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Abstract. In terms of mathematical structure, the voltage-conductance kinetic systems for neu-
ral networks can be compared to kinetic equations with a macroscopic limit which turns out to be a
voltage-based model for assemblies of Integrate-and-Fire (I&F) neurons. This article is devoted to the
mathematical study of the slow-fast limit of the kinetic-type equation towards the voltage-based pop-
ulation model. After proving the weak convergence of the voltage-conductance kinetic problem to the
potential-only equation, we study the main qualitative properties of the solution of the voltage model,
with respect to the strength of interconnections of the network. In particular, we obtain long-term
convergence to a unique stationary state for weak connectivity regimes. For intermediate connectiv-
ities, we prove linear instability and numerically exhibit periodic solutions. These results about the
voltage-based model for I&F neurons suggest that the solutions of the more complex kinetic equation
shares several similar qualitative dynamical properties.
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1. Introduction

The voltage-conductance density systems for neural networks are nonlinear (241)
dimensional kinetic Fokker-Plank equation which are established in [7,25]. Based on
neuro-physical concepts adapted in particular to the visual cortex, they describe the
probability density pc(v,g,t) to find neurons at time ¢ with a membrane potential
v € (Vg,VE) and a conductance g >0. Here, Vi denotes the excitatory reversal potential
and the reset potential satisfies Vg <V, with V;, the leak potential. There are several
variants of the equation depending on the physical interpretation of the variables, see,
e.g., [15,17]. The mathematical structure of these systems is rather complex and has
attracted the interest of mathematicians [2,4,23]. In particular difficulties related
to boundary conditions and partial parabolicity make the system rather uneasy to
handle and connect it to present interest about hypo-ellipticity in kinetic equations,
see [13,18,27] and the references therein. A rather striking finding in [4] is the numerical
observation of periodic solutions describing spontaneous activity of the network, a
phenomena which is common to other neural assembly models (see [20-22,24]).

Here, we deal with the probability density pe(v,g,t) to find a neuron with potential
v, conductance g at time ¢, which is assumed to be driven by the equation

Sipet 55 [(9(Ve =) +9(Ve —0))pe] + 1 &2 [(Geq (0, bNL(1) — 9)pe]

- (1.1)
— £ 5g2Pe +0r(v)pe =0, t>0,Vp<v<VEg,g>0,
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with the no-flux boundary conditions

(Geg (0. BNL() — 9)pe(v.9,1) —ape(v,9.) =0 for g=0, "
l9.(VL = VR)+9(Ve —Vr)Ip-(Vr,9,t) = Ne(g,t)  and  p.(VEg,g,t) =0,
and with an initial data that satisfies
VE oo
Pe9z0. [ [ P wgedg=1. (1.3)
ve Jo

A neuron spikes with a rate ¢ (v), typically very large for v larger than a firing potential,
and we assume that its membrane potential is instantaneously set at the reset potential
Vg. For the sake of analytical tractability, we have assumed that the firing potential
is randomly distributed, with the firing rate ¢p(v), while it is often prescribed at a
deterministic value Vg of the firing potential. Therefore, at each time, the firing rate
(activity of the network) for neurons with conductance g and respectively the total firing
rate of the network are defined as

—+oo

Vi
Ne(g,t):= y ¢r(v)pe(v,9,t)dv>0,  N.(t):= ; N:(g,t)dg. (1.4)

Those definitions and boundary conditions, when integrating the Equation (1.1), imply
the conservation property

VE o0
/ / pe(v,9,t)dvdg=1, (1.5)
Vr 0

which is in accordance with the interpretation that the solution is the probability density
of neurons with potential v and conductance g at time t.
For the ease of use, we summarize the parameter interpretation, according to [7,25],

e V is the excitatory reversal potential,

e Firing occurs with a rate ¢p(v) >0, ¢n(v) >0,

e Reset is at Vp,

e V1, is the leak potential, Vg <V < Vg,

e g7, >0 denotes the leak conductance,

® Gc4(v,-) >0 is the conductance equilibrium (when ignoring noise),

e ¢ represents the intensity of the synaptic noise,

e £ >0 denotes the time decay constant of the excitatory conductance,
e b>0 denotes the synaptic strength of network excitatory coupling.

