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AN APPLICATION OF
FDM BY GIBOU TO A NUMERICAL BLOW-UP FOR NONLINEAR

EVOLUTION EQUATIONS ON A DOMAIN Ω⊂RN ∗

SOON-YEONG CHUNG† AND JEA-HYUN PARK‡

Abstract. In this paper, using a finite difference method introduced by Gibou et al., we show the
blow-up phenomenon of solutions to nonlinear evolution equations with Dirichlet boundary condition
on an N -dimensional smooth bounded domain Ω⊂RN .

We first present bounds of the discrete smallest eigenvalue and the corresponding eigenfunction
to the discrete Dirichlet eigenvalue problem with the discrete Laplacian which is obtained by Gibou’s
method. We also show that the numerical solution is second order accurate to the theoretical solution
and there exists a blow-up time of the numerical solution by finding upper and lower bounds of the
blow-up time. Finally, using the above results, we prove that the theoretical solution has a blow-up
time and we also give upper and lower bounds for the blow-up time of the theoretical solution.
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1. Introduction
In recent decades, there has been an explosion of interest in blow-up of solutions to

various linear or non-linear evolution equations representing many physical situations,
such as flows in porous media, heat transfer, or biochemical kinetics (see [13,15,17–20]
and references therein). Among methods to research long time behaviors of solutions,
numerical approximation methods have been known to be an efficient tool to analyze
qualitative properties of solutions, such as the blow-up, extinction, global existence, and
so on (see [1–5,11,12]).

The purpose of this paper is to apply the finite difference method (FDM) intro-
duced by Gibou et al. in [14] to show the blow-up phenomenon and to give upper and
lower bounds for a blow-up time of a solution u∈C4

1 (Ω× [0,T ]) to nonlinear evolution
equations on a multi-dimensional smooth bounded domain Ω⊂RN (N ≥1)ut(x,t) = ∆u(x,t)+f(u(x,t)), x∈Ω, t>0

u(x,t) = 0, x∈∂Ω, t≥0
u(x,0) =u0(x) x∈Ω.

(1.1)

where C4
1 (Ω× [0,T ]) :={u : Ω× [0,T ]→R | u, ∂kxu, ut∈C(Ω× [0,T ]),k= 1,2,3,4}, the

initial condition u0 is sufficiently large and the non-homogeneous term f is convex and
satisfies

∫∞
ε

dz
f(z) <∞ for some ε>0.

In general, if the given domain is regular, such as finite intervals, squares, rectangles,
cubes, and so on, then the FDM by Shortley-Weller has been mainly used, which is a
basic finite difference method mainly for solving elliptic partial differential equations on
regular domains. But it has been known that the method constitutes a non-symmetric
linear system for irregular domains [21]. For this reason, Gibou et al. [14] introduced
a simple method, as a modified version of the Shortley-Weller method, in which they
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gave a symmetric linear system for N -dimensional irregular domains so that numerical
solutions to Poisson equations turn out to be convergent to theoretical solutions.

The novelty of this paper is to present bounds of the smallest eigenvalue and its
eigenfunction of the discrete Laplacian obtained by the FDM of Gibou et al. which
are key tools to show the blow-up phenomenon of the theoretical solution to (1.1) on a
multi-dimensional (irregular) domain Ω⊂RN (N ≥1). More precisely, in this paper, we
give bounds of the blow-up time of theoretical solution which are obtained by bounds
of the blow-up time of the numerical solution to the discrete equation obtained by the
FDM of Gibou et al. Specially, the upper bound of the blow-up time of the numerical
solution depends on the smallest eigenvalue and its eigenfunction of the discrete Lapla-
cian. Hence the bounds of the smallest eigenvalue and its eigenfunction of the discrete
Laplacian is used when we discuss boundedness of the blow-up time of the numerical
solution.

Actually, in the one-dimensional case, it is well-known that the smallest eigenvalue
and its eigenfunction of the discrete Laplacian converge to the smallest eigenvalue and
its eigenfunction of the Laplacian. These convergences were used as key tools in [1]
when proving that the blow-up time of the semidiscrete problems converges to the
theoretical one. On the other hand, in the multi-dimensional case, there is no result
about the convergence of the smallest eigenvalue and its eigenfunction of the discrete
Laplacian obtained by the FDM of Gibou et al., and some bounds of only eigenvalues
of the discrete Laplacian were presented in [21]. We note that the bound of the smallest
eigenvalue of the discrete Laplacian in this paper is slightly improved than the bound
in [21], and as far as the authors know, this paper is the first to present the bounds of
the eigenfunction corresponding to the smallest eigenvalue.

Moreover, we also expect that using the FDM by Gibou et al., various results for
the behaviors of particles in networks can be applied to study properties of solutions to
evolution-type equations. In fact, we analyze the behaviors of theoretical solutions to
evolution-type equations in Remark 4.2 of this paper, as applying the FDM by Gibou
et al. to the results for networks ( [9, 16]).

