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OPTIMAL DECAY RATES OF THE COMPRESSIBLE
MAGNETO-MICROPOLAR FLUIDS SYSTEM IN R3*

LEILEI TONG' AND ZHONG TAN?

Abstract. In this paper, we consider the Cauchy problem of the compressible magneto—micropolar
fluids system in R3 with initial data close to some constant steady state. Based on the spectral analysis
on the semigroup generated by the linearized equations and the nonlinear energy estimates, we show
that the solution of the magneto—micropolar fluids system converges to its constant equilibrium state
at the exact same L2-decay rate as the linearized equations, which shows that the convergence rate is
optimal.
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1. Introduction

The magneto—micropolar fluid is a field of studying flow problems of microstructure
related moving, conducting fluids under the action of magnetic fields. The fluid with
rigid spherical particles suspended may rotate independently of the rotation and move-
ment of the fluid, for example, the polymeric suspensions and liquid crystals. When a
magnetic fluid includes relatively large particles, one can assume that the magnetic mo-
ment of a particle changes its orientation only for rotation of the particle itself. Then,
the presence of an external magnetic field results in preventing the rotation of the par-
ticle and making an appearance of the mechanism of rotational viscosity of the fluid.
This kind of fluid with internal rotation can be called magneto—micropolar fluid [2]. The
equation of the motion can be expressed as follows:

pr+div(pu) =0,
(pit) +div(pa® i)+ VP(p) — (u+a) Aii—2aV x @

= (4 A —a)Vdivi+ curl B x B,

(pw)¢ +div (pa @ W) + 4o — p' Aw — (¢’ + XN )Vdiveo — 2aV x =0, (1.1)
B, —curl (11 X B) —vAB=0, divB=0,

)T

(ﬁaaaﬁ)aB)Th:O:(;50717'0371707B0 ;

for (z,t) €R3 x [0,00). Here the unknowns p= j(z,t), 4 =1(z,t), & =w(x,t), B=B(z,t)
denote the density, velocity, the micro-rotational velocity, and the magnetic field, re-
spectively. The pressure P(p) is a C1—function satisfying P’(ps) >0 with some constant
Poo >0. The constant v >0 is the magnetic diffusivity acting as a magnetic diffusion
coefficient of the magnetic field. The constant parameter a>0 means dynamic mi-
crorotation viscosity. The constant coefficients i, A are the shear and bulk viscosity
coefficients of the flow and satisfy the physical restrictions

w>0, 2u+3X—4a>0.
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i and A are the angular viscosity coefficients satisfying
(>0, 21/ +3N >0.

When B =0, the model becomes a micropolar fluid. There are some results about
the incompressible viscous micropolar fluids. One can see [17,33] for the weak solu-
tions, [3,4,28] for strong solutions, [13,19] and the reference therein for the regularity
criteria. The problems about the compressible micropolar fluids have received consider-
able attention in the last few years. The initial boundary value problems of this model
in the one-dimensional case were described by [7,21-23,35]. One can refer to [21-23]
for the local or global existence of the strong or generalized solutions and [7, 35] for
the asymptotic behavior. For the 3D case, this model with heat conduction was an-
alyzed in relation to existence and stabilization of the spherically symmetric solutions
to initial-boundary value problems. The global existence of the spherically symmetric
generalized solution was investigated in [10] by the combination of the local existence [9],
the uniqueness theorem [24] and the extension principle. The large-time behavior of the
global unique spherically symmetric generalized solution can be seen in [14,15]. One
can refer to [5,6] for the blowup criterion and [31] for the limit problem. For the Cauchy
problem, results are much less. We can refer to [16,26] and the references therein for
the well-posedness in 1D. Liu and Zhang [20] gave the global existence and decay rate
of the classical solutions when the initial perturbation belonged to HN N L (N >4).

Taking the magnetic field into consideration, the magneto—micropolar fluid equa-
tions have attracted much attention due to their important physical background and
mathematical complexity. Local strong solution was established by Rojas—Medar [27]
and global strong solution by Ortega—Torres and Rojas—Medar [25]. Compared with the
incompressible models, the results of the compressible equations of magneto—micropolar
fluids are much less because of the strong nonlinearities and interactions among the
physical quantities. For multi—-dimensional compressible magneto—micropolar equations,
Amirat and Hamdache [1] proved the global existence of weak solutions with finite en-
ergy. Recently, Wei-Guo-Li [34] considered the global existence and the time decay rate
of the smooth solutions by combining the L” — LY estimates for the linearized equations
and the Fourier splitting method.

However, there is no result showing that the solution for the compressible magneto—
micropolar fluids equations has an exact same decay rate as the linearized problem. Mo-
tivated by the work of [18,29,30], in this work, we use a similar method as [18] to derive
the large-time behavior of the global classical solution of the compressible magneto—
micropolar fluids equations in R3, provided the prescribed initial data is close to the
constant steady state (pso,0,0,0)7 with po >0. We will show that the behavior of the
perturbation is asymptotically equivalent to that of the linearized problem. To establish
this result, much effort will be spent on the spectral analysis of the linearized system.
To this end, we now linearize (1.1) near the constant state (pss,0,0,0)”. Without loss
of generality, the constant p., is taken to be 1. We define

= pi, W=p,
and want to rewrite problem (1.1) in a symmetric form. By changing the unknown
functions and denoting the perturbations by

1 1

. _ i _ 5 _ 1 n
p=p—1, m—ipl(l)( 0), W 7}3/(1) (W 0)7 B=———-(B-0),
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problem (1.1) is reduced to

Op++/P'(1)divin =0,

8tm+\/]TVp (p+a)Am—(p+A—a)Vdivim — 2aV x W =Ny,
O W +4aW — /AW — (i + N )VdivIV —2aV x m =Na,
8,B—vAB=Ns,

(1.2)

here

v memy\ 1 7 o
—/P'(1 d1v< > P/(l)V[P(1+p) P(1)—P'(1)p]

N pmo N P W
(,u+0z)A<1+p> (4 A a)Vd1v<1+p) 2an<1+p>
P(1
+\/P’(1)B~VB—¢V(|B|Q),
meW oW pW) Y .(pW>
—/P'(1)div 4o Al ) - N)Vdiv [ ——
( p>+ 1tp " (1+p W+ X)Vdiv L+p
2an<pm)
1+
mxB
=/P'(1)curl .
Nj ()cur<1+p>

Initial data of the system (1.2) is expressed as

(p,m,W,B)" |, = (ﬁo

T
1 . 1 -

L~ o= %(Wo— 0), T (B00)>

:(P07m07W07BO)T~ (13)

Unfortunately, the method in [18] doesn’t work directly in the magneto—micropolar
fluids system because of its complex linearized system. Here this problem is overcome
by introducing the decomposition as in [8] such that the solution of (1.2)—(1.3) can be
decomposed into two parts in the form of

p p 0
m _ my, my
w = w, + w, | (1.4)
B B 0

where
m,=A"1Vdivim, m, =—A"1V x (V xm),

and likewise for W,,, W, . For brevity, the first part on the right-hand side of (1.4) is
called the fluid part and the second part is called the electromagnetic part, and we also
denote

(]H = (p7m\|;VVmB)T7 UL - (mL7WL)T~

In the aid of the above decomposition, we give explicit representations of the solutions for
the two eigenvalue problems. We now derive the equations of U, and U, respectively.
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Taking the divergence of the last two equations of (1.2);—(1.2)3, and then applying
A1V, it follows that

atp-F\/P’idivm”:O
atm“Jr\/]TVp (2p+N)Am, = A~1VdivN; = F},
W, +4aW, — (2u' + N)AW, = A~1VdivNy = Fy,

