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A DATA-DRIVEN METHOD FOR THE STEADY STATE OF
RANDOMLY PERTURBED DYNAMICS∗

YAO LI†

Abstract. We demonstrate a data-driven method to solve for the invariant probability density
function of a randomly perturbed dynamical system. The key idea is to replace the boundary con-
dition of numerical schemes by a least squares problem corresponding to a reference solution, which
is generated by Monte Carlo simulation. With this method we can solve for the invariant probability
density function in any local area with high accuracy, regardless of whether the attractor is covered by
the numerical domain.
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1. Introduction

Many physical and biological systems are subject to random perturbations. The
time evolution of the probability density function of a randomly perturbed dynamical
system, i.e., a stochastic differential equation, is usually described by the Fokker-Planck
equation [28]. In many studies, the invariant probability density function of the ran-
domly perturbed system is particularly important. It is well known that under suitable
conditions, the invariant probability density function solves the steady state Fokker-
Planck equation. On the other hand, the positive solution to the steady state Fokker-
Planck equation must be an invariant probability density function of the corresponding
stochastic differential equation [5, 6, 16].

When the unperturbed dynamical system has complex dynamics, an analytical so-
lution of the Fokker-Planck equation is usually not available. On the other hand, nu-
merically solving the steady state Fokker-Planck equation on an unbounded domain is
often challenging due to the lack of a well-posed boundary condition. The usual practice
is to let the numerical domain cover the global attractor of the unperturbed dynamical
system with sufficient margin. The Freidlin-Wentzell theory [11] guarantees that the
invariant probability density is close to zero when sufficiently far away from the global
attractor. Then it is usually safe to assume a zero boundary condition.

The resolution of the numerical solution imposes additional challenges. When the
strength of a random perturbation is 0<σ�1, it is known that the probability den-
sity function should concentrate on a O(σ)-neighborhood of the attractor [21]. Hence
the grid size of the discretization cannot be larger than σ. Otherwise the numerical
scheme cannot “see” the concentration, and sometimes serious numerical artifacts may
occur. Therefore, when the noise strength is small and the underlying dynamical sys-
tem has complex (possibly chaotic) dynamics, the grid size of the discretization has
to be sufficiently small. In addition, chaos only occurs in ordinary differential equa-
tions in dimension ≥3. This makes a numerical study of interplays between chaos and
random perturbations extremely difficult. Take the Lorenz system for an example. A
very expensive numerical computation in [2] can only solve the Fokker-Planck equation
corresponding to the Lorenz system on a 160×160×160 mesh, with a grid size ≈0.3.
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The boundary condition is not a problem any more if one uses Monte Carlo simula-
tions to compute the invariant probability density function. A Monte Carlo simulation
either runs the stochastic differential equation for a long time, or runs many indepen-
dent trajectories of the stochastic differential equation for a finite amount of time. The
Monte Carlo simulation is an efficient way to obtain statistics such as the expectation
of a certain observable. However, the classical Monte Carlo simulation has severe ac-
curacy problem when solving for the invariant probability density function. Unless one
can generate a huge amount of samples, the probability density function generated by
Monte Carlo simulation is usually too “noisy” to be useful.

In this paper we present a hybrid method that bypasses the disadvantages of classical
numerical PDE approach and the Monte Carlo simulation. The key idea is to work on
a domain without using any boundary conditions. Then the discretization of a steady
state Fokker-Planck equation becomes underdetermined, which essentially gives a linear
constraint. Instead of the boundary condition, we generate an approximated invariant
probability density function by using the Monte Carlo simulation. This approximated
density function does not have to be very accurate, because it only serves as a reference
for the next step. Finally, we solve a least squares optimization problem under the linear
constraint given by the discretization. The resultant solution satisfies the discretization
of the steady state Fokker-Planck equation (without a boundary condition), and has
minimum L2 distance to the approximated density function generated by the Monte
Carlo simulation. The least squares problem is further converted to a linear system
that can be solved either exactly or using iterative methods. This method can help us
to compute a high resolution solution in a local area without worrying about boundary
conditions.