This paper is organized as follows: we first consider the case N = 2. For this case,
in Section 3, we present some bounds of the smallest discrete eigenvalue and the cor-
responding eigenfunction of discrete Dirichlet eigenvalue problems with the discrete
Laplacian obtained by the method in [14]. In Section 4, we still consider the case N = 2,
and we show that the numerical solution is second order accurate to the theoretical
solution. To prove this result, we use some known results by Yoon and Min in [21].
Their results are very usefully employed to discuss results for the N -dimensional case
in this paper. So, their results used in this paper are included in the Appendix of this
paper for self-containedness. And then, we also show the existence of a finite blow-up
time of the numerical solution by finding upper and lower bounds of the blow-up time.
We also prove that the theoretical solution has a blow-up time and we present upper
and lower bounds for the blow-up time of the theoretical solution. The case N ≥3 is
dealt with in Section 5. Actually, in this case, by similar procedure as in Section 3 and
Section 4, we can obtain exactly the same results as Section 3 and Section 4 except only
one result in Section 3. So, we are going to simply introduce the changed result.

2. Preliminaries

We start this section with the discretization of (1.1) obtained by the method of
Gibou et al. in the 2-dimensional case.

Let us consider a smooth bounded domain Ω⊂R2 and a uniform grid hZ2 with step
size h>0 and denote by Ωh the set of nodes of the grid belonging to Ω and by ∂Ωh the



S.-Y. CHUNG AND J.-H. PARK 1151

set of intersection points between the boundary ∂Ω of Ω and grid lines as Figure 2.1.
For convenience, by Ωh, we denote Ωh∪∂Ωh. For x,y∈Ωh, by y∼x, we denote that the
grid node y is a neighboring node of the grid node x. By d(x,y), we denote the distance

from a node x∈Ωh to its neighbor y∈Ωh. We note that (xi,yi) is generally used as a
notation of a grid node in numerical analysis. But in this paper, we use x instead of
(xi,yi) for notational simplicity.

Fig. 2.1. Blue vertices are grid nodes in Ωh and red vertices are intersection points between ∂Ω
and grid lines.

We now consider the following discrete equation which is the discretization of (1.1)
obtained by the method of Gibou et al.:Uht (x,t) = ∆hUh(x,t)+f(Uh(x,t)), x∈Ωh, t>0,

Uh(x,t) = 0, x∈∂Ωh, t≥0,
Uh(x,0) =Uh0 (x) x∈Ωh.

(2.1)

where Uh0 (x) :=u0(x), x∈Ωh and the discrete Laplacian operator ∆h is defined by for
each x∈Ωh,

∆hUh(x) :=
∑
y∈Ωh

y∼x

[
Uh(y)−Uh(x)

] 1

hd(x,y)
.

We now recall the eigenvalue problem for the discrete Laplacian ∆h which is defined by{
−∆hφ(x) =λφ(x), x∈Ωh,
φ(x) = 0, x∈∂Ωh.

(2.2)

Then it is well-known that the discrete smallest eigenvalue λh0 is strictly positive and
there exists an eigenfunction φh0 corresponding to λh0 such that

(i) φh0 (x)>0, x∈Ωh,

(ii) h2
∑
x∈Ωh

∣∣φhi (x)
∣∣= 1, i= 0,1,. .., |Ωh|−1.

Moreover, the discrete smallest eigenvalue λh0 can be variationally characterized by the
Rayleigh quotient as follows:

λh0 = inf
φ6≡0

φ|
∂Ωh

≡0

∑
x,y∈Ωh

y∼x
[φ(x)−φ(y)]2 1

hd(x,y)∑
x∈Ωh

φ2(x)
,

(see [6,7] for more details). In addition, by µ0 and Φ0, we denote the smallest eigenvalue
and its corresponding eigenfunction for the eigenvalue problem for the Laplacian ∆ on
the given domain Ω as follows:{

−∆Φ(x) =µΦ(x), x∈Ω,
Φ(x) = 0, x∈∂Ω,

(2.3)
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and we assume that Φ0>0 in Ω and
∫

Ω
Φ0(x)dx= 1 throughout this paper. (see [10],

for more properties of eigenvalues and eigenfunctions).
Finally, we introduce the comparison principle for the discrete Laplacian, which

plays an important role throughout this paper. The proof of it can be done in a similar
way as in [8], with some modification.

Theorem 2.1 (Comparison Principle). Suppose that a function f is locally Lipschitz

continuous on R. If two functions Uh and V h on Ωh× [0,∞) satisfyUht −∆hUh−f(Uh)≥V ht −∆hV h−f(V h), in Ωh×(0,∞),
Uh≥V h, on ∂Ωh× [0,∞),
Uh(·,0)≥V h(·,0), in Ωh,

(2.4)

then Uh≥V h on Ωh× [0,∞).

Remark 2.1 (Uniqueness). If a function f is locally Lipschitz continuous and f(0) =
0, then by the above theorem, it is easy to see that the solution Uh to (2.1) is unique.

3. Bounds for the discrete smallest eigenvalue and the corresponding
eigenfunction

In this section, we give upper bounds for the smallest eigenvalue λh0 and the cor-
responding eigenfunction φh0 , which are very useful in the next section and seem to be
interesting itself.