(pam\|;W\)T|t:0 = (p07m\|07VVH())T7

with
v memy\ 1 - o
Fi~—+/P'(1 d1< > P/(I)V[P(1+p) P(1)—P'(1)p]
_(M+a)A<1Tp) (h+A— a)de<1pmp>
++/P'(1)B-VB -~ PQ/U)V(|B|2),
and

. (meW o, 1114 PR . pW
Fo~—/P'(1 da Al — )= — .
h~—+/P'( )le( ) )—I— 15p — i (1+p> (0" + ) Vdiv Ty

Taking the curl of the last two equations of (1.2);—(1.2)3 and then applying A~ curl,
one deduces that

Omy —(p+a)Amy —2aV x W, =Ny,
oW | +4aW | _/,L/AWJ_ —2aV xm | = Ny, (16)

(mL W) im0 =(m1o,Wig)T,
with

Nlm—(u—ka)A( pm ) —2aV x (pW>

1+p 1+p

W
Nomta 20 A (£ ) 20w (£,
1+p 1+p 1+p

where we have replaced —V x V x W by AW —VdivW, likewise for —V x V x m.

We now record the following existence and uniqueness of the solution for (1.2)—(1.3).
The proof has been described in [34], for convenience, we just state the result in the
following theorem.

and

THEOREM 1.1.  Let (pg,ug,wo, Bo)T € H®. There exists some sufficiently small § such
that if ||(po, w0, wo, Bo)|| s <0, the Cauchy problem (1.2)—(1.3) admits a unique solution
(pyu,w,B)T € H®. Moreover, there exists a constant C such that

(1,0, BY(®) I35 + / (V0132 + IV (w0, B) |l ) (7)edr < 1l (0, o0, Bo)3rs-
(1.7)
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The main purpose of the paper is to prove the following theorem concerning the
convergence rates of the solution of Equations (1.2)—(1.3).

THEOREM 1.2. Under the assumptions of

||(p07m0aW0aBO)||H3mL156; (18)
/po(ac)dx;«éO; / mo(x)dx #0; / By(z)dz#0, (1.9)
R3 R3 R3
and
zpo(x), xmyo(x), zmio(x), Bo(z)€ L, (1.10)

then for t >ty with some ty suitably large, we have

1+~ Sl (pm, B)|| 2 S (1+18) 71, (1.11)
A+ S W | S(+8)7F, (1.12)
and
1+6)"F <|V(p,m, B)|| 2 S(14+1)7F, (1.13)
1+ TS |VW ] 2 S(A+1) 7. (1.14)

In order to obtain the optimal decay rates (1.11)—(1.14), in addition to the method
in [18], we also need to introduce the decomposition (1.4) to overcome the difficulty
caused by the curl term. We consider the linearized systems (2.1) and (3.1) near a
constant equilibrium state and investigate the spectrum of the semigroup in terms
of the decomposition of wave modes at the lower frequency and high frequency, re-
spectively. Under the conditions (1.8)—(1.10), we obtain the lower and upper de-
cay rates of the linearized cases. Moreover, in Section 4, in virtue of the careful
analysis on the semigroup, and the energy estimates, we show that the difference
(prsmn, Wi, Bp)T = (p—p,m—m,W —W,B— B)T has a faster decay rate than the lin-
earized one obtained in Proposition 3.1. This implies the solution (p,m,W,B)T has the
same decay rate as (p,m,W,B)T.

In the following, we present some remarks about Theorem 1.1 and Theorem 1.2.

REMARK 1.1. To avoid confusion, we should point out that, the notations u, w in
Theorem 1.1 have the following relations with those used in our paper:

VEMm oo W VPOW

)

- m
u=u—0=—==
p 1+p p 1+p
REMARK 1.2. In this work, we investigate both lower and upper decay rates of the
linearized equations and prove that the solution of the nonlinear system also has the
same decay property, in this case, we give a more elaborate decay result to show that
the convergence rate is optimal compared with [34].
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Notation. Throughout the paper, we use f<g to denote f<Cg and f =g to denote
f>Cg, where C >0 is a generic constant. f~g means f2>¢g and f <g. For simplicity,
the notation [|(f,9)[|lx means [[f]|x +[lgl x with f,g€X.

The rest of the paper is structured as follows. In Section 2, we will analyze the
property of the solution semigroup e and obtain the decay property of the solution
to the linearized fluid part. In Section 3, we use a similar method as in Section 2 to
explore the decay rate of the solution to the electromagnetic part of the system. In Sec-
tion 4, by using the linear estimates and some energy methods, we will prove the differ-
ence (pn,Mu,Ma 1, Wi, Wit , Br)T has a faster decay rate than (p,m,,m ., W, ,W,,B)T,
which implies the optimal time decay rate of the solution to the magneto—micropolar
fluid system (1.2)—(1.3) and give the proof of Theorem 1.2.

2. L? decay rates for the solution of the fluid part

In this section, we will give some analysis on the semigroup generated by the lin-
earized fluid part and obtain the upper and lower bound decay rates for the solution of
the linearized equations.

2.1. Spectral representation. The solution U, = (p,m,,W,,B)T of the lin-
earized fluid part satisfies

dp+ /P (1)divin, =0,

Btm..—k\/lTVp 2u+A)Am, =0,

O W, +4aW, — (2u' +\N)AW, =0, (2.1)
0,B—vAB=0,

(., Wi, B)T | 1=0 = (p0, M1 Wi, Bo) T -

Taking the Fourier transform to system (2.1) with respect to the space variable, by
the semigroup theory for evolution equations, the solution U, = (p,m,,W,,B)T can be
expressed as

ﬁ (5) tA(g)ﬁan(f)a ﬁllwoz(ﬁ07mn0)Ta
W, (€) = e [t @ eXIeP Ty (2.2)

B(&)= —”'flszo@)
where we denote [71”(5) =(p,m,)T and A(¢) is defined as

( 0 —V/P(nig” )
—VPWig —2pt NPT

The characteristic polynomial of A(€) is
det(A(&) = AI) = (A+ 2+ N)[E[?)* (N2 + (2p+ V)P A+ P/ (1)[¢]?) =0, (2.3)
which implies the eigenvalues of (2.3)
Ao=—(2u+N)¢? (double)
M= —(u+ M2+ 5 VAP IEP = Cut AP,

do=—(n+A/2)€]*~ \/4P’ JIER = 2u+A)? N
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The exponential matrix e* has the spectral resolution
etA _ e)\otPO +e>\1tP1 +€)\2tP27

where the project operators Py, P; and P, can be computed as
A©) -\ I
p=1— .
H Ai— Ay
J#i
Note the fact that
Vdivm, =Vdivm=Am,,,

by a direct computation, we can obtain the exact expression of the semigroup

Ager2t_apeit igT./P’(l)(eklt—ekzt)

X=X X\
et = e e . (2.4)
iE/PI(M =)y atppetet
- N —A2 A1 —Ao 3x3

Now we turn to deal with the terms of the exponential matrix e’*. We need to verify
the approximation of the semigroup e** for both low frequency and high frequency. In
terms of the definition of the eigenvalues, we are able to obtain that

Mt = doeht [ U feos(ur) + (u+ 3) 2] g <, (25)
A= A2 e~ Mot g >,
et = apetet [ e (DI feog(bt) — (- 3) =02 fe) <, 06
A=A e~ ot 1g| >,
e)‘lt—e)‘Qt %e_oks_%)l&l?ta |§|§Tl7 ( 7)
— 2.
)\1—>\2 e—Rot7 |£|2,’77
where
¢4P' )IER = 2u+N)2[E[ ~ €] +0(E?), 1€ <n, (2.8)
and
_2y/P'(1)
o 2utA

2.2. The L?>-decay rates of (ﬁ,m‘,,W,,B)T. In aid of the exponential matrix
A and the analysis of the low and high frequency (2.5)-(2.7), we can deduce the
followmg upper bound decay rates of (p,m,,B)” and the decay rates of W,.