Concerning parameter range, in [8], see Equation (3.2a), the authors choose Vg = V7.
Here we consider the more general case Vg <Vp. Also, to establish (1.1), [7, 25, 26]
assume that the value ¢ is small enough. Following [7,8], this motivates to consider the
limit € —0 of Equation (1.1), which formally leads to a reduction of dimension with a
(141) dimensional equation easier to tackle. More precisely, we are going to show that
it can be described by the following voltage-only neural network model for integrate &
fire neurons (see [5,10-12,14] and references therein) for ¢ >0, Vg <v < Vg,

D n(v,t)+ 2 [G(v,bN (1)) (VN (1) —v)n(v,t)] +ér (v)n(v,t) =0,
Ve
N(t) = /V b (0)n (v, )do, (1.6)

G(Vi,bN (1) (VBN (1)) — Vi) n(Vi, t) =N'(£)  and  n(Vig,t) =0.
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Our purpose is then, on the one hand, to derive this system in the slow-fast limit € — 0,
to explain how noise comes in the expression of the drift, together with the property

Vi <VOON()<Ve,  Gu,bN(t)) >0, (1.7)

which explains the possibility to state the boundary conditions in (1.6). On the other
hand, we aim at studying the qualitative properties of Equation (1.6), in order to for-
mally obtain, with this more simplified equation, the main properties of Equation (1.1).

The situation at hand is similar to the derivation of macroscopic (fluid) models from
kinetic (Boltzmann) equation in the phase space (position, velocity). This explains our
terminology ‘kinetic equation’ for the voltage-conductance model.

Assumptions on ¢ and G and initial data. In the rest of the paper, we make the
following assumptions. We assume that the firing rate satisfies

We also assume that G(v,4) >0 and that there is a smooth increasing function G >0
such that,

sup [G(U,A)—HM

[1<G(4), vA=0. (1.9)
VR<v<VE v

For example, in [7,25], we find the choice G(v,bN) =bN..
Finally, for the initial data, we assume, for e<1 and k>0

+oo
/ / (v,9)dvdg < Q"0 < 0. (1.10)

The microscopic model. For the sake of completeness, we present the micro-
scopic dynamics which generates the voltage-conductance kinetic equation in the limit
of a large number of neurons. More on this model and its limit can be found in [2,4,26].

The following dynamical system governs the temporal evolution of the membrane
potential V;(t) and the excitatory conductance G;(t) >0 of the i-th neuron in a pool of
N excitatory neurons,

av;
dt

T

gr(Vi—=Vi)—Gi(V;—Vg),

dG(t E
i +ZfE5t t")+SEENEZZp ot —th).

Jj=1 p

\_/

OFE

With the rate ¢ (V;), the i-th neuron will fire at some random times ¢ and the potential
is reset to Vg, then it spikes and sends instantaneously a current descrlbed by its strength
fE (self excitation) and Sgg the strength of excitatory coupling with Ng a normalizing
constant. Noise (as a Wigner process) or random jumps can be added to also include
the second derivative in g.

Outline. The rest of the paper is organized as follows. Section 2 is devoted to
the slow-fast limit study of Equation (1.1) to Equation (1.6). To this, we preliminarily
explain how to obtain the formal derivation. We then give uniform estimates on the
moments of the solution and of the firing rate with respect to e, leading to prove
rigorously the weak convergence of Equation (1.1) to Equation (1.6) when € goes to
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0. We finish this section by the construction of super-solutions leading to uniform L
bounds for the solutions of (1.1) with respect to € and for the solutions of Equation (1.6).
In Section 3 we give the main qualitative properties of Equation (1.6) with a slightly
simplified drift. To this end, we first study the steady states of this equation as well
as the asymptotic long-time convergence to those steady states when the strength of
connectivity parameter b is small enough. The method of proof is based on entropy
methods. We finally consider the case with stronger interconnections where instabilities
are proved for the linearized problem and we perform numerical simulations in order to
illustrate the emergence of oscillatory solutions. We finish the paper with conclusions
and perspectives.

2. From conductance-voltage to voltage-only model

Departing with a formal derivation, we first explain, how, Equation (1.1) leads to
Equation (1.6) when € goes to 0. We then prove uniform estimates on the total firing rate
and on the moments on the solution with respect to €. This leads us to prove rigorously
weak convergence of solutions of Equation (1.1) to Equation (1.6) (see Theorem 2.1).
Finally, we prove uniform estimates in L°° when Vi <V, by the construction of super-
solutions in Theorem 2.2.

2.1. Formal derivation.  The relation between Equations (1.6) and (1.1) can
be simply observed by setting

[o ]
newt)= [ pelv.gt)ds,
0
Then, integration in g of (1.1), using the no-flux boundary condition in g, gives

%nfr%[ge(v,t)(ve(t)fv)ne]+¢F(v)n5:0, t>0,Ve<v< Vg,

Ve
Ns(t):/v or(v)ne(v,t)dv, (2.1)
Ge (Vist) (Ve t) ~ Vi) ne (Va,t) =N (8)  and  ne(Vp, 1) =0,

with the bulk conductance and voltage

> pe(v,9,t
gLSQe(v,t):/O (9L+g)ni(v’t)) g,

o v,g,t
VL<%(U7t):ﬁ/ (gLVL—FgVE)MdggVE.
0

=(vt ne(v,t)

In order to close this formula, we need to identify the first moment in g of the distribution
pe(v,g,t) in terms of n..

