H,0 +fnH,1)+µ(fnH,0 +fnH,1)−µ(fn+1

H,0 +fn+1
H,1 )
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−
(
QHH(fnH,0−fnH,1,fnH,0−fnH,1)+µ(fnH,0−fnH,1)−µ(fn+1

H,0 −f
n+1
H,1 )

)]
+εQHH(fnH,1,f

n
H,1)+QHLε (fn+1

H,0 ,f
n+1
L,1 )+QHLε (fnH,1,f

n
L,0)+εQHLε (fnH,1,f

n
L,1)

]
.

(3.24)

Remark 3.1. In this remark, we will explain why the BGK- or Fokker-Planck-type
penalties do not work well and so the linear penalties are used in (3.22) and (3.24). One
needs to compute the moment systems in order to define the local Maxwellian M{n,u,T}
in the penalty operators. Define the vectors

φ(vL) = (1,vL,
|vL|2

2
), φ(vH) = (1,vH ,

|vH |2

2
),

and denote

φL1 =vL, φL2 =
|vL|2

2
, φH1 =vH , φH2 =

|vH |2

2
. (3.25)

Denote the moments by

n=

∫
R3

f(v)dv :=P0, nu=

∫
R3

vf(v)dv :=P1,

∫
R3

1

2
|v|2f(v)dv :=P2. (3.26)

Multiplying (3.21)–(3.22) by φ(vL), we obtain the moment systems for fL,0, fL,1:

(P0)n+1
L,0 = (P0)nL,0,

(P1)n+1
L,0 = (P1)nL,0 +

∆t

ε2

∫
R3

vLQLH0 (fnL,0,f
n
H,0)(vL)dvL,

(P2)n+1
L,0 = (P2)nL,0,

(P0)n+1
L,1 = (P0)nL,1 +

µ∆t

ε2

(
(P0)nL,1−(P0)n+1

L,1

)
, (3.27)

(P1)n+1
L,1 = (P1)nL,1 +

∆t

ε2

∫
R3

[
1

ε

(
QLHε (fn+1

L,0 ,fn+1
H,0 )(vL)−QLH0 (fn+1

L,0 ,fn+1
H,0 )(vL)

)
+
(
QLHε (fnL,0,f

n
H,1)(vL)+QLHε (fnL,1,f

n
H,0)(vL)−QLH0 (fnL,1,f

n
H,0)(vL)

)
+
(
QLH0 (fn+1

L,1 ,fn+1
H,0 )(vL)+εQLHε (fnL,1,f

n
H,1)(vL)

)]
φL1 dv

L

+
µ∆t

ε2

(
(P1)nL,1−(P1)n+1

L,1

)
, (3.28)

(P2)n+1
L,1 = (P2)nL,1 +

∆t

ε2

∫
R3

[
1

ε
QLHε (fn+1

L,0 ,fn+1
H,0 )(vL)+QLHε (fnL,0,f

n
H,1)(vL)

+QLHε (fnL,1,f
n
H,0)(vL)+εQLHε (fnL,1,f

n
H,1)(vL)

]
φL2 dv

L

+
µ∆t

ε2

(
(P2)nL,1−(P2)n+1

L,1

)
, (3.29)

The reason why the BGK- or Fokker-Planck-type penalties do not work well for
fL,1 is due to the complexity of the moment Equation (3.28), in which the term
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QLH0 (fn+1
L,1 ,fn+1

H,0 )(vL) is implicit since fn+1
L,1 is unknown. We find it difficult to in-

vert this term, since both the moment Equation (3.28) and the Equation (3.14) for fL,1
involve the same term fn+1

L,1 , thus the entire coupled system (3.13)–(3.14) needs to be
inverted all together. Thus it is hard to get the Maxwellian associated with fL,0 +fL,1
in the BGK- or Fokker-Planck-type penalty operators. Investigating a better approach
than the currently used linear penalty method in (3.20) is deferred to a future work.

For the second collision term QLL(fnL,0−fnL,1,fnL,0−fnL,1) in (3.19), the reason we
adopt the linear penalty is to avoid negative values of the temperature difference
computed from the moment equations of fL,0 and fL,1 (hence unable to define the
Maxwellian in the penalty operators). The difference between the Filbet-Jin (or Jin-
Yan) penalty and the linear penalty is that the latter owns an error of O(∆t) compared
to O(ε) as in the former, in the AP analysis. See [10]. Another disadvantage of the
linear penalty method is that the linear operator does not preserve exactly the mass,
momentum and energy as the BGK-type operator does, as mentioned in [10]. Never-
theless, the conservation issues (conservation of mass for each species, and conservation
of total momentum and energy for the two species) will be addressed in our follow-up
work.

3.2.3. The final numerical scheme. To summarize, the schemes for fL,0, fL,1
are given by

fn+1
L,0 −fnL,0

∆t
=

1

ε2

[
QLL(fnL,0,f

n
L,0)−P(fnL,0)+P(fn+1

L,0 )+QLH0 (fnL,0,f
n
H,0)

]
, (3.30)

fn+1
L,1 −fnL,1

∆t
=

1

ε2

[
1

ε

(
QLHε (fn+1

L,0 ,fn+1
H,0 )−QLH0 (fn+1

L,0 ,fn+1
H,0 )

)
+

1

2

[
QLL(fnL,0 +fnL,1,f

n
L,0 +fnL,1)+µ(fnL,0 +fnL,1)−µ(fn+1

L,0 +fn+1
L,1 )

−
(
QLL(fnL,0−fnL,1,fnL,0−fnL,1)+µ(fnL,0−fnL,1)−µ(fn+1

L,0 −f
n+1
L,1 )

)]
+εQLL(fnL,1,f

n
L,1)+QLHε (fnL,0,f

n
H,1)+

(
QLHε (fnL,1,f

n
H,0)−QLH0 (fnL,1,f

n
H,0)

)
+QLH0 (fn+1

L,1 ,fn+1
H,0 )+εQLHε (fnL,1,f

n
H,1)

]
. (3.31)

The schemes for fH,0, fH,1 are given by

fn+1
H,0 −fnH,0

∆t
=

1

ε

[
QHH(fn+1

H,0 ,f
n+1
H,0 )−P(fnH,0)+P(fn+1

H,0 )+QHL0 (fnH,0,f
n
L,0)

]
, (3.32)

fn+1
H,1 −fnH,1

∆t
=

1

ε

[
1

ε

(
QHLε (fn+1

H,0 ,f
n+1
L,0 )−QHL0 (fn+1

H,0 ,f
n+1
L,0 )

)
+

1

2

[
QHH(fnH,0 +fnH,1,f

n
H,0 +fnH,1)+µ(fnH,0 +fnH,1)−µ(fn+1

H,0 +fn+1
H,1 )

−
(
QHH(fnH,0−fnH,1,fnH,0−fnH,1)+µ(fnH,0−fnH,1)−µ(fn+1

H,0 −f
n+1
H,1 )

)]
+εQHH(fnH,1,f

n
H,1)+QHLε (fn+1

H,0 ,f
n+1
L,1 )+QHLε (fnH,1,f

n
L,0)+εQHLε (fnH,1,f

n
L,1)

]
.