LEMMA 2.1.  Under the assumption that (po,mo,Wo,Bo)T € H3NL', we can deduce
for k=0,1,2,3

Hvk(ﬁvmm )||L2N(1+t)7%7%(”(p0’ HOaBO ||L1+||v pPo,m ||03B0 ||L2) (29)
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and

V53 o e Wil - (2.10)

Proof. Observe that the lower and high frequency analysis on the semigroup
implies

_ A 2 ~ ~
e~ 2R (1 50] o), 1€] <,

_ . N (2.11)
€ ROt(|P0| +[7i0l), [§]>n.

P&, ﬁ%(&t)i{

By Plancherel’s Theorem and (2.11), it implies

H(Vk_’Vkm”)HiQ_/£|<n|£|2k( 2) d£+/|£|>n£|2k( 2) h

S [ AN (o o) de [ e (ol nol?) e
[€1<n [€1>n

\§|2ke_2(“+%)|5|2td§+672R0t/ €17 (160 [* + [rin0]?) dé
|€1>n

2

+ |,

5

2 A
+|my,

5

~ ~ 2
< 1o, o) /

[€]<n

S+ (pma) s+ 7 nma)|2).

For the term B, from (2.2)3, we can calculate directly that

2 2 ~ 2 ~
= / €2 Fe 2187 By [ dg + / €2 Fem I8 By [ dg
L €1<n l€1>n

<11Bo% / e e2vI8l gg 4 o—2Rot / €| Bode
[€1<n [€]>n

|v*B];. = |[v*5

S(L4t)~2F (IIBoHil + HkaOHiﬁ> :

To this end, we have proved (2.9).
Note that

i O(1)e= W, [¢]<n,
V_VH:e—[4a+(2u/+k’)\5\2]tW“0: (e 0: I€1<n
O(1)eFot W, [€] >,

with the constants Ry >c¢ >0, it follows that

— 2 ~ 12 a2
kaH = ‘§|2k W, df"‘ |§|2k w, d§
L2
[§1<n [€1>n
9 2 _ 2
e [ VEW o[ o e 720 [VEW o .
9 2
~e Zet ||VkVVHOHL2 3
therefore, we prove (2.10). Hence, we complete the proof of Lemma 2.1. 0

Before obtaining the lower decay rates for the solution (p,m,,B)T, let’s present
some properties of (po(£),7u0(€),Bo(€))" as well as mo(§). For simplicity, we let
Y = po(0), 11 10(0) or Bo(0), X =po(&), muo(), mrro(§) or Bo(§).
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LEMMA 2.2. Let [£| €[0,n], under the conditions of (1.8)—(1.10), we know that
Y £0, (2.12)
and there exist some &; € (0,€), with i=1,2,3,4, such that

0X (&)
¢

X(€)=X(0)+ €. (2.13)

Proof.  We just prove the case Y =po(0) and X =po(£), the other terms can be
proved in the same way. From (1.9), we can easily obtain

)= [ )izl [ a0, (2.14)

Since pg € L', we can derive

/]RS e po () dx

5/ |po(x)]dz < cc. (2.15)
R3
The condition (1.10) implies

9 (e po(x))
/R3 —8§ dx

/ ize” "% po(x)dx 5/ |zpo(x)|dr < oo. (2.16)
R3 R3

It concludes from (2.15)-(2.16) that po(§) is continuous in [~n,n], and has the
derivative of order one. Thus, there exists & € (0,£) such that

(€)= o(0) + L

d
Having completed this preparatory work, we now go to the proof of the lower bound
time decay rates of p, m, and B.

LEMMA 2.3.  Under the conditions of (1.8)—(1.10), we obtain
(7.7, B)|| 12 = Co(1+1)~ 1, (2.17)
and

IV (5,77, B)|| ;2 > Co(1+1) . (2.18)

Proof. In terms of the formula (2.2) and the frequency analysis (2.5)—(2.8), we
can see when [£|<n,

ﬁ:e—(ﬂ+%>‘f|2t |:COS(bt)+ (M+ /\) Sin(bt) |€|2:| ﬁo_ifT /P/(l)Sinil()bt)e—(M'i‘%)‘fPtmuo

2 b

A in (bt
o (4 2 cos(b) 0 1 (u+ 2) e D), 25

P 1),
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By Plancherel’s Theorem, it is easy to verify that

_ 22 _ a2 s 2d
”p”L /§<n g /|§|>n|p| ¢
5 / J-2(u+3)lel? lcos(bt) i /P /( )sin(bt) mm] ”
[€1<n

. A)jg2¢ SIn .
[ e O g e / RO (1o 2+ rvof?) de
1€1<n 0]

Z/€< 3*2(#+%)|5|2t[Cos(|§|t)ﬁ0(0)*Sin(|§|t)m”0(0)]2d€
- 2(u+3)I€l% | ¢1642 - 2\,
/€<n €t <| 0(0)|” +1ri,0(0)] ) 3

N 2 2
B —2(ut3) Pt g2 [ | OP0(E1)
/5976 Kl (’ 23 &

—o(u 2, sin .
- e e g [ ()
n

=S+ o+ I3+ Js+ J5, (219)

3mno (52)
73

where we have used (2.13) and the fact that

|cos (€]t +€]°t) —sin (|€]t+[€°t) | 2 [cos (|€]t) —sin (|€]t)] — €[t
Js is estimated by

. :e_w/ _ (P + ol ds <O pomo)lza. - (2:20

&l2n
In terms of the Taylor expansion (2.8), we bound
IS [ e
[€1<n

~ 112 — A 2
Slinlle [ e dePigge
1€1<n

SA+6)7% ol (2.21)

Like (2.21), we deduce

5

| Jo|+|Js| S (1+1) 2. (2.22)

To estimate the term J; on the right-hand side of (2.19), we make the change of
variables y=|£|v/1, to deduce for sufficiently large time ¢

L >th / _ ﬁg?(w%)yz [cos (y\/i) fo(0) —sin (yﬂ) m,‘o(oﬂ *dy

Int/m]—1 k7t 75

ZCOt_% Z /7 v 672(H+%)y2 [cos (y\/i) —sin (yﬁ)]zdy

kr
k=0 Vit
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[nt/‘/r] 1 %
2
Z / +3)9 cos? (y\/i—i-ﬂ/ll) dy

[nt/‘/r] 1 ﬂ% o »
> -3 pt3)y
> ot 2 Z o e 2/ dy

k=0 Vi
>Co(1+1)72, (2.23)

with a positive constant Cy depending on pg(0) and 7i,0(0).
In terms of (2.20)—(2.23), we know that

3

1512, > Co(1+8) "% —=C(141)"2 > Co(1+1)" %, (2.24)
for ¢ large enough. Likewise, one can obtain
17172 > Co(1+1)72. (2.25)