In the following theorems, the eigenvalue problems (2.2) and (2.3) are considered in
Ω⊂R2. Instead, the N dimensional case with N ≥3 is going to be stated in Section 5.

Theorem 3.1. The discrete smallest eigenvalue λh0 to (2.2) satisfies that

lim
h→0

λh0 ≤µ0, (3.1)

where µ0 is the smallest eigenvalue to (2.3).

Proof. By the same arguments with the proof of Theorem 3.2 in [21], for each
h>0, we have

λh0 ≤

∑
x,y∈Ωh

y∼x

[
Φh0 (x)−Φh0 (y)

]2 1
hd(x,y)∑

x∈Ωh

[
Φh0 (x)

]2 ,

where Φh0 (x) := Φ0(x), x∈Ωh. Since h≥d(x,y), the right-hand side of the above in-
equality satisfies that for each h>0,∑

x,y∈Ωh

y∼x

[
Φh0 (x)−Φh0 (y)

]2 1
hd(x,y)∑

x∈Ωh

[
Φh0 (x)

]2 ≤

∑
x,y∈Ωh

y∼x

[
Φh0 (x)−Φh0 (y)

d(x,y)

]2
hd(x,y)∑

x∈Ωh

[
Φh0 (x)

]2
h[h/2+d(x,y)/2]

.

Hence we have

lim
h→0

λh0 ≤ lim
h→0

∑
x,y∈Ωh

x∼y

[
Φh0 (x)−Φh0 (y)

d(x,y)

]2
hd(x,y)∑

x∈Ωh

[
Φh0 (x)

]2
h[h/2+d(x,y)/2]

=

∫
Ω
|∇Φ0|2∫
Ω

Φ2
0

=µ0.

Theorem 3.2. The eigenfunction φh0 corresponding to the smallest eigenvalue λh0
satisfies the following:
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(i) 0<φh0 (x)≤ CΩλ
h
0

h , x∈Ωh.

(ii)
∑

x,y∈Ωh

x∼y

[
φh0 (x)−φh0 (y)

]2
<
CΩ(λh0 )2

h ,

(iii)
∑
x∈∂◦Ωh φ

h
0 (x)≤λh0 ,

where CΩ>0 is a constant depending on Ω and ∂◦Ωh is defined by

∂◦Ωh :={x∈Ωh | y∼x for some y∈∂Ωh}.

Proof. (i) It follows from h≥d(x,y) that

λh0 ≥

∑
x,y∈Ωh

x∼y

[
φh0 (x)−φh0 (y)

]2
h2
∑
x∈Ωh

[
φh0 (x)

]2 .

Since φh0 (x)>0 for all x∈Ωh and h2
∑
x∈Ωh φ

h
0 (x) = 1, we have∑

x,y∈Ωh

x∼y

[
φh0 (x)−φh0 (y)

]2≤λh0 max
x∈Ωh

φh0 (x). (3.2)

Moreover, by the assumption h2
∑
x∈Ωh φ

h
0 (x) = 1,

∑
x,y∈Ωh

x∼y

[
φh0 (x)−φh0 (y)

]2≤ λh0
h2
. (3.3)

Let x0∈Ωh satisfy φh0 (x0) = max
x∈Ωh

φh0 (x). Then there exists the shortest path Px0

from x0 to the boundary ∂Ωh where a path from x∈Ωh to y∈Ωh is a sequence of nodes
x=x0,x1,. ..,xn=y satisfying xj−1∼xj for j= 1,. ..,N . Let xn∈∂Ωh be the final node
in the path Px0

. Then since we choose the shortest path, it is clear that xj ∈Ωh,
j= 0,. ..,n−1.

Applying the triangle inequality and Hölder’s inequality for the path Px0 , we have

φh0 (x0)≤
n∑
i=1

|φh0 (xi−1)−φh0 (xi)|≤
√
n

[
n∑
i=1

(φh0 (xi−1)−φh0 (xi))
2

] 1
2

. (3.4)

Since the domain Ω is bounded, it is clear that there exists CΩ>0 such that

n≤ CΩ

h
. (3.5)

Thus it follows from (3.3), (3.4), and (3.5) that

φh0 (x0)≤
C

1
2

Ω (λh0 )
1
2

h
3
2

.

We now apply the above inequality to (3.2). Then we obtain

∑
x,y∈Ωh

x∼y

[
φh0 (x)−φh0 (y)

]2≤ C 1
2

Ω (λh0 )
1
2

h
3
2

. (3.6)
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Thus it follows from (3.4), (3.5), and (3.6) that

φh0 (x0)≤
C

3
4

Ω (λh0 )
3
4

h
5
4

.

Repeating the above argument infinitely many times, we eventually reach the de-
sired result.

(ii) It is trivial in view of (i) and (3.2).

(iii) From the discrete eigenvalue problem (2.2), we have

λh0
∑
x∈Ωh

φh0 (x) =
∑
x∈Ωh

∑
y∈Ωh

y∼x

[φh0 (x)−φh0 (y)]
1

hd(x,y)
+

∑
x∈∂◦Ωh

∑
y∈∂Ωh

y∼x

[φh0 (x)−φh0 (y)]
1

hd(x,y)

≥ 1

h2

∑
x∈∂◦Ωh

φh0 (x)

where a set ∂◦Ωh⊂Ωh is defined by ∂◦Ωh :=
{
x∈Ωh | x∼y for some y∈∂Ωh

}
. Thus

the assumption h2
∑
x∈Ωh φ

h
0 (x) = 1 implies the desired result.