(3.33)



1272 TWO-SPECIES KINETIC SYSTEM WITH DISPARATE MASSES

We couple with the following equations for moments of fL,0 and fH,0 (recall (3.26) for
the definition):

(P0)n+1
L,0 = (P0)nL,0, (3.34)

(P1)n+1
L,0 = (P1)nL,0 +

∆t

ε2

∫
R3

vLQLH0 (fnL,0,f
n
H,0)(vL)dvL, (3.35)

(P2)n+1
L,0 = (P2)nL,0, (3.36)

(P0)n+1
H,0 = (P0)nH,0, (3.37)

(P1)n+1
H,0 = (P1)nH,0 +

∆t

ε2

∫
R3

vHQHL0 (fnH,0,f
n
L,0)(vH)dvH , (3.38)

(P2)n+1
H,0 = (P2)nH,0 +

∆t

ε2

∫
R3

|vH |2

2
QHL0 (fnH,0,f

n
L,0)(vH)dvH . (3.39)

From the moment system, one computes u from u= P1

P0
and solves for T by using the

formula

P2 =
1

2
P0|u|2 +

3

2
P0T,

then obtain the local Maxwellian by the definition

Mn,u,T (v) =
n

(2πT )3/2
exp

(
−|v−u|

2

2T

)
.

Mn+1
L,0 (or Mn+1

H,0 ) is obtained by n, u, T got from the moment equations of fL,0 (or
fH,0), namely (3.34)–(3.36) (or (3.37)–(3.39)).

The following shows the detailed steps for the implementation of our proposed
numerical scheme:

(a) get Mn+1
L,0 from (3.34)–(3.36), then update fn+1

L,0 from (3.30);

(b) get Mn+1
H,0 from (3.37)–(3.38), then update fn+1

H,0 from (3.32);

(c) update fn+1
L,1 from (3.31);

(d) update fn+1
H,1 from (3.33).

Our scheme, although contains some implicit terms, can be implemented explicitly
for the case of Boltzmann collision operator, or just needs a linear elliptic solver in the
case of FPL operator, as in the case of single species counterpart in [10] and [21]. We
would like to mention that higher order time approximation can be extended.

3.3. The AP property. Our goal of this subsection is to prove the AP property
of the discretized scheme (3.13)–(3.14) and (3.15)–(3.16).

First, for the light particles, inserting the expansion

QLHε =QLH0 +εQLH1 +ε2QLH2 +O(ε3)

into (3.14), one has

fn+1
L,1 −fnL,1

∆t
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=
1

ε2

[
2QLL(fn+1

L,0 ,fn+1
L,1 )+QLH0 (fnL,0,f

n
H,1)+QLH0 (fn+1

L,1 ,fn+1
H,0 )+QLH1 (fn+1

L,0 ,fn+1
H,0 )

]
+

1

ε

[
QLL(fnL,1,f

n
L,1)+QLH0 (fnL,1,f

n
H,1)+QLH1 (fnL,0,f

n
H,1)

+QLH1 (fnL,1,f
n
H,0)+QLH2 (fn+1

L,0 ,fn+1
H,0 )

]
+QLH1 (fnL,1,f

n
H,1)+QLH2 (fnL,0,f

n
H,1)+QLH2 (fnL,1,f

n
H,0). (3.40)

First, (3.13) gives

QLL(fn+1
L,0 ,fn+1

L,0 )+QLH0 (fnL,0,f
n
H,0) =O(ε2),

thus

fn+1
L,0 =nn+1

L,0 M0,Tn+1
L,0

+O(ε2 +∆t) :=Mn+1
L,0 +O(ε2 +∆t). (3.41)

As for the heavy particles, by (3.15),

QHH(fn+1
H,0 ,f

n+1
H,0 )+QHL0 (fnH,0,f

n
L,0)︸ ︷︷ ︸

=O(ε2+∆t)

=O(ε),

which gives

fn+1
H,0 =nn+1

H,0 Mun+1
H,0 ,T

n+1
H,0

+O(ε+∆t) :=Mn+1
H,0 +O(ε+∆t). (3.42)

According to (3.40),

2QLL(fn+1
L,0 ,fn+1

L,1 )+QLH0 (fnL,0,f
n
H,1)︸ ︷︷ ︸

=O(ε2+∆t)

+QLH0 (fn+1
L,1 ,fn+1

H,0 )+QLH1 (fn+1
L,0 ,fn+1

H,0 ) =O(ε2),

(3.43)

which is an equation for fn+1
L,1 , and can be equivalently written in the form

φn+1
L =fn+1

L,1 (Mn+1
L,0 )−1

with

ΓL,0φ
n+1
L =−(Mn+1

L,0 )−1QLH1 (Mn+1
L,0 ,Mn+1

H,0 )+O(ε+∆t),

where ΓL,0 is the linearized operator

ΓL,0φ
n+1
L = (Mn+1

L,0 )−1
[
2QLL(Mn+1

L,0 ,Mn+1
L,0 φn+1

L )+QLH0 (Mn+1
L,0 φn+1

L ,Mn+1
H,0 )

]
.

Analogous to the continuous case proved in [7], the unique solution in (ker(ΓL,0))
⊥

is
given by

fn+1
L,1 (vL) =

Mn+1
L,0

Tn+1
L,0 (vL)

un+1
H,0 ·v

L

︸ ︷︷ ︸
:=f∗,n+1

L,1

+O(ε+∆t), (3.44)

where f∗,n+1
L,1 is used to denote the leading order of fn+1

L,1 .
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Multiply (3.40) by ε and add up with (3.13), then

fn+1
L,0 −fnL,0

∆t
+ε

fn+1
L,1 −fnL,1

∆t

=
1

ε2

[
QLL(fn+1

L,0 ,fn+1
L,0 )+QLH0 (fnL,0,f

n
H,0)

]
+

1

ε

[
2QLL(fn+1

L,0 ,fn+1
L,1 )+QLH0 (fnL,0,f

n
H,1)+QLH0 (fn+1

L,1 ,fn+1
H,0 )+QLH1 (fn+1

L,0 ,fn+1
H,0 )

]
+QLL(fnL,1,f

n
L,1)+QLH0 (fnL,1,f

n
H,1)+QLH1 (fnL,0,f

n
H,1)

+QLH1 (fnL,1,f
n
H,0)+QLH2 (fn+1

L,0 ,fn+1
H,0 )

+ε
[
QLH1 (fnL,1,f

n
H,1)+QLH2 (fnL,0,f

n
H,1)+QLH2 (fnL,1,f

n
H,0)

]
. (3.45)

Plugging in the leading order of (3.41), (3.44) and comparing the O(1) terms on both
sides, one gets

Mn+1
L,0 −Mn

L,0

∆t
=QLL(f∗,nL,1 ,f

∗,n
L,1)+QLH0 (f∗,nL,1 ,f

∗,n
H,1)+QLH1 (Mn

L,0,f
∗,n
H,1)

+QLH1 (f∗,nL,1 ,M
n
H,0)+QLH2 (Mn+1

L,0 ,Mn+1
H,0 )+O(∆t). (3.46)

Integrate both sides of (3.46) against |vL|2 on vL, then∫
QLL(f∗,nL,1 ,f

∗,n
L,1) |vL|2dvL=

∫
QLH0 (f∗,nL,1 ,f

∗,n
H,1)|vL|2dvL= 0,∫

QLH1 (Mn
L,0,f

∗,n
H,1)|vL|2dvL=

∫
QHL0 (f∗,nH,1,M

n
L,0) |vL|2dvL= 0,

and ∫ [
QLH1 (f∗,nL,1 ,M

n
H,0)+QLH2 (Mn+1

L,0 ,Mn+1
H,0 )

]
|vL|2dvL

=

∫ [
QHL0 (Mn

H,0,f
∗,n
L,1)+QHL1 (Mn+1

H,0 ,M
n+1
L,0 )

]
|vH |2dvH

=

∫ [
QHL0 (Mn+1

H,0 ,f
∗,n+1
L,1 )+QHL1 (Mn+1

H,0 ,M
n+1
L,0 )

]
|vH |2dvH +O(∆t)

= 3
λ(Tn+1

L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )+O(∆t),

where analogous calculation of the integrals for the continuous case is shown in [7].
Denote Dt(un) the discrete time derivative of the numerical quantity of interest un:

Dt(un) :=
un+1−un

∆t
.