Now we deal with the decay rate for the first-order derivative of (p,m,)T. By
employing the same method as proving (2.24), it implies

walie= | /..
lgl< 1€1=n

2
2 [ lepertl e [‘”s(bt) SEvE i)bm“t)m..o] it
1€l<n

,/ 62(“+;)62tSirllb|(z )IEI |pol*dé — / e 2tE P (| pol* + [rin0|?) d€
lel<n 1€1=n

5

> Co(1+1) "8 —C(1+1)72 > Co(1+1) 5.
Similarly,

||vaHL2 >Co(1+t)~ §

On the other hand, it derives from (2.2)3 and (2.13) for [=0,1,

— 12 —2u 2 A —2p 2 A
IV'B|;.= /| | |€[* e=2181 By | 2de + / €[ e 2V 1€ By 2dg
£<n

|€1>n
.2

2 [ lePe e By [ jeprere i 2EE g

l€l<n l€l<n 9¢

= et g

[§1=n
> Co(1+4) 41— C(141) 8 = e 20t |91 7,
>Co(1+1)7 37!
To this end, we have proved Lemma 2.3. 0

3. The L? decay rates for the solution of electromagnetic part
In this section, we should deal with the electromagnetic part. First of all, we give
the spectral analysis on the semigroup generated by the linearized electromagnetic part.
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3.1. Spectral representation for electromagnetic part. Recall that the
electromagnetic part U, = (m, ,W )T satisfies the following equations
Oymy — (p+a)Amy —2aV x W, =0,
atWJ_—&-élan—,u’AWl—2aV><mJ_:0, (31)

(M, W) im0 =(m1o,Wio)T.

From [20], we know that

(3)-0(i2)

where
kpeh2t _kpekit g k1t _gkat ekt _gkat X
G_ k1—k2 (H+OL)|£ k1 —ko Tki—ks 20[25)(
= kit _ kot . b eR2t o ek1t Nel2 ket _ kot 5
e (5] 1€ 2€ _ e e
B T eI Tk, (W'[€]° +4a) 1 —k2
with the real character roots
by — —[(ptatp)|glP+40]++/(p+a—p)? €[ +1602+8a(p/ +a—p)|€]?
1= 2 ) (3 3)
by — —[(ntotu) P +4a] =/ (ptra—p)?[E[* +1602+8a(y +a—p) €]
2 — 2 .

Here we use the notations G‘ll, é12, Ggl and G‘gg to denote the four elements of G
for simplicity. Due to the definition of k; 2 in (3.3), in terms of Taylor expansion, we
can easily find that for |¢| <1,

Gy~ €™ eIt Gy = Giay ~ €] Gy v e™e! - [g[2erIE1, (34)
When [£] > 1, from [20], we know

|é11‘+|él2|+|égl|+|ézg|SceiRot. (3.5)

Now we estimate the decay rates of (m J_,ﬁ/ )T according to the analysis on the
terms of G.

3.2. The L? decay rates of (m,W,)T.  With the help of the analysis on the
terms of GG, we show the following results.

LEMMA 3.1. It holds that for k=0,1,2,3,

[VFm |, S (463 (H(mJ_O,WJ_O)Hil +||v* (mJ_O7WJ_0)||ig) ;o (36)

IV L[5 S 040757 (llmao, Weo)llfs + [V (a0, Weo)|[52 ), (3:7)
and for 1=0,1,

V|l = Co(1+6)73, (3.8)

VL[5, > Co(1+6) 3 (3.9)
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Proof. Since
1 =Giimio+G1aWio, (3.10)
by Plancherel’s Theorem and (3.4)—(3.5), one can deduce
e 2 2
s 2 e

~ 2 “ ~
5/ |§|2k‘G11mLo‘ +|§|2k‘G12WL0
[€]<n
ol a o P oA v |?
+/| €] ‘GllmJ_O‘ +¢] ‘G12W¢0) dg
[€1=n

Wio| dé

2
2, _ 2
S [l o e
1€1<n

+ / €[22t o2 de
[€1<n

2
Jr/ |£|2k672R0t|mLO|2+‘€|2k672ROt Wm’ de
[€]>n

~ 2
5H<T?LLO,WLO>H / |£|2k672u\§|2td£+672ct/ |§|2k|ﬁllo|2d£
L= Jlgl<n

1€1<n
e [ e (o Wol?) de
1€12n
_3_ 2
S+ (o, Weo)lF + [V (mio,Weo) . ). (3.11)

Furthermore, we just estimate like (3.11) to derive

_ 2 e 2 ~ R 2 . “ 2
HVkWLHLz\:HVkWL‘ L2§/ |€|2k‘G21mLO‘ +|£‘2k‘GQ2WLO‘ d¢
[€1<n
wkla o P k| A v |2
+/ €] ‘Gmmm’ +¢] ‘G22WJ_O‘ 3
[€1>=n

~ 2 N 2
WLO‘ +|€|PRe—2¢t WLO‘ d¢

S I T
[€]1<n

2

+/ |§|2k672R0t‘mLO|2+|€|2k672ROt WJ_O’ de
[€]=>n

. 2 .
SH(ﬁuo,Wm)H oo/ ||k t2e2ulel td€+672d/
L Jigl<n le1<n

2
€12 1o de
+€2R°t/|§|> €[> (|ﬁuo|2+|W¢0|2>df

>n

SA+07E (mso, Wao)l3: + [V (mo,Weo)|[7)

On the other hand, together with (2.13), it stems from (3.4)—(3.5) again that
La |12 20| A - A w |
Vi, = €] ‘GllmLOJFGleLO‘ d§
|€1<n
. .2
+/ |€\QZ‘G11WM0+G12WL0‘ dg
1€1=2n
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z/| e o Pag— [ et o g
£<n

[€1<n
_/ |£‘2l+2€—2u\6\2t
|€1<n

N 2
_/ 672R0t|§|2l <|mL0|2+‘WLO‘ )d§
|€1>n

_ 2 “ _ 2
> / €2 eI G i o (0)] — / j¢[2142e2melt
[£1<n

[€1<n

_672ct/ |§|2l+4|ﬁuo|2df— ‘§|2l+2672#|§|2t
1€1<n 1€1<n

—emnor [ e (ol Wol?) de
1€1=2n

>Co(1+1)" 27,

.2
Wm‘ d§

o1 o(&3) ?
o | ®

2
WLO’ d¢

with a positive constant Cy depending on m¢(0). With this method once again, it
gives

2 2
7] |

2 . L2 . .
=/ |§|2l‘G2lmLO+G22WLO‘ df+/ \§|2Z‘G21mL0+G2zW¢0 03
[€1<n

2
L [€]>n

2, . _ 2
2 [P e g [ (epteuer
[€1<n [€1<n

R 2 R 2
—/ 6_2Ct|§|21‘WL0‘ df—/ e~ 2Hot g2 (|77A1L0|2+’W¢0‘ )df
[€]<n [€]>n
2

dg

Wio| dg

‘ 2

o o(&3)

Z/ |§|2l+2672llf|§|2td€|ml0(0)‘2 _/ ‘§|2l+4672y‘|§|2t
1€1<n o€

1€1<n
_/ |€‘21+4e—2m5\2t
1€1<n

—e‘QROt/ 612 (I Lol + W10 ) d
1€12n

>Co(1+t)"27

2 “ 2
Wo| dg—e [ jeP|iiof de
1€1<n

This completes the proof of Lemma 3.1. O

It should be noted that the solution (p,m,B,W) of the linearized magneto—
micropolar fluids system has an optimal decay rate. In fact, from Lemma 2.1, Lemma
2.3 and Lemma 3.1, we can present the following important proposition.