We demonstrate several numerical examples in this paper. The 1D double-well
potential is used to test the accuracy and performance of the algorithm. The overall
accuracy is satisfactory considering the performance. Then we demonstrate the strength
of this method with 2D and 3D examples. In the 2D example, we show that a transition
from relaxation oscillations to a smaller limit cycle is destroyed by small noise. A
local solution with high resolution is presented to demonstrate some interesting local
structures in the invariant probability density function. In 3D examples, we compute
invariant probability density functions of small random perturbations of two chaotic
oscillators, the Lorenz oscillator and the Rössler oscillator. With low computation cost,
we are able to find numerical solutions with much higher resolution (grid size =0.05)
than in previous studies.

We remark that the purpose of this paper is only to introduce a general framework.
The detailed implementation can be further improved in many ways. For example, a
divide-and-conquer strategy can significantly improve the performance of this hybrid
algorithm. The naive Monte Carlo simulation can be replaced by various importance
sampling techniques [29, 32]. If the noise is large enough to smear fine structures,
the high dimensional Monte Carlo sampler proposed in [8, 9] can be adopted to our
framework. The finite difference discretization can be replaced by other advanced solvers
like the finite element method or other methods for high dimensional problems [26, 31,
33]. We will write several subsequent papers to address these issues.

2. Probability and numerics preliminary

2.1. Problem setting. Consider an autonomous ordinary differential equation

x′=f(x), x∈Rn. (2.1)

We are particularly interested in situations when Equation (2.1) generates non-trivial
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dynamics. For example, Equation (2.1) may admit a strange attractor or have separation
of time scales that leads to interesting dynamics like the folding singularity, mixed mode
oscillations etc. [10, 14].

Now we consider the following dynamical system with random perturbations, i.e.,
a stochastic differential equation (SDE),

dXt=f(Xt)dt+σ(Xt)dWt , (2.2)

where Xt∈Rn, f :Rn→Rn is a vector field, σ :Rn→Rn×n is a matrix-valued function,
and dWt is the n-dimensional white noise. Throughout this paper, we assume that
Equation (2.2) admits a unique diffusion process solution Xt. (See (H) below for the
full assumption.) Note that the existence and the uniqueness of Xt follow from mild
assumptions on f and σ, e.g., Lipschitz continuity of f and σ [18, 27].

Since Xt is a diffusion process, we denote the transition kernel of Xt by P t(x,A) =
P[Xt∈A|X0 =x]. A probability measure π is said to be invariant if πP t=π, where the
left operator is defined as

πP t(A) =

∫
Rn

P t(x,A)π(dx).

It is well known that the time evolution of the probability density function of Xt,
denoted by ut, is described by the Fokker-Planck equation

ut=Lu=−
n∑
i=1

(fiu)xi
+

1

2

n∑
i,j=1

(Di,ju)xixj
, u(0,x) =u0(x), (2.3)

where D=σTσ, u0(x) is the probability density function of X0. A probability density
function u∗(x) is said to be an invariant probability density function if Lu∗= 0. It is
easy to see that an invariant probability density function defines an invariant probability
measure π of Xt, and u∗(x) is the probability density function of π.

The existence of an invariant probability measure is guaranteed if Xt is defined on
a compact manifold without boundary [34]. When Xt is defined on unbounded domain,
such existence needs some “dissipation” conditions [4, 16, 19]. The uniqueness of π
usually follows if D is non-degenerate (everywhere positive definite). The convergence
to the invariant probability measure is another tricky issue. To make P t(x, ·)→π as t→
∞, one needs stronger “dissipation” conditions and some minorization-type conditions
[15,19,25]. Since the theme of this paper is to introduce a numerical algorithm, we have
the following assumption on Xt, P

t(x,·), and π throughout the paper.

(H) Equation (2.2) admits a unique diffusion process Xt. The diffusion process
Xt has a unique invariant probability measure π that is absolutely continuous with re-
spect to the Lebesgue measure. The probability density function of π uniquely solves the
stationary Fokker-Planck equation. In addition, P t(x,·)→π as t→∞ for every x∈Rn.

