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LONG TIME BEHAVIOR IN
LOCALLY ACTIVATED RANDOM WALKS∗

NICOLAS MEUNIER† , CLÉMENT MOUHOT‡ , AND RAPHAËL ROUX§

Abstract. We consider a 1-dimensional Brownian motion whose diffusion coefficient varies when
it crosses the origin. We study the long time behavior and we establish different regimes, depending
on the variations of the diffusion coefficient: emergence of a non-Gaussian multipeaked probability
distribution and a dynamical transition to an absorbing static state. We compute the generator and
we study the partial differential equation which involves its adjoint. We discuss global existence and
blow-up of the solution to this latter equation.
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1. Introduction
In this paper we deal with a new class of one-dimensional linear diffusion problems

in which the diffusivity is modified in a prescribed way upon each crossing of the origin.
We study both the system of stochastic differential equations satisfied by the position
and the diffusion coefficient of a Brownian particle whose diffusion coefficient is modified
at each crossing of the origin and the partial differential equation satisfied by the joint
distribution of the solution to the stochastic system. In both viewpoints we obtain
non-trivial behaviors of the solution: dynamical transition to an absorbing state for the
solution to the stochastic system and blow-up of the density of the joint distribution.
Global existence versus blow-up has been widely studied for non-linear equations, such
as for the Keller-Segel system in two dimensions of space, see e.g. [3]. In our case, the
partial differential equation is linear and the instability driving the system towards an
inhomogeneous state is the diffusion.

Living systems provide prototypical examples of such a problem: the dynamics of
a cell or a bacterium in the presence of a localized patch of nutrients, which enhances
its ability to move, as for exemple the dynamics of a macrophage that grows by accu-
mulating smaller and spatially localized particles, such as lipids, Figure 1.1 and [4], or,
alternatively, a localized patch of toxins that impairs its mobility. In [1], to describe
the movement of such a particle, the following formal system of stochastic differential
equations was introduced: {

dXt =
√

2At dWt,

dAt = f(At)∆Xt=0 dt,
(1.1)

where (Wt)t≥0 is a given standard one-dimensional Brownian motion, Xt and At respec-
tively denote the position and the diffusion coefficient of the particle at time t, ∆Xt=0 dt
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accounts for the local activation, the particle is accelerated or decelerated whenever it
crosses the origin, and f is an arbitrary prescribed function. The rigorous definition of
the term ∆Xt=0 dt will be given below.

Fig. 1.1. a) Sketch of the different stages of atherosclerosis plaque formation: (1) rapid diffusion
of a free macrophage cell; (2) upon entering a localized lipid-enriched region, the macrophage accu-
mulates lipids, and thereby grows and becomes less mobile; and (3) after many crossings of the lipid-
enriched region, the macrophage eventually gets trapped, resulting in the formation of an atherosclerotic
plaque. (b) Sketch of a one-dimensional particle trajectory of the model of locally decelerated random
walk.

In [1], the term ∆Xt=0 involved in the previous system was understood in the sense
that the dual of the generator of the Markov process (Xt, At)t≥0 was

L∗h(x, a) = a∂2
xxh(x, a)− ∂a (f(a)h(x, a)) δx=0, (1.2)

for any smooth function h, where δx=0 is the Dirac delta function. Here, we are first in-
terested to give a correct formulation of the term ∆Xt=0. Intuitively, the term ∆Xt=0 dt
should represent a measure on [0,∞) giving full measure to the set of zeros of the pro-
cess (Xt)t≥0. This reminds the notion of local time.

We point out that in the formal system (1.1) at any time, the diffusion coefficient,
At, depends on the entire history of the trajectory. Thus the evolution of the particle
position, Xt, is intrinsically non-Markovian. Despite these considerations, in the par-
ticular case where f is a power function, f(a) = ±aγ , γ ≥ 0, we study the long-time
behavior of the process (Xt)t≥0 solution to the system with the correct formulation of
the term ∆Xt=0. Our main findings are: (i) The probability distribution of the position
has a non-Gaussian tail. (ii) For local acceleration, i.e. f takes nonnegative values,
f(a) = aγ , a diffusing particle is repelled from the origin, so that the maximum in the
probability distribution is at nonzero displacement. (iii) For local deceleration, i.e. f
takes negative values, f(a) = −aγ , a dynamical transition to an absorbing state occurs:
for sufficiently strong deceleration, γ ∈ (0, 3/2), the particle can get trapped at the
origin in finite time while if the deceleration process is sufficiently weak, γ ≥ 3/2, the
particle never gets trapped.

In a second step, we study the generator of the Markov process (Xt, At)t≥0 solution
to the system with the correct formulation of the term ∆Xt=0. In order to do so we
first prove that the generator of the Markov process (Wt, L

W
t )t≥0, in a weak sense, is
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given by

L0h(w, l) =
1

2
∂2
wwh(w, l) + ∂lh(w, l)δl=0,

where LWt is the local time at 0 of (Wt)t≥0. We use this result to prove that the density
u(t, x, a) of the joint distribution µt(x, a) of (Xt, At)t≥0, defined on t ≥ 0, x ∈ R, a ≥ 0,
satisfies, in a weak sense the parabolic equation

∂tu(t, x, a) = L∗u(t, x, a) = a∂2
xxu(t, x, a)− ∂a (f(a)u(t, x, a)) δx=0, (1.3)

with initial condition u0(x, a).
Next we study the partial differential Equation (1.3) and the general questions we

are concerned with are the following. By studying the regularity of the solution to
(1.3), do we recover the results observed during the probabilistic study? In particular,
if f(a) = −aγ with γ ≥ 3/2, can we prove global existence? In the case γ ∈ (0, 3/2) can
we prove that the solution to (1.3) becomes unbounded in finite time in any Lp space
(so-called blow-up)?

We describe the organization of the paper. In Section 2 we build and study the
correct equation associated with (1.1). Section 3 is devoted to the computation of the
generator of (Xt, L

W
t )t≥0 from which we deduce the weak formulation satisfied by the

joint distribution associated to (Xt, At) solution to the correct version of (1.1). In
Section 4 we study Equation (1.3).

2. Mathematical study of a correct version of (1.1)
Let us first define the term ∆Xt=0 dt. Intuitively, it should represent a time depen-

dent measure of the set of zeros of the process (Xt)t≥0. This reminds the notion of local
time whose definition we recall here for completeness.

For any continuous local martingale (Mt)t≥0, one can define the local time at 0
of (Mt)t≥0 by:

LMt := lim
ε→0

1

2ε

∫ t

0

1|Ms|≤ε d 〈M〉s ,

where 〈M〉s is the quadratic variation of the process (Mt)t≥0 (see [8], Chapter IV).
Namely, 〈M〉t = lim

∑n
i=1 |Mti − Mti−1

|2, where the limit (in probability) holds for
subdivisions 0 = t0 < t1 < ... < tn = t with maxni=1 |ti − ti−1| → 0.

The local time satisfies the scaling property

LλMt = λLMt a.s. for any λ > 0.

In particular, the process (λ−1LλMt )t≥0 does not actually depend on λ. Since the pro-
cess

(
LMt
)
t≥0

is continuous and nondecreasing, we can associate to it a measure dLMt
without atoms on R+. This measure is supported by the set {t ≥ 0 : Mt = 0}. For
more details on the theory of local times, we refer to [8], chapter VI.

The formal term ∆Xt=0 dt should satisfy the scaling invariance property

∆λXt=0 dt = ∆Xt=0 dt.

Comparing this formal property to the properties of local time, it seems natural to
replace the term ∆Xt=0 dt by the renormalized local time dLXt /2At. As a consequence,
in this work, instead of (1.1), we will study the systemdXt =

√
2At dWt,

dAt = f(At)
dLXt
2At

,
(2.1)
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with a given initial condition (X0, A0). In the sequel, f will be a locally Lipschitz
continuous function from (0,∞) to R, and the initial condition will be assumed to
satisfy A0 > 0 almost surely. Note that if (Xt)t≥0 solves (2.1), then (Xt)t≥0 is a local
martingale as the stochastic integral of a continuous process against Brownian motion
(see [8], Chapter IV).

More precisely, we are interested in proving that Equation (2.1) defines a Markov
process whose generator is given by (1.2). In order to do so we start by studying a
simpler problem dXt =

√
2At dWt,

dAt = f(At)
dLWt√

2At
,

(2.2)

and we prove that the solutions to systems (2.1) and (2.2) coincide when the initial
condition satisfies X0 = 0.

Remark 2.1. In the case where X0 6= 0 the solution of (2.1) is the solution of (2.2)
with W replaced by W̃ where W̃t = Wt +X0/

√
2A0.

Equation (2.1) may not admit solutions for all positive times, because solutions
might blow up in finite time. For example if f is a positive function, the process (At)t≥0

will be nondecreasing, and nothing will a priori prevent it to go to infinity in a finite
time τ . In that case, the diffusion coefficient of (Xt)t≥0 will blow up in finite time,
and (Xt)t≥0 will not admit any extension after time τ .

As a consequence, in the sequel, we will call a (strong) solution to Equation (2.1)
(resp. (2.2)), a triple (τ, (Xt)0≤t<τ , (At)0≤t<τ ), where τ is a stopping time of the Brow-
nian motion (Wt)t≥0 and (Xt, At)0≤t<τ is a continuous process adapted to (Wt)t≥0

satisfying Equation (2.1) (resp. (2.2)) until time τ .

We will say that such a solution is maximal, when the process (At)0≤t<τ converges
either to 0 or ∞ as t → τ on the event {τ < ∞}. Indeed, in those two cases, the
term f(At) appearing in the equation becomes ill-defined at time τ , since f(a) is only
assumed to make sense for a ∈ (0,∞).

2.1. Well-posedness of (2.2). The first equation in (2.2) is explicit in
(Wt, At)t≥0: for given (X0, (At)0≤t<τ , (Wt)t≥0), its unique solution is given by

∀t < τ, Xt = X0 +

∫ t

0

√
2As dWs.

Moreover, the second equation in (2.2) is a closed equation on (At)t≥0 and does not
depend on (Xt)t≥0. Thus, studying existence and uniqueness for the equation dAt =
f(At) dLWt /

√
2At is enough to obtain existence and uniqueness for system (2.2).

Recalling that f : (0,∞) → R is assumed to be locally Lipschitz continuous, we
obtain the following result.

Proposition 2.1. Let (X0, A0) be a random couple, independent of (Wt)t≥0 and such
that A0 > 0. Then, there exists a unique maximal strong solution
(τ, (Xt)0≤t≤τ , (At)0≤t≤τ ) to Equation (2.2) with initial condition (X0, A0).

Proof. As explained before, we only need to show existence and uniqueness for the
equation dAt = f(At) dLWt /

√
2At, which is closely related to the ordinary differential

equation y′ = f(y)/
√

2y.
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First, consider the flow Φ associated with y′ = f(y)/
√

2y. Namely,

t 7→ Φx(t) (2.3)

is the unique maximal solution to

y′ = f(y)/
√

2y satisfying Φx(0) = x. (2.4)

This flow is well defined from the local Lipschitz continuity of y 7→ f(y)/
√

2y. The
flow Φx is only defined up to a time T (x). Moreover, in the case T (x) < ∞, one
necessarily has either limt→T (x) Φx(t) =∞ or limt→T (x) Φx(t) = 0.

Then, one can check that At = ΦA0
(LWt ) is defined up to the time τ = sup{t ≥

0, LWt < T (A0)} and satisfies the equation dAt = f(At) dLWt /
√

2At. Indeed, since Φx
is continuously differentiable and (LWt )t≥0 is a continuous nondecreasing process, then
the usual chain rule holds, namely one has dΦx(LWt ) = Φ′x(LWt ) dLWt . Moreover, on
the event {τ <∞}, limt→τ At exists with value 0 or ∞.

For uniqueness of the solution to dAt = f(At) dLWt /
√

2At, consider two solutions
(τ, (At)0≤t<τ ) and (τ̃ , (Ãt)0≤t<τ̃ ), with A0 = Ã0. Then one has the following Grönwall-
type inequality: ∀t < τ ∧ τ̃

|At − Ãt| =
∣∣∣∣∫ t

0

(
f(As)/

√
2As − f(Ãs)/

√
2Ãs

)
dLWs

∣∣∣∣ ≤ C ∫ t

0

|As − Ãs|dLWs .

Hence, from the expression

e−CL
W
t

∫ t

0

∣∣∣As − Ãs∣∣∣ dLWs

=

∫ t

0

e−CL
W
s

(
|As − Ãs| − C

∫ s

0

∣∣∣Au − Ãu∣∣∣ dLWu

)
dLWs

≤ 0,

it follows that |At − Ãt| = 0 for dLWt -almost all 0 ≤ t < τ ∧ τ̃ .

Remark 2.2. As it appears in the proof of Proposition 2.1, existence for the stochas-
tic differential Equation (2.2) still holds true provided the ordinary differential equa-
tion y′ = f(y)/

√
2y admits a (non necessarily unique) solution.

2.2. Link with system (2.1). In this section, we provide a link between solu-
tions to systems (2.1) and (2.2). Consider a solution (τ, (Xt)0≤t<τ , (At)0≤t<τ ) to (2.1)
starting from X0 = 0. We prove that the two processes (Xt)t≥0 and (Wt)t≥0 van-
ish at exactly the same times, until the explosion time τ . Indeed, we show that the
measure dLXt has a density with respect to dLWt .

Proposition 2.2. Let (X0, A0) be a random variable independent of (Wt)t≥0 with
A0 > 0. Let (τ, (At)0≤t<τ , (Xt)0≤t<τ ) be a strong solution to (2.1). Then,

Xt =
√

2At

(
Wt +

X0√
2A0

)
.

If in addition we assume that X0 = 0, then

∀t < τ, dLXt =
√

2At dLWt and Xt =
√

2AtWt. (2.5)



1076 LONG TIME BEHAVIOR IN LOCALLY ACTIVATED RANDOM WALKS

Proof. Let the stopping time τn be the first positive time for which (At)0≤t<τ
reaches [0, 1

n ]. It is defined by

τn = τ ∧ inf

{
t ∈ [0, τ), At ≤

1

n

}
.

Almost surely, τn → τ as n goes to infinity and At >
1
n on [0, τn). Then, on the time

interval [0, τn), one has

dWt − d

(
Xt√
2At

)
=

(
dWt −

dXt√
2At

)
−Xt d

(
1√
2At

)
= 0 + (2At)

−3/2Xt dAt

= 0, (2.6)

where the last equality is a consequence of Xt dLXt = 0. As a consequence, we deduce
that Wt − Xt√

2At
= W0 − X0√

2A0
= − X0√

2A0
up to time τn. Letting n go to infinity, we

obtain Xt =
√

2At

(
Wt + X0√

2A0

)
for all 0 ≤ t < τ .

According to Tanaka’s formula (see for example [8], chapter VI), the local time of a
local martingale is given by dLMt = d|Mt| − sign(Mt)dMt. Hence, it the case X0 = 0,
we get

dLXt = d|Xt| − sign(Xt) dXt = d(
√

2At|Wt|)− sign(Wt) d
(√

2AtWt

)
=
√

2At

(
d|Wt| − sign(Wt) dWt

)
+ (|Wt| − sign(Wt)Wt)

dAt√
2At

=
√

2At dLWt .

Proposition 2.2 is what we needed to establish a link between solutions to (2.1)
and (2.2).

Corollary 2.1. A continuous process (Xt, At)0≤t<τ defined up to time τ and satis-
fying X0 = 0 is a strong solution to Equation (2.2) if and only if it is a strong solution
to Equation (2.1).

Proof. This is a direct consequence of the second equality in (2.5).

Corollary 2.2. For any initial condition (X0, A0) independent of (Wt)t≥0, there
exists a unique maximal solution to Equation (2.1).

Proof. If X0 = 0, there exists a unique maximal solution to (2.2) from Proposi-
tion 2.1. From Corollary 2.1, it is also the unique maximal solution to (2.1).

For a general initial condition, up to the time ζ = inf{t ≥ 0, Xt = 0}, system (2.1)
clearly admits a unique solution Xt = X0 +

√
2A0Wt, At = A0. After ζ, the Markov

property allows to apply existence and uniqueness starting from X0 = 0.

2.3. A discrete time approximation. In this section, we construct an approx-
imation to the process (Xt, At)t≥0. This will give a heuristic justification to equation
(2.5).

The Brownian motion will be discretized by a simple random walk

Yn =

n∑
k=1

Uk, n ∈ N,
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where (Uk)k∈N∗ is a sequence of independent random variables, uniformly distributed
on {1,−1}. We will need the discrete local time of (Yn)n∈N, defined by

Λn =

n∑
k=1

1Yk=0.

For all T ≥ 0, one has the trajectorial convergence in distribution(√
1

n
Ybntc,

√
1

n
Λbntc

)
0≤t≤T

→ (Wt, L
W
t )0≤t≤T ,

as n→∞.
At each crossing of the origin, the approximation has to take into account the

modification of the diffusion coefficient. To do so we modify the step size as in [2].
Starting from the initial condition X̂n

0 = 0 and Ân0 = A0, the sequences (X̂n
k )k and

(Ânk )k are defined by induction as follows:
X̂n
k = X̂n

k−1 + Uk

√
2
n Â

n
k−1,

Ânk = Ânk−1 +
f(Ânk−1)√

n
1X̂nk=0.

We first state a discrete analog to Equation (2.5).

Lemma 2.1. Let n be a fixed integer. For all integers k, one has the equalities

X̂n
k = Yk

√
2

n
Ânk , and 1X̂nk=0 = 1Yk=0.

Consider the Euler scheme associated to y′ = f(y), namely

yδn+1 = yδn + δf(yδn)

where δ is some time step. Then, when n → ∞ and δ → 0 in the regime nδ → t, one
has

yδn → Φy0(t),

with Φ defined by (2.3) and (2.4).

Lemma 2.2. Ânk is given by y

√
1/n

Λk
.

Theorem 2.3. For all T ≥ 0, as n goes to infinity, the trajectory (X̂n
bntc, Â

n
bntc)0≤t≤T

converges in distribution to (Xt, At)0≤t≤T .

Proof. For simplicity, we only prove convergence for a fixed time t.

One has Ânbntc = y

√
1/n

Λbntc
. Here

√
1
n and Λbntc respectively converge to 0 and ∞ in

the regime
√

1
nΛbntc → LWt . As a consequence, Ânbntc converges to ΦA0

(LWt ) = At.

On the other hand, one has

X̂n
bntc =

√
2Ânbntc ×

√
1

n
Ybntc →

√
2At ×Wt = Xt.
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2.4. A particular case: f is a power function. From the second equal-
ity in (2.5), one can expect at least four different long-time behaviors for the process
(Xt)t≥0. Indeed, the process can stop in finite time, in the case where there exists a
finite time t such that At = 0. On the contrary, the process can perform very large
oscillations if (At)t≥0 tends to infinity in finite time. Last, when (At)t≥0 takes its values
in (0,∞), we can expect the process (Xt)t≥0 either to go asymptotically to 0, if (At)t≥0

decreases fast enough, or to be recurrent in R, in the case where (At)t≥0 remains large
enough.

Those four behaviors actually do occur in the case of a power function f(a) = ±aγ .
The advantage of such a function is that the expression of At can explicitly be computed
as a function of LWt .

When (At)t≥0 remains in (0,∞) for all positive t, one can derive a polynomial be-
havior for (Xt)t≥0. Indeed, up to renormalisation by a power of t, we prove convergence
in law to a non-Gaussian distribution for (Xt)t≥0.

In a first place, we give an explicit expression of At, and then we give the asymptotic
behavior of Xt, depending on the sign of f .

2.4.1. Explicit expression of At. The following lemma gives the expression
of At as a function of LWt . For simplicity we assume that X0 = 1 and A0 = 1.

Lemma 2.3. Let f(a) = σaγ , with σ = ±1. The solution (Xt, At)0≤t<τ to (2.1) exists
up to the time τ defined by

τ :=

{
+∞ if σ(3/2− γ) ≥ 0,

inf
{
t ≥ 0, LWt =

√
2

σ(γ−3/2)

}
if σ(3/2− γ) < 0.

(2.7)

For all t ∈ [0, τ), one has

At =

{
eσL

W
t /
√

2 if γ = 3/2,

(1 + σ√
2(3/2−γ)

LWt )
1

3/2−γ if γ 6= 3/2.

Proof. As we have seen in the proof of Proposition 2.1, At is given by At =
ΦA0

(LWt ) where Φx is the solution to y′(t) = f(y(t))/
√

2y with initial condition Φx(0) =
x. Here, Φ1 is given by

Φ1(t) =

{
eσt/

√
2 if γ = 3/2,

(1 + σ√
2(3/2−γ)

t)
1

3/2−γ if γ 6= 3/2,

which lies in (0,∞) for 0 ≤ t <
√

2(γ − 3/2)/σ if σ(3/2 − γ) < 0, and for all t ≥ 0
otherwise. The expressions of τ and At easily follow.

2.4.2. Local deceleration: f(a) = −aγ. In that case the process (Xt)t≥0 is
slowing down and we obtain a dynamical transition to an absorbing state. For suffi-
ciently strong deceleration, the particle might get trapped at the origin in finite time
while if the deceleration process is sufficiently weak the particle never gets trapped.

Proposition 2.4. Assume that f(a) = −aγ , then
• if γ < 3/2, the stopping time τ defined in (2.7) is almost surely finite, and one

has limt→τ (Xt, At) = (0, 0);

• if 3/2 ≤ γ < 2, τ = ∞ and Xt → 0 as t goes to ∞. However, almost surely,
for all t > 0, there exists s > t such that Xs 6= 0;
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• if 2 ≤ γ, then τ =∞ and the process (Xt)t≥0 is recurrent in R.

Proof. The case γ < 3/2 is a consequence of the fact that (At)t≥0 is absorbed by 0
in finite time.

The case γ ≥ 3/2, γ 6= 2 follows from the almost sure asymptotic behavior t1/2−ε =
o(LWt ) and LWt = o(t1/2+ε), for any ε > 0, and from the law of iterated logarithm for
Brownian motion.

In the limit case γ = 2, (Xt)t≥0 is equivalent in the long time to (4Wt/L
W
t )t≥0, and

it is enough to consider this latter process. From [7], Theorem 4.5, in the case β = 2,
and f(x) = 1/(x log x), there exist random times (tn)n∈N with tn →∞ such that

∀n ∈ N,
sups≤tn |Ws|

LWtn
≥ log(LWtn ).

Let (t̃n)n∈N be a nondecreasing sequence satisfying Wt̃n
= sups≤tn |Ws|, in particu-

lar one has |Wt̃n
|/LW

t̃n
→ ∞. Since lim supt→∞ |Wt| = ∞, up to a subsequence, one

has t̃n →∞. Moreover, one can find another sequence of random times t′n going to ∞
and satisfying Wt′n

= 0. As a consequence, one obtains

lim inf
t→∞

|Wt|
LWt

= 0 and lim sup
t→∞

|Wt|
LWt

=∞.

Hence, (|Xt|)t≥0 is recurrent in [0,∞), and by symmetry this implies that (Xt)t≥0 is
recurrent in R.

Using the equality in distribution

Xt =
√

2AtWt =
√

2

(
1− 3/2− γ√

2
LWt

) 1
3−2γ

Wt

(d)
=
√

2

(
1 +

√
t (γ − 3/2)√

2
LW1

) 1
3−2γ √

tW1, (2.8)

for γ 6= 3/2, we deduce that, when γ > 1, the decreasing rate of the process (Xt)t≥0

is t
2−γ
3−2γ . In this expression of the rate, the exponent may be nonpositive or nonnegative.

More precisely, one has:

Proposition 2.5. If f(a) = −aγ , with γ > 3/2, then the convergence in distribution,

t
γ−2
3−2γXt

(d)→ Cγ(LW1 )
1

3−2γW1 as t→∞,

holds true where Cγ = 2
1−γ
3−2γ (γ − 3/2)

1
3−2γ .

One can also give the asymptotic behavior as t→ τ when τ <∞.

Proposition 2.6. If f(a) = −aγ , with γ < 3/2, then, as t→ 0,

1t<τ t
γ−2
3−2γXτ−t

(d)→ C ′γ(LW1 )
1

2(3−2γ)W1,

where C ′γ = 2
1−γ
3−2γ (3/2− γ)

1
2(3−2γ) .

Proof. We use the reversibility property of the Brownian motion that we recall,
for T > 0, setting ζ = inf{t > 0, LWt = T}, the equality in distribution

(Wt, L
W
t )0≤t≤ζ

(d)
= (Wζ−t, T − LWζ−t)0≤t≤ζ ,
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holds true. In our situation, we apply this property to the stopping time ζ = τ , and we
then use (2.8).

Remark 2.3. The fact that (Xt)t≥0 can be trapped at 0 for γ < 3/2 was already
noticed in [1]. However, the different behavior for γ ∈ [3/2, 2) was not observed.

Remark 2.4. As a consequence of Lemma 2.3, the survival probability of (Xt)t≥0 at
time t is given for γ < 3/2 by

S(t) = P

(
LWt ≤

√
2

3/2− γ

)
= P

(
|W1| ≤

√
2√

t(3/2− γ)

)
∼

t→∞

2

(3/2− γ)
√
πt
,

where we used the equalities in distribution LWt = |Wt| =
√
t|W1|. This fact was already

observed in [1].

2.4.3. Local acceleration: f(a) = aγ. In such a case the diffusion coeffi-
cient of (Xt)t≥0 is nondecreasing. Again, the proof of the following result follows from
Lemma 2.3 and the relation Xt =

√
2AtWt.

Proposition 2.7. Assume that f(a) = aγ , then

• if γ ≥ 2, the stopping time τ defined in (2.7) is almost surely finite and
limt→τ At =∞. Moreover, limt→τ Xt = 0;

• if 3/2 < γ < 2, τ is almost surely finite and limt→τ At = ∞. Moreover,
lim inft→τ Xt = −∞ and lim supt→τ Xt =∞;

• if γ ≤ 3/2, the time τ satisfies τ =∞, and At →∞ when t→∞.

Furthermore, when γ < 3/2, from equality in distribution (2.8), one can deduce

that the long time behavior of (Xt)t≥0 is of order t
2−γ
3−2γ , where the exponent is positive.

More precisely the following result holds true.

Proposition 2.8. If f(a) = aγ , with γ < 1, then, as t→∞, one has the convergence
in distribution

t
γ−2
3−2γXt

(d)→ C ′γ(LW1 )
1

3−2γW1,

where C ′γ = 2
1−γ
3−2γ (3/2− γ)

1
2(3−2γ) .

We can also describe the rate of explosion of (Xt, At)t≥0 as goes to τ , in the case τ <
∞.

Proposition 2.9. If f(a) = aγ , with γ > 1, then, as t → 0, one has the convergence
in distribution

1t<τ t
γ−2
3−2γXτ−t

(d)→ Cγ(LW1 )
1

3−2γW1,

where Cγ = 2
1−γ
3−2γ (γ − 3/2)

1
2(3−2γ) .

Remark 2.5. The case γ = 0 was treated by deterministic methods in [1], through
an approximation of the Laplace transform of the distribution of Xt. Here, by using the
stochastic differential Equation (2.1), we were able to compute the exact asymptotic
behavior. We obtain that the growth rate of (Xt)t≥0 is given by t2/3, and that its

diffusion coefficient, given by
(
LWt

)3/2
, behaves as t1/3. Those exponents were correctly

predicted in [1].
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3. Generator and “weak generator” of the process (Xt, At)t≥0

In this section, in order to give a rigorous meaning to the generator given in [1],
thereby establishing that the process is really the same as the one considered there,
we investigate the weak generator of the Markov process (Xt, At)t≥0 solution to sys-
tem (2.1). The expression of the generator will follow from the generator of the process
(Wt, L

W
t )t≥0, where Wt is a standard Brownian motion and LWt is its local time at 0.

Consider the unique maximal solution (τ, (Xt)0≤t<τ , (At)0≤t<τ ) of (2.1), whose ex-
istence is ensured by Corollary 2.2. The first step is to extend its state space in order
to define a continuous Markov process for all positive times.

3.1. Extended state space. In the proof of Proposition 2.1, we mentionned
that, when τ is finite, At necessarily converges as t goes to τ , either toward 0 or ∞. In
the case At → 0, one can also determine the behavior of Xt, as stated in the following
lemma.

Lemma 3.1. On the event {τ <∞, limt→τ At = 0}, Xt converges to 0 as t goes to τ .

Proof. First, one notices that on the set {τ <∞, limt→τ At = 0} the limit

lim
t→τ

Xt = X0 +

∫ τ

0

√
2As dWs

exists almost surely. It is thus enough to prove that the event E = {τ <∞, limt→τ At =
0, limt→τ Xt 6= 0} is a null set.

On E, there exists a random variable h > 0 such that Xt 6= 0 for all t ∈ (τ − h, τ).
Hence, on E, one has for all t ∈ (τ − h, τ)

Aτ −At =

∫ τ

t

dAs =

∫ τ

t

f(As)

2As
dLXs = 0.

However, on E, one also has τ = inf{t ≥ 0, At = 0}, which contradicts the fact that At
is constant on (τ − h, τ). As a consequence, E has probability 0, which concludes the
proof.

From Lemma 3.1, the maximal solution (τ, (Xt)0≤t<τ , (At)0≤t<τ ) to Equation (2.1)
can be extended to a process defined for all positive times by setting

(Xt, At) =

{
(0, 0) on {τ ≤ t, lims→τ As = 0} ,
(0,∞) on {τ ≤ t, lims→τ As =∞} .

For notational simpliciy the extended process will still be denoted by (Xt, At)t≥0. This
will define a Markov process with state space E = (R× [0,∞)) ∪ {(0,∞)}, which is
the half plane R × [0,∞) augmented with an additional point (0,∞). We define the
following topology on E : the subset R× [0,∞) is endowed with its usual topology, and
we choose the family (R× [α,∞))α>0 as a neighborhood basis of (0,∞). In other words,
any sequence (xn, an)n∈N in R× [0,∞) with an →∞ will satisfy (xn, an)→ (0,∞) in E .

With these conventions, (Xt, At)t≥0 defines a continuous Markov process with values
in E , defined for all positive times. A natural question is then to investigate its generator,
and to compute the distribution of (Xt, At) for a given t > 0. Note that the two
points (0, 0) and (0,∞) are absorbing points for the Markov process (Xt, At)t≥0.
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3.2. Shape of the distribution of (Xt, At). In this part, we give the general
form of the distribution µt at time t of the solution (Xt, At)t≥0 to (2.1). In particular we
prove that its restriction to R×R+ \ {(0, 0)} has a density, denoted by nt, with respect
to the Lebesgue measure when considering the particular initial condition µ0 = δ(x0,a0).

Since the two points (0, 0), (0,∞) are absorbing points for the process (Xt, At)t≥0,
the distribution starting from those points will be constant, equal to δ(0,0) or δ(0,∞)

respectively.
We first consider the case where the initial condition is µ0 = δ(0,a0), with a0 > 0.

Lemma 3.2. Assume that the initial condition (x0, a0) satisfies f(a0) 6= 0 and x0 = 0.
Then, for all t > 0, there exists a measurable function nt : R× (0,∞)→ R and two real
numbers pt ∈ [0, 1] and qt ∈ [0, 1] such that

µt( dx, da) = nt(x, a) dxda+ ptδ(0,0) + qtδ(0,∞), (3.1)

where pt + qt +
∫
R×[0,∞)

nt(x, a) dx da = 1. Furthermore, if f is nonnegative, one has

pt = 0 for all t > 0, while if f is nonpositive, one has qt = 0 for all t > 0.

Proof. All we need to prove is that the restriction of µt to the set R × (0,∞)
admits a density with respect to the Lebesgue measure.

First, since t−1/2(Wt, L
W
t ) has the same distribution as (W1, L

W
1 ), which has a

density, see [6], page 45, it follows that (Wt, L
W
t ) with W0 = 0 admits a density γt on

R×(0,∞). Moreover, as (Xt)0≤t<τ starts from the initial condition x0 = 0, Proposition

2.2 states that (Xt, At) =
(√

2Φa0(LWt )Wt,Φa0(LWt )
)

, where Φa0 is the flow of the

differential equation y′ = f(y) starting at a0. For a given a0, Φa0(l) is defined for
all l ∈ [0, T (a0)) for some T (a0) ∈ [0,∞].

Let us define the mapping Ψ(w, l) :=
(√

2Φa0(l)w,Φa0(l)
)

, for (w, l) in R ×
(0, T (a0)). To conclude, it is enough to show that Ψ is a local diffeomorphism from R×
(0, T (a0)) to R× (0,∞). The Jacobian determinant of the C1 function Ψ is given by

JΨ(w, l) = Φ′a0(l)
√

2Φa0(l) = f (Φa0(l)) .

From uniqueness in the Cauchy-Lipschitz theorem, if f(Φa0(l)) = 0 for some l, then
f(Φa0(l)) = 0 for all l ∈ [0, T (a0)), but this contradicts the assumption f(a0) 6= 0. As a
consequence, JΨ does not vanish on R× (0, T (a0)), so that Ψ is a local diffeomorphism,
and µt has a density on R× (0,∞).

Without the assumption x0 = 0, (Xt)t≥0 will stay away from 0 for a positive time
ζ. In that case (At)t≥0 remains constant on the interval [0, ζ], and this results in a more
complicated expression for µt, as stated in the following lemma.

Lemma 3.3. Assume that f(a0) 6= 0 and x0 6= 0. Then, µt has the form

µt( dx, da) = mt(x) dx⊗ δa0 + nt(x, a) dxda+ ptδ(0,0) + qtδ(0,∞),

where mt, nt, are measurable functions respectively defined on R and R× (0,∞).

Proof. This relies on the strong Markov property used at time inf{t > 0, Xt = 0}
together with Lemma 3.2.

The last case to consider is when the process starts from a point where its diffusion
coefficient does not change. In that case, (Xt)t≥0 exists for all positive times, and
behaves as a Brownian motion multiplied by some constant.
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Lemma 3.4. Assume that f(a0) = 0. Then, µt is given by

µt( dx, da) = γx0
2ta0

(x) dx⊗ δa0 ,

where γx0

σ2 denotes the Gaussian distribution with mean x0 and variance σ2.

Proof. In that case (Xt, At)t≥0 is given by (Xt, At) = (x0 +
√

2a0Wt, a0).

3.3. Generator and “weak generator” of the process (Wt, L
W
t )t≥0.

We start this section by giving the generator and its domain of the Markov process
(Wt, L

W
t )t≥0. Although it is classical we did not find any references for it, therefore we

give the proof here.

Proposition 3.1. The generator LW of the Markov process (Wt, L
W
t )t≥0 is given by

LWh(w, l) =
1

2
∂2
wwh(w, l),

and its domain D contains the following set X .

X =

{
h ∈ C0 (R× [0,∞)) , h ∈ C2,1 ([0,+∞)× [0,∞)) ∩ C2,1 ((−∞, 0]× [0,∞)) ,

∂lh ∈ C0 (R× [0,∞)) , ∂2
wh ∈ C0 (R× [0,∞)) , ∂wh(w = 0+, l) = −∂lh(w = 0+, l)

and ∂wh(w = 0−, l) = ∂lh(w = 0−, l) ∀l > 0

}
.

Proof. From translation invariance in (0, l), it is enough to perform a Taylor
expansion in (0, 0). For all h ∈ X , one has, with obvious notations,

∀w > 0 h(w, l) = h(0, 0) + l∂lh(0, 0) + w∂+
wh(0, 0)

+w2

2 ∂
2
wh(0, 0) + higher order terms,

∀w < 0 h(w, l) = h(0, 0) + l∂lh(0, 0) + w∂−wh(0, 0)

+w2

2 ∂
2
wh(0, 0) + higher order terms,

hence using the definition of the set X we obtain

h(Wt, L
W
t )− h(0, 0)

t
=
LWt
t
∂lh(0, 0)− |Wt|

t
∂lh(0, 0) +

W 2
t

2t
∂2
wh(0, 0) +R(t).

Using the properties of Wt and LWt , we see that |E(R(t))| = O(
√
t), hence

E
[
h(Wt, L

W
t )− h(0, 0)

t

]
= ∂lh(0, 0)

E[LWt − |Wt|]
t

+
E[W 2

t ]

2t
∂2
wh(0, 0) +O(

√
t).

Then, the conclusion follows by recalling that the law of LWt is the same as the law of
|Wt| (see [8], chapter VI).

The previous notion of generator (in particular for Feller processes, like here) is an
operator from its domain D ⊂ C0 to C0.

Let us now introduce a “weaker notion of generator”. Such a weak generator is
weaker than the one introduced in Dynkin [5] and corresponds to an extension of the
classical generator to a bigger space by letting Lh be a distribution. This is the object
of the following Proposition.
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Proposition 3.2. The weak generator L0 of the Markov process (Wt, L
W
t )t≥0 is given

by

L0h(w, l) =
1

2
∂2
wwh(w, l) + ∂lh(w, l)δw=0,

for h continuously differentiable in the l-variable and twice continuously differentiable
in the w-variable with bounded derivatives.

Remark 3.1. Since the coefficient δw=0 is singular, the previous definition of the
generator has to be understood in a weak sense. If ϕ : R→ R is a continuous bounded
function with bounded support, then, for h continuously differentiable in the l-variable
and twice continuously differentiable in the w-variable with bounded derivatives, for
all l ∈ [0,∞), one has

lim
t→0

∫
R
ϕ(w)Ew,l

[
h(Wt, L

W
t )− h(w, l)

t

]
dw =

∫
R
ϕ(w)

1

2
∂2
wwh(w, l) dw

+ϕ(0)∂lh(0, l).

Here, Ew,l stands for the expectation conditionally to {W0 = w, LW0 = l}. Equivalently,
one has, in the distributional sense,

lim
t→0

Ew,l
[
h(Wt, L

W
t )− h(w, l)

t

]
=

1

2
∂2
wwh(w, l) + ∂lh(0, l)δw=0.

Proof. From time invariance of (LWt )t≥0, one can assume that l = 0. From the

equality h(Wt, L
W
t ) = h(Wt, 0) + LWt

∫ 1

0
∂lh(Wt, sL

W
t ) ds, one obtains

Ew,0
[
h(Wt, L

W
t )− h(w, 0)

t

]
= Ew,0

[
h(Wt, 0)− h(w, 0)

t

]
+ Ew,0

[
LWt
t

∫ 1

0

∂lh(Wt, sL
W
t ) ds

]
.

The first term in the right-hand side converges to 1
2∂

2
wwh(w, 0) as t→ 0, since 1

2∂
2
ww is

the generator of the Brownian motion, using the boundedness of ∂2
wwh.

Then, using the fact that the law of (Wt, L
W
t ) under Ew,0 is the same as the law of

(
√
tW1,

√
tLW1 ) under Ew/

√
t,0, one gets∫

R
ϕ(w)Ew,0

[
LWt
t

∫ 1

0

∂lh(Wt, sL
W
t ) ds

]
dw

=

∫
R
ϕ(w)Ew/

√
t,0

[√
tLW1
t

∫ 1

0

∂lh(
√
tW1, s

√
tLW1 ) ds

]
dw

=

∫
R
ϕ(
√
tw)Ew,0

[
LW1

∫ 1

0

∂lh(
√
tW1, s

√
tLW1 ) ds

]
dw.

From the dominated convergence theorem, this converges as t goes to 0 to

ϕ(0)∂lh(0, 0)

∫
R
Ew,0[LW1 ] dw.

Finally, from the occupation time formulation
∫
R L

W+w
t dw = t (see [8], chapter VI) one

obtains ∫
R
Ew,0[LW1 ] dw =

∫
R
E0,0[LW+w

1 ] dw = 1.
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3.4. Generator and “weak generator” of the process defined by sys-
tem (2.1). Since (Xt, At)t≥0 can be obtained as a function of (Wt, L

W
t )t≥0, we

can compute the generator of the former from the generator of the latter. We start with
the classical generator and its domain and then we describe its “weak generator”. Since
the proof is similar to the one of Proposition 3.1 we omit it.

Proposition 3.3. The generator Lx of the Markov process (Xt, At)t≥0 defined by
system (2.1) is given by

Lxh(x, a) = a∂2
xxh(x, a),

and its domain Dx contains the following space Xx

Xx =

{
h ∈ C0 (R× [0,∞)) , h ∈ C2,1 ([0,+∞)× [0,∞)) ∩ C2,1 ((−∞, 0]× [0,∞)) ,

∂ah ∈ C0 (R× [0,∞)) , ∂2
xxh ∈ C0 (R× [0,∞)) ,

∂xh(x = 0+, a) = −f(a)

2a
∂ah(x = 0+, a)

and ∂xh(x = 0−, a) =
f(a)

2a
∂ah(x = 0−, a) ∀a > 0

}
.

Proposition 3.4. The “weak generator” L of the Markov process (Xt, At)t≥0 solution
to system (2.1) is given by

Lh(x, a) = a∂2
xxh(x, a) + f(a)∂ah(x, a)δx=0,

for h continuously differentiable in the a-variable and twice continuously differentiable
in the x-variable with bounded derivatives.

Remark 3.2. Again, the previous definition has to be understood in a weak sense.
If ϕ : R → R is a continuous bounded function with bounded support, then, for h
continuously differentiable in the a-variable and twice continuously differentiable in the
x-variable with bounded derivatives, for all a ∈ [0,∞) one obtains

lim
t→0

∫
R
ϕ(x)Ẽx,a

[
h(Xt, At)− h(x, a)

t

]
dx

=

∫
R
ϕ(x)a∂2

xxh(x, a) dx+ ϕ(0)f(a)∂ah(0, a).

Here, Ẽx,a stands for the expectation conditionally to {X0 = x, A0 = a}.

Remark 3.3. Since (Xt, At) is a Markov process, the following identity holds for any
probability density ϕ∫

R
ϕ(x)Ẽx,a[h(Xt, At)] dx = Ẽϕ,a[h(Xt, At)],

where Ẽϕ,a denotes the expectation for an initial condition satisfying A0 = a and such
that X0 admits ϕ as density. In other word, when X0 admits a continuous density v0,
replacing ϕ by vt in Remark 3.2 yields the following time-derivative at t = 0:

∂tẼv0,a[h(Xt, At)]|t=0 = ∂t

∫∫
R×R+

h(x, a) dµt(x, a)|t=0
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=

∫
R
a∂2

xxh(x, a)v0(x) dx+ v0(0)f(a)∂ah(0, a).

This is a weak formulation of Equation (4.1) below.

Proof. Let (Wt)t≥0 be a Brownian motion started at X0/
√

2A0. From the proof
of Proposition 2.1, we know that the process (Xt, At)0≤t<τ is given by

∀0 ≤ t < τ,

{
Xt =

√
2ΦA0

(LWt )Wt,

At = ΦA0
(LWt ),

where t → Φx(t) is the flow of the differential equation y′ = f(y)/
√

2y with initial
condition x. Then, setting x =

√
2aw, one has (if we still denote by Ew,l the expectation

conditionally to {W0 = w,LW0 = l})∫
R
ϕ(x)Ẽx,a

[
h(Xt, At)− h(x, a)

t

]
dx

=

∫
R
ϕ(x)E

x√
2a
,0

[
h(
√

2Φa(LWt )Wt,Φa(LWt ))− h(x, a)

t

]
dx

=
√

2a

∫
R
ϕ(
√

2aw)Ew,0
[
h(
√

2Φa(LWt )Wt,Φa(LWt ))− h(
√

2aw, a)

t

]
dw.

Applying Proposition 3.2 to the function F (w, l) = h
(√

2Φa(l)w,Φa(l)
)

one obtains

lim
t→0

∫
R
ϕ(x)Ẽx,a

[
h(Xt, At)− h(x, a)

t

]
dx

= lim
t→0

√
2a

∫
R
ϕ(
√

2aw)Ew,0
[
F (Wt, L

W
t )− F (w, 0)

t

]
dw

=

√
a

2

∫
R
ϕ(
√

2aw)∂2
wwF (w, 0) dw +

√
2aϕ(0)∂lF (0, 0)

=

√
a

2

∫
R
ϕ(
√

2aw)(2a)∂2
xxh(
√

2aw, a) dw + Φ′a(0)
√

2aϕ(0)∂ah(0, a)

=

∫
R
ϕ(x)a∂2

xxh(x, a) dx+ f(a)ϕ(0)∂ah(0, a).

4. Mathematical study of the PDE (1.3)
In this section we study the PDE (1.3) that we recall now

∂tut(x, a) = a∂2
xxut(x, a)− ∂a (f(a)ut(x, a)) δx=0, (x, a) ∈ R× [0,∞). (4.1)

In particular, if f(a) = −aγ , by studying the regularity of the solution in a Lp frame-
work, we recover the results observed during the probabilistic study: global existence
if γ ≥ 3/2, while, in the case γ < 3/2, the solution becomes unbounded in finite time
(so-called blow-up). Moreover, as in [1], using Laplace and Fourier transforms, for a
particular initial condition we explicitly compute the solution to (4.1).

First, in the case where f(0) = 0, recalling Proposition 3.4 and the two Remarks 3.2
and 3.3, by performing some integration by parts we can make the link between the
absolutely continuous part nt of the distribution µt, if it is regular enough, see Section
3.2, and the PDE (4.1).
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4.1. Basic facts about weak solution to (4.1). This is a linear equation
on u = u(t, x, a) defined on t ≥ 0, x ∈ R, a ≥ 0. We begin with a definition of weak
solutions, adapted to the study of (4.1). We recall that f is assumed to be locally
Lipschitz continuous from (0,∞) to R.

Definition 4.1. Let p ∈ [1,+∞). Let u0 ∈ L1(R × R+). We say that u is a weak
solution to (4.1) on [0, T ) if it satisfies:

u ∈ L∞([0, T );L1(R× R+) ∩ Lp(R× R+)), ∂xu ∈ L1([0, T )× R× R+),

and ∂2
xxu ∈ L1((0, T )× R× R+) (4.2)

and for any test function ϕ in C∞c (R× R+) and a.e. t ∈ (0, T ),∫∫
R×R+

u(t, x, a)ϕ(x, a) dxda =

∫∫
R×R+

u0(x, a)ϕ(x, a) dxda

−
∫ t

0

∫∫
R×R+

a∂xu(s, x, a)∂xϕ(x, a) dx da ds+

∫ t

0

∫
R+

f(a)u(s, 0, a)∂aϕ(0, a) da ds.

Since ∂xu(t, x, a) belongs to L1((0, T ) × R × R+), the solution is well-defined in

the distributional sense under assumption (4.2). In fact we can write
∫ T

0
u(t, 0, a) dt =

−
∫ T

0

∫
x>0

∂xu(t, x, a) dxdt.
Weak solutions in the sense of Definition 4.1 are mass-preserving:

M =

∫∫
u0(x, a) dxda =

∫∫
u(t, x, a) dxda.

Let us first prove that non-negativity is preserved.

Lemma 4.1. Assume that u is a weak solution to (4.1). If |u0| = u0 almost everywhere
(initial data non-negative). Then |u(t, ·)| = u(t, ·) almost everywhere for later times.

Proof. Observe that if u is solution in L1 then |u| is subsolution in L1 since
sgn(u)∂2

xxu ≤ ∂2
xx|u| and sgn(u)∂a(f(a)u)δx=0 = ∂a(f(a) |u|)δx=0. Hence |u| − u is a

subsolution, and

d

dt

∫∫
(|u| − u) dxda ≤ 0.

Let us next prove that in the case f(a) ≤ 0 (deceleration) and u0 ≥ 0, the compact
support in a is preserved along time.

Lemma 4.2. Assume u is a weak solution to (4.1) with f(a) ≤ 0. Assume in addition
that supp(u0) ⊂ R × [0, a0] for some a0 > 0. Then supp(u) ⊂ R × [0, a0] up to the
existence time.

Proof. Consider any non-negative non-decreasing function ϕ = ϕ(a) smooth on
R+ with support included in (a0,+∞). Then

d

dt

∫∫
u(t, x, a)ϕ(a) dxda =

∫
a

f(a)u(t, 0, a)ϕ′(a) da ≤ 0,

which proves that uϕ = 0 for later times. Varying the ϕ as defined above we conclude
that u = 0 on R× [a0,+∞) for later times.
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Similarly, in the case f(a) ≥ 0 (acceleration) and u0 ≥ 0, we can prove that if the
support of u0 is included in R × [a0,+∞) for some a0 > 0, then the same fact is true
for all t > 0.

4.2. The different cases for the law of change in the particular case where
f(a) = ±aγ. Following the probabilistic study performed in Section 2.4 we consider
the three following cases:

(a) acceleration at x = 0: f(a) = aγ with γ ≥ 0,

(b) subcritical deceleration at x = 0: f(a) = −aγ with γ ≥ 3/2,

(c) supercritical deceleration at x = 0: f(a) = −aγ with γ ∈ [0, 3/2).
In this part we will prove the following result:

Theorem 4.2. Assume that the initial datum u0 belongs to Lp ∩ L1, p ≥ 1, then

(a) in the acceleration case, there exists a unique weak solution to (4.1) that satisfies
for all T > 0, supt∈[0,T ]

∫∫
R×R+

|u(t, x, a)|p dxda < +∞,

(b) in the subcritical deceleration case, for p = 2, there exists a unique weak solution
to (4.1) that satisfies for all T > 0,
supt∈[0,T ]

∫∫
R×R+

|u(t, x, a)|2 dx da < +∞,

(c) in the supercritical deceleration case, any weak solution of (4.1) blows-up in
finite time.

Proof. In the first two cases (a) and (b), we prove the propagation of Lp bounds,
which is the crucial a priori estimate. To prove that solutions blow-up in finite time in
the supercritical case (c), we show that for an appropriate value of M , the momentum∫
aMuda becomes infinite in finite time.

Case (a): global existence and uniqueness. Let p ∈ [1,+∞), we have the
following a priori estimate:

d

dt

∫∫
R×R+

|u(t, x, a)|p dxda ≤− p(p− 1)

∫∫
R×R+

a |∂xu(t, x, a)|2 |u(t, x, a)|p−2 dxda

− γ(p− 1)

∫
R+

aγ−1|u(t, 0, a)|p da ≤ 0,

which proves that Lp norms remain finite for all times provided they are finite initially
(no finite time appearance of a singularity). By applying the same argument to the
modulus of the difference of two solutions one proves similarly uniqueness in Lp.

Case (b): global existence and uniqueness. In this case the a priori estimate
writes for p = 2:

d

dt

∫∫
R×R+

u2(t, x, a) dx da ≤ −2

∫∫
R×R+

a|∂xu(t, x, a)|2 dxda

+ γ

∫
R+

aγ−1u2(t, 0, a) da− lim sup
a→0

aγu2(t, 0, a)

≤ −2

∫∫
R×R+

a|∂xu(t, x, a)|2 dxda

+ γ

∫
R+

aγ−1u2(t, 0, a) da
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and we control (with Iε := [−ε, ε])

|u(t, 0, a)| ≤
∣∣∣∣u(t, 0, a)− 1

|Iε|

∫
x∈Iε

u(t, x, a) dx

∣∣∣∣+

∣∣∣∣ 1

|Iε|

∫
x∈Iε

u(t, x, a) dx

∣∣∣∣
≤
∣∣∣∣ 1

|Iε|

∫
x∈Iε

(
u(t, 0, a)− u(t, x, a)

)
dx

∣∣∣∣+
1√
2ε
‖u(t, ·, a)‖L2

x(R)

≤
∣∣∣∣ 1

2ε

∫ ε

−ε

∫ x

0

∂yu(t, y, a) dy dx

∣∣∣∣+
1√
2ε
‖u(t, ·, a)‖L2

x(R)

≤
∣∣∣∣ 1

2ε

∫ ε

−ε
∂yu(t, y, a)(ε− |y|) dy

∣∣∣∣+
1√
2ε
‖u(t, ·, a)‖L2

x(R)

≤ ε1/2

√
6
‖∂xu(t, ·, a)‖L2

x(R) +
1√
2ε
‖u(t, ·, a)‖L2

x(R)

and conclude that∫
R+

aγ−1u2(t, 0, a) da ≤ 1

6

∥∥∥ε1/2a(γ−1)/2∂xu(t, ·, ·)
∥∥∥2

L2
x,a(R×R+)

+
∥∥∥ε−1/2a(γ−1)/2u(t, ·, ·)

∥∥∥2

L2
x,a(R×R+)

.

We choose ε depending on a as ε = ηaγ−1 with η small to be fixed, and deduce∫
R+

aγ−1u2(t, 0, a) da ≤ η

6

∥∥∥a(γ−1)∂xu(t, ·, ·)
∥∥∥2

L2
x,a(R×R+)

+
1

η
‖u(t, ·, ·)‖2L2

x,a(R×R+) .

Finally we use that for γ ≥ 3/2 we have 2(γ − 1) ≥ 1 and therefore on [0, a0] (remem-
ber that the support condition on a is propagated according to Lemma 4.2) we have
a2(γ−1) ≤ Ca. Plugging above we get∫

R+

aγ−1u2(t, 0, a) da ≤ Cη

6

∥∥∥a1/2∂xu(t, ·, ·)
∥∥∥2

L2
x,a(R×R+)

+
1

η
‖u(t, ·, ·)‖2L2

x,a(R×R+) .

and

d

dt

∫∫
R×R+

u2 dx da ≤
(
Cηγ

6
− 2

)∫∫
R×R+

a|∂xu|2 dx da+
γ

η
‖u‖2L2

x,a(R×R+) .

By choosing η < 3/(Cγ), this proves that the L2 norm exists for all times if it is finite
initially.

Case (c): blow-up. First easy step is to compute the evolution for v(t, a) :=
u(t, 0, a). We Fourier transform Equation (4.1) in x:

∂tû(t, ξ, a) = −a|ξ|2û(t, ξ, a) + ∂a (aγu(t, 0, a))

= −a|ξ|2û(t, ξ, a) + ∂a

(
aγ

2π

∫
R
û(t, η, a) dη

)
,

and use Duhamel principle where the last term in the right-hand side is treated as a
source term:

û(t, ξ, a) = e−ta|ξ|
2

û(0, ξ, a) +

∫ t

0

e−(t−s)a|ξ|2

2π
∂a

(
aγ
∫
R
û(s, η, a) dη

)
ds. (4.3)
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Let

v(t, a) :=
1

2π

∫
R
û(t, η, a) dη = u(t, 0, a),

from (4.3) we deduce the identity:

v(t, a) = w(t, a) + C1

∫ t

0

1√
a(t− s)

∂a (aγv(s, a)) ds, (4.4)

where C1 > 0 is an explicit constant and w is defined by

w(t, a) :=
1

2π

∫
R
e−ta|ξ|

2

û(0, ξ, a) dξ.

Then, since u(s, 0, a) ≥ 0, the key remark is that v(s, a) ≥ 0. Moreover, since the
second term in the right-hand side of (4.4) has zero integral against a1/2, one has∫

R+

a1/2v(t, a) da =

∫
R+

a1/2w(t, a) da ≤ C2.

We have therefore a moment bound to start with:
∫
a1/2v(t, a) da remains bounded

for all times. Recalling that for x 6= 0 the diffusion in x is at play, we deduce that a
singularity, if it exists, can only form at (0, 0). Hence, we are here looking only at the
value at x = 0, since for x 6= 0 the evolution is a diffusion in x which does not create
singularities. Therefore, choosing M ∈ (0, 1/2) so that 0 < M + γ − 1/2, we have∫

R+

aMv(t, a) da =

∫
R+

aMw(t, a) da+ C1

∫ t

0

∫
R+

aM−1/2√
(t− s)

∂a (aγv(s, a)) dads

=

∫
R+

aMw(t, a) da

− C1

(
M − 1

2

)∫ t

0

∫
R+

aM+γ−3/2√
(t− s)

v(s, a) dads.

Note that since M satisfies M −1/2+γ > 0, in the previous computation the boundary
term due to the integration by parts vanishes:∫ t

0

[
aM+γ−1/2√

(t− s)
v(s, a)

]a=+∞

a=0

ds = 0.

Furthermore, there exists some positive constants C3 and η, with M − η ∈ (0, 1/2),
such that −(M − 1/2)aM+γ−3/2 ≥ C3a

M−η on the compact support [0, a0]. And for all
t ≤ T , we deduce that∫

R+

aMv(t, a) da ≥
∫
R+

aMw(t, a) da

+ C4(1 + T )−1/2

∫ t

0

∫
R+

aM−ηv(s, a) da ds

for a constant C4. We have by interpolation (using M − η < M < 1/2)∫
R+

aMv(s, a) da ≤

(∫
R+

a1/2v(s, a) da

)θ (∫
R+

aM−ηv(s, a) da

)1−θ
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for some θ ∈ (0, 1). Finally, using the bound on the 1/2-moment, we obtain that∫
R+

aMv(t, a) da ≥
∫
R+

aMw(t, a) da

+ C5(1 + T )−1/2

∫ t

0

(∫
R+

aMv(s, a) da

)1/(1−θ)

ds

for some constant C5 > 0. This means that Y (t) :=
∫
aMv(t, a) da satisfies on [0, T ]:

Y (0) > 0 and Y ′(t) ≥ C5(1 + T )−1/2Y (t)1+α,

where 1 + α := 1/(1− θ) > 1. This implies on [0, T ] that

Y (t) ≥
[

1

Y (0)−α − αC5(1 + T )−1/2t

]1/α

.