PROPOSITION 3.1.  Under the conditions of (1.8)—(1.10), it holds for =0, 1
Co(1+1)~ 172 < ||V (p,m, B)|| .. <CO(1+1) 7575, (3.12)
and

Co(l+¢)" i 2

IN

VW ||, <Co(1+1)~ 1%, (3.13)

with Cy >0 depending on po(0), 11,0(0), 110(0), Bo(0) suitably smaller than, 6.



L.L. TONG AND Z. TAN 1123

Proof. The upper decay rates hold clearly. For the lower decay rates, in view of
(3.9) and (2.10), we can obtain
|91 . = [ 91+ 90 > Co(14)-1E et

>Co(1+t) 573,

e 2 VWL o = [V .

For the term m, using the same method as proving (2.17)—(2.18), we get

9= ¥+ 9 > o+

4. Estimates on the nonlinear equations
In this section, we want to deduce the L? decay rate for the nonlinear system.
Define
Ph=P— P Mpy =My — My, MpL =ML —M],
Bn=B—B, Wp,=W,=W,, Wy =W, -W,.
The nonlinear system (1.2)—(1.3) is reformulated as follows:
atph —+\/ P’(l)divmh‘, =0,
Oy, ++/P (1)Vpp — (2u+N)Amy, = A~1VdivNy = F,
BtWh.‘ +40£Wh” — (2ul+)\/)AWh” = A_lvciiVNg ZFQ, (41)
ﬁtBh - I/ABh = Ng,
(ph;mthhmBh)T‘t:O = (phOvthOthHQ»BhO)T = (0707070)T7

and

Ogmpy — (p+a)Amp, —2aV x Wy, = Ny,
6tWhL +4OthL—p/AWhL—20zV><mhL ZNQ, (4.2)

(ML, W) li=0 = (mnL1o,Whio)" =(0,0)T.
For the sake of convenience, we denote
Fy =V fi+divfy, N1=Vf, N3=curlfs,

with

2 . pm 2 mem pm
~p“4div| —— | +|B|5, for~ +V + B;B,
five <1+p> BT, (1+p>

m w mx B
va(lp >+p ) f3~ )
+p 14+p 1+p

here we have used the fact that
B-VB=B;0;B;=0;(B;B;).

In order to deduce the L? decay rate for the nonlinear system, we just need to prove
that the solutions (ph,mﬁmV[/h”,Bh)T and gth_,WhJ_)T to (4.1) and (4.2) have faster
decay rates than (p,m,,W,,B)T and (m,,W,)T.
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We can represent the solution in terms of the Duhamel’s principle
t

O = (pnotin)T = [ €40, 1) (s)ds,

0
t
Whu :/ ef[404+(2H/+)\')‘E‘z}g—s)ﬁé(s)d&
0

¢
Up = (mhL,WhL)T:/ G(&,t—s) (N1, No) T (s)ds,
0

t

B, — / e VIEP (=) Ry (5)ds.
0

In the following, we should assume

3 €
N(t)= sup {|<ph,mh..,wh.,mu,wu,3h>H2(1+r)4+2
0<r<t

+{|V (pny mns Wiy s, Wi, Br) || .- }
We claim that for 0<e<1,
N(t) <09,

with ¢ defined in Theorem 1.1.
LEMMA 4.1.  Under the assumption of (4.4), it holds

(o720 Wis s Wi, Bi) 12 S (146) " (F8) (624 N2(1)).

Proof.  From (4.3) and (2.4), we know

tieT /pr(1 A1(t=s) _ pha2(t—s)) _
ey [ VT

Fi(s)d
)\1 _)\2 1(5) S,

and

. t )\ e)\l(tfs) _ )\ e)\Q(tfs) .
mhu(§7t) :/ ! A _)\2 Fl (S)ds
0 1 2

It derives from (2.5)—(2.7) that for some constant C’ =min{2u+ \,2v},

ieT (e)\lt _exzt) A

j2
A — A !
g/ —2(n+3)lel | 7 2d§+/ o-2vel?t
[€1<n [€]<n
.12 ~ 12
+/| 62R°t<’F1‘ +‘Ng‘ >d§
&lZzn

S/£<7760I£2t|£2 ‘ <f1’f2’f3) ’2d§+62R0t/|£|>n <’F1’2+

<C+t)78 (I fos fo) I3 +IFLNS) )

2
)\16>\1t _ )\26)\2t .
—F
) AL — A2

2
e
L2

.12
N3‘ de

N3

2
L2

2
)

(4.3)
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Thus, one has

H(phamhl|7Bh)||L2§C/0 (Lt =) 7T (1(f1 S0 f3) ()| o+ 1 (F1,Na) (s)]] 2 ) s, (4.7)

and

t
Wiz <C / e=e=5) | Fy(s)]| o ds. (4.8)

In light of (3.4)—(3.5), it can be computed directly

A 2 2 2 2
Gulis)|| | / €126t || 216 [ de + / e 200t Ny | ag
L2 Jigl<n l€1>n
L2 R 2 2
5/ |£|4€_20t Nl) ds_’_/ 6—2M|€| t‘€|2‘f’ df"‘/ 6_2R0t Nl‘ dé—
|€1<n [€1<n |€1=n

_5
S(1+t)73 (Hf||il+|\N1||2La)’

and
N N 2 o, | A |2 L2
[neia), s [ tepesmer sl g [ emro | ag
L2 Jlel<n €1>n
_5 2 2
SA+67F (1Nl +1INa1F2)
Likely, we have
A A 2 ol A 12 L2
Jeamie),. s [ tepermermfTags [ emsno || ag
L2 Jigl<n 3=
~|2 ~ 12
< / e~ 2P tgl| FI7 de + / e 20t | Ny |
[€1<n [€1=n

_T
S(1+t)72 (|\f||il+||N1||2Lz)’

and
N 2 12 ol A |2 12
[ AO] / e 2 N | dg + / jelte=201eRt | N, g + / e 200t | Ny | dg
= Jlgl<n l¢l<n |€12n
S N3+ (14+0)7F (NIl + | N2l )
S+67F (1Nl + Va2 )
Therefore, we end up with
¢ 5
[P S/O (Lt =s)" 2 ([LF ()l L2 + (N1, N2)(3) [ 12 ) sy (4.9)

and for k=0,1

IV Wi ||, < / (L+t—5) 7375 (||(£,N0) ()]l o + | (N1, No)(s) |l p2)ds.  (4.10)
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Now, it turns to estimate the nonlinear terms fy, f2, f3, f, F1, F», N1, No, Nj.
Note that we denote

mp=m—m=m,+mj —m, —mj =mp,+Mp1,
Wh:W_W:‘/Vl\'i'WL_W\_WL:Wh\|+WhL'

It is easy to verify from (4.4), Lemma 2.1, Lemma 3.1 and Lemma 5.2 that

En

—_n2 _ 2 _3
o H <l + e Il e + a2 S Q40" @ 4 N2@),  (4.11)
Ll

likewise, one has
190Vl o + | pV2ml| , + oVl 2 < (146~ (BHE) (624 N2 (1)), (4.12)
We can estimate the remaining terms as (4.11) and (4.12), hence

I(f1. for f3. £ N1, No) o S (L4875 (62 + N2(8)). (4.13)

It derives from the assumption (4.4), Lemma 2.1, Lemma 3.1 and Lemma 5.2 once
again that

[m-Vm| L2 = Wl Lo [V 2+ 17| oo V]l 2
HIVml e [lmnll oo + llmenll oo [Vl 2

S(14+0) 2345 (52 4 N2 (1)), (4.14)
and likely
oW 2+ [|pV2m| o + 19 Fpll 2 S (14+8) "G (624 N2(1)). (4.15)
We can estimate like (4.14)—(4.15) to imply
I(Fr, Fo, Ny, NoyNa) |2 S (146)"(345) (624 N2 (1)), (4.16)

~

In light of (4.7)—(4.10), (4.13) and (4.16) together with (5.1) of Lemma 5.1, we have

¢ 3
||(ph7mh,‘,th_,Bh)||L2 SC-/ (1+t—8)_i(1+8)_§d8(52+N2(t))
0

<C(1+t)"5(82+N?)
<01+t~ (3+5) (52 4 N2(1));
Wil 2 S / () Eds(3? 4 N S FE A ND), (417)
0
and
Wit |2 SC/t(H—t—s)_Z(1+s)_gds(62+N2(t)) <C(1+41)73(82+N2(1)), (4.18)
0

which proves (4.6). O



L.L. TONG AND Z. TAN 1127

In the following lemma, we employ the energy method to obtain the decay rates of
the derivatives of (pn,mpu.,, Whi,mn1, Wi, Bn)T

LEMMA 4.2.  Under the same conditions of Lemma 4.1, it holds that

|V (ons Mebs Whi,mn 1, Wi, By) || §0(1+t)_<%+%)(52+N2(t))~ (4.19)

Proof.  Applying V¥ with k=0,1,2 to (4.1) and multiplying by V*p;, VEmy,,
VEW,.,, V¥ By, respectively, we have

d
5 (o W B[ 74 G, Wi, B[+ [ V5 W

5/ VkF1~Vkthdx+/ kaQ.kather/ V*N; - V¥ Bydz.

R3 R3 R3

A similar method as (4.20) yields

I W ) [ (ot ) [ [+ 0 [ Wi [ |4

2 di Mhl, Whi)| g2 T K hi|lp2z TH hi|| 2 hi| 2

S/ VkNyvkmhde#* VkNQ‘VkWhLd‘T‘i’ZlOé
R3 R3

< | VAN -VEmyidat | VENy VW de+da | VAW +a |V ||
R3 R3

further implies,

(4.20)

VkWhl ~Cur1VkmhLd:E
RS

1d
5 o [V s Wi )[4 [ 94 s [+ [V W
< RSVkNl-Vkth_dx—&— RskaQ-v’fWhde. (4.21)

We now estimate the right-hand side of (4.20)—(4.21). For k=0, by Holder’s in-
equality, we deduce
pW
/]R3 11 mdes 1ol s W 2 (Wil Lo

S+ G4 N2 () + e [TWi 7
By the integration by parts, we know

/ div (“I%m> “mp,dr=— mem
R3 p

ks 1+p Nmpdx < [|m| oo (Ml g2 [ Vrep || 2

(4.22)

S+ ER 4 N2 () e [T 2,
and
||vmhn ”L"’

() | (22)

R3 1+p 1+p L2
<MVl 2 VMl g2 + oVl 2 [ Vw2
S+ 2 (82 N2 (0)2 + e [V

(4.23)
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We can estimate the remaining terms like (4.22)—(4.23), and it implies

Fi-myp,dx+ F2~Wh‘,dx+/ N3 - Bpdx
R3 R3 R3

<1 4+4)2G8) (824 N2(1)2 + 61 || (Vi VWi, VB2 | (4.24)
and

Ni-mpide+ | No-Wyide<(1+6)~2(3+8) (52 £ N2(¢))2
R3 R3

+e ”(thlavwhl)‘liz' (4.25)

Combining the assumption (4.4), Lemma 2.1, Lemma 3.1 and Lemma 5.2, we esti-
mate

[Vm-V2p[ o SIVMall L || V200 2 + IV e [V 01]] o + V] 16 [ V0] s
+ IVl oo || V20| 2
<1+t GHE) @2 L N2 (1), (4.26)
and
[m-V2pl| Lo Sllmnll oo [[ V200 o+ 10l oo || V200 2 4 mnll e | V20| 2
+||m||L°° ||VSEHL2
<1+t~ GT8) (52 L N2(1). (4.27)
In light of (4.14)—(4.15) and (4.26)—(4.27), we end up with
IV (F1,Fo, Ny, N, Na)|| 2 S (1+8)"(5+5) (624 N2(1)). (4.28)

The intergration by parts and (4.28) imply that

VF -Vmpde+ | V2F-Vimpde+ | VE-VWyde+ | V2F,-V2W,,dz
R3 R3 R3 R3

+/RS VN3~VBhd:1:+/RB V2N3- V2B, dx
SIV(FL Fo,Ng)| 22 + €1 || (Vi V3mn, V By, V2 Br, VWi, VW3 ) ||
Ser || (Vi V3mn,, VB, V2 B, VW, VEW3) | 2.
+(14+4)7203+2) (524 N2(1))? (4.29)
and

VNy -V de+ | V2N, -Vimpide+ | VNo- VW, de+ | VZNy-V2W,, dx
R3 R3 R3 R3

Se || (Vmas, Vimu, VW, , VAW, 1) ||2L2 +(1 +t)72(%+%) 02+ N?(1). (4.30)

Plugging (4.24)—(4.25) and (4.29)—(4.30) into (4.20)—(4.21), it implies

d
o I (thmhu;WhmmhL;WhLth)”ijz +||V(mp,mn1, Wi ,Bp) ||§{2 + [|[Wh, H?p
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<(1+1)720+5) (524 N2(1))2. (4.31)

Applying V! with 1=0,1 to (4.1)y and multiplying by V!V p;, we have

7 Vlmh” Vi pda+ HVHlthLz

< / VE -V g ||V g ||, + | V2. (4.32)
R3

In view of (4.16) and (4.28), one can deduce

/ F1~Vphd:17—|—/ VE -Vpndx
RS R3
<UL+ IV AL+ e[| (00, 9200 [
SA+0720F) (@ N2 (0)2 + e | (Ton, T20n) [
Plugging (4.33) into (4.32), it gives rise to

3
1

1
d _
[ ViV et [ Vol S (1) 7
—o/R?

Multiplying (4.34) by n; for suitably small 1, and adding it to (4.31), then there
some positive constant a, such that

%M( )+G“M( ) ||(Ph7mhu,mhiaWhL,Bh)||L2+(1+t) (% 5)(52+N2( ))

where

1
M = [(pny 10, Wiy mn L, Wi, B) |2 +Z/3 Vimp, -V pda
= Jr

~ H(ph;mhmWhl\vmhL7WhlvBh>H?{Q .

By Gronwall’s inequality, and (4.6) of Lemma 4.1, we obtain

t
M,g/ e =) (1 4+5)7203+5) ds(62 + N2)2 < (1+¢)2(3+5) (52 + N2(¢))2.

0

Therefore, we have proved (4.19).

Now, we need to prove that

V2 (o mn, Wi, Br)|| . < C.
In fact, note that

/
(ﬁ,a,m,B)=<1+p, Wm VPOW /i B) (14 p,u,w,\/P'(1)B).