Integrating both sides of (3.46) on vL gives

Dt(nnL,0) =O(∆t),

by using (2.12) in Theorem 2.1. Integrals of the left-hand side of (3.46) against 1 and
|vL|2 on vL are

Dt
(
nnL,0, n

n
L,0(

1

2
|unL,0|2 +

3

2
TnL,0)

)T
.
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Therefore, the limit of our discretized numerical scheme is given by

Dt(nnL,0) =O(∆t),

Dt
(

3

2
nnL,0T

n
L,0

)
= 3

λ(Tn+1
L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )+O(∆t),

which is consistent with the implicit discretization of the continuous limit (2.28), up to
a numerical error of O(∆t).

Now we examine the system for the heavy particles fH,0, fH,1. Multiplying (3.16)
by ε, adding it up with (3.15) and using the expansion

QHLε =QHL0 +εQHL1 +ε2QHL2 +O(ε3),

one gets

fn+1
H,0 −fnH,0

∆t
+ε

fn+1
H,1 −fnH,1

∆t

=
1

ε

[
QHH(fn+1

H,0 ,f
n+1
H,0 )+QHL0 (fnH,0,f

n
L,0)

]
+QHL0 (fn+1

H,0 ,f
n+1
L,1 )+QHL0 (fnH,1,f

n
L,0)+2QHH(fn+1

H,0 ,f
n+1
H,1 )+QHL1 (fn+1

H,0 ,f
n+1
L,0 )

+ε

[
QHH(fnH,1,f

n
H,1)+QHL1 (fn+1

H,0 ,f
n+1
L,1 )+QHL1 (fnH,1,f

n
L,0)

+QHL0 (fnH,1,f
n
L,1)+QHL2 (fn+1

H,0 ,f
n+1
L,0 )

]
+ε2

[
QHL1 (fnH,1,f

n
L,1)+QHL2 (fn+1

H,0 ,f
n+1
L,1 )+QHL2 (fn+1

H,1 ,f
n+1
L,0 )

]
. (3.47)

Plug in the leading order term of (3.42) and compare the O(1) terms on both sides,
then

Mn+1
H,0 −Mn

H,0

∆t
= 2QHH(Mn+1

H,0 ,f
∗,n+1
H,1 )+QHL0 (Mn+1

H,0 ,f
∗,n+1
L,1 )+QHL0 (f∗,nH,1,M

n
L,0)︸ ︷︷ ︸

=0

+QHL1 (Mn+1
H,0 ,M

n+1
L,0 )+O(∆t).

It is an equation for f∗,n+1
H,1 and can be equivalently written in terms of

φn+1
H =f∗,n+1

H,1 (Mn+1
H,0 )−1

according to

ΓH,0φ
n+1
H = (Mn+1

H,0 )−1
[
DtMn

H,0−QHL0 (Mn+1
H,0 , f

∗,n+1
L,1 )−QHL1 (Mn+1

H,0 ,M
n+1
L,0 )

]
+O(∆t),

(3.48)
ΓH,0 is a linearization operator given by

ΓH,0φ
n+1
H = 2(Mn+1

H,0 )−1QHH(Mn+1
H,0 ,M

n+1
H,0 φ

n+1
H ).

The necessary and sufficient condition for the solvability of Equation (3.48) is given by∫
R3

[
DtM

n
H,0−QHL0 (Mn+1

H,0 , f
∗,n+1
L,1 )−QHL1 (Mn+1

H,0 ,M
n+1
L,0 )

] 1
vH

|vH |2

dvH =O(∆t)I3,

(3.49)
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where I3 = (1,1,1)
T

. Analogous to the calculation in [7] for the continuous equations,

∫
R3

[
QHL0 (Mn+1

H,0 , f
∗,n+1
L,1 )+QHL1 (Mn+1

H,0 ,M
n+1
L,0 )

]
(vH)

 1
vH

|vH |2
2

dvH

=

 0
0

−3
λ(Tn+1

L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )

+O(∆t)I3. (3.50)

Insert (3.50) into (3.49), then

Dt

 nnH,0
nnH,0u

n
H,0

nnH,0( 1
2 |u

n
H,0|2 + 3

2T
n
H,0)

=

 0
0

−3
λ(Tn+1

L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )

+O(∆t)I3.

(3.51)
This shows that nnH,0, unH,0 are constant in time with a numerical error of O(∆t),

Dt(nnH,0) =O(∆t), Dt(nnH,0unH,0) =O(∆t),

while TnH,0 evolves according to

Dt
(

3

2
nnH,0T

n
H,0

)
=−3

λ(Tn+1
L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )+O(∆t),

which is consistent with the discretized implicit scheme of the limiting system (2.29),
up to a numerical error of O(∆t).

We conclude our AP analysis with the following theorem.

Theorem 3.1. The time discretized numerical schemes given by (3.13)–(3.14) and
(3.15)–(3.16), as ε→0, approaches the system

nn+1
L,0 =nnL,0 +O(∆t),

nn+1
H,0 =nnH,0 +O(∆t), nn+1

H,0 u
n+1
H,0 =nnH,0u

n
H,0 +O(∆t),

d

dt

(
3

2
nnL,0T

n
L,0

)
= 3

λ(Tn+1
L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )+O(∆t),

d

dt

(
3

2
nnH,0T

n
H,0

)
=−3

λ(Tn+1
L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )+O(∆t),

which are consistent with the implicit discretization of the continuous limit shown in
(2.28)–(2.29), with a numerical error of O(∆t).