At t = T/2 we have αC5(1 + T )−1/2t = αC5(1 + T )−1/2T/2 goes to infinity as T goes
to infinity, hence by taking T large enough, we find that Y (t) becomes infinite in finite
time.

Using next that∫
R+

aMv(t, a) da ≤
∫
R+

v(t, a) da+

∫
a≥1

a1/2v(t, a) da,

together with
∫
R+
a1/2v(t, a) da < ∞, we deduce that the L1 norm can not stay finite

for all time.

4.3. Boundary value problem associated to (4.1). In this part we give
some perspectives. In the previous part we studied the solution to (4.1) starting from a
smooth initial condition. We proved that in certain cases a singularity appears, namely
a Dirac mass. It would be interesting to study measure solutions to (4.1), i.e. after the
first singularity occured. We leave this rigorous study for a further work and we only
discuss here some points in an informal way.

First, in order to handle measure solutions we heuristically transform Equation
(4.1), which includes a singular coefficient, namely δx=0, into a boundary value prob-
lem with regular coefficients. We leave the rigorous justification of this result for a
forthcoming work.

In this part, we will use both notations n(t, x, a), p(t) and nt(x, a), pt. Assume that
f(0) = 0, a0 > 0 and that f(a0) 6= 0. Assume in addition that n0(x, a) = δ(0,a0), p0 = 0
and q0 = 0, then we believe that (nt, pt, qt) given in Lemma 3.2 satisfies the following
problem in the classical sense:{

∂tn(t, x, a) = a ∂2
xn(t, x, a) for (t, x, a) ∈ R∗+ × R∗ × R∗+ ,

a (∂xn(t, 0+, a)− ∂xn(t, 0−, a)) = ∂a (f(a)n(t, 0, a)) , a ∈ R∗+,
(4.5)

and that one has

lima→0 (f(a)n(t, 0, a)) = −p′(t), with p′(t) = 0 if f(a) > 0,

lima→+∞ (f(a)n(t, 0, a)) = q′(t), with q′(t) = 0 if f(a) < 0.



1092 LONG TIME BEHAVIOR IN LOCALLY ACTIVATED RANDOM WALKS

The heuristics is the following. We use Lemma 3.2 with n0(x, a) = δ(0,a0) and we
assume that f(0) = 0. From the space symmetry of the process with respect to the
origin, we first notice that nt(x, a) = nt(−x, a) for all (t, x, a) ∈ R∗+×R×R+. Next, as
it is classical in such situations, in order to obtain (4.5), we multiply Equation (4.1) by
particular test functions ϕ and we integrate by parts: respectively ϕ ∈ C∞c

(
R∗± × R∗+

)
and ϕ ∈ C∞c

(
R× R∗+

)
. Using the smoothing effect of the heat equation, we can see that

Equation (4.5) is satisfied in the classical sense.
Let us now introduce some notations that will be useful for the computation of the

explicit solution to problem (4.5): H will denote the Heaviside function, H(a− a0) = 0
if a < a0, H(a− a0) = 1 if a > a0 and Z will be the function defined by

Z(x, a) =
|x|√
a

+ 2

∫ a

a0

√
a′

f(a′)
da′. (4.6)

Proposition 4.3. Informally, the boundary value problem (4.5) with n0(x, a) = δ(0,a0)

and p0 = 0 admits the following explicit solution (nt, pt):

(1) Local deceleration (f(a) < 0):

nt(x, a)=H(a0 − a)
Z(x, a)

|f(a)|
√

4πt3
e−

Z(x,a)2

4t (4.7)

and pt = erfc
( 1√

t

∫ a0

0

√
a′

|f(a′)|
da′
)
,

(2) Local acceleration (f(a) > 0):

nt(x, a) = H(a− a0)
Z(x, a)

f(a)
√

4πt3
e−

Z(x,a)2

4t and pt = 0. (4.8)

Proof. Taking the Laplace transform in t, denoted

Lt(n)(x, a, λ) =

∫
R+

nt(x, a)e−λt dt,

the Fourier transform in x of (4.5) with n0(x, a) = δ(0,a0) and using the equality

Lt(n)(0, a, λ) =
1

2π

∫
R
ñλ(ξ, a)eiξ×0 dξ,

we can compute

ñλ(ξ, a) =
1

λ+ a|ξ|2
∂a

(
f(a)

(
1

2π

∫
R
ñλ(ξ′, a) dξ′

))
+

δa=a0

λ+ a|ξ|2
, (4.9)

where we have denoted by ñλ(ξ, a) =
∫
R L

t(n)(x, a, λ)e−iξx dx the Fourier transform in
x of the Laplace transform in t of nt.

Consequently after integration we obtain∫
R
ñλ(ξ, a) dξ =

[
∂a

(
f(a)

(
1

2π

∫
R
ñλ(ξ′, a) dξ′

))
+ δa=a0

] ∫
R

1

λ+ a|ξ|2
dξ

=
π√
λa

[
∂a

(
f(a)

(
1

2π

∫
R
ñλ(ξ, a) dξ

))
+ δa=a0

]
. (4.10)
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With the previous expression,
∫
R ñλ(ξ, a) dξ can be computed, hence the expression of

ñλ can be deduced by using (4.9). Finally, by inverting first the Fourier transform and
then the Laplace tranform, we can compute nt. From (4.9) and (4.10) it follows that

ñλ(ξ, a) =
1

π

√
λa

λ+ aξ2

∫
R
ñλ(ξ, a) dξ

= C(a, a0, λ)
f(a0)

2πf(a)

√
λa

λ+ aξ2
e

2
√
λ
∫ a
a0

√
a′

f(a′) da′
,

where

C(a, a0, λ) =

{
C(λ)H(a− a0) if f > 0,

C(λ)H(a0 − a) if f < 0.

C(λ) is determined by the jump of
∫
R ñλ(ξ, a) dξ at a = a0:∫

R
ñλ(ξ, a+

0 ) dξ −
∫
R
ñλ(ξ, a−0 ) dξ =

1

f(a0)
, (4.11)

from which we deduce that C(λ) = 1/|f(a0)|, hence

ñλ(ξ, a) = C(a, a0)
1

2π|f(a)|

√
λa

λ+ aξ2
e

2
√
λ
∫ a
a0

√
a′

f(a′) da′
.

Next, using the Fourier inverse transform, it yields that

Lt(n)(x, a, λ) = C(a, a0)
1

|f(a)|
e
−
∣∣∣√λ

a x
∣∣∣+2
√
λ
∫ a
a0

√
a′

f(a′) da′

= C(a, a0)
1

|f(a)|
e−
√
λZ(x,a),

where Z is given by (4.6).
Laplace inverting this latter expression, we obtain the joint distribution given by

(4.7) if f < 0 and by (4.8) if f > 0. The expression of pt is straigthforward.

Remark 4.1. Unsurprisingly the blow-up character of the solution to (4.1) given
in Theorem 4.2 can also be observed on the explicit solution given in Proposition 4.3.
Indeed the symptom of blow-up in a Lp framework corresponds to pt 6= 0. In the case
where f(a) = −aγ , we see that

∫ a
0
a′1/2−γ da′ < ∞ if γ ∈ (0, 3/2). Since Laplace

transform inversion requires a specific initial condition the result given in Theorem 4.2
is more general.
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[7] D. Khoshnevisan, Lévy Classes and Self-Normalization, Electron. J. Probab., 1(1):1–18, 1996.
2.4.2

[8] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Third Edition,
Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical
Sciences), Springer-Verlag, Berlin, 293, 1999. 2, 2, 2.2, 3.3, 3.3

https://ejde.math.txstate.edu/Volumes/2006/44/abstr.html
https://ejde.math.txstate.edu/Volumes/2006/44/abstr.html
https://www.esaim-proc.org/articles/proc/abs/2010/01/proc103001/proc103001.html
https://link.springer.com/chapter/10.%2F978-3-662-00031-1_4
https://link.springer.com/book/10.1007%2F978-3-642-62025-6
https://projecteuclid.org/euclid.ejp/1453756464
https://link.springer.com/book/10.1007/978-3-662-06400-9