1+4+p 1+p

By the existence Theorem 1.1, we obtain

5824+ N2(1)% + [ V|

(4.33)

(4.34)

exists

2 2 2 2
1Gp . W, B) [ S [1(p,w,w, B)l[gs S 1(p0, 0, wo, Bo)llgs S 1o mo, Wo, Bo)l[gs $6°.
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Thus

||(ph7mh7Whth)||H3 5 ||(pvm7VV7B)HH3+||(ﬁ’m W B ||H3

S (o, w0, wo, Bo) |l s S Nl (po,m0, Wo, Bo) | s -

(4.35)
The combination of (4.6), (4.19) and (4.35) leads to
N(t) S6°+N3(t)+9,

which together with the smallness of > 0 leads to the estimate (4.5). From (4.17)—(4.18)

and (4.5), we know
¢
Wl 2 5/ ™ (L45)"2ds (8 + N2 (1)) S (14+1)72,
0
and
t 7 3 2 2 3
||WhLHLz§/ (1+t—s)"1(1+s)"2ds(0*+ N2(t)) S (1+1) 2.
0
Hence, we obtain the optimal decay rate for (p,m,W,B)T and prove (1.11)-(1.12) of
Theorem 1.2.
In the following, we want to prove (1.13)—(1.14) of Theorem 1.2. Assume
N1(t)=os<ug {”V(phamthhuathJWhJ_»Bh)H1(1+3)‘5‘+6
<s<t
+||V3(ph>mh|aWhlamhLaWhLth)H[;}' (436)
We claim that for 0<¢ <1/4,
Ny (t) <6. (4.37)

By the assumption (4.36), Lemma 2.1 and Lemma 3.1, estimating in the same way
as proving (4.16) in Lemma 4.1, we obtain

(Fy, Fay Ny, NoyNo)|| 2 + |V (Fr, Fa, Ny, NoyNa) [ 2 S (1) () (824 N2(1)).

(4.38)
Like (4.7)—(4.10), we know

IV (on, mns Whismn L, Wi, B) || 2

4

<C/ (146 =5) " ([ (1o o fao £ N N2 ) (8)]] o+ |V (Fy o, N1y N2y Na) ()] 2)

<C/ (1+t—s)" 7 (1+5)"(GT)ds(82+ N2)
<O(1+)~(F+a) (52 N2).

(4.39)
Taking (4.20) and (4.21) with k=1,2 and (4.32) with /=1, we obtain

7 (”v(l)hamthhuamhLyth;Bh)i[l +€1/3thl'vzphd$>
R
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+||v? (mhmmhLaWthhLth)Hip + ||V2ph||iz

5/ Fi-Vmpde+ | VF-Vimpde+ [ Ny-Vm,dx
R3 R3 R3

+ [ VYN -VPmp, de+ | Ny-V2W, de+ | VNy-V3W,, dz
R3 R3 R3

+/ N3-V2Bpdz+ | VN;-V3Bpdr+ | Fy-V2Wy,dx
R3 R3 R3

+ [ VE-V3Wydz+e [ VF-Vppdx
R3 R3

Sell(V2pn, V2, Vimp, Vimy L, Vomy L VWi VW VW L VW L) ||i2
+||(Fy, F2, N1, N2, Ng)|[7 + |V (F1, Fa, N1, No,N3) [ 7. (4.40)

From (4.40) and (4.38), we have

d —2(2+e
@Ml(t)erMﬂt)SC’(lH) 2(5+ 1)(52+N12)2+||V(ph7mthh|umhLvWhlyBh)”%ﬁ
<O(1+1)~2(5+a) (52 4 N2)2,
where
Ml(t):<|v(phamh|7Wh|7mhL7WhLth)”ifl +€1/ th,~V2phdx)
R3
~ IV (s M, Wiy, Wi, B) |31 -

By Gronwall’s inequality, we have
t
M; (t) gc/ eVt (145)2(3+9) (62 4 N2)2ds < O(1+1)~2(+) (52 N2)2,
0
That is,

IV (prs s Wiy 1, Wi, Br) || g Sc(l+t)_(%+el)(52+N12)- (4.41)
It holds from (4.35) and (4.41) that
Ny(t) 0%+ NP (t) +0,

which together with the smallness of § >0 leads to the estimates (4.37). This in turn
gives

VWil SC/Oé(1+t—8)3 (IS N2) ()l 1 + [V (N1, Na) ()] 2 ) ds

+0L<1+t—s>-%(H(f,N2><s>||L1+||v<zv1,zv2><s>|\m>ds

|+

SC/2(1+tfs)’%(1+s)’(%+61)ds
0

0 [ @rt=) 7 (1N 6+ IV (N2, )5 2) s
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<C(1+t)_7t_61/Oé(l—kt—s)_i*“(l—ks)(i“l)ds
£ [ @t UGN+ 1T 3) 6
SC(1+t)Z€1/O£(1+s)Z+61(1+s)(2+61)ds

+C[t(1+t_5)_i(|(faN2)(S)||L1+||V(N1,N2)(s)|Lz)ds
SC(Ht;(%M) (4.42)
and
IV Wl 2 < C(1+1) =G, (4.43)

for some constant € >0. Therefore, we can obtain the optimal time decay rate for
(Vp,Vm,VB,VW)T and prove (1.13)—(1.14) of Theorem 1.2.
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Appendix. Analytic tools.
LEMMA 5.1. Letri>1, 0<ry<rq, then it holds that

/t(1+t—s)—ﬁ(1+s)—’“2dsg Clr1,r)(141)" (5.1)
0

where C(ry,m2) is defined as

27’2—0—1
C(ry,re) =

r— 1 '
Proof.  The proof can be seen in [12]. O
LEMMA 5.2.  Let [ >0 be an integer, it holds

IV | oo SNl pon [V 2] i + 11 0] s 1Bl s - (5.2)
In the above, pg,p1,p2,P3,P4 € [1,+00] such that
1 1 1 1 1

Po P1 P2 D3 p4'

Proof. The proof can be seen in [11]. |

REFERENCES

[1] Y. Amirat and K. Hamdache, Weak solutions to the equations of motion for compressible magnetic
fluids, J. Math. Pures Appl., 91:433-467, 2009. 1

[2] B. Berkovski and V. Bashtovoy, Magnetic Fluids and Applications Handbook, Begell House, New
York, 1996. 1


https://doi.org/10.1016/j.matpur.2009.01.015
https://www.researchgate.net/publication/312983128_Magnetic_fluids_and_applications_handbook

L.L. TONG AND Z. TAN 1133

[3] J.L. Boldrini, M. Durdn, and M.A. Rojas-Medar, Ezistence and uniqueness of strong solution for
the incompressible micropolar fluid equations in domains of R®, Ann. Univ. Ferrara Sez. VII
Sci. Mat., 56(1):37-51, 2010. 1

[4] J.L. Boldrini, M.A. Rojas-Medar, and E. Ferndndez-Cara, Semi—Galerkin approzimation and strong
solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl.,
82:1499-1525, 2003. 1

[5] M.T. Chen, Blowup criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear
Anal. Real World Appl., 13(2):850-859, 2012. 1

(6] M.T. Chen, B. Huang, and J.W. Zhang, Blowup criterion for the three—dimensional equations of
compressible viscous micropolar fluids with vacuum, Nonlinear Anal., 79:1-11, 2013. 1

[7] H.B. Cui and H.Y. Yin, Stationary solutions to the one—dimensional micropolar fluid model in a
half line: existence, stability and convergence rate, J. Math. Anal. Appl., 449(1):464-489, 2017.
1

[8] R.J. Duan, Global smooth flows for the compressible Euler—Mazwell system. The relazation case,
J. Hyperbolic Diff. Egs., 8:375-413, 2011. 1

[9] 1. Drazi¢ and N. Mujakovié¢, 3D flow of a compressible viscous micropolar fluid with spherical
symmetry: a local existence theorem, Bound. Value Probl., 2012:69, 2012. 1

[10] I. Drazi¢ and N. Mujakovié¢, 3D flow of a compressible viscous micropolar fluid with spherical
symmetry: a global existence theorem, Bound. Value Probl., 2015:98, 2015. 1

[11] R.J. Duan, L.Z. Ruan, and C.J. Zhu, Optimal decay rates to conservation laws with diffusion—
type terms of regularity—gain and regularity—loss, Math. Models Meth. Appl. Sci., 22(7):1250012,
2012. 4

[12] R.J. Duan, S. Ukai, T. Yang, and H.J. Zhao, Optimal convergence rates for the compressible
Navier—Stokes equations with potential forces, Math. Models Meth. Appl. Sci., 17(5):737-758,
2007. 4

[13] B.Q. Dong and Z.F. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular
viscosity, J. Diff. Egs., 249(1):200-213, 2010. 1

[14] L. Huang and C.X. Kong, Global behavior for compressible viscous micropolar fluid with spherical
symmetry, J. Math. Anal. Appl., 443(2):1158-1178, 2016. 1

[15] L. Huang and R.X. Lian, Exponential stability of spherically symmetric solutions for compressible
viscous micropolar fluid, J. Math. Phys., 56(7):071503, 2015. 1

(16] J. Jin and R. Duan, Stability of rarefaction waves for 1D compressible viscous micropolar fluid
model, J. Math. Anal. Appl., 450(2):1123-1143, 2017. 1

[17] G. Lukaszewicz, On nonstationary flows of incompressible asymmetric fluids, Math. Meth. Appl.
Sci., 13(3):219-232, 1990. 1

[18] H.L. Li, A. Matsumura, and G.J. Zhang, Optimal decay rate of the compressible Navier—Stokes—
Poisson system in R3, Arch. Ration. Mech. Anal., 196(2):681-713, 2010. 1, 1, 1

[19] M. Loayza and M.A. Rojas—Medar, A weak LP Prodi-Serrin type regularity criterion for the
micropolar fluid equations, J. Math. Phys., 57(2):021512, 2016. 1

[20] Q.Q. Liu and P.X. Zhang, Optimal time decay of the compressible micropolar fluids, J. Diff. Egs.,
260(10):7634-7661, 2016. 1, 3.1, 3.1

[21] N. Mujakovié, Global in time estimates for one—dimensional compressible viscous micropolar fluid
model, Glas. Mat. Ser. III, 40(60):103-120, 2005. 1

[22] N. Mujakovié¢, Nonhomogeneous boundary value problem for one-dimensional compressible vis-
cous micropolar fluid model: a local existence theorem, Ann. Univ. Ferrara Sez. VII Sci. Mat.,
53(2):361-379, 2007. 1

[23] N. Mujakovié, The existence of a global solution for one dimensional compressible viscous mi-
cropolar fluid with nonhomogeneous boundary conditions for temperature, Nonlinear Anal. Real
World Appl., 19:19-30, 2014. 1

[24] N. Mujakovi¢ and I. Drazi¢, 3D flow of a compressible viscous micropolar fluid with spherical
symmetry: uniqueness of a generalized solution, Bound. Value Probl., 2014:226, 2014. 1

[25] E.E. Ortega—Torres and M.A. Rojas—Medar, Magneto—micropolar fluid motion: global existence
of strong solutions, Abstr. Appl. Anal., 4:109-125, 1999. 1

[26] Y.M. Qin, T.G. Wang, and G.L. Hu, The Cauchy problem for a 1D compressible viscous micropolar
flutd model: analysis of the stabilization and the reqularity, Nonlinear Anal. Real World Appl.,
13(3):1010-1029, 2012. 1

[27] M.A. Rojas—Medar, Magneto—micropolar fluid motion: ezistence and uniqueness of strong solu-
tion, Math. Nachr., 188:301-319, 1997. 1

[28] M.A. Rojas—Medar and E.E. Orteg-Torres, The equations of a viscous asymmetric fluid: An
interactive approach, Z. Angew. Math. Mech., 85(7):471-489, 2005. 1

[29] M.E. Schonbek, Large time behavior of solutions to the Navier—Stokes equations, Comm. Part.
Diff. Eqgs., 11(7):733-763, 1986. 1


https://link.springer.com/article/10.1007%2Fs11565-010-0094-0
https://www.sciencedirect.com/science/article/pii/S0021782403000965?via%3Dihub
https://doi.org/10.1016/j.nonrwa.2011.08.021
https://doi.org/10.1016/j.na.2012.10.013
https://doi.org/10.1016/j.jmaa.2016.11.065
https://doi.org/10.1142/S0219891611002421
http://link.springer.com/article/10.1186%2F1687-2770-2012-69
https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-015-0357-x
https://doi.org/10.1142/S0218202512500121
https://doi.org/10.1142/S0218202512500121
https://doi.org/10.1142/S021820250700208X
https://doi.org/10.1142/S021820250700208X
https://doi.org/10.1016/j.jde.2010.03.016
https://doi.org/10.1016/j.jmaa.2016.05.056
https://doi.org/10.1063/1.4926426
https://doi.org/10.1016/j.jmaa.2016.12.085
 https://doi.org/10.1002/mma.1670130304
https://link.springer.com/article/10.1007%2Fs00205-009-0255-4
https://doi.org/10.1063/1.4942047
https://doi.org/10.1016/j.jde.2016.01.037
https://mathscinet.ams.org/mathscinet-getitem?mr=2195864
https://link.springer.com/article/10.1007%2Fs11565-007-0023-z
https://doi.org/10.1016/j.nonrwa.2014.02.006
https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-014-0226-z
http://dx.doi.org/10.1155/S1085337599000287
https://doi.org/10.1016/j.nonrwa.2010.10.023
 https://doi.org/10.1002/mana.19971880116
https://doi.org/10.1002/zamm.199910189
https://doi.org/10.1080/03605308608820443

1134 OPTIMAL DECAY RATES

[30] M.E. Schonbek, Lower bounds of rates of decay for solutions to the Navier—Stokes equations, J.
Amer. Math. Soc., 4(3):423-449, 1991. 1

[31] J.R. Su, Incompressible limit of a compressible micropolar fluid model with general initial data,
Nonlinear Anal., 132:1-24, 2016. 1

[32] P.B. Silva and E.G. Santos, Global weak solutions for asymmetric incompressible fluids with vari-
able density, C.R. Math. Acad. Sci. Paris, 346:575-578, 2008.

[33] P.B. Silva and E.G. Santos, Global weak solutions for variable density asymmetric incompressible
fluids, J. Math. Anal. Appl., 387:953-969, 2012. 1

[34] R.Y. Wei, B.L. Guo, and Y. Li, Global ezistence and optimal convergence rates of solutions for
3D compressible magneto—micropolar fluid equations, J. Diff. Eqs., 263(5):2457-2480, 2017. 1,
1,1.2

[35] H.Y. Yin, Stability of stationary solutions for inflow problem on the micropolar fluid model, Z.
Angew. Math. Phys., 68(2):44, 2017. 1


https://doi.org/10.1090/S0894-0347-1991-1103459-2 
https://doi.org/10.1016/j.na.2015.10.020
https://doi.org/10.1016/j.crma.2008.03.008
https://doi.org/10.1016/j.jmaa.2011.10.015
https://doi.org/10.1016/j.jde.2017.04.002
https://link.springer.com/article/10.1007%2Fs00033-017-0789-5