4. Numerical blow-up for the solutions
In this section, we show that the blow-up phenomenon of the solution u to (1.1)

occurs in finite time, with a lower bound and an upper bound of the blow-up time TB
of u. In order to do this, we need to first discuss the convergence property of Uh and
its blow-up time.

In fact, Gibou et al. [14] considered the convergence property of discrete solution
of the Poisson Equation (6.1), by showing that the solution Uh to (6.1) approximates
the solution u to (6.2) with an accuracy of the second order.

We now state and prove one of the main theorems in which the discrete solution
Uh to (2.1) also approximates the theoretical solution u to (1.1) with an accuracy of
the second order.

Theorem 4.1. For a time T >0, let u be a function in C4
1 (Ω× [0,T ]) which satisfies

(1.1) up to the interval [0,T ]. If a nonlinear source f is locally Lipschitz continuous on

R, then the solution Uh to (2.1) is well-defined on Ωh× [0,T ] and satisfies that

max
x∈Ωh

t∈[0,T ]

∣∣Uh(x,t)−uh(x,t)
∣∣≤CTh2, (4.1)

for a sufficiently small h>0 and a constant CT >0, being independent of h, where the
function uh is defined by uh(x,t) :=u(x,t) for (x,t)∈Ωh× [0,T ].

Proof. We first choose a time Th as

Th :=

{
ThB−δ, if Uh has a blow-up time ThB ,
∞, if not, (that is, Uh is global),

where δ>0 is sufficiently small. Then since Uh0 (x) =uh0 (x) for all x∈Ωh, there exists
the greatest time Th0 such that

Th0 ≤min{T,Th} and
∥∥Uh(·,t)−uh(·,t)

∥∥
l∞
<1, t∈ [0,Th0 ) (4.2)

where the norm ‖·‖l∞ is defined by ‖v‖l∞ := maxx∈Ωh |v(x)| for a function v : Ωh→R.
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For each t∈ [0,Th0 ], putting e(x,t) :=Uh(x,t)−uh(x,t), x∈Ωh, then it follows that

for all x∈Ωh and t∈ [0,Th0 ],

|et(x,t)−∆he(x,t)|≤ |f(Uh(x,t))−f(uh(x,t))|+ |∆u(x,t)−∆huh(x,t)|
≤ |f(Uh(x,t))−f(uh(x,t))|

+C1h
2IΩh\∂◦Ωh(x)+(C2 +C3h)I∂◦Ωh(x),

for positive constants C1, C2, and C3, where the last part follows from Lemma 6.1 in
the Appendix and the function IT is defined by

IT (x) =

{
1, x∈T,
0, x∈Ωh \T,

for a subset T ⊂Ωh.
On the other hand, by the (locally Lipchitz) continuity, there exists RT >0 and

MT >0 such that

max
x∈Ω
t∈[0,T ]

|u(x,t)|<RT , (4.3)

and |f(s)−f(t)|≤MT |s− t|, s,t∈ [0,RT +1], respectively. Hence it follows from (4.2)
that

Uh(x,t)≤RT +1, x∈Ωh, t∈ [0,Th0 ]

and so that

|f(Uh(x,t))−f(uh(x,t))|≤MT |Uh(x,t)−uh(x,t)|

for all x∈Ωh and t∈ [0,Th0 ]. Therefore, the function e satisfies

|et(x,t)−∆he(x,t)|≤MT |e(x,t)|+C1h
2IΩh\∂◦Ωh(x)+(C2 +C3h)I∂◦Ωh(x)

for all x∈Ωh and t∈ [0,Th0 ].

Let us consider a function V h :Ωh× [0,Th0 ]→R defined by

V h(x,t) := exp(MT t)
[
C1hv

h(x)+(C2 +C3h)wh(x)
]
, x∈Ωh, t∈ [0,Th0 ]

where wh and vh come from Lemma 6.2 in the Appendix. Then it is easy to see that
V h(x,t) = 0 for each (x,t)∈∂Ωh× [0,Th0 ] and V h(x,0)>0 for each x∈Ωh. Moreover, a
simple calculation gives that

dV h

dt
(x,t)−∆hV h(x,t)≥MTV

h(x,t)+C1h
2IΩh\∂◦Ωh(x)+(C2 +C3h)I∂◦Ωh(x)

for each x∈Ωh and t∈ [0,Th0 ]. Hence it follows from the comparison principle that

|e(x,t)|≤ |V h(x,t)|≤ exp(MT t)
[
C1hv

h(x)+(C2 +C3h)wh(x)
]

for x∈Ωh and t∈ [0,Th0 ]. By Lemma 6.2 in the Appendix, we have

|e(x,t)|≤CTh2,x∈Ωh, t∈ [0,Th0 ], (4.4)
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for some constant CT :=CeMTT , being independent of h.
We now show that the inequality (4.4) is still true up to the interval [0,T ]. We first

show that T <Th. If Uh is global, it is clear. So let us assume that Uh has a blow-up
time ThB . Then it suffices to show that T <ThB , since Th=ThB−δ for sufficiently small
δ>0. Let us suppose that ThB≤T , on the contrary. Then it follows from (4.2) and (4.4)
that

1 =
∥∥Uh(·,Th0 )−uh(·,Th0 )

∥∥
l∞
≤CTh2,

which leads to a contradiction for a sufficiently small h>0.
Then we see that Th0 ≤T , by the definition of Th0 and it remains to show that Th0 =T .

But if Th0 <T , then we can reach a contradiction by the same argument as the above,
which is desired.

Remark 4.1.
(i) What is interesting in the above theorem is that the convergence property (4.1)

works not only for blow-up solutions but also for global solutions, under only
the condition of the local Lipchitz continuity of f .

(ii) If u is a blow-up solution with a blow-up time TB , then the constant CT goes
to infinity as T goes to TB . By this observation, even though Uh has a blow-
up time ThB for all h>0, we can not directly say that the blow-up time ThB
converges to TB , in general. This is a reason why we impose a convexity on
nonlinear source f , instead of a local Lipschitz continuity in Theorem 4.4.

Remark 4.2.
(i) In [9], authors discussed the network version for the discrete evolution equations

with a nonlinear absorption term, that is, they consider −f instead of f in (2.1).
In particular, as applying the FDM by Gibou et al. to some results in [9], we
can obtain the following result:
If the locally Lipschitz continuous function f satisfies∫ 1

0

1

f(s)
ds<∞,

then the solution Uh toUht (x,t) = ∆hUh(x,t)−f(Uh(x,t)), x∈Ωh, t>0,
Uh(x,t) = 0, x∈∂Ωh, t≥0,
Uh(x,0) =Uh0 (x) x∈Ωh.

is global. Moreover, the solution Uh satisfies

0≤Uh(x,t)≤F−1

([
F (max

ξ∈Ω
u0(ξ))− t

]
+

)
, x∈Ωh, t≥0,

where F (s) :=
∫ s

0
1

f(s)ds, and [s]+ := max{s,0}.

We note that the super-solution F−1
(

[F (maxξ∈Ωu0(ξ))− t]+
)

becomes extinct

at t=F (maxξ∈Ωu0(ξ)). Hence the solution Uh is extinct in finite time.
Moreover, we can get a convergence estimate result for the case −f as

max
x∈Ωh

t∈[0,T ]

∣∣Uh(x,t)−uh(x,t)
∣∣≤Ch2, (4.5)
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using the same arguments with the proof of Theorem 4.1. In this case, since
the discrete solution Uh is not blow-up, the constant C is independent of time

t. Moreover, since the super-solution F−1
(

[F (maxξ∈Ωu0(ξ))− t]+
)

is indepen-

dent of h, it follows from (4.5) that the continuous solution u satisfies

0≤u(x,t)≤F−1

([
F (max

ξ∈Ω
u0(ξ))− t

]
+

)
.

Thus the solution u is extinct in finite time (see [9], for more details).

(ii) Similar to Remark 4.2 (i), we can also consider the case −f+g where f and
g are locally Lipschitz continuous and strictly positive on (0,∞). In this case,
since it is not guaranteed that (f−g)(x)>0, x∈ (0,∞), it can not be discussed
by the method of Remark 4.2 (i). We note that it is not easy to find sub-solution
or super-solution for the case that the nonlinear source (or absorption) is not
positive.
On the other hand, the special case (f−g)(x) = δ(x3−x) was discussed in [16].
In the paper, they considered the Cucker-Smale-type (C-S-type) model with
the Rayleigh friction

dxi
dt

=vi,

dvi
dt

=
λ

N

N∑
i=1

ψ(‖xj−xi‖)(vj−vi)+δvi(1−‖vi‖2),

and presented flocking estimates for the C-S-type model where λ and ψ are
a nonnegative coupling strength and a communication weight and ‖·‖ is the
standard l2-norm in Rd. In particular, they assumed that ψ(s)≥ψ∗>0 for
some positive ψ∗. By this assumption, their arguments of some results can be
applied to our case even if the C-S-type model has no boundary and the weight
ψ depends on time. We note that, by the same proof of Theorem 3.1 in [16], it
is proved that the solution Uh toUht (x,t) = ∆hUh(x,t)+δUh(x,t)

(
1−(Uh(x,t))2

)
, x∈Ωh, t>0,

Uh(x,t) = 0, x∈∂Ωh, t≥0,
Uh(x,0) =Uh0 (x) x∈Ωh.

satisfies

0≤Uh(x,t)≤
(

(max
x∈Ω

u0(x))−1e−δt+(1−e−δt)
)− 1

2

, x∈S, t>0.

Hence the discrete solution Uh is global. Therefore by the same arguments as
in Remark 4.2 (i), the theoretical solution u for the case (f−g)(x) = δ(x3−x)
is global.