2.2. Numerical PDE approach for computing invariant measure. There
are two different approaches for computing u∗. One can either solve the Fokker-Planck
Equation (2.3) up to a sufficiently large t, or solve the stationary Fokker-Planck equation
directly. The biggest problem of the numerical PDE approach is the boundary condition.
For the sake of simplicity, we illustrate the problem by using the finite difference scheme.
The case of the finite element scheme is analogous.

Without loss of generality, we solve the Fokker-Planck equation numerically on a 2D
domain [−L,L]2. Let the spatial and time step sizes be r= 2L/N and h, respectively. Let
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um={umi,j}Ni,j=0 be the discretized solution at time step m. Entry umi,j is a numerical
approximation of u(mh,ri−L,rj−L). We need boundary conditions to update the
solution to um+1. The usual approach is to let the domain cover the global attractor
of the ODE (2.1) with sufficient margin. Then we assume zero boundary conditions
um0,j =umN,j =umi,0 =umi,N = 0 and compute um+1 by using either implicit Euler scheme or

Crank-Nickson scheme. Since the probability of Xt /∈ [−L,L]2 is nonzero, um needs to
be renormalized after each update such that

N∑
i,j=0

umi,j =
1

r2
.

When ‖um−um−1‖ is smaller than the error tolerance ε for some m=M , the update
is stopped. Now uM numerically solves the steady state Fokker-Planck equation. In
order to make the numerical solution reliable, the domain has to be sufficiently large
such that P[Xt /∈ [−L,L]2]�1 for t∈ [0,Mh] and 1−π([−L,L]2)�1.

Another approach is to solve the steady state Fokker-Planck equation directly. As-
sume the same 2D domain as before. In order to discretize Lu∗, the boundary value
of u∗ on ∂[−L,L]2 is necessary. The usual practice is to make L large enough so that
[−L,L]2 covers the global attractor of equation (2.1) with sufficient margin. Then we
can assume a zero boundary condition because of the Freidlin-Wentzell theory [11]. This
will generate a linear system

Au=0,

where A is an n×n nonsingular matrix. To avoid the trivial solution, one also needs
the constraint

1Tu= r−2.

This gives an overdetermined linear system

Au=0 (2.4)

1Tu= r−2.

Let

Â=

[
A
1T

]
, b=

[
0
r−2

]
.

We can find the least squares solution û that solves the optimization problem

min‖Âû−b‖2.

The least squares solution û numerically solves the steady state Fokker-Planck equation.

2.3. Probabilistic approach for computing invariant measure. The nu-
merical PDE approach works reasonably well for 1D and 2D problems. However, in
higher dimension this approach becomes impractical. In particular, the domain has to
be sufficiently large to cover the global attractor of Equation (2.1) with enough margin.
This imposes great difficulty to many practical problems. For example, if Equation (2.1)
is a Lorenz system, then we need a grid in a 50×50×50 box to cover the attractor.
(See Section 4.3 for more discussion about the Lorenz system.)
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An alternative approach is to use Monte Carlo simulation. One can collect samples
of Xt over a long trajectory in any dimension, although the accuracy of the Monte Carlo
simulation suffers greatly from the curse of dimensionality. Let h�1 be the step size.
Let Xn :=Xnh be the numerical time-h sample chain produced by certain numerical
method (Euler, Milstein, Runge-Kutta .etc) [20]. Under certain conditions, Xn admits
an invariant probability measure πh that converges to π as h→0 [23, 24]. In addition,
Xn is a Markov chain. Let ξ :Rn→R be an observable on Rn and N be the number of
samples. By the law of large numbers of Markov chains [25], we have

1

N

N∑
n=1

ξ(Xn)→π(ξ) a.s..