Remark 3.2. We would also like to point out that our AP analysis for the scheme
does not include the penalty method, namely the schemes (3.30)–(3.33) that one actually
uses in practice, since it is hard to prove a scheme is AP with all the penalty terms
included, not done even for the single species Boltzmann (or FPL) equation [10, 21].
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4. The space inhomogeneous systems
In the space inhomogeneous case, the evolution equations are given by system (2.5)–

(2.6). We first recall the main results in [8] in the following Theorem:

Theorem 4.1. As ε→0, the limit distributions and limit systems are given by

fL0 (x,v,t) =nL0 (x,t)M0,TL0 (x,t), fH0 (x,v,t) =nH0 (x,t)MuH0 (x,t),TH0 (x,t),

where nL0 , TL0 , nH0 , TH0 satisfy the coupled system:

∂nL0
∂t

+∇x ·(nL0 uH0 )−∇x ·
[
D11

(
∇xnL0 −

FLnL0
TL0

)
+D12

(
nL0
∇xTL0
TL0

)]
= 0, (4.1)

∂

∂t

(
3

2
nL0 T

L
0

)
+∇x ·

(
5

2
nL0 T

L
0 u

H
0

)
−nL0 FL ·uH0

−∇x ·
[
D21

(
∇xnL0 −

FLnL0
TL0

)
+D22

(
nL0
∇xTL0
TL0

)]
+FL ·

[
D11

(
∇xnL0 −

FLnL0
TL0

)
+D12

(
nL0
∇xTL0
TL0

)]
=uH0 ·

[
∇x(nL0 T

L
0 )−FLnL0

]
+3

λ(TL0 )

TL0
nL0 n

H
0 (TH0 −TL0 ), (4.2)

and

∂nH0
∂t

+∇x ·(nH0 uH0 ) = 0, (4.3)

∂

∂t
(nH0 u

H
0 )+∇x ·(nH0 uH0 ⊗uH0 )+∇x(nH0 T

H
0 )−nH0 FH

=−
(
∇x(nL0 T

L
0 )−FLnL0

)
, (4.4)

∂

∂t

(
nH0 |uH0 |2

2
+

3

2
nH0 T

H
0

)
+∇x ·

((
nH0 |uH0 |2

2
+

5

2
nH0 T

H
0

)
uH0

)
−nH0 FH ·uH0

=−uH0 ·
[
∇x(nL0 T

L
0 )−FLnL0

]
−3

λ(TL0 )

TL0
nL0 n

H
0 (TH0 −TL0 ), (4.5)

where Dij (i,j= 1,2) and λ(T ) are given in the Appendix.

Insert the expansion

fL=fL0 +εfL1 , fH =fH0 +εfH1

into (2.5) and (2.6), then

∂

∂t
(fL0 +εfL1 )+

1

ε

(
vL ·∇xfL0 +FL ·∇vLfL0

)
+
(
vL ·∇xfL1 +FL ·∇vLfL1

)
=

1

ε2

[
QLL(fL0 +εfL1 ,f

L
0 +εfL1 )+QLHε (fL0 +εfL1 ,f

H
0 +εfH1 )

]
=

1

ε2

[
QLL(fL0 ,f

L
0 )+2εQLL(fL0 ,f

L
1 )+ε2QLL(fL1 ,f

L
1 )

+QLHε (fL0 ,f
H
0 )+εQLHε (fL0 ,f

H
1 )+εQLHε (fL1 ,f

H
0 )+ε2QLHε (fL1 ,f

H
1 )
]
.
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We design the scheme by letting fL0 , fL1 satisfy the system

∂

∂t
fL0 +

(
vL ·∇xfL1 +FL ·∇vLfL1

)
=

1

ε2

[
QLL(fL0 ,f

L
0 )+QLH0 (fL0 ,f

H
0 )
]
, (4.6)

∂

∂t
fL1 +

1

ε2

(
vL ·∇xfL0 +FL ·∇vLfL0

)
=

1

ε2

[1

ε

(
QLHε (fL0 ,f

H
0 )−QLH0 (fL0 ,f

H
0 )
)

+2QLL(fL0 ,f
L
1 )+εQLL(fL1 ,f

L
1 )

+QLHε (fL0 ,f
H
1 )+QLHε (fL1 ,f

H
0 )+εQLHε (fL1 ,f

H
1 )
]
, (4.7)

and letting fH0 , fH1 satisfy the following system

∂

∂t
fH0 +ε

(
vH ·∇xfH1 +FH ·∇vHfH1

)
=

1

ε

[
QH(fH0 ,f

H
0 )+QHL0 (fH0 ,f

L
0 )
]
, (4.8)

∂

∂t
fH1 +

1

ε

(
vH ·∇xfH0 +FH ·∇vHfH0

)
=

1

ε

[1

ε

(
QHLε (fH0 ,f

L
0 )−QHL0 (fH0 ,f

L
0 )
)

+2QHH(fH0 ,f
H
1 )+εQHH(fH1 ,f

H
1 )

+QHLε (fH0 ,f
L
1 )+QHLε (fH1 ,f

L
0 )+εQHLε (fH1 ,f

L
1 )
]
. (4.9)

4.1. Time discretization. Following [19], we rewrite (4.7) into the diffusive
relaxation system

∂

∂t
fL1 +ψ1

(
vL ·∇xfL0 +FL ·∇vLfL0

)
=

1

ε2

[1

ε

(
QLHε (fL0 ,f

H
0 )−QLH0 (fL0 ,f

H
0 )
)

+2QLL(fL0 ,f
L
1 )+εQLL(fL1 ,f

L
1 )

+QLHε (fL0 ,f
H
1 )+QLHε (fL1 ,f

H
0 )+εQLHε (fL1 ,f

H
1 )

−(1−ε2ψ1)
(
vL ·∇xfL0 +FL ·∇vLfL0

)]
, (4.10)

where a simple choice of ψ1 is

ψ1 = min{1, 1

ε2
}.

Note that when ε is small, ψ1 = 1. The collision operators on the right-hand side are dis-
cretized exactly the same as the space homogeneous case. Then the time discretizations
for (4.6) and (4.10) are

fn+1
L,0 −fnL,0

∆t
+
(
vL ·∇xfnL,1 +FnL ·∇vLfnL,1

)
=

1

ε2

[
QLL(fn+1

L ,fn+1
L,0 )+QLH0 (fnL,0,f

n
H,0)

]
, (4.11)

fn+1
L,1 −fnL,1

∆t
+ψ1

(
vL ·∇xfnL,0 +FnL ·∇vLfnL,0

)
=

1

ε2

[1

ε

(
QLHε (fn+1

L,0 ,fn+1
H,0 )−QLH0 (fn+1

L,0 ,fn+1
H,0 )

)
+2QLL(fn+1

L,0 ,fn+1
L,1 )+εQLL(fnL,1,f

n
L,1)

+QLHε (fnL,0,f
n
H,1)+QLHε (fn+1

L,1 ,fn+1
H,0 )+εQLHε (fnL,1,f

n
H,1)
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−(1−ε2ψ1)(vL ·∇xfn+1
L,0 +Fn+1

L ·∇vLfn+1
L,0 )

]
. (4.12)

Using the same technique, time discretizations for the systems (4.8) and (4.9) are
given by

fn+1
H,0 −fnH,0

∆t
+ε
(
vH ·∇xfnH,1 +FnH ·∇vHfnH,1

)
=

1

ε

[
QHH(fn+1

H,0 ,f
n+1
H,0 )+QHL0 (fnH,0,f

n
L,0)

]
, (4.13)

fn+1
H,1 −fnH,1

∆t
+ψ2

(
vH ·∇xfnH,0 +FnH ·∇vHfnH,0

)
=

1

ε

[1

ε

(
QHLε (fn+1

H,0 ,f
n+1
L,0 )−QHL0 (fn+1

H,0 ,f
n+1
L,0 )

)
+2QHH(fn+1

H,0 ,f
n+1
H,1 )+εQHH(fnH,1,f

n
H,1)

+QHLε (fn+1
H,0 ,f

n+1
L,1 )+QHLε (fnH,1,f

n
L,0)+εQHLε (fnH,1,f

n
L,1)

−(1−εψ2)
(
vH ·∇xfn+1

H,0 +FnH ·∇vHfn+1
H,0

)]
, (4.14)

where

ψ2 = min{1, 1
ε
}.

We will use the penalties exactly the same as discussed in Subsection 3.2, namely the
right-hand side of the schemes (3.30)–(3.33). We omit repeating it here.

4.2. The AP property. First, for the light particles, inserting the expansion

QLHε =QLH0 +εQLH1 +ε2QLH2 +O(ε3)

into (4.12), one has

fn+1
L,1 −fnL,1

∆t
+
(
vL ·∇xfnL,0 +FnL ·∇vLfnL,0

)
=

1

ε2

[
2QLL(fn+1

L,0 ,fn+1
L,1 )+QLH0 (fnL,0,f

n
H,1)+QLH0 (fn+1

L,1 ,fn+1
H,0 )+QLH1 (fn+1

L,0 ,fn+1
H,0 )

−(vL ·∇xfn+1
L,0 +Fn+1

L ·∇vLfn+1
L,0 )

]
+

1

ε

[
QLL(fnL,1,f

n
L,1)+QLH0 (fnL,1,f

n
H,1)+QLH1 (fnL,0,f

n
H,1)

+QLH1 (fnL,1,f
n
H,0)+QLH2 (fn+1

L,0 ,fn+1
H,0 )

]
+QLH1 (fnL,1,f

n
H,1)+QLH2 (fnL,0,f

n
H,1)+QLH2 (fnL,1,f

n
H,0)

+
(
vL ·∇xfn+1

L,0 +Fn+1
L ·∇vLfn+1

L,0

)
. (4.15)

From (4.11), we have

QLL(fn+1
L,0 ,fn+1

L,0 )+QLH0 (fnL,0,f
n
H,0) =O(ε2),

which gives

fn+1
L,0 =nn+1

L,0 M0,Tn+1
L,0

+O(ε2 +∆t) :=Mn+1
L,0 +O(ε2 +∆t). (4.16)
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From (4.13),

QHH(fn+1
H,0 ,f

n+1
H,0 )+QHL0 (fnH,0,f

n
L,0)︸ ︷︷ ︸

=O(ε2+∆t)

=O(ε),

thus

fn+1
H,0 =nn+1

H,0 Mun+1
H,0 ,T

n+1
H,0

+O(∆t) :=Mn+1
H,0 +O(ε+∆t). (4.17)

From (4.15),

2QLL(fn+1
L,0 ,fn+1

L,1 )+QLH0 (fnL,0,f
n
H,1)︸ ︷︷ ︸

=O(ε2+∆t)

+QLH0 (fn+1
L,1 ,fn+1

H,0 )+QLH1 (fn+1
L,0 ,fn+1

H,0 )

=vL ·∇xfn+1
L,0 +Fn+1

L ·∇vLfn+1
L,0 +O(ε2). (4.18)

(4.18) is an equation for fn+1
L,1 and can be equivalently written in terms of

φn+1
L =fn+1

L,1 (Mn+1
L,0 )−1

according to:

ΓL,0φ
n+1
L =−(Mn+1

L,0 )−1
[
vL ·∇xM

n+1
L,0 +Fn+1

L ·∇vLM
n+1
L,0 −Q

LH
1 (Mn+1

L,0 ,M
n+1
H,0 )

]
+O(ε+∆t),

where ΓL,0 is the linearized operator given by

ΓL,0φ
n+1
L = (Mn+1

L,0 )−1
[
2QLL(Mn+1

L,0 ,Mn+1
L,0 φn+1

L )+QLH0 (Mn+1
L,0 φn+1

L ,Mn+1
H,0 )

]
.

As proved in [8], the unique solution in (ker(ΓL,0))
⊥

is given by

φn+1
L

=
1

nn+1
L,0

(
−

(
∇xn

n+1
L,0 −

Fn+1
L nn+1

L,0

Tn+1
L,0

)
Ψ1(|vL|)−nn+1

L,0

∇xT
n+1
L,0

Tn+1
L,0

Ψ2(|vL|)+
nn+1
L,0 u

n+1
H,0

Tn+1
L,0

)
·vL

+O(ε+∆t),

thus

fn+1
L,1 =Mn+1

L,0 φn+1
L︸ ︷︷ ︸

:=f∗,n+1
L,1

+O(ε+∆t). (4.19)

We multiply (4.15) by ε and add it to (4.11), then get

fn+1
L,0 −fnL,0

∆t
+ε

fn+1
L,1 −fnL,1

∆t

+
(
vL ·∇xfnL,1 +FnL ·∇vLfnL,1

)
+ε
(
vL ·∇xfnL,0 +FnL ·∇vLfnL,0

)
=

1

ε2

[
QLL(fn+1

L,0 ,fn+1
L,0 )+QLH0 (fnL,0,f

n
H,0)

]
+

1

ε

[
2QLL(fn+1

L,0 ,fn+1
L,1 )+QLH0 (fnL,0,f

n
H,1)+QLH0 (fn+1

L,1 ,fn+1
H,0 )+QLH1 (fn+1

L,0 ,fn+1
H,0 )
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−
(
vL ·∇xfn+1

L,0 +Fn+1
L ·∇vLfn+1

L,0

)]
+QLL(fnL,1,f

n
L,1)+QLH0 (fnL,1,f

n
H,1)+QLH1 (fnL,0,f

n
H,1)

+QLH1 (fnL,1,f
n
H,0)+QLH2 (fn+1

L,0 ,fn+1
H,0 )+ε

[
QLH1 (fnL,1,f

n
H,1)+QLH2 (fnL,0,f

n
H,1)

+QLH2 (fnL,1,f
n
H,0)+

(
vL ·∇xfn+1

L,0 +Fn+1
L ·∇vLfn+1

L,0

)]
. (4.20)

Plugging in the leading order term of (4.16), (4.19) and comparing the O(1) terms on
both sides gives

Mn+1
L,0 −Mn

L,0

∆t
+vL ·∇xf∗,nL,1 +FnL ·∇vLfL,1∗,n

=QLL(f∗,nL,1 ,f
∗,n
L,1)+QLH0 (f∗,nL,1 ,f

∗,n
H,1)+QLH1 (f∗,nL,0 ,f

∗,n
H,1)+QLH1 (f∗,nL,1 ,M

n
H,0)

+QLH2 (Mn+1
L,0 ,Mn+1

H,0 )+O(∆t). (4.21)

Integrate both sides of (4.20) against 1, vL, |vL|2 on vL, by the statement (2)(i) and
(2.13) in Theorem 2.1, thus∫

QLL(f∗,nL,1 ,f
∗,n
L,1) |vL|2dvL=

∫
QLH0 (f∗,nL,1 ,f

∗,n
H,1)|vL|2dvL= 0,∫

QLH1 (Mn
L,0,f

∗,n
H,1)|vL|2dvL=

∫
QHL0 (f∗,nH,1,M

n
L,0) |vL|2dvL= 0.

Integrals of
Mn+1
L,0 −M

n
L,0

∆t are

d

dt

(
nnL,0, n

n
L,0u

n
L,0, n

n
L,0(

1

2
|unL,0|2 +

3

2
TnL,0)

)T
.