(2.2)

To do so, we consider the limit p of p. and it formally solves
0 0?
379 [(Geq(v,bN (1)) — g)p] — aﬁngP =0,

With the no-flux boundary condition, we find

<Geq<v,bfv<t>>—g>p—a§—§:o, thefore  p=n(v,t)P(v,9,bN (1)),

with n solution of Equation (1.6) and

1 _ (Geg(v,4)—g)?
exp 2a

_(Geq(v,4)—9)2

73(1}79,14):2 , Z(U,a,A):/ exp 2a dg. (2.3)
0

(v,a,A)
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This expression allows us to compute the limiting flux in Equation (1.6) as stated
in Theorem 2.1 below.

Notice that Z(v,a,A) is controlled from above and below as
e A)— 2
f\/ a*/ WdQSZ(v,a,A)gx/Zwa.
Geq(v, A a

The effect of noise at the synaptic level is not a diffusion in v, as it is assumed
in the standard voltage-based population model for Integrate and Fire neurons, see for
instance [3]. Noise causes a change of the excitatory bulk conductance G.(v,t). It can
be compared to the noiseless case a — 0 which gives

Ge(v,0,bN (1)) = Geq(v,bNL(1)).

In mathematical terms, the analysis of the limit a — 0, i.e., the case without noise, yields
difficulties similar to those of friction-dominant particle flows, see [19] for instance.

2.2. Estimates on the firing rate/moments on the solution and rigorous
limit. = We now prove rigorously the above formal derivation. The result is stated in
the following Theorem

THEOREM 2.1 (Slow-fast limit result). We assume (1.8)—(1.10). Then, for all k>1,
there exists a constant C(k) >0 and a constant C' >0 such that, for all e >0 and t >0,
the following estimates hold

—+o0
/ 9"pe(v,9,t)dvdg <C(k)  and  [INC||poemt) + N[ oo ey < C. (2.4)
0
Hence, in the weak topology of bounded measures,
b= OP@GINE) >0 [ Plog N ()1,
0

where the smooth function P(v,g,bN (t)) z's determined by (2.3) and where n(v,t) satis-
fies Equation (1.6) with the initial data n° fo (v,9)dg and

—+o00
g(v,A):9L+/ gP(v,g9,A)dg>gr,
0
gLVL+Vg fo (v,9,A)dg
Q(UaA)

This theorem states a general weak convergence result. It can be strengthened, at
the expense of stronger assumptions as stated afterwards, see Theorem 2.2 in the next
subsection.

Proof. (Proof of Theorem 2.1).
Moments estimates.  Let us first prove the first inequality of (2.4). We set

+oo
/ / 9"p-(v,9,t)dvdg.

Multiplying Equation (1.1) by g* and integrating, we compute for k> 2

Q(k) / /+OO (v,bN(t)) —glp dvdg—f/ /+oo f— 13pe
kdt ey ]

VL<V(U A) <Vg.
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Therefore we find

(k) Ve p+oo
M_Fﬁgék)(t):/ / [kgk_lGeq(U,bNg(t))+k(k_1)agk_2 pgdvdg
dt € v Jo € €

As p. is a density probability, then
IV [lLe (RY) < [|6p | o

Using assumption (1.9), we deduce that there exists a constant C such that

Ve p+oo Ve p+oo
/ / gk_lGeq(v,bNg(t))pEdvdgSC’ / ¢" p.dudg.
VR 0 VR 0

Using again that p. is a density probability, and splitting the integral in g in two parts:
from 0 to p and from p to +o0, we deduce that for all ;>0 large enough, there exists
a constant C(u) such that

Ve “+o0 1
/ / (0 0" )pedvdg < C ) + - QW) (1),
Ve JO M

Consequently, we have for all >0 large enough

d k 1 1
2ok Zok) - —oW)
GO0+ L <2 (Clm+ o).

Taking p large enough and using Gronwall’s inequality, we deduce the first part of
estimate (2.4).

Uniform estimates on the firing rate. The bound on N.(t) is easy to obtain.
Because the total mass of p. is 1, we conclude from its definition that

Ne@) < llgrllzee.

Next, we prove the Lipschitz bound. We multiply Equation (1.1) by ¢z and inte-
grate in (v,g), we find

801 <| [ S5m0V (V0.9

<6 (0) < Ve / ape(0,9,8)dgdv

and we conclude using that the moments are uniformly bounded with respect to ¢,
thanks to (2.4).

Weak convergence. — Let us first deal with the term G4 (v,bN(t)). With the second
part of estimate (2.4), we deduce using the Ascoli theorem that, up to a subsequence,
there exists a Lipschitz function A such that for all T'> 0,

hm HNE _NHL"C(O,T) :0
e—0
As G is assumed to be regular, we deduce that, up to a subsequence, for all T'> 0,

il_rf%) ”G(UvbNE) - G(’UvbN) ||L°°((VR,VE)X(O1T)) =0.
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Let us now study the convergence of p.. As p. is a density measure and as its moments
are uniformly bounded with respect to €, we deduce that up to a subsequence, there
exists a bounded measure function p with total mass 1 and finite moments such that

Pe —Pp gPe — gp-
Integrating Equation (2.1) with respect to the variable g, we find that
+o00o
Avt)i= [ p(og)de
0
is a solution of the equation
+oo
on(v,t)+ 0, (gL(VL —v)n+ (Vg — v)/ gpdg) +d(v)n(v,t) ==y N (t).
0

Combining this with the equality

2
3[(Geqw,w(t»—g)p]—ag’—ggp:o,

dg
and following the Subsection 2.1, we conclude the proof of Theorem 2.1. ]
2.3. L™ bound on p. and n. We now wish to prove uniform bounds on

pe(v,g,t) for the full problem (1.1). For this, we need a kind of non-characteristic
condition between the transport in v and the boundary flux at Vz. Hence, to avoid
technicalities, we assume that Vg <V, for Equation (1.1). For the limit Equation (1.6),
the above condition can be relaxed with Vi <V},. The following theorem holds.

THEOREM 2.2 (L*° bound for p. and for n). We assume (1.8)~(1.10), Vg < VL, that
pe(t=0) € L*>® with sufficient (Gaussian) decay at g=oo uniformly in €. Then, for all
T >0, there exists a constant C(T) independent of € small enough such that the solution
of (2.5) satisfies

sup sup Nc(g,t) <C(T),
0<t<T g>0

sup  sup sup p.(v,g,t) <C(T).
0<t<TVRr<v<VEg g>0

Assume that Vr <Vp, and (1.8)~(1.10). Then, there is a constant C(T) such that, the
solutions of (1.6) satisfy

sup  sup n(v,t)ﬁC(T)HnOHLoc.
0<t<T Vr<v<Vg

Proof. We begin with the estimates on p. and then treat those for n.

Estimate for p.. We consider N:(t) as a given data in the term G., and we
build a super-solution p.(v,g,t) of Equation (1.1) for p.(v,g,t), that is a solution of the
following Problem for ¢t >0, g>0 and Vg <v < Vg,

%ﬁe + ,9@71 [(QL(VL —7)) +9(VE _’U))ﬁs] + %3@9 [(Geq(vyb/\/e(t» _g)pe] - %5%22156 2 07

a g Pe = (Geg(v,bNL(1) = 9)P-=0,  at g=0,, pc(Vi,g,t)=0,

[gL(VL - VR) +g(VE _VR)]ﬁs(VRvg7t) > Ni(g>t) = /¢F(U)p€(v>g’t)dv'
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We construct it under the form

_ (Geq(v,bNe(8)—9)?
2a

Pe(v,9,t) = Bea(VR*”)M(v,g,t)esgrze“t, with M (v,g,t) =exp ,
with B, « and p three constants which are large enough.

Firstly, the constant B is just used to satisfy the initial condition and we ignore it
in the end of the proof.

Secondly, we fix o so that the boundary condition at V7, is fulfilled. That simply
means (recall that we assume Vg <V7)

l90(VL = V&) +9(Ve —VR)|M (VR,g,t) > /aﬁF(v)@a(VR*“)M(Mg,t)dv

which is possible, because large values of g are favorable, for a large enough.

Thirdly, because M (v,g,t) satisfies

(Geg—9)M —adgM =0,
we deduce that
a8gpe = (Geq — 9)P= =2ap:£g >0,

and hence, the zero flux boundary condition is satisfied at g=0.

Finally, building on the above calculation, we also find successively that

0y((Geg — 9)P= — adyPe) = —2ac BeMd,(gM.e"),
0y ((Geq — 9)Pe — adype) = (—2as —a(2ge)* +g(g — Geq))Pe-

We deduce that there exists a constant C' independent of € small enough, such that for
all ve (Vg,Vg) for all g >0

2
£ 0,((Geq—9)Pe —adyp2) > [~ C(1+ 9. (2.6)
On the other hand, we have

815155 = (/J + 2 (ngat))ﬁe
with
b 0G.q d
Z —Gop) —
o 94 WG g
Using that N is uniformly Lipschitz with respect to €, see (2.4), we deduce that there
exists a constant C' independent of e such that for all v € (Vg,Vg) for all g >0

2| <C(1+9).

2e(v,9,t) = N(t).

We then deduce that
9p= > (n—C(1+9))p-- (2.7)

Simple computations show that there exists a constant C' independent of € such that
for all v € (Vg,Vg) for all ¢ >0

9 (gL (VL =v)+9(Vep —v))pe) 2 —=C(1+a)(1+g)pe. (2.8)
Combining (2.6), (2.7), (2.8) and taking p large enough, we deduce that
1
3t;l35 + 0, [(gL (VL - U) JFQ(VE - U))ﬁs] + gag[(Geq - g)ﬁs - aagﬁs} >0.

This proves the first part of Theorem 2.2.
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Estimate for n.  Due to (1.7), there exists a constant b> 0, such that
G(Vr,A) (V(Vg,A)—Vg) >b>0. (2.9)
Moreover, as n is a probability density, we have

N[ Loe <l|éplzes-
To show that we can build a super-solution, we can reduce to construct 7 >0 such that
O+ 0y [G(v,bN (1)) (V (BN (t) —v) 7] >0
and
(G(VR.DN () (V (BN (1) = VR)72) > |65 || -
Choosing
(u,t) i= Blln® | g 4!

with A and B large enough and using assumption (2.9), we deduce that 7 is a super-
solution which ends the proof of Theorem 2.2. 0
3. Qualitative study of the associated population model for 1&F neurons
This section is devoted to the understanding of the qualitative and asymptotic be-
havior of Equation (1.6) with respect to the strength of interconnections of the network.

To simplify the presentation, we consider a slightly simplified model of Equation (1.6)
as follows.

{%Ttufai[(vo(f\/)—v)”HW(U)n:O, 0<v< Vg,

3.1
VoN(t))n(v=0,t)=N, n(Vg,t)=0, N(t) :fOVE or(v)n(v,t)dv. (31)

Here, firstly, following [7,25], we choose Vi, =Vg=0. Secondly, we use a simpler drift
Vo independent of the variable v.

3.1. Steady states. The associated steady equation is given by

{ Z(Vo(N)—v)a]+¢p(v)n=0, 0<v<Vpg, 652)
VoM a(w=0)=N, p(Ve)=0, N=[""¢p(v)a(v)dv. '
We assume that the smooth function Vy(-) satisfies

0<Vo(N) < Vg, YN >0. (3.3)

One observes that, to avoid concentration as a Dirac mass at v=Vy(N), it is useful to
also assume

or(Vo(N))>0 YN >0. (3.4)
Indeed, we may write Equation (3.2) as
(Vo) =) 22 4 (65 () - 1) =0. (35)

ov
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Therefore, near v=V,(N), the solution behaves as 8131()73) =— ¢F‘£(§/(‘i\£/§fj)l)_l and thus, for

some constant gs

nxqs(VoN)—v)*,  a=¢r(Vo(N))—-1>-1,
which means that Condition (3.4) implies that 7 has an integrable singularity.
More precisely we have the following theorem.

THEOREM 3.1.  With the assumptions (1.8), (3.3), (3.4), there is at least one steady
state solution n which satisfies fOVE n=1.

Proof. It is possible to give an expression of the stationary solution 7. Using (3.5),
we can write

dln(n) ‘1/0_(%(1%, for v < Vo(N),
v N).

0, for v> V(W)

Therefore we define

- [ 1—¢pr(w)
F(’U,N)—/O mdw,

and we conclude that (and recall this 7 is integrable near Vo(N) as we saw it above)

L F(’U,,/\_/) \/
A(v)=4 WA ° , forv< VO(’Y ) (3.6)
0, for v > Vo(N).

Indeed, from (3.5), we may also infer that n=0 for_v>Vo(J\_/) and the sign of % is
the sign of 1—¢pr(v). Next, we choose the value A so as to enforce the constraint

OVO(N)T_L=1. For N'=0, the corresponding solution 7 vanishes, and for N'— oo, we
have n — co. By continuity, we may achieve the constraint. 0

These considerations explain the numerical solutions depicted in the Figure 3.1.
These are obtained with

N
2N

and A=.5 for the figure on the left, A=5. for the figure on the right. The value Vo (N)
can be identified because the solution vanishes for v > Vy(N).

Cases of uniqueness of the steady state. ~ We may complete the existence result in
Theorem 3.1 with uniqueness cases.

Va=0, Ve=1, ¢p(t)=Alssy, VoN)=8+ (3.7)

THEOREM 3.2.  With the assumptions (3.3), (3.4), the steady state is unique in the
two following cases.

(1) ¢rp>1 on [0,Vg] and
0<NVy(N)<Vo(N), VN >0. (3.8)

(2) ¢'=>0 and Vj <O0.

Notice that Condition (3.8) is satisfied, for instance, by Vo(N) = b‘i—NN +c¢, with a >0,
b>0 and ¢>0, three constants.
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F1G. 3.1. Numerical solutions of the steady states in (3.2) with the data in (3.7) and two choices
of the term ¢p(v). Abscissae are v. Left: firing rate A=.5; Right: Firing rate A=5.

Proof. (Proof of Theorem 3.2).

Case 1. The condition providing the steady states in Theorem 3.1, that is fovo( = 1,
is also written as

Vo(N) _ /W) SN gy
N 0 ’

and we show that the two uniqueness cases correspond to left and right-hand sides with
opposite monotonicity.
The derivative of the left-hand side is given by
NVEWN) = Vo)
N2
To treat the right-hand side, we observe that, thanks to the assumption ¢ (v)>1, we
have ef’W:Vr) = (. Therefore its sign is given by that of VJ(N) because

OF(v,N) Y 1-¢p(w)
B Y e el

Because the latter expression has the sign opposite to Vj(AN), we find the result.
Case 2. To also consider possible values ¢z <1 and to compute the derivative in N
requires additional steps. We write, for v < Vy(N),

v/Vo(N) 1—¢F(ZV0(J\/))

<0.

Y 1=9r(zVo(N))

F(v,/\f):/o sz, and G(w,./\/'):/0 - dz.
The formula (3.6) gives,
Vo(N) ! _
/ n(v) :N/ eG(w’V“(N))dw,
0 0
and 7 is a probability measure if
1 _
i_ :/ eG(w’VO(N)) dw.
N o
Uniqueness follows under the condition that G is increasing in N, which means

— ¢ (2Vo(N)) Vg (V) >0,

and, since ¢ >0, this gives the condition V{ <0. O
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3.2. Asymptotic stability. Back to the evolution Equation (3.1), the next
step is to determine if the solutions converge to a steady state in long time. We first
consider the linear case and by a perturbation method conclude that the result still
holds, assuming a weak nonlinearity. We use the Doeblin method which is very well
adapted to the problem at hand, see [1,9,16] for recent presentations and results.

F1G. 3.2. Numerical solutions of the evolution Equation (3.1) with Vo(N)=.95, that is the linear
equation. This shows that the solution relaxes to the steady state depicted in Figure 3.1 with damped
oscillations.

Linear case. In the linear case (Vp constant), we may apply the Theorem 2.3
in [9] to Equation (3.1). We obtain the following criteria for exponential convergence to
a unique stationary state. If, for a time ¢y > 0, we are able to construct non-negative sub-
solution, uniformly with respect to all initial data in L', then the solution of our equation
converges exponentially to a unique stationary state. More precisely, the following result
holds.

THEOREM 3.3 ( [9]). Assume that V>0 is constant and assume that there exist
to>0 and a nonnegtive function v#0 such that for all initial data n° eL}r(O,VE) with

fOVE n®(v)dv=1, the solution of (3.1) at time ty satisfies

n(v,to) >v(v). (3.9)
Then, there exists a unique stationary state i of Equation (3.1), there exist « >0, C >0
such that for all t >0 and for all density initial data n° € L

[n(t) =72 <Ce™||n® —a| 1.

Notice that Doeblin’s method is particularly adapted to work with measures. However,
in our context, we have control in L' and thus we restrict ourselves to this context.
Once adapted to our case, we conclude that the following result holds.

THEOREM 3.4. Assume that Vy is constant, Vo >0 and ¢r(Vy) >0. Then, there exists
to >0 and a non-negative function v#0 such that for all initial data n® € L% (0,Vg) with

fOVE n®(v)dv=1, the solution of (3.1) at time ty satisfies estimate (3.9).
As a consequence, there exist >0, C'>0 such that for all t>0

In(t) =2l < Ce™*||n’ =] 1,
where 7 is the stationary state of Equation (3.1).

Proof. Equation (3.1) can be written as

0 0
5 T 5+ (6r() ~1n=0.
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With the method of characteristics, we obtain that
n(v,t)=0 for v>[Vg—Vole "+ V.
In the interval
Vo(l—e ") <v< [V —Vole "+ Vh,
we have
n(v,t) = et=lo ¢F(”'H/O(eft_l)JrV"(l_eﬂ))dsn(O,Uet +Vo(1—€Y)), (3.10)
and finally, in the interval
0<v<Vy(l—e™),
we have

1(0,8) = oA (1 In(V — ) ~ In(Vp))e om0Vl "0 g (e s

0
(3.11)
Using formula (3.10), we deduce that
Ve—Vole t+Vo
N(f) > et(l_H¢FHL0<>)/ ng(v)nO (Uet +Vo(1 —et))dv.
Vo(1—e™?)

Now, we use that ¢r(Vp) >0 and that ¢p is regular. This implies that there exists a
constant C' >0 and t; > 0 such that for

Vo(l—e ™) <v<[Vg—Vole " +Vy, we have ¢p(v)>C>0.
Hence, for t >t1, we have
[Ve—Vole "+Vo
N(t) > Cet(1—|\¢F||L°°)/ no (Uet +VO(1 —et))dv.

Vo(l—e—t)

Now, using that fOVE n%(v)dv=1, we obtain the following estimate, independent of the
initial data, that is

N(t)>CelIorlleeet yp >y, (3.12)

Now, using formula (3.11), we deduce that for to=2¢t;, and for

: t
we have
n(v,tg) > Ce~lI¢rllL=to,

This implies, that there exists a time ¢ :=2t; and a nonnegative function v with f v>0,
such that, for all initial data in L', condition (3.9) is satisfied. This ends the proof of
Theorem 3.4. ]



1206 DERIVATION OF A VOLTAGE DENSITY EQUATION

Nonlinear case. ~ We now consider the nonlinear Equation (3.1), which means that
Vb is not necessarily a constant. The following theorem holds

THEOREM 3.5. Assume (3.3), (3.4) and that there is a constant D >0, small enough,

such that
N
( Vo(N)

Then, there exists a unique stationary state n* of Equation (3.1) and there exist con-

stants a >0 and C >0 such that for all initial data n® € L*(0,Vg), VE n®(v)dv=1, the
solution of Equation (3.1) satisfies

/
+||Vo'||L°o> [éF|lL~ <D.
Loe

In(t) —n*|| 12 < Ce™*||n0—n*||p:.

Proof. As the assumptions of Theorem 3.1 hold, there exists a stationary state of
Equation (3.1), we denote it by (n*,N*). For a density n® as above, we call S;(n°) the
solution of the linear equation

9 L D[(Vy(N*) —0)n] +dp(v)n=0, 0<v<Vg, 13
VoN*)In(v=0,t)=N*, n(Vg,t)=0, n(v,0)=n". '

Then, using Duhamel’s principle, the solution of Equation (3.1) with initial data n° can
be written as

n(v,t)=S(n +f0 Si—r (Vo(N*) =Vo(N (1)) n(r,v)dT+

t N (7 N~
Ov=0 [y St—r (vo(/\(f()r)) N Vo(N*)> dr.

From this, inserting absolute values, integrating in v and using that the total mass of n
is 1, we obtain

N(r)  N* )
Vo(N(7))  Vo(W¥)

and we now use Theorem 3.4 to obtain two constants C'>0 and 8> 0 such that

Sir (Vo(N™) = Vo (N (7)) + dr

t
[[(t) =n|| L1 < HSt(no)—n*HLlJr/O

In(t) =n*|[Lr < e~ [n® —n*[| s

t
n / o~ B(t=7)
0

To conclude, it remains to estimate

N (1) N*
N )l

(VoV™) = VoW (7)) +

‘(VO(N*)—VO(N(T))—F Ni(r) Al )‘

VoN(7))  Vo(N™)
To do so, we notice that

Vo) = VoW (DI < VG llLoe N =N (D) < VG|l o< | [l o In(7) =0l o

S‘ (voZ<VN>>I

and

[opllLeeIn(r) =n"|| 1.
Ioe
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(vw)

we conclude Theorem 3.5 using the Gronwall lemma and choosing
N !/
(7tw)

3.3. Oscillatory states. As observed in [4], the voltage-conductance
model (1.1) can produce periodic solutions which represent the spontaneous activity
of the network. This desirable property also holds for other neural network models;
see [6] for the Leaky Integrate & Fire population model and [21,22] for the time elapsed
model.

With the weak nonlinearity assumption

Vol llérll +

[opllLee <5,

L

a=B—IV5llL=llérllL=+

¢F(lze-
Ioe

|

Linear instability.  While in Subsection 3.2 we have studied the nonlinear asymp-
totic stability of the steady state, one can also find conditions for its instability.

The linearization of Equation (3.2) around a steady state n(v) is to find (r(v),u)
satisfying

G+ o (o=l + Vin5t +orr =0, 0<v<Va,
Wi= foVE ¢rrdv, foVE rdv=0, VOT(O) =p[1- ‘70/73(0)]’

We look for a solution with exponential behavior in time r(v)e* which gives

At 2 [(Vo— vy + Vg2 + gpr=0,  0<v<Vp,

_ _ (3.14)
pi= [y gprdv,  Vor(0)=p[1 - Vgn(0)]

Because n(v) =0 for v>V, we also have r(v)=0 for v>V, and it remains to solve
the problem for v € (0,Vp). Notice that the condition fOVE rdv=0 follows by integration
when A#0.

PROPOSITION 3.1.  We assume that ¢ (v) =¢111y501y and ¢1>1. We also assume
that

Vi N
/7(;—¢1V0/+‘/HV70(%—U1)¢1_2<0.

Then there is a solution of the problem (3.14) with A>0. In other words the steady
state n is unstable.

Proof. To solve this problem, we notice that ¢ =L satisfies

_ dq  Vipon(v
A”(VO_”)@%JFO?M%:O’

and thus, using (3.2),

Vo-v)q o\ Vg dn(v)
ov =—(Vo-v) n Ov

=Vou(Vo—v)**(¢r — 1),
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A1 (T — )AL
(Vo —0)a= () a(0) + Vg =005y 1)

where (¢p(v)) ranges for some average of ¢ on (0,v).

06
04
02

0

T T T u T T y T T
1800 130 1840 180 1880 1900 190 1940 1960 190 2000

F1c. 3.3. Numerical solutions of the evolution Equation (3.1) with data in (3.15). Abscissae are
v. Left: firing rate VO(N):.75+.15%; Right: Zoom on two oscillations.

At this stage we recall the singularity of 2(v) & ¢s(Vo(N) —v)*, a=¢p (Vo) —1>—1.
This means that r =g is integrable for A< ¢r(Vp), 1 <or(Vh).
Then, eliminating u, the parameter A is chosen so as to satisfy

-1 Y o n(v) O O I e A k)
1=(Vp) [A—[O—Vo]/mdv+vo/(%_vy : P ((¢r(v)) —1)dv,

a relation that we write, with obvious notations, as
I(A\)=1.

Now we assume that ¢ > 1 is constant on its support. On the one hand, as A — ¢p,

the term [ (VZL(—UU))A dv tends to 400 and A—1— ¢ —1 for v~ V;. Therefore,

a1 Yo n(v)
I(A) = (Vo) No/i(VO—U)Adv_)—FOO as A= op.

On the other hand, as A — 0,

— o —, - n(v)
Vol(\) ~ — —orVi+Vy —1/7 dv.
ol () w orVet o(or—1) -
Since n= ﬁ(% —wv), Proposition 3.1 follows by the mean value theorem. 0O
Numerical illustration. Numerical evidence, indicates that periodic solutions

occur for the simple limiting model (1.6). We use the range of parameters produced
in the previous subsection, when the firing rate ¢ is large enough and the nonlinear
voltage Vo(N) is stiff enough. The computed solution is depicted in the Figure 3.3 for
the evolution Equation (3.1). Here the choice of parameters and nonlinearities (which
are far from the regimes where uniqueness of a steady state has been established) is
given by the expressions

or()=51ps 7y,  Vo=.75+.22min(N,1). (3.15)
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4. Conclusion and perspectives

Neural networks are by nature highly complex systems and mean field models are
a way to circumvent the modeling. In [7,25], the authors propose a kinetic mean field
equation of neural assemblies to make a fine description of the dynamics of neural
networks with respect to the membrane potential and the conductance of the neurons.
The patterns that emerge from those models are very rich, and exhibit oscillations,
bifurcations etc. However, this model is very difficult to tackle both from a numerical
viewpoint [4], where efficient numerical schemes are complex to implement and from a
theoretical viewpoint [23], where classical methods fail due to the particular boundary
conditions and the degenerate diffusion involved in the equation. To overcome those
difficulties, in [7,25], the authors propose a reduction of dimension of this equation by
closure moments. In this article, we give an alternative with a new kinetic model where
the singular boundary condition is replaced by an integral absorption in order to obtain
more precise theoretical results and to simulate the different types of dynamics that
can emerge with a relatively simple algorithm on the limiting voltage-based population
equation for I&F neurons.

Several open questions about the present voltage-only I&F model remain open.
The first one concerns a more precise theoretical study on the mechanisms beyond the
oscillations in the Integrate and Fire model presented in this equation. Indeed, to our
knowledge, there do not exist theoretical results of existence of periodic solutions for this
kind of PDE. However, Equation (3.1) shares, in its structure, some similarity with the
time elapsed model, where we can build explicit periodic solutions (see [22]). Indeed, as
for the time elapsed model, in some regimes, the total firing rate satisfies a delay-type
equation, which may be tractable. As an example, considering for k € N big enough (let
us assume, to simplify, Vg =0, Vg =1) and the particular function

¢F(U):k]102a;a>07 O<a<l,

using the method of characteristics, we obtain the following formula on the total firing

rate of Equation (3.1)
t
Nt =k (1— / J\/(s)ds)
»(t)

with ¢(t) <t such that

t—p(t)
a:e—(t—w(t))/ Vo (N (s-+(t))eds.
0

This system is however more complex than the one obtained in [22], due to its specific
coupling, but may be exploitable.

Coming back to the conductance and voltage-conductance kinetic model developed
in [7,25], a second important question, concerns the theoretical study of this equation
which was initiated in [23]. Indeed, besides the question of well-posedness which is
rather difficult, typical questions as the asymptotic convergence to a stationary state
for very weak interconnections, is not yet understood.

The standard I&F model for networks is closely related to (1.6) with two main
differences. On the one hand firing is taken pointwise, rather than the nonlocal definition
of firing in (1.6), which is our choice of a simplification. On the other hand noise is
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taken into account differently, directly by a diffusion term in the standard 1&F model,
rather than by dispersion of the drift terms. It is written

v

2+ 2 [hON(),0)n] —alt =N()6(v—Vr),  t>0,v< Vg,
n(Vg,t) =0, N(t)zfa%h):vjs'

Another question is to derive this model from the voltage-conductance equation in a
diffusive limit rather than a hyperbolic limit.
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