Therefore, we can use Monte Carlo simulation to compute the probability density
function of π. For the sake of simplicity we consider grid points u={ui,j}Ni,j=0 in a

2D domain [−L,L]2, such that ui,j is the numerical approximation of u∗(ir−L,jr−L).
Let Oi,j = [ir−L−r/2,ir−L+r/2]× [jr−L−r/2,jr−L+r/2]. Then the Monte Carlo
simulation gives

ui,j =
1

Nr2

N∑
n=1

1Oi,j (Xn)

for some sufficiently large N. In practice, we construct (N+1)2 boxes Oi,j and simulate
Xn over a long time period. After the simulation, ui,j is obtained by counting sample
points of Xn falling into Oi,j .

It is easy to see that the Monte Carlo simulation approach has a significant disad-
vantage on the accuracy because it is difficult to collect enough sample points in each
Oi,j . Without loss of generality, we assume

N∑
n=1

1Oi,j
(Xn) =O(r2N).

If we treat 1Oi,j
(Xn) as i.i.d Bernoulli random variables, some calculation shows that

the standard deviation of ui,j is O(r−1N−1/2). Hence N has to be very large to control
the standard deviation. For example, N needs to be O(r−5) to reduce the standard
deviation to O(r2). The accuracy problem will be much worse in higher dimensions.
In practice, the solution obtained from the Monte Carlo simulation usually looks very
“noisy”.

Despite its accuracy problem, the Monte Carlo simulation has more flexibility be-
cause of the following reasons. (1) In the Monte Carlo simulation, the domain [−L,L]2

does not have to cover the global attractor of (2.1). (2) The curse of dimensionality is
slightly alleviated if Equation (2.1) has a lower dimensional global attractor because the
invariant probability measure π concentrates on the vicinity of the global attractor of
Equation (2.1). (3) Parallel computing is much easier for Monte Carlo simulations. (4)
Some high dimensional sampling technique can be applied to improve the Monte Carlo
simulation for a large class of dynamical systems.

3. A hybrid data-driven method
We propose the following hybrid method that combines the high accuracy of the

numerical PDE approach and the flexibility of the Monte Carlo simulation. Consider a
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2D domain [a0,b0]× [a1,b1] that does not have to cover any attractor of Equation (2.1).

Let u={ui,j}i=N,j=Mi=1,j=1 be the numerical solution. Without loss of generality assume r=
(b0−a0)/N = (b1−a1)/M . Then ui,j approximates u∗ at the grid point (ir+a0,jr+a1).
By discretizing the steady state Fokker-Planck equation Lu∗= 0 without any boundary
condition, we have a linear system with normalizing condition{

Bu = 0
1Tu = r−2.

Let

B̂=

[
B
1T

]
, b=

[
0
r−2

]
.

Obviously B̂ is not a full-rank matrix. Hence we obtain a linear constraint B̂u=b.
Then we run the Monte Carlo simulation to get another approximate solution v=

{vi,j}i=N,j=Mi=1,j=1 . Let Oi,j = [a0 + ir−r/2,a0 + ir+r/2]× [a1 +jr−r/2,a1 +jr+r/2]. Let
N be a large number, the Monte Carlo simulation gives

vi,j =
1

Nr2

N∑
n=1

1Oi,j
(Xn).

The approximate solution v in this step does not have to be very accurate. We will use
it in the next step to obtain a much more accurate numerical solution u.

The key step of this hybrid solution is to solve the following optimization problem.
We combine the linear constraint with the “noisy” data v obtained from the Monte
Carlo simulation. The idea is that u should both satisfy the linear constraint from the
discretization and be as close to v as possible. This leads to the optimization problem

min ‖u−v‖2 (3.1)

subject to B̂u=b.

Let x=u−v, this reduces to the problem

min ‖x‖2 (3.2)

subject to B̂x=d,

where

d=b−B̂v.

The following theorem is a straightforward textbook result. (See for example [7].) We
include the proof for the sake of completeness of the paper.

Theorem 3.1. If B̂ has linearly independent rows, then

x̂= B̂T (B̂B̂T )−1d (3.3)

is the unique solution of (3.2).

Proof. It is easy to see that x̂ solves the linear constraint B̂x̂=d.
For any vector x 6= x̂ satisfying B̂x̂=d, we have

‖x‖2 =‖x̂+x− x̂‖2
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=‖x̂‖2 +2x̂T (x− x̂)+‖x− x̂‖2.

Since B̂x=d, we have

x̂T (x− x̂) =dT (B̂T B̂)−1B̂(x− x̂) = 0.

Therefore, we have

‖x‖2 =‖x̂‖2 +‖x− x̂‖2≥‖x̂‖2.

This completes the proof.

An efficient way to solve Equation (3.3) is to use the QR factorization B̂T =QR.
After a QR factorization, we have

x̂=Q(R−1)Td.

Then u= x̂+v is the desired numerical solution.
Heuristically, it is easy to see that the optimization problem (3.1) can significantly

reduce the error of the data v generated by the Monte Carlo simulation. Assume
the Monte Carlo sampler does not have significant bias. Let u∗={ui,j∗ }i=N,j=Mi=1,j=1 be

the vector corresponding to the exact solution, i.e., ui,j∗ =u∗(ir+a0,jr+b0). Then the
error term w :=v−u∗ can be approximated by a random vector such that each entry has
zero expectation and finite variance. Let û be the solution to the optimization problem
(3.1). Then the new error term ŵ := û−u∗ is approximated by P(v−u∗), where P is
the projection operator corresponding to the hyperplane given by B̂u=b. With high
probability, the projection of a random vector w to a much lower dimensional hyperplane
has much smaller norm. In other words we have ‖ŵ‖�‖w‖ with high probability. The
full proof is much longer than the above heuristic description. Since the aim of this
paper is to introduce the algorithm, we prefer to put the rigorous proof about this
algorithm into our subsequent paper.

Finally, we remark that one significant advantage of this approach is that we can
obtain a high resolution solution in any local area. There is no restriction on the domain
as long as the Monte Carlo simulation can produce enough sample points. If a global
solution is necessary, we can divide the space into many subdomains I1, ·· · ,IK , solve
them separately, and combine them together according to the Monte Carlo simulation.
(The probability of a subdomain π(Ik) can be obtained from the Monte Carlo simulation,
which is the weight of Ik when generating the global solution.) This divide-and-conquer
strategy allows us to solve large scale problems (∼109 grid points) on a laptop. We will
address it in full details in our subsequent paper.

4. Numerical examples
We will illustrate our hybrid approach with three examples: the double-well poten-

tial gradient flow, the Van der Pol oscillator, and 3D chaotic oscillators.

4.1. Double-well potential and error analysis. The first example is the
gradient flow with respect to a double-well potential. Consider the potential function

U =
1

2
x4−x2

and the stochastic differential equation

dXt=−U ′(Xt)dt+σdWt
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for σ= 0.6. The probability density function of this system is

u∗(x) =
1

K
e−2U(x)/σ2

,

where K is a normalizer.

In this example, we demonstrate our method by solving for u∗(x) on the interval
of [0,2]. Note that this system has two equilibria at ±1. Equilibrium x=−1 is not
covered by the numerical domain [0,2]. In particular, we have u∗(0) = 0.1062 so the zero
boundary condition does not apply to this problem. We also show the accuracy and
computational time of the hybrid method in this example.

Let Xn be the discrete-time Markov chain given by the Euler–Maruyama method
with a fixed time step size dt= 0.001. The Monte Carlo simulation is done by simulating
Xn up to time T =Nh. The numerical solution from the optimization problem, the
exact probability density function u∗(x), and the approximate density function from
Monte Carlo simulation are compared in Figure 4.1. We can see that the Monte Carlo
simulation itself only produces a solution with low accuracy, unless one can collect a huge
amount of samples. In fact, when h= 0.005, T needs to be at least 105 to remove the
sawtooth in the solution (the orange plot in Figure 4.1). The rough solution generated
by the Monte Carlo simulation is smoothed and corrected by the linear constraint (the
red plot in Figure 4.1).

Fig. 4.1. A comparison of exact solution, solution from Monte Carlo, and solution from the
hybrid method.

The following table compares L2 errors with varying time span T and grid size h.
Each entry is the average L2 error of 5 trials. We can see that despite some randomness
caused by the Monte Carlo simulation, the error drops with smaller grid size and larger
sample size for the Monte Carlo simulation. Note that the invariant probability measure
of Xn is only an O(dt) = 1.0×10−3 approximation of that of Xt. Hence it does not make
sense to test the accuracy with more samples or smaller grid size unless one makes the
time step even smaller. In this small-scale 1D problem, the classical numerical PDE
solver is more accurate, mainly because the invariant probability measure of Xn is only
a first order approximation of that of Xt. But overall the accuracy is satisfactory given
the performance of the algorithm.
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T \h 0.04 0.02 0.01 0.005
500 6.233×10−3 5.971×10−3 2.260×10−3 2.120×10−3

1000 4.289×10−3 5.679×10−3 2.137×10−3 2.893×10−3

2000 2.240×10−3 2.562×10−3 2.483×10−3 1.476×10−3

4000 1.914×10−3 2.159×10−3 1.339×10−3 0.656×10−3

Table 4.1. Accuracy of the hybrid method with respect to different sample sizes and grid sizes.

It remains to comment on the computation time. We choose smaller grid sizes h=
2×10−4, 1×10−4, and 5×10−5 to highlight the difference between different approaches.
The time span of Monte Carlo simulation is chosen to be T = 4000. In order to apply the
numerical PDE approach directly, one needs to enlarge the domain to [−2,2] to apply the
zero boundary condition. The direct Monte Carlo simulation is too slow to be interesting
if one wants to achieve the same accuracy. Hence we only compare the numerical PDE
approach and the hybrid method in the following table. The computation time for the
hybrid method is further broken down in to the Monte Carlo simulation phase (Phase 1)
and the optimization phase (Phase 2). The numerical PDE approach uses the MATLAB
solver mldivide (the backslash solver). The Monte Carlo simulation is written in C++.
The optimization problem Equation (3.1) is solved by the MATLAB solver lsqminnorm.

grid size h Numerical PDE Hybrid (Total) Hybrid (phase 1) Hybrid (phase 2)

2×10−4 0.05943 sec 0.2775 sec 0.2771 sec 0.004236 sec

1×10−4 0.2565 sec 0.2668 sec 0.2663 sec 0.004887 sec

5×10−5 1.111 sec 0.2618 sec 0.2609 sec 0.009218 sec

Table 4.2. Computational time for the numerical PDE approach and the hybrid method.

From Table 4.2, we can find that solving the optimization problem (3.1) is actually
much faster than solving the least squares problem (2.4). This is because the numerical
PDE approach has to cover both equilibria with considerable margin in order to ap-
ply the zero boundary condition. In addition, solving the overdetermined least squares
problem in Equation (2.4) takes more time for the MATLAB solver we use. In this
problem, the Monte Carlo simulation is the bottleneck of the hybrid method. In higher
dimensional problems, such as the Lorenz oscillator in Section 4.3, solving the optimiza-
tion problem (3.1) usually takes much more time than the Monte Carlo simulation. And
the classical numerical PDE approach is not practical any more, because the domain
still has to cover the entire attractor in order to apply the zero boundary condition.

4.2. Van der Pol oscillator and canard. The second example is a Van
der Pol oscillator, which has been intensively used in both physics and mathematical
biology [13, 17]. In this subsection, we use our method to demonstrate an interesting
phenomenon related to the canard solution.

Consider an oscillator

ẋ=
1

ε
(y− 1

3
x3 +x) (4.1)

ẏ=a−x,

where ε= 0.1 is the time scale separation parameter, and a is a control parameter. This
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system is a prototypical example for the canard explosion. A “canard” is a solution that
the system can pass a bifurcation point of the critical manifold and follow the repelling
part of the slow manifold for some amount of time [3]. Usually a canard solution only
exists for a very small range of parameters.

Fig. 4.2. Bifurcation of the Van der Pol oscillator. When a is small, the system demonstrates
relaxation oscillations (Black). The red solution is a canard solution, at which the solution follows the
repelling part of the slow manifold for a short period of time. With increasing a, a transition through
the canard occurs and the solution follows a smaller limit cycle (Blue).

We consider the random perturbation of system (4.1)

dXt=
1

ε
(Yt−

1

3
X3
t +Xt)dt+σdW 1

t (4.2)

dYt= (a−Xt)dt+σdW 2
t ,

where W 1
t and W 2

t are two independent Wiener processes. The parameter a is chosen to
be 0.9964, at which the deterministic system has already passed the canard bifurcation
and is attracted to a smaller limit cycle (blue curve in Figure 4.2). We use our hybrid
method to compute the density function u∗(x) of the invariant probability measure of
system (4.2). Our numerical result shows that this transition through a canard solution
is essentially destroyed by a small random perturbation. Although the deterministic
system admits a smaller limit cycle, the steady state probability density function u∗(x)
still concentrates on the large limit cycle corresponding to the relaxation oscillations
(the black curve in Figure 4.2). When the strength of noise increases, the support of
u∗(x) not only becomes “wider”, but also has significant deformation. When the noise
is large (σ= 1.0), some probability density moves to the slow manifold that does not
belong to any limit cycle of the deterministic system and forms two “tails”. With the
hybrid method introduced in this paper, we can get a high resolution local solution
about the lower left “tail” with much higher precision (Panel 6 of Figure 4.3).

4.3. 3D chaotic oscillators under random perturbations. The hybrid
method demonstrates its full strength in 3D systems. In this subsection, we compute
numerical invariant probability density functions of two randomly perturbed chaotic
systems: the Lorenz oscillator and the Rössler attractor. Both of them are typical
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Fig. 4.3. Numerical solutions of the invariant probability density function with different σ. Panel
1 to 6: (1), σ= 0.1; (2), σ= 0.2; (3), σ= 0.4; (4), σ= 0.7; (5), σ= 1.0; (6) local solution of σ= 1.0
showing the lower left “tail”.

chaotic oscillators that play a significant role in the study of nonlinear physics and
dynamical systems [1, 12,22,30].

For the Lorenz system, we mean

ẋ=a(y−x) (4.3)

ẏ=x(b−z)−y
ż=xy−cz

with typical parameters a= 10, b= 28, and c= 8/3. It is well known that system (4.3)
has a butterfly-shape strange attractor. The Rössler attractor is a chaotic oscillator
that has the similar mechanism as the Lorenz oscillator. We have

ẋ=−y−z (4.4)

ẏ=x+ay

ż= b+z(x−c).

Again, we use typical parameters a= 0.2,b= 0.2, and c= 5.7.
We are interested in invariant probability density functions of random perturba-

tions of system (4.3) and system (4.4). In both systems, a perturbation term σdWt

is added to the deterministic part, where σ>0 is the strength of noise, and Wt is the
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Fig. 4.4. Left: Trajectory of Lorenz oscillator. Right: Trajectory of the Rössler oscillator. Both:
Solution is projected to the XY-plane. Red box is the domain of the numerical solution.

Fig. 4.5. The invariant probability density function of the randomly perturbed system. Left panel:
Invariant probability density function of the Lorenz oscillator with σ= 0.3. Right panel: Invariant
probability density function of the Rössler oscillator with σ= 0.1. The numerical solution is projected
to the XY-plane for the purpose of easier visualization.

standard Wiener process in R3. Needless to say, it is extremely difficult to solve a steady
state Fokker-Planck equation in 3D on a large domain. Take the Lorenz oscillator as an
example. If the numerical domain has to cover the attractor, we will solve a 3D equa-
tion on a cube [−25,25]× [−25,25]× [0,50]. When the grid size is 0.05, the resultant
numerical solution will have 109 grid points. Solving such a large linear system is very
computationally expensive.

The hybrid method provides an approach to solve a 3D steady state Fokker-Planck
equation locally with high resolution and low cost. If the global solution is still necessary,
one can numerically solve many local solutions and “glue” them together. In Figure
4.4, we choose a small box on the attractor as the domain (the red rectangle). The
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attractor is projected to the XY-plane for the purpose of demonstration. Note that the
Lorenz oscillator is rotated by a rotation matrix for the purpose of easier demonstration
and mesh generation. The heights of both domains are 1.0. Then we use our hybrid
method to compute the invariant probability density function. The strength of noise is
chosen to be σ= 0.3 for the Lorenz attractor and σ= 0.1 for the Rössler attractor. We
use larger σ because the Lorenz system has a much bigger attractor. The grid size is
0.05 for both examples.

The numerical solution is demonstrated in Figure 4.5, in which the solution is
integrated with respect to z for the purpose of easier visualizations. We can see that
both invariant probability density functions reveal lots of fine structures of the strange
attractors. And the probability density is higher near the center of the attractor. In
constrast to the very computationally expensive global problem, it only takes a laptop
about 10 minutes to generate such a local solution on MATLAB.

5. Conclusion

In this paper we present a hybrid numerical method that solves the steady state
Fokker-Planck equation. The numerical discretization scheme (finite difference scheme,
finite element scheme, or Galerkin method) without boundary condition gives a linear
constraint. A low-accuracy numerical solution produced by the Monte Carlo simulation
(or other variants) serves as a reference solution. The problem is then converted to
an optimization problem, which looks for the least squares solution with respect to
the reference solution, under the linear constraint given by the numerical discretization
scheme.

The main advantage of this hybrid approach is that it drops the dependence on
boundary conditions. Hence we can compute the steady state Fokker-Planck equation
in any local area, while the traditional numerical PDE approach has to use a large
enough domain in order to apply the zero boundary condition. This makes a significant
difference if one wants to study the invariant probability density function in a local
area in the vicinity of a strange attractor. The Monte Carlo simulation gives both
good flexibility and some limitations to this hybrid method. Our simulation shows
that the hybrid method can tolerate “local” fluctuations in the reference solution very
well. However, if the Monte Carlo simulation result has significant and systemic bias,
the hybrid method cannot completely recover the invariant probability density function.
Also, the Monte Carlo simulation usually only generates very few samples (or no sample)
in regions that are very far away from the attractor. In these regions, the hybrid method
cannot recover the tail effectively, while the traditional PDE solver usually performs
better.

This paper serves as the first paper of a series of investigations. Under this data-
driven framework, lots of improvements can be made to both the Monte Carlo simulation
and the numerical PDE approach. For example, because our data-driven framework
does not rely on boundary conditions, one can use divide-and-conquer strategy to divide
the domain into many “blocks”. Our preliminary work shows that this approach can
significantly accelerate the computation. Another potential improvement is to use some
recently developed sampling techniques in the Monte Carlo simulation. In particular,
if the noise term is large enough, the Gaussian mixture method reported in [8, 9] can
significantly reduce the cost of Monte Carlo simulations for high-dimensional problems.
We expect to incorporate this sampling technique into our framework in the future.

It remains to comment on the extension to the time dependent Fokker-Planck equa-
tion, as the time evolution of the probability density function is very important in many
applications. Our hybrid method can be extended to the time-dependent case after mi-
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nor modifications. To use the hybrid method, at each time step, the classical PDE
solver should be replaced by a least squares optimization problem. More precisely, let
un denote the numerical solution to a time dependent Fokker-Planck equation at time
step n. Then the numerical solution un+1 at the next step is obtained by solving an
optimization problem

min ‖un+1−vn+1‖ (5.1)

subject to Aun+1 =bn,

where the linear contraint Aun+1 =bn comes from the numerical discretization scheme
(such as implicit Euler scheme or Crank-Nicolson scheme) for the time dependent
Fokker-Planck equation, and vn+1 is a probability density function (with lower ac-
curacy) generated by the Monte Carlo simulation.
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