Analogous to the calculation in [8], then∫ [
QLH1 (f∗,nL,1 ,M

n
H,0)+QLH2 (Mn+1

L,0 ,Mn+1
H,0 )

]
|vL|2dvL

=

∫ [
QHL0 (Mn

H,0,f
∗,n
L,1)+QHL1 (Mn+1

H,0 ,M
n+1
L,0 )

]
|vH |2dvH

=

∫ [
QHL0 (Mn+1

H,0 ,f
∗,n+1
L,1 )+QHL1 (Mn+1

H,0 ,M
n+1
L,0 )

]
|vH |2dvH +O(∆t)

=un+1
H,0 ·

[
∇x(nn+1

L,0 T
n+1
L,0 )−Fn+1

L nn+1
L,0

]
+3

λ(Tn+1
L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )+O(∆t).

Therefore, the limit of our scheme is given by

∂nnL,0
∂t

+∇x ·(nnL,0unH,0)

−∇x ·

[
D11

(
∇xnnL,0−

FnL n
n
L,0

TnL,0

)
+D12

(
nnL,0

∇xTnL,0
TnL,0

)]
=O(∆t), (4.22)

∂

∂t

(
3

2
nnL,0T

n
L,0

)
+∇x ·

(
5

2
nnL,0T

n
L,0u

n
H,0

)
−nnL,0FnL unH,0
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−∇x ·

[
D21

(
∇xnnL,0−

FnL n
n
L,0

TnL,0

)
+D22

(
nnL,0

∇xTnL,0
TnL,0

)]

+FnL ·

[
D11

(
∇xnnL,0−

FnL n
n
L,0

TnL,0

)
+D12

(
nnL,0

∇xTnL,0
TnL,0

)]

=un+1
H,0 ·

[
∇x(nn+1

L,0 T
n+1
L,0 )−Fn+1

L nn+1
L,0

]
+3

λ(Tn+1
L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )+O(∆t).

(4.23)

This is first order (in ∆t) consistent to the implicit numerical discretization of the limit
Equation (4.1)–(4.2).

Next we look at the system for the heavy particles. Inserting the expansion

QHL0 +εQHL1 +ε2QHL2 +O(ε3)

into (4.14), one has

fn+1
H,1 −fnH,1

∆t
+
(
vH ·∇xfnH,0 +FnH ·∇vHfnH,0

)
=

1

ε

[
QHL0 (fn+1

H,0 ,f
n+1
L,1 )+QHL0 (fnH,1,f

n
L,0)+2QHH(fn+1

H,0 ,f
n+1
H,1 )+QHL1 (fn+1

H,0 ,f
n+1
L,0 )

−
(
vH ·∇xfn+1

H,0 +FnH ·∇vHfn+1
H,0

)]
+QHH(fnH,1,f

n
H,1)+QHL1 (fn+1

H,0 ,f
n+1
L,1 )+QHL1 (fnH,1,f

n
L,0)+QHL0 (fnH,1,f

n
L,1)

+QHL2 (fn+1
H,0 ,f

n+1
L,0 )+

(
vH ·∇xfn+1

H,0 +FnH ·∇vHfn+1
H,0

)
+ε
[
QHL1 (fnH,1,f

n
L,1)

+QHL2 (fn+1
H,0 ,f

n+1
L,1 )+QHL2 (fn+1

H,1 ,f
n+1
L,0 )

]
. (4.24)

We multiply (4.24) by ε and add it up with (4.13), then get

fn+1
H,0 −fnH,0

∆t
+ε

fn+1
H,1 −fnH,1

∆t
+ε
(
vH ·∇xfnH,1

+FnH ·∇vHfnH,1
)

+
(
vH ·∇xfnH,0 +FnH ·∇vHfnH,0

)
=

1

ε

[
QHH(fn+1

H,0 ,f
n+1
H,0 )+QHL0 (fnH,0,f

n
L,0)

]
+QHL0 (fn+1

H,0 ,f
n+1
L,1 )+QHL0 (fnH,1,f

n
L,0)

+2QHH(fn+1
H,0 ,f

n+1
H,1 )+QHL1 (fn+1

H,0 ,f
n+1
L,0 )−

(
vH ·∇xfn+1

H,0 +FnH ·∇vHfn+1
H,0

)
+ε
[
QHH(fnH,1,f

n
H,1)+QHL1 (fn+1

H,0 ,f
n+1
L,1 )+QHL1 (fnH,1,f

n
L,0)

+QHL0 (fnH,1,f
n
L,1)+QHL2 (fn+1

H,0 ,f
n+1
L,0 )+

(
vH ·∇xfn+1

H,0 +FnH ·∇vHfn+1
H,0

)]
+ε2

[
QHL1 (fnH,1,f

n
L,1)+QHL2 (fn+1

H,0 ,f
n+1
L,1 )+QHL2 (fn+1

H,1 ,f
n+1
L,0 )

]
. (4.25)

Plugging in the leading order term of (4.17) and comparing the O(1) terms on both
sides, one gets

Mn+1
H,0 −Mn

H,0

∆t
= 2QHH(Mn+1

H,0 ,f
∗,n+1
H,1 )+QHL0 (Mn+1

H,0 ,f
∗,n+1
L,1 )+QHL0 (f∗,nH,1,M

n
L,0)︸ ︷︷ ︸

=0
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+QHL1 (Mn+1
H,0 ,M

n+1
L,0 )−

(
vH ·∇xMn

H,0 +FnH ·∇vHMn
H,0

)
+O(∆t).

(4.26)

(4.26) can be equivalently written for

φn+1
H,1 = (Mn+1

H,0 )f∗,n+1
H,1

with

ΓH,0φ
n+1
H,1 = (Mn+1

H,0 )−1Sn+1
H,1 +O(∆t). (4.27)

ΓH,0 is a linearization operator given by

ΓH,0φ
n+1
H,1 = 2(Mn+1

H,0 )−1QHH(Mn+1
H,0 ,M

n+1
H,0 φ

n+1
H,1 ),

and Sn+1
H,1 is

Sn+1
H,1 =

(
Dt+vH ·∇x+FnH ·∇vH

)
Mn
H,0

−QHL0 (Mn+1
H,0 , f

n+1
L,1 )−QHL1 (Mn+1

H,0 ,M
n+1
L,0 ). (4.28)

The necessary and sufficient condition of solvability of Equation (4.27) is∫
R3

Sn+1
H,1

 1
vH

|vH |2

dvH =O(∆t)I3. (4.29)

The following is analogous to the proof shown in [8], except that we have a discrete
counterpart here. With details omitted, (4.29) thus gives

∂nnH,0
∂t

+∇x ·(nnH,0unH,0) =O(∆t), (4.30)

∂

∂t
(nnH,0u

n
H,0)+∇x ·(nnH,0unH,0⊗unH,0)+∇x(nnH,0T

n
H,0)−nnH,0FnH

=−
(
∇x(nn+1

L,0 T
n+1
L,0 )−Fn+1

L nn+1
L,0

)
+O(∆t), (4.31)

∂

∂t

(
nnH,0 |unH,0|2

2
+

3

2
nnH,0T

n
H,0

)
+∇x ·

((
nnH,0 |unH,0|2

2
+

5

2
nnH,0T

n
H,0

)
unH,0

)
−nnH,0FnH ·unH,0

=−un+1
H,0 ·

[
∇x(nn+1

L,0 T
n+1
L,0 )−Fn+1

L nn+1
L,0

]
−3

λ(Tn+1
L,0 )

Tn+1
L,0

nn+1
L,0 n

n+1
H,0 (Tn+1

H,0 −T
n+1
L,0 )

+O(∆t). (4.32)

Therefore, (4.30), (4.31) and (4.32) are consistent with the discrete scheme of the hy-
drodynamic limit system (4.3)–(4.5), up to a numerical error of O(∆t).

4.3. Splitting of convection from the collision. As in [18, 19], we adopt a
first-order time splitting approach to separate the convection from the collision opera-
tors. To summarize, our scheme is given by the following equations:

Moment equations for fL,0 and fH,0:

(P0)n+1
L,0 = (P0)nL,0 +∆t

∫
R3

vL ·∇xfnL,1dvL, (4.33)
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(P1)n+1
L,0 = (P1)nL,0 +

∆t

ε2

∫
R3

φL1 QLH0 (fnL,0,f
n
H,0)(vL)dvL+∆t

∫
R3

φL1 v
L ·∇xfnL,1dvL,

(4.34)

(P2)n+1
L,0 = (P2)nL,0 +∆t

∫
R3

φL2 v
L ·∇xfnL,1dvL, (4.35)

(P0)n+1
H,0 = (P0)nH,0 +ε∆t

∫
R3

vH ·∇xfnH,1dvH , (4.36)

(Pi)
n+1
H,0 = (Pi)

n
H,0 +

∆t

ε2

∫
R3

φHi QHL0 (fnH,0,f
n
L,0)(vH)dvH +ε∆t

∫
R3

φHi v
H ·∇xfnH,1dvH ,

(4.37)

where φLi , φHi are defined in (3.25) and i= 1,2.

The scheme for fL,0, fL,1, fH,0, fH,1 are given by:

Step 1: The implicit collision step

f∗L,0−fnL,0
∆t

=
1

ε2

[
QLL(fnL,0,f

n
L,0)−P(fnL,0)+P(f∗L,0)+QLH0 (fnL,0,f

n
H,0)

]
, (4.38)

f∗L,1−fnL,1
∆t

=
1

ε2

[
1

ε

(
QLHε (f∗L,0,f

∗
H,0)−QLH0 (f∗L,0,f

∗
H,0)

)
+

1

2

[
QLL(fnL,0 +fnL,1,f

n
L,0 +fnL,1)+µ(fnL,0 +fnL,1)−µ(f∗L,0 +f∗L,1)

−
(
QLL(fnL,0−fnL,1,fnL,0−fnL,1)+µ(fnL,0−fnL,1)−µ(f∗L,0−f∗L,1)

)]
+εQLL(fnL,1,f

n
L,1)+QLHε (fnL,0,f

n
H,1)+

(
QLHε (fnL,1,f

n
H,0)−QLH0 (fnL,1,f

n
H,0)

)
+QLH0 (f∗L,1,f

∗
H,0)+εQLHε (fnL,1,f

n
H,1)−(1−ε2ψ1)

(
vL ·∇xf∗L,0 +FL ·∇vLf∗L,0

)]
,

(4.39)

f∗H,0−fnH,0
∆t

=
1

ε

[
QHH(f∗H,0,f

∗
H,0)−P(fnH,0)+P(f∗H,0)+QHL0 (fnH,0,f

n
L,0)

]
, (4.40)

f∗H,1−fnH,1
∆t

=
1

ε

[
1

ε

(
QHLε (f∗H,0,f

∗
L,0)−QHL0 (f∗H,0,f

∗
L,0)

)
+

1

2

[
QHH(fnH,0 +fnH,1,f

n
H,0 +fnH,1)+µ(fnH,0 +fnH,1)−µ(f∗H,0 +f∗H,1)

−
(
QHH(fnH,0−fnH,1,fnH,0−fnH,1)+µ(fnH,0−fnH,1)−µ(f∗H,0−f∗H,1)

)]
+εQHH(fnH,1,f

n
H,1)+QHLε (f∗H,0,f

∗
L,1)+QHLε (fnH,1,f

n
L,0)+εQHLε (fnH,1,f

n
L,1)

−(1−εψ2)
(
vH ·∇xf∗H,0 +FnH ·∇vHf∗H,0

)]
. (4.41)

The order is to first solve (4.38), (4.40), then solve (4.39) and (4.41).

Step 2: The explicit transport step

fn+1
L,0 −f∗L,0

∆t
+
(
vL ·∇xf∗L,1 +F ∗L ·∇vLf∗L,1

)
= 0, (4.42)
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fn+1
L,1 −f∗L,1

∆t
+ψ1

(
vL ·∇xf∗L,0 +F ∗L ·∇vLf∗L,0

)
= 0. (4.43)

and

fn+1
H,0 −f∗H,0

∆t
+ε
(
vH ·∇xf∗H,1 +F ∗H ·∇vHf∗H,1

)
= 0, (4.44)

fn+1
H,1 −f∗H,1

∆t
+ψ2

(
vH ·∇xf∗H,0 +F ∗H ·∇vHf∗H,0

)
= 0, (4.45)

where

ψ1 = min{1, 1

ε2
}, ψ2 = min{1, 1

ε
}.

5. Conclusion and future work
In this paper, we develop asymptotic-preserving time discretizations for disparate

mass binary gas or plasma for both the homogeneous and inhomogeneous cases, at
the relaxation time scale, for both the Boltzmann and Fokker-Planck-Landau collision
operators. We introduce a novel splitting of the system and a carefully designed explicit-
implicit time discretization so as to first guarantee the correct asymptotic behavior at
the relaxation time limit and also significantly reduce the algebraic complexity which
will be comparable to their single species counterparts. The design of the AP schemes
are strongly guided by the asymptotic behavior of the system studied in [7,8]. We also
prove that a simplied version of the time discretization is asymptotic-preserving.

In the follow-up work, spatial and velocity discretizations will be discussed, along
with extensive numerical simulations and experiments. Moreover, we plan to address
the issue of uncertainty quantification (UQ), by adding random inputs into the system,
and develop efficient numerical methods for such uncertain kinetic system.

Acknowledgement. Dr. Liu Liu would like to thank Dr. Ruiwen Shu for a helpful
discussion. We thank the referees for their helpful comments.

Appendix A. Definitions of Q. In the Fokker-Planck-Landau case, the collision
operators are given by

QLL
L :=QLL

L (fL,fL)(vL) =∇vL ·
∫
R3

B(vL−vL∗ )S(vL−vL∗ )(∇vLf
LfL
∗ −∇vL∗

fLfL)dvL∗ ,

QHH
L :=QHH

L (fH ,fH)(vH) =∇vH ·
∫
R3

B(vH−vH∗ )S(vH−vH∗ )(∇vH f
HfH
∗ −∇vH∗

fHfH)dvH∗ ,

QLH
L,ε :=QLH

L,ε (fL,fH(εvH))(vL)

=(1+ε2)
γ+2
2 ∇vL ·

∫
R3

B(
vL−εvH√

1+ε2
)S(vL−εvH)(∇vLf

LfH−ε∇vH f
HfL)dvH ,

QHL
L,ε :=QHL

L,ε (fH(εvH),fL)(vH)

=(1+ε2)
γ+2
2 ∇vH ·

∫
R3

B(
vL−εvH√

1+ε2
)S(vL−εvH)(∇vLf

LfH−ε∇vH f
HfL)dvL,

where the matrix S(w) and the intra-molecular potential B(w), respectively, are given
by

S(w) = Id− w⊗w
|w|2

, B(w) =
1

2
|w|γ+2.
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In particular, B
(

1√
1+ε2

w
)

= 1
2 (1+ε2)−

γ+2
2 |w|γ+2, and the value γ=−3 corresponds to

Coulomb interactions.
In the Boltzmann case, the collision operators in center of mass – relative velocity

coordinates expressed in the angular scattering direction σ, are given by

QLL
B :=QLL(fL,fL)(vL) =

∫
R3

∫
S2

BL(vL−vL∗ ,σ)(f ′,Lf ′,L∗ −fLfL
∗ )dσdvL∗ ,

QHH
B :=QHH(fH ,fH)(vH) =

∫
R3

∫
S2

BH(vH−vH∗ ,σ)(f ′,Hf ′,H∗ −fHfH
∗ )dσdvH∗ ,

QLH
B,ε :=QLH

ε (fL,fH(εvH))(vL) =(1+ε2)
γ
2

∫
R3

∫
S2

B(
vL−εvH√

1+ε2
,σ)(f ′L,εf ′H,ε−fLfH)dσdvH ,

QHL
B,ε :=QHL

ε (fH(εvH),fL)(vH)

=

(
1+ε2

ε2

) γ
2
∫
R3

∫
S2

B(
ε√

1+ε2
(vL−εvH),σ)(f ′L,εf ′H,ε−fLfH)dσdvL,

with

v′L,ε=vL+
1

1+ε2

(
|vL−εvH |σ−(vL−εvH)

)
=
ε2vL+εvH + |vL−εvH |σ

1+ε2
,

and

v′H,ε=εvH− ε2

1+ε2

(
|vL−εvH |σ−(vL−εvH)

)
=
ε2vL+εvH−ε2|vL−εvH |σ

1+ε2
.

Here the collision kernel B is assumed to be in the form

B(w,σ) =
1

2
|w|γ b( w

|w|
·σ).

Appendix B. The penalty methods. For the Boltzmann equation, the best
choice of this relaxation operator shown in [10] is

P (f) =β (Mρ,u,T −f),

where β>0 is an upper bound of ||∇Q(Mρ,u,T )||. Another simple example of β at time
tn is

βn= sup

∣∣∣∣Q(fn,fn)−Q(fn−1,fn−1)

fn−fn−1

∣∣∣∣.
We briefly review the penalty method introduced in [10] for the Boltzmann equation

in the form:

∂tf+v ·∇xf =
1

ε
QB(f,f),

the discretized scheme is given by

fn+1−fn

∆t
+v ·∇xfn=

QB(fn,fn)−P (fn)

ε
+
P (fn+1)

ε
, (B.1)

where P (f) =β [Mρ,u,T (v)−f(v)]. Multiplying (B.1) by φ(v) = (1,v, |v|2)T , one gets the
macroscopic quantities U := (ρ,ρu,T ):

Un+1 =

∫
φ(v)(fn−∆tv ·∇xfn)dv.
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Un+1 is obtained explicitly, which definesMn+1, thus fn+1 can be computed explicitly.

On the other hand, [21] discusses the penalty method for solving the multiscale
Fokker-Planck-Landau equation:

∂tf+v ·∇xf =
1

ε
QL(f,f), (B.2)

The authors in [21] demonstrate analytically and numerically that the best choice of
the penalization operator is the linear Fokker-Planck (FP) operator,

PFP (f) =∇v ·
(
M∇v

(
f

M

))
, (B.3)

where

M(x,v) =
ρ(x)

(2πT (x))Nv/2
exp

(
− (v−u(x))2

2T (x)

)
.

The first order AP scheme for (B.2) is given by

fn+1−fn

∆t
=

1

ε

(
Q(fn,fn)−βPnfn+βPn+1fn+1

)
,

where β is chosen large enough to ensure stability. For example, let β=β0 max
v
λ(DA(f)),

with β0>
1
2 and λ(DA) is the spectral radius of the positive symmetric matrix DA,

defined by

DA(f) =

∫
R3

A(v−v∗)f∗dv∗,

with

A(z) = |z|γ+2

(
I− z⊗z
|z|2

)
.

Compute the moments of fn by

(ρ,ρu,ρT )n+1 =

∫
R3

(
1,v,

(v−u)2

2

)
fndv,

and update Mn+1. One can then solve fn+1 by

fn+1 =

(
1− β∆t

ε
Pn+1

)−1(
fn+

∆t

ε
(Q(fn)−βPnfn)

)
. (B.4)

Introduce the symmetrized operator [21]

P̃ h=
1√
M
∇v ·

(
M∇v

(
h√
M

))
,

then the penalty operator is PFP f =
√
MP̃

(
f√
M

)
. Rewrite (B.4) as

(
f√
M

)n+1

=

(
1− β∆t

ε
Pn+1

)−1{
1√
Mn+1

[
fn +

∆t

ε

(
Q(fn)−β

√
MnP̃n

(
fn

√
Mn

))]}
.
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The discretization of P̃ in one dimension is given by

(P̃ h)j =
1

(∆v)2
1√
Mj

{√
MjMj+1

((
h√
M

)
j+1

−
(

h√
M

)
j

)

−
√
MjMj−1

((
h√
M

)
j

−
(

h√
M

)
j−1

)}

=
1

(∆v)2

(
hj+1−

√
Mj+1 +

√
Mj−1√

Mj

hj +hj−1

)
.

Since the new operator P̃ is symmetric, the Conjugate Gradient (CG) method can be used to

get
(

f√
M

)n+1

. See section 3 in [21] on details for the full discretization.

Definitions of λ(T ) and coefficients Dε
ij (i,j= 1,2).

We recall some definitions given in [8]. In the Boltzmann case, λ(T ) is given by

λ(T ) =
2

3

∫
R3

∫
S2
B(v,Ω)(v,Ω)2M0,T (v)dΩdv,

and in the FPL case,

λ(T ) =
2

3

∫
R3

B(v)M0,T (v)dv.

The coefficients Dε
ij are given by

Dε
1j =

1

3

∫
R3

M0,TLε
(v)Ψjε(|v|) |v|2dv,

Dε
2j =

1

6

∫
R3

M0,TLε
(v)Ψjε(|v|) |v|4dv.

Ψi is given by the following: The unique solutions ψL
i , i= 1,2, in

(
ker ΓL

0

)⊥
, of the equations

ΓL
0 ψ

L
1 =vL, ΓL

0 ψ
L
2 =

(
1

2

|vL|2

TL
0

− 3

2

)
vL

are of the form:
ψL

i =−Ψi(|vL|)vL.
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[29] A. Munafò, J.R. Haack, I.M. Gamba, and T.E. Magin, A spectral-Lagrangian Boltzmann solver
for a multi-energy level gas, J. Comput. Phys., 264:152–176, 2014. 1

[30] J.P. Petit and J.S. Darrozes, Une nouvelle formulation des équations du mouvement d’un gaz
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