Theorem 4.2. Let the function f be locally Lipschitz continuous on R and satisfy
f(s)>0 for all s>0. If the solution Uh to (2.1) has a blow-up time ThB, then the blow-up
time ThB satisfies ∫ ∞

‖Uh0 ‖l∞

dz

f(z)
≤ThB .
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Proof. Let V be a solution to{
dV
dt (t) =f(V (t)), t>0,
V (0) =

∥∥Uh0 ∥∥l∞ . (4.6)

Then it is easy to see that V is strictly increasing on [0,∞) and V (t)>
∥∥Uh0 ∥∥l∞ , t∈

(0,∞), since V (0)>0.

Let us define V h(x,t) :=V (t) for all x∈Ωh and t≥0. Then it is easy to see that
V h(x,t)>0 =Uh(x,t) for all (x,t)∈∂Ωh× [0,∞), and V h(x,0)≥Uh0 (x) for all x∈Ωh.
Moreover, it is clear that

V ht (x,t)−∆hV h(x,t)−f(V h(x,t)) = 0 =Uht (x,t)−∆hUh(x,t)−f(Uh(x,t))

for all (x,t)∈Ωh× [0,∞). Thus by the comparison principle,

V h(x,t)≥Uh(x,t), x∈Ωh, t>0.

Thus the function V h also has a blow-up time tB≤ThB . Finally, by a simple calculation,
the Equation (4.6) implies

tB =

∫ ∞
‖Uh0 ‖l∞

dz

f(z)
.

In the next theorem, we establish sufficient conditions to guarantee that blow-
up phenomenon occurs. We also give an upper bound of the blow-up time ThB .
The upper bound is composed of two functions Qh : [0,∞)→R and G : [Qh(0),∞)→
(0,
∫∞
Qh(0)

dz
f(z)−λh0 z

] which are defined by

Qh(t) :=
∑
x∈Ωh

h2φh0 (x)Uh(x,t), t≥0,

and

G(s) :=

∫ ∞
s

dz

f(z)−λh0z
, s≥Qh(0).

In particular, assuming that the function f is convex and satisfies∫ ∞
ε

dz

f(z)
<∞ (4.7)

for some ε>0, it is clear that for each C>0, there exists the smallest value zC ≥0 such
that

f(z)−Cz>0, z >zC , (4.8)

and the value zC non-decreasing with respect to C. In particular, we denote by zh0 the
smallest one of z0 satisfying

f(z)−λh0z>0, z >z0.

as in (4.8) with C=λh0 . Therefore, if the function Qh satisfies

Qh(0)>zh0 ,
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then the function G is well-defined. It is also clear that the function G is strictly
decreasing and has an inverse function G−1 which is also strictly decreasing.

Theorem 4.3. For each fixed h>0, suppose that a function f is convex and satisfies∫ ∞
ε

dz

f(z)
<∞ (4.9)

for some ε. If the function Qh satisfies

Qh(0)>zh0 , (4.10)

then Qh has a blow-up time ThB. Moreover, the blow-up time ThB satisfies

ThB≤
∫ ∞
Qh(0)

dz

f(z)−λh0z
<∞. (4.11)

Proof. We first show that the function Qh satisfies

dQh

dt
(t)≥f(Qh(t))−λh0Qh(t), t≥0.

Since Uh is the solution to (2.1), we have

dQh

dt
(t) =

∑
x∈Ωh

h2φh0 (x)∆hUh(x,t)+
∑
x∈Ωh

h2φh0 (x)f(Uh(x,t))

for all t≥0. Since ∆h is symmetric and f is convex, Qh satisfies

dQh

dt
(t)≥

∑
x∈Ωh

h2Uh(x,t)∆hφh0 (x)+f

∑
x∈Ωh

h2φh0 (x)Uh(x,t)


=−λh0Qh(t)+f(Qh(t)), t≥0. (4.12)

Secondly, we show that

Qh(t)>Qh(0), t>0. (4.13)

The inequality (4.10) implies f(Qh(0))−λh0Qh(0)>0. Thus there exists τ0 such that
Qh(t)>Qh(0) for all t∈ (0,τ0). Suppose that there exists t0>τ0 such that Qh(t0) =
Qh(0) and Qh(t)>Qh(0) for all t∈ (0,t0). Then at the time t0, the function Qh satisfies

0≥ dQ
h

dt
(t0).

On the other hand, by (4.12), we have

dQh

dt
(t0)≥f(Qh(t0))−λh0Qh(t0) =f(Qh(0))−λh0Qh(0)>0,

which is a contradiction. Hence Qh(t)>Qh(0) for all t>0.
We now show that ∫ ∞

Qh(0)

dz

f(z)−λh0z
<∞.
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It follows from (4.10) and (4.13) that

f(z)−λh0z>0, z≥Qh(0). (4.14)

Since the function f is convex and satisfies (4.9) and (4.14), these facts imply that there
exists z1≥Qh(0)>zh0 such that f(z)−λh0z is strictly increasing on [z1,∞). Hence there
exists ε0>0 such that

f(z)

z
≥λh0 +ε0, z≥Qh(0).

Hence by a simple calculation, we have∫ ∞
Qh(0)

dz

f(z)−λh0z
≤ λ

h
0 +ε0
ε0

∫ ∞
Qh(0)

dz

f(z)
.

We note that there exists x∈Ωh such that Uh0 (x)>0 for sufficiently small h>0, since
u0 6≡0 and u0≥0. Thus Qh(0)>0 and it follows from (4.9) that∫ ∞

Qh(0)

dz

f(z)−λh0z
<∞.

Finally, we show that Qh has a blow-up time. It follows from (4.14) that

1≤
dQh

dt (t)

f(Qh(t))−λh0Qh(t)
,

which implies

Qh(t)≥G−1
(
G(Qh(0))− t

)
, t≥0.

Hence Qh(t)→∞ as t→G(Qh(0)). Therefore we have

ThB≤G(Qh(0)) =

∫ ∞
Qh(0)

dz

f(z)−λh0z
.

Now we are in a stage to state and prove the main theorem as a final result. In fact,
we prove that the solution u to (1.1) blows up in a finite time and its blow-up time TB
can be obtained by the limit of the blow-up time ThB as h goes to zero.

For notational simplicity, we denote by zµ the smallest one of z0 satisfying

f(z)−(µ0 +δ0)z>0, z >z0

as in (4.8) with C=µ0 +δ0. Here δ0>0 is a fixed number.

Theorem 4.4. Suppose f is convex and satisfies∫ ∞
ε

dz

f(z)
<∞ (4.15)

for some ε>0. If the initial condition u0 is sufficiently large in a sense that

u0(x)≥v0(x), x∈Ω, (4.16)
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where v0 is a function on Ω satisfying{
−∆v0≥µ0zµ+δ0, in Ω,
v0 = 0, on ∂Ω,

(4.17)

for a fixed number δ0>0, then there exists a blow-up time TB of the solution u to (1.1)
and the blow-up time TB has the following upper bound:∫ ∞

‖u0‖∞

dz

f(z)
≤TB≤

∫ ∞
zµ

dz

f(z)−(µ0 +δ0)z
. (4.18)

Proof.
(i) We first show that limh→0Q

h(0)>0. Let us define V h0 (x) :=v0(x) for all x∈Ωh.
Since u0(x)≥v0(x) for all x∈Ω, it is easy to see that the function V h0 satisfies

Uh0 (x)≥V h0 (x), x∈Ωh. (4.19)

Hence it follows from (4.17), (4.19), and Lemma 6.1 that

Qh(0)≥ h2

λh0

 ∑
x∈Ωh\∂◦Ωh

φh0 (x)(µ0zµ+δ0−C1h
2)−

∑
x∈∂◦Ωh

φh0 (x)(C2 +C3h)

.
Recalling limh→0λ

h
0 ≤µ0 in Theorem 3.1 and the inequality (iii) in Theorem 3.2, we

obtain

0≤ lim
h→0

h2
∑

x∈∂◦Ωh
φh0 (x)≤ lim

h→0
h2λh0 = 0,

so that we have

lim
h→0

h2

λh0

∑
x∈∂◦Ωh

φh0 (x)(C2 +C3h) = 0.

On the other hand, since h2
∑
x∈Ωh

φh0 (x) = 1, h>0, we have

lim
h→0

h2

λh0

∑
x∈Ωh\∂◦Ωh

φh0 (x)(µ0zµ+δ0−C1h
2)≥zµ+

δ0
µ0
.

Thus it follows that

lim
h→0

Qh(0)≥zµ+
δ0
µ0

>0. (4.20)

(ii) Secondly, we show that the solution Uh to (6.1) has a blow-up time ThB . Since
f is convex and satisfies (4.15), there exists zh0 such that

f(z)−λh0z>0, z >zh0

for each h>0. Moreover, we note that Theorem 3.1 implies

zh0 <zµ+
δ0
µ0

<Qh(0)≤‖u0‖L∞(Ω)
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for sufficiently small h>0. Thus it follows from Theorem 4.2 and Theorem 4.3 that
there exists a blow-up time ThB satisfying∫ ∞

‖u0‖L∞(Ω)

dz

f(z)
<

∫ ∞
‖Uh0 ‖l∞

dz

f(z)
≤ThB<

∫ ∞
zµ

dz

f(z)−(µ0 +δ0)z
. (4.21)

(iii) We now show that there exists a blow-up time TB of the solution u. If u has
no blow-up time TB , that is, u is global, then it follows from Theorem 4.1 that Uh has
no blow-up time. It is a contradiction that Uh has a blow-up time ThB by (4.21). Thus
u has a blow-up time TB in a sense that

‖u(·,t)‖L∞(Ω)→∞, t→TB .

Moreover, if we suppose that

TB> liminf
h→0

ThB ,

then it is a contradiction to Theorem 4.1. Hence we have

TB<

∫ ∞
zµ

dz

f(z)−(µ0 +δ0)z
.

(iv) We now show that limh→0

∥∥Uh(·,TB)
∥∥
l∞

=∞. Suppose that there exists M>0
and a sequence {hj} such that hj→0 as j→∞ and∥∥Uhj (·,TB)

∥∥
l∞
<M, j= 1,2,. ...

Then we can take a sufficiently small ε0>0 such that∥∥uhj (·,TB−ε0)
∥∥
l∞
−
∥∥Uhj (·,TB−ε0)

∥∥
l∞
≥1, j= 1,2,. ..,

which is a contradiction to Theorem 4.1.

(v) We now show that the blow-up time TB satisfies∫ ∞
‖u0‖L∞(Ω)

dz

f(z)
≤TB .

Putting Uh(xh,TB) :=
∥∥Uhj (·,TB)

∥∥
l∞

, then we have

Uht (xh,t) = ∆hUh(xh,t)+f(Uh(xh,t))≤f(Uh(xh,t)), t∈ [0,Th)

which implies ∫ Uh(xh,TB)

Uh(xh,0)

dz

f(z)
≤TB

for sufficiently small h>0. By (iv), we have

lim
h→0

∫ Uh(xh,TB)

Uh(xh,0)

dz

f(z)
=

∫ ∞
‖u0‖L∞(Ω)

dz

f(z)
.
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Remark 4.3.
(i) In the above, it seems that the condition (4.16) and (4.17) for the initial value

u0 is not only a little bit technical but also original. In general, in order to get
a blow-up solution, it is necessary for the initial condition u0 to be sufficiently
large. A good example of the initial value u0 seems to be u0(x) =v(x)+w(x),
where w is a nonnegative function in Ω with w|∂Ω = 0 and v is a (super-)solution
to {

−∆v=µ0zµ+δ0, in Ω,
v= 0, on ∂Ω.

In fact, it is well-known that the solution v is smooth and positive in Ω.

(ii) In the above theorem, it is not certain whether limh→0T
h
B =TB . But if we knew

the convergence

lim
h→0

max
x∈Ωh

|Φ0(x)−φh0 (x)|= 0, (4.22)

then we would prove that limh→0T
h
B =TB , following a similar procedure in [1],

in which they dealt with the Equation (1.1) in R1. In fact, the convergence
(4.22) is true for a domain of special type, such as intervals in R1 or rectangular
domains in RN . As a matter of fact, as far as the authors know, the convergence
(4.22) is still open for the domain in RN .

5. Multi-dimensional space
We now discuss Ω⊂RN where N ≥3. In this case, the discrete eigenfunction φh0 is

assumed to be ∑
x∈Ωh

hNφh0 (x) = 1 (5.1)

and the function Qh is given by

Qh(x,t) :=
∑
x∈Ωh

hNφh0 (x)Uh(x,t), t≥0.

Then Theorem 3.2 can be stated as follows:

Theorem 5.1. For each h>0, the eigenfunction φh0 corresponding to the smallest
eigenvalue λh0 satisfies the following:

(i) 0<φh0 (x)≤ R2λ
h
0

hN−1 , x∈Ωh.

(ii)
∑

x,y∈Ωh

x∼y

[
φh0 (x)−φh0 (y)

]2
<
R2(λh0 )2

h2N−3 ,

(iii)
∑
x∈∂◦Ωh φ

h
0 (x)≤ λh0

h .

Proof. It is proved by the same argument as in the proof of Theorem 3.2.

Then the same procedure as in the previous Section 3 and Section 4, with a little
changes in calculation and notation, can be applied to the case in RN so that we can
obtain exactly the same result as Theorem 4.4.
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Appendix. In this appendix, we introduce theoretical analysis of the consistency
and convergence accuracy of the method by Gibou et al. which had been discussed
in [21] by Yoon and Min. They showed that the discrete solution Uh to the discrete
Poisson equation {

−∆hUh(x) =f(x), x∈Ωh,
Uh= 0, x∈∂Ωh,

(6.1)

is second order accurate to the theoretical solution u to the Poisson equation{
−∆u(x) =f(x), x∈Ω,
u= 0, x∈∂Ω.

(6.2)

Here, we only introduce some results related to the consistency and convergence
accuracy which are only needed to prove results in Section 3 and Section 4 (see [21], for
other results and their proofs).

Lemma 6.1 (Consistency error). For a function u∈C4(Ω),

∣∣∆u(x)−∆huh(x)
∣∣≤{C1h

2, x∈Ωh \∂◦Ωh,
C2 +C3h, x∈∂◦Ωh,

(6.3)

where the function uh is defined by uh(x) :=u(x), x∈Ωh, C1, C2, and C3 are constants
independent of h.

Lemma 6.2.
(i) Let wh be a solution to

−∆hwh(x) =

{
0, x∈Ωh \∂◦Ωh,
1, x∈∂◦Ωh,

and wh(x) = 0 for all x∈∂Ωh. Then 0<wh(x)≤h2 for all x∈Sh.

(ii) Let vh be a solution to

−∆hvh(x) =

{
1, x∈Ωh \∂◦Ωh,
0, x∈∂◦Ωh,

and vh(x) = 0 for all x∈∂Ωh. Then 0<vh(x)≤Cv0 for all x∈Sh, where v0 is an ana-
lytic solution to

−∆v0(x) =

{
2, x∈Ω,
0, x∈∂Ω,

and Cv0
:= maxx∈Ωv0(x)+1.
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