COMMUN. MATH. SCI. (© 2019 International Press
Vol. 17, No. 4, pp. 1025-1043

CONDITIONAL REGULARITY FOR THE 3D INCOMPRESSIBLE
MHD EQUATIONS VIA PARTIAL COMPONENTS*

HUIFANG WANG', YAFEI LI}, ZHENGGUANG GUO$, AND ZDENEK SKALAKY

Abstract. In this paper we establish some new regularity criteria for the three dimensional
incompressible magnetohydrodynamic (MHD) equations. Particularly, we prove that if Vus and the
horizontal magnetic field b, = (b1,b2) satisfy certain integrable conditions with respect to space and
time variables in Lebesgue spaces, then a weak solution (u,b) is actually regular. Moreover, we obtain
a regularity criterion in the framework of scaling invariance.
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1. Introduction
We are concerned with the following 3D viscous incompressible magnetohydrody-
namic (MHD) equations:

du+u-Vu=Au—Vp+b-Vb,
Oib+u-Vb=Ab+b-Vu,

divu =divb=0,

u(x,0) =wug(z), b(x,0)="by(x),

(1.1)

where u= (u1(x,t),us(z,t),u3(w,t)), b= (b1 (x,t),ba(,t),b3(x,t)) and p=p(x,t), * €R3,
t >0 denote the unknown velocity field, magnetic field and pressure, respectively. ug(x)
and bg(x) are the given initial data. In the early 1970s, Duvaut and Lions [7] con-
structed a class of global weak solutions, similarly to the Leray-Hopf weak solutions
to the three dimensional Navier-Stokes equations. But the strong solution is generally
local. It is not known whether the smooth solution of Cauchy problem in three dimen-
sions exists for all time for given sufficiently smooth and divergence-free initial data.
For the two-dimensional case, the smoothness of solutions has been shown. The same
results hold in the case of three dimensions under the assumption that (u,b) belongs
to L®°(0,T; H'(R?)), see Sermange and Temam [20] for the details. The main differ-
ence between the two-dimensional and three-dimensional cases can be well understood
by considering the dynamics of the fluid vorticity as pointed out by Constantin and
Fefferman in [6] for the Navier-Stokes equations. Therefore, the global regularity of
weak solutions in three dimensions is still an outstanding challenging open problem.
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It seems to be beyond the scope of the present techniques. Nevertheless, there exist
many criteria to guarantee the global regularity of weak solutions of (1.1), see for ex-
ample [5,9,18,19,26,27] and references therein. We mention here the following classical
results from He et al. [9] and Zhou [26]; of course, some other results which may also
be very interesting cannot be mentioned due to the length of this article. Motivated
by the regularity criteria of the Navier-Stokes equations, He et al. and Zhou estab-
lished the fundamental Serrin-type regularity criteria only in terms of the velocity field,
independently. Precisely, they showed if the velocity field satisfies

2 3
ue L™ with —+ - <1, 3<y<o0, (1.2)
a9
or
2 3 3
Vue L*Y with —+—-<2, —<vy<o0, (1.3)
a oy 2

then the weak solution of (1.1) is smooth on R? x (0,7]. The main interest of this Serrin-
type regularity criteria in [9,26] is that there are no assumptions on the magnetic field
after the initial time. As stated in [9], this indicates that the fluid velocity may play
a dominant role in the evolution of MHD flows. Note that the condition (1.3) requires
that Vu should satisfy some integrability with suitable indices a and v in Lebesgue
spaces, and the number on the right-hand side of the first inequality is 2. This result
is optimal from the scaling-invariant point of view. However, it seems more restrictive
since Vu is actually a 3 x 3 matrix and 9 elements of it are supposed to satisfy (1.3).
Since u is divergence-free, we may expect regularity conditions imposed on the gradient
of only one velocity component, say Vus, instead of the gradient of all uw, moreover,
these conditions are expected to be scaling invariant. Although it is a straightforward
idea, this can not be reached very easily without the help of magnetic field for the
time being. It is obvious that one cannot see any contribution of the magnetic field or
the interplay between the fluid velocity and the magnetic field in the criteria of [9,26].
In order to capture the nature of coupling effects between the fluid velocity and the
magnetic fields in the magneto-fluid motion, the role of magnetic field should not be
neglected. Then the problem of so-called “regularity criteria for the MHD equations via
partial components” has drawn many researchers’ interest in the last ten years, see for
example [1,10-13,16,17,23,32,33] and references therein. Particularly, Yamazaki in [25]
provided a regularity criterion in terms of ug and b both in scaling-invariant norms using
anisotropic Littlewood-Paley theory. Recently, Zhang in [31] proved the global regularity
based on Vus and some current density. It seems that this kind of investigation on
only one velocity component is more difficult than the one of akin criteria based on
one partial derivative of the velocity field; in this regard one can see for example the
discussions [1,4,12,24,31] on the MHD equations, and also [2, 3,15, 21,22, 28-30] for
the Navier-Stokes equations (b=0 in (1.1)). In this paper, we are interested in the
conditions which can guarantee the regularity of weak solutions in view of the gradient
of only one velocity component and the magnetic field. Namely, we will first prove the
following result:

THEOREM 1.1.  Assume that (u,b) is a global weak solution to the MHD Equations

(1.1) corresponding to the initial data (ug,bo) € H*(R?), s >3 with V-ug=V -bg=0 and

satisfies the energy inequality. Suppose Vuz € L®1(0,T;LA) and be L*2(0,T;L°?) with
2 3 7 1

—+ =<t o, 2<fi <00, 1.4
a; B4 26 A (1.4)
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and
2 3 3 1 10
—F —<—-4+—, —<[y< 1.5
012—’—52_44—2527 3_62_007 (15)
Then (u,b) remains smooth on (0,T].

REMARK 1.1. 'We note that the authors in [17] have proven if

2 3 3

Viu€ LM with —+ — <2, = <t; <o0, (1.6)
S1 tl 2
Gt 2 3 3

Vpbe L% with — 4+ — <2, — <ty <o0, (1.7)
S9 t2 2

then the corresponding solution is actually regular, where V), = (91,02) is the horizontal
gradient. It was improved recently by Jia [14] where the assumptions on Vjus and
Vibs of (1.6) and (1.7) were removed. However, we find that more information on the
unknowns is still required such as uj, = (u1,us) and b, =(b1,bs), although the spaces
from (1.6) and (1.7) are scaling invariant. If one imposes some conditions only on the
partial derivative of the velocity field, say dsu, then regularity can also be guaranteed.
Jia et al. in [12] proved the following criterion

2 3 3 2

83UELB’a with —+— S M

g« 4o

It is obvious that they removed restraints on the magnetic field b, and the num-
ber of the first inequality on the right-hand side of (1.8) is not scaling invariant

<lim 3(a+2) = 3). Moreover, all the components of u are involved, i.e., on one hand,
a—2 4o 2

they gain less restrictions on the unknowns (no assumptions on b), but, on the other
hand, lose the nice scaling-invariant property. Based on the above comparison, there
might be a kind of balance between the scaling-invariant norms and the unknown vari-
ables in regularity theory, and the loss of regularity in velocity turns out to be balanced
by some additional regularity in magnetic fields. This can be exactly used to demon-
strate the coupling effect of velocity and magnetic fields. Therefore, in this paper, we
make full consideration of it and try to make balance between them to guarantee the

regularity of weak solutions, this is shown in Theorem 1.1.

and o>2. (1.8)

REMARK 1.2. Conditions in Theorem 1.1 are not optimal since the spaces from (1.4)
1

A
goes to 2 as 1 tends to 2, i.e., it is almost optimal for Vus as 51 changes around 21
So the possible improvement of conditions in Theorem 1.1 is to achieve a balance by
using some more information on velocity field in the framework of scaling invariance,
see conditions in Theorem 1.2 for the details, additional conditions on partial derivative
of the horizontal velocity are imposed.

and (1.5) are not scaling invariant in Serrin’s framework. We find that in (1.4) 1

THEOREM 1.2.  Assume that (u,b) is a global weak solution to the MHD Equations
(1.1) corresponding to the initial data (ug,bo) € H*(R?), s >3 with V-ug=V -bg=0 and
satisfies the energy inequality. Suppose that Ozuy, € L3 (0,T;L5) with

2 3

3
212 <o 2eBi<oo
a3+53* 2 Pz <00
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Furthermore, assume that Vus € L®(0,T;L%) and be L (0,T;L%) with

2 3 3
- 7<23 =< < )
Oé4+54_ 2 Az oo

and

2 3
—+—<1, 3<p5<00.
as  Bs

Moreover, for the case 8; (i=3,4,5) being the left endpoint of the above intervals, let the

norms ||0sup| , HVU3||LOO'§ and ||b|| g3 be sufficiently small, respectively. Then

3
L2 2

(u,b) remains smooth on (0,T].

Considering the balance between the scaling-invariance norms and the unknown
variables which are involved in the conditions, if we focus on the partial components of
the unknowns u and b, it is possible to establish the following regularity criterion.

THEOREM 1.3.  Assume that (u,b) is a global weak solution to the MHD Equations
(1.1) corresponding to the initial data (ug,by) € H*(R?), s >3 with V-ug=V-bg=0 and
satisfies the energy inequality. Suppose Vuz € L®¢(0,T;L5) and by, € L*7(0,T;L57) ei-
ther with

2 3 7 1

A L 1.9
ag B~ 4 286 Pe (L.9)

and
2 3 2 15
<z >, 1.10
o + 555 Br 5 (1.10)
or
2 3 7 15
—+=—<- > — 1.11
s + ﬂ6 = 53 ﬂﬁ 7 ; ( )
and
2 3
—+ =<1, p7;>3, 1.12
ar  Pr ! (1.12)
Then (u,b) remains smooth on (0,T)].
REMARK 1.3. Theorem 1.3 implies that what we earn is less restriction on the

unknowns, and what we lose is the right-hand side numbers of (1.10) and (1.11); they
are smaller than what we expected. Note that, as we know, the ultimate goal is to
establish criteria with conditions only on d;u; and by for i,5,k€{1,2,3} in Serrin’s
regularity class. To our knowledge, it is still very challenging.

2. Preliminaries
We can take a forward step based on the following anisotropic Lebesgue spaces and
some technical inequalities.

DEFINITION 2.1. Let p=(p1,p2,p3), pi €[1,00], i=1,2,3. We say a function f belongs
to L? if f is measurable on R3 and the following norm is finite:

1
p3 P3

22 P2 3
: /(/ (/f(xl,lfz,$3)|pld$1> 1d$2> drs | .
L3

191 = ) 1.2

P2
L2
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These anisotropic Lebesgue spaces seem to be convenient for our purposes, since
they differentiate between different directions and better estimates can be expected.

LEMMA 2.1. Let p, q, 7€[2,00) and 1/p+1/q+1/r—1/2>0. Then there exists a
constant ¢ such that for every f € L?>NC>

1

= kO B ertateod

[heg]| L[ <clioafilzz Noaflle™ o 1l,™ 115115 .
T
3

LgL

The proof of Lemma 2.1 was given in [8].
In the following, we denote [ f(z)dx the integral over the whole three dimensional

space, use the standard notation for Lebesgue spaces LP(R?) endowed with the norm
|l ==|l“1lLr(r) and for Sobolev spaces W*?(R?) endowed with the norm ||-|[x,. C
denotes a generic constant which might change from line to line even within the same
line. Moreover, denote

T>
J2(T2)=T sup (||VhU(T)||§+||Vhb(7)||§)+/T (IVVu(n) 3+ VVib(7)]3) dr,

Ts
LQ(Tz):T sup (||33U(T)||§+||33b(7)||§)+/T (IV8su(r) |13+ | VOsb(7)|I3) dr.

and
T
K*(Ty)= sup (HVU(T)H%HIW(T)II%)+/ (I1Au(r)I5+ 1 Ab(7)[[5) dr.
T <1<T> T
We also work with
T
def
E*(Ty) = Sup (IIU(T)HngHb(T)II%H/O (IVu(r) I3+ Vb(7)[[3) dr.

Note that F(T) < E(0) due to the energy inequality.

3. Proof of Theorem 1.1

Let T* =sup{r >0; (u,b) is regular on (0,7)}. Since (ug,by) € WH2(R3), (u,b) is
regular on some positive time interval and T™* is either equal to infinity (in which case
the proof is finished) or it is a positive number and (u,b) is regular on (0,7%). It is
sufficient to prove that T* >T. We proceed by contradiction and suppose that T* <T.
We take e > 0 sufficiently small (it will be specified later) and fix T; € (0,7*) such that

([Vus||Lor (7, 7o;p60) <€ and [[b]| e 7y 7,002y <€ (3.1)
Taking arbitrarily 75 € (T1,T*) the proof will be finished if we show that
IVu(T2)[|2 +[[VO(T2)]2 < C < o0, (3.2)

where C' is independent of T. Actually, the standard extension argument then shows
that the regularity of (u,b) can be extended beyond T™* and it contradicts the definition
of T*. As a matter of fact, it now suffices to show that

J*(Ty)+ L*(Ty) < Const. < 0, (3.3)
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uniformly in T5. Firstly, we prove the following estimate.

LEMMA 3.1.  There holds
L(Ty) <C+CJ(Ty)5, (3.4)

where C' is a constant independent of Ts.

Proof.  The inequality (3.4) is crucial for (3.3). Multiplying the first equation of
(1.1) by —033u and integrating over R?® from (7,7T%), we obtain

T:

1 2
oI+ [ I auu(r)|far

T
1 T2 T2
:§||83u(T1)H§+/ /(u-V)u~833u dxdr—/ /(b~V)b-833u dzdr. (3.5)
Tl Tl

Likewise, for the second equation of (1.1), we multiply it by —0d33b and integrate over
R3 and (Ty,T»), it follows that

1 T
SlossTIE+ [ 11vosb(r)lar

Ts T
=%||agb(:r1)|\§+/ /(u-V)b~833b dxdT—/ /(b~V)u-833b dedr.  (3.6)
1 T

T

Now we denote the four terms on the right-hand side of (3.5) and (3.6) by RHS, i.e.,

Ty T>
RHS := /(u-V)u~633u d:ch—/ /(b~V)b-833u dxdr
T, T

T2 T2

—|—/ /(u-V)b~833b da:dT—/ /(b'V)U'azggb dxdr
T1 Tl
:=RHS1+RHS>+RHS3+RHS,.

Firstly, we estimate RH S1:

/(u V)u-s3udx

3 3
=— Z /83uj8juk83uk dx — Z /ujﬁjzg,ukaguk dx
Gk=1 3 k=1
3
=— Z /83Ujajuk83uk dr
Gk=1
2 3 3
ZZZ/uk(angjaguk+a§juk63Uj) dm+2/(61u1 +82u2)63uk83uk dx
j=1k=1 k=1
2 3 3
:ZZ/uk(agjujaguk +8§juk63uj) dac—Z2/(u183uk8§1uk+uQ83uk8§2uk) dx
j=1k=1 k=1

SC/|u|\83uHVth|d$
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1 1 1 % 2 1 2 1 2 1
<Cl|0vul|3 ||02ull3 [|0sull3 [|0sul |3 [1015ull3 |02 ull3 [|055ull3 ||V Viull2

2 1 1 4 1
<CO|Vyull3||0zul |3 [|0sul[3 [|VV pul|3 [[VOsul|§ .

T
/ /(u-V)u'aggu dxdr
T

T2 2 1 1 4 1
< ¢ [ 1l F110uul 05ul 3199l VOl ar
T,

Then we have

2 1 1 4 1
< Cl|[VaullZ 2l10sul|3, 2l10sul|3 o |[VVaull3 o[ VOsull3 5

< CJ(T»)?L(Ty)*. (3.7)

Similarly, we deal with RH S5 as follows.

3 3
=— Z /83uj8jbk83bkdx— Z /Ujajngkagbkdx

Jik=1 Jik=1

3
=— Z /83uj8jbk836kd:r

jk=1

2 3 3
:ZZ/bk(ﬁgjuj‘agbk+a§jbk63Uj)d$+Z/(81U1 +82U2)83bk63bkdx
k=1

j=1k=1

2 3 3
:ZZ/bk(angjagbk+6§jbk83Uj)dx—22/(u133[)k8§1bk —|—u283bk8§2bk)d$
k=1

j=1k=1

< / (1ul|5b] V'V 15| + 6] D3]]V V] + [b]|05ul| Vb))

Then we obtain by a similar way to RHS; that

T>
/ /(U'V)b'aggb dxdr
T

Finally, we estimate RHSs+ RH Sy:

<CJ(T5)2L(T)?. (3.8)

/[(b~V)b-833u+(b-V)u-aggb] dx

:/(b~V)(b+u)833(u+b) d;z:7/[(b~V)b-5‘33b+(b-V)u~833u] do

3
=— Z /(83bi'6ibj~63Uj +8gbi~8iuj"83bj) dx,

i,j=1
it follows by similar techniques on RHS; and RH S5 that

RHS5+RHS, < CJ(Ts)2L(T3)?. (3.9)
Combining (3.7), (3.8) and (3.9), we obtain (3.4). O
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3.1. Estimate of J2. Multiplying the first two equations of (1.1) by
A;mzZ?:l 8?ju and A’Lb:E§:1 8J2-jb, respectively, integrating by parts and taking
the divergence-free conditions into account, we have

1d
§§(th“HgHthH;)+(|\VhVu\|§+thVb||g)
:/[(UoVU)Ahu*(b-Vb)Ahqu(u.Vb)Ahbf(b‘vu)Ahb] da
=J1+JJa+ T3+ s (3.10)

Next, we estimate J; (i =1,2,3,4) one by one. By regrouping the terms of J;, we have

J = /(u~Vu)-Ahu dx

2 3 2
= Z /Ui'ain'AhUj dx+2/ui-8iu3-Ahu3 d.’E+Z/U3°83Uj'Ah’U,j dx
i=1 j=1

i,j=1
=g g 4B (3.11)

Using the result given by Kukavica et al. in [15] for Jl(l), one has

2
1
Jl(l):§ Z /83u3~8jui~8jui dx—/(r“)gu;g-alul-ag’llg dl‘+/63U3~(92U1-81U2 dzx

i,7=1

SC/\Vu;),HthP dx. (3.12)
Using the divergence-free condition divu =0 and integrating by parts, we have
3 2
== [oju-0rus-dyus do<C [ [Vual Touf? do. (313
i=1j=1
and
2 2 1
J1(3) = ZZ/ <—8ku3 . 3311,]' ﬂkuj + 583”3 . 8kuj . 8kuj> dx
Jj=1k=1
(3.14)

SC/|Vu3||83u||th| d;v+C’/\VU3Hth|2 dx.
Integrating by parts and taking the divergence-free condition for b into account, it
follows that

3 2
J2:—/(b-Vb)-Ahu dr=>" Z/bi-bjﬁ,%kaiuj da

i,j=1k=1
3 2
i,j=1k=1

gc/|b\|vhb\|vvhu| da. (3.15)
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Similarly
3
Jg—/(u Vb)- Apb da=— ZZ/@M ib; - kb da
i,j=1k=1
—ZZ/b - 0;(Oui - Okby) da
i,j=1k=1
gc/|b||vhu||vvhb| de,
and

J4=—/(b-Vu)-Ahb dx
§0/|b\|vhu\|vvhb| d:c+C/|b||63u||VVhb| da.

Thus, inserting (3.11)-(3.17) into (3.10), we get

1d
2.dt

<c / Vus|[Vhuf> de+C / Vus| 5] V] de

(Inull3 + 140113) + (V4 Vull3 + 1V VI3)

4 C/|b|\Vhb|\Vth\ da:+C’/|b||th|\VVhb| do+ C/|b||63u\|VVhb| da.

1033

(3.16)

(3.17)

(3.18)

There are five terms in the above inequality (3.18) to be estimated. We separate the b
terms from the u terms in order to obtain better estimates. For the b terms, we estimate

as following:

1
C [V T Tl d < IO, Vbl P+ [ Tl d

2(1-4)

<O|pl[2, Vabl 27|90 2 / VVhul? de

282

; 1
<CJellg; " IVablz+ 5 (IVVaull3+ 1V Vab]3),

and
C [ 1BVl V918l do < CUE, IVl + [ IVV457 do
<CUBITwally” ™ IVl + g [ 1990 do
<O [Vl + & (V93 +1990003).
and

1
§C/|b|2|83u|2 d:c+6/|VVhb|2 dx
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<Ol Ol + 5 [ 19900 do
<, ouly" T sl + 5 [199? do
< ClBIE, osully ™ IVl [V 0uul 3+ 5 [ 19910 e

382—10

= 285 —4 2 2 1
<CIIbH‘“‘ 105l sl [V Dl +5 (IVVrull3+ IV V3blI3),

where the interpolation inequality and Young’s inequality are again used. Integrating
inequality (3.10) over time interval (T7,T%), it follows

289

Ty
JA(Ty) < C(TY) +c/ 16122 (I hul2+ [ Vadl2) dr

T> 289 38510
+ C/ 111 527 | 5ull =~ H33u||2||V53UH22 2 dr

Ts
/|VU3||th\2dxdT+C/ /|VU3H33u||th|dxdT. (3.19)
1 Ty

The first term of (3.19) can be estimated by

T> 285
¢ [ I (19wl 19013) r

289
<C sup_ ([[Vaul3+[Vrbli3) (/T o]l 52~ 3d7>

T <1<T>
382—10 Bo2—2
T> _ 8By 4By —12 Ty apy—12
<C sup (|[Vaull3+]IVadl3) (/ ||b||3”32 1 dT) (/ 1d7’)
T <1<T> T T
<O(Ty—T)eJ*(Ty). (3.20)

The second term of (3.19) can be estimated by

T> 289 38510
0/ 161l 527 193l H33U||2||V33UHB2 ’

38210
ﬁ B By—2
<C||b||L‘212§T1 Ts; Lﬁ?)”a?’u”Lz‘xg(;l Ty; L2)||Vu||L2(T1 Tz; LQ)HV63U||L2(;1,T2;L2)
< CeJ*(Ty). (3.21)

For the endpoint case of b, due to (3.1) and (3.4) we also have
T 1 3
¢ [ " 10 105l 1905l v
1 3
<(j||b||ioo T\ T Lm)||Vu||22(T1,T2;L2)Hva3u||zz(T1,T2;L2)
<Ce(C+CJ(T2)3)3 <Ce(1+ J(T3)).

For the u terms, we have

T>
C /|VU3||th|2 dxdr
T,
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<OVusllpors [Vaull® as, 25,
L3 'B1-1

481 -6 3
< CHVUE‘»HL‘H (T1,T>; LBI)thUHLiflT1 TZ,L2)vahu”ié(ThTmL?)
<CeJ*(Ty). (3.22)

It remains to estimate the following term
/ /|Vu3| 105 [V | dadr.
Using Holder’s inequality and Lemma 2.1, we have the following
/\VU3||83u||th| dx
SO (TS O [N o
a1—-2 92 —2 a3—2 14141 1
<|IVusllg, [|01sully™ [|023ully™ [|0s3ully™ [|0sully* ™= *
7;2 7‘;2 7‘;2 +1+T%_l
100V nully™ (|02Vhully™ [[05Viully™ [[Viull3* > 7
where (1, ¢; and r; satisfy that
! +— + =1, 1=1,2,3
a = 1=1,2,9.
61 qi Ti
Therefore, if we take g1 =qgo = ﬁ, G3=2,11=r9=2,13= 3 5 , then it follows that
1= 1
Ts
/ /\Vu3||83u||vhu| dxdr
T
T 141 a1-2 -2
S/T [Vusllg, [[0sullg* ™ |Orzull;™ [|O2sull,™
1
27‘3 = +2
||83th||2 [Vhullg* = dr
T2 4 +4 4
< [ 10wl sl 5
1
§-L-1_1
HVV;LuHQ 2" dr
4q1+4q2

i‘,_,

||VhU||
< ||VU3||LQ1(Tl,TQ,Lﬁl)thUH Tz;Lz)HaSuHLoo(Tl Ty;L?)
4+ ,_L_L_Tl
||VU||£ZI T14’;22 L2)vahu”L2(;’11 T;?Lz)g
(3.23)

< CEwr i eJ*(Ts),
where (3.4) was used. Now if we combine (3.19)-(3.23) together, it is easy to obtain
) with the aid of (3.4). This completes the proof of Theorem 1.1.

(3.3
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4. Proof of Theorem 1.2

Based on the proof of Theorem 1.1, we only need to do the following estimates in
a different way. Some notations used here are the same with those in Theorem 1.1.

Firstly, we redo estimate for J1(3) as following

2
J1(3) =Z/U3-83uj~Ahuj dx
j=1

2 2 2 9
:—ZZ/Qkugﬁsujakuj dm—ZZ/u383kujakuj dx

j=1k=1 j=1k=1
2 2 1 2 2

:—ZZ/akU383Ujaku]' d$+§ZZ/83U3(aku])2 dx
Jj=1k=1 Jj=1k=1

SC/|83u3Hth|2 daz+C/|83uh||th|2 dx.
Then

T2
c / Osun |V nul? didr < C0sun | oa iz, 1yitin [Vl .
T L3 (T1,T2;LP3~1)
4836

3
< C||a3uhHL°‘3(T1,Tz;L53) thu"Lif?Tl,Tg;L?) ||Vvh“||£§(T1,T2;L2) < C€J2(T2)-

Secondly, for the estimate of Jy, we have the following

J4=—/(b-Vu)Ahb dx

2 2
= — Z /bzazuja,zkb] dx — Z /b281u38,3kb3 dx

i,5,k=1 i,k=1
3 2
- E E /b3~83uj~8,3kbj dx
j=1lk=1

§C/|83uh||vhb|2 dx+C’/|bHVhb|\Vth\ dx+C’/|b||th|\VVhb\ dx.
T
Similar techniques on / /|83uh\|vhb\2 dzdr yield the following
T

T
c /|83uh||Vhb|2 dudr < CeJ(Ty).
T1

The remaining parts are very similar to ones in the proof of Theorem 1.1; we skip it for
concision.

5. Proof of Theorem 1.3
Based on (3.2) in the proof of Theorem 1.1, this proof will be divided into two steps.

Step 1. The estimation of ||V,ulls+||V4b||2.
Due to (3.12)-(3.14), we have

J1:/(u-Vu)~Ahudx§/|Vu3\|83u|\vhu|+|Vu3\|th|2dx, (5.1)
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and Jy can be estimated as following:

ng—/(be)Ahudz

2 2 3 2
=— Z /blalbjaikquZ‘— Z /blalbgaku3d$—ZZ/b383bJ3,§ku]d$

i,5,k=1 i,k=1 j=1k=1
2 2
= — Z /bl&bJ@,%kujda:— Z /b181b3a;%kU3dl'+
i,,k=1 i,k=1
3 2
ZZ/(b3.a,§3bj.akuj+akb3.agbj-akuj)dx
j=1k=1

gc/ b [V bl [Vl dm+0/ bl [Vl [V 4b der
R3 R3
+c/ b5 [V b| | V'Vl dx+C/ b [Vl [V V| . (5.2)
R3 R3

Similarly

J3:/ (u-Vb)-Apbdx
R3

2 2
Z / ulalbj&%kb]dx—i— Z / Ui'aibg,-a]%kbg,dﬂ?
R3 R3

i,4,k=1 i,k=1
3 2
j=1k=1"R?
=50+ I+ TP

By integration by parts and taking the divergence-free condition into account, we obtain

2

i,7,k=1
2 2
=— Z /8ku181bj8kbj dr — Z /ula,%lbjakbj dx
i,7,k=1 i,7,k=1
2 2
2 2 1
i,5,k=1 i,j,k=1

SC/‘bthhquth d:c+C/|bhHVhb|\Vth\ dz.

In the same way, we get the estimates for JPEQ) and J:)ES) as follows:

2
J?EQ) = Z /ui-aibg,-aikbg, dzx
i,k=1
2

2
=— Z /8kuzé)zb38kb3 dr — Z /ulaﬁzbgakbg dxr

ik=1 ik=1
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[
NE

7,

1 ik=1

v

2
1
/(8kui~8,§ib3-b3+8ikui-8¢b3-b3) dl‘+§ Z /8iui~8kb3-6kb3 dx

Opu; - aﬁibg -bs3 +8ikuz -O0;bs - bg) dzr
k=1

2
1

) Z /(al%iui'8kb3'b3+8iui~8,%kb3.bg) dx
ik=1

go/\b?,uvhbuvvm dx+C/|b3||th||VVhb| da,

and
3 2
J§3):ZZ/“3'53bj'3§kbj dx
j=1k=1
3 2
:_ZZ/(aku:%'a:Sbj'akbj +u3'8§3bj'akbj) dx
j=1k=1
3 2
:ZZ/(agku3'bj'akbj+8ku3'bj'3§kbj) dx
j=1k=1
13,2
+§ZZ/83u3'akbj'8k;bj dx
j=1k=1
3 2
j=1k=1
1 3.2
j=1i,k=1
SC/Ibgl\VhbHVth\ dm+C/|b3||th||vvhb| dx
+/|bh\|vhb\|vvhu| dx+C/|bh||th||Vvhb| dz.
Owing to the estimates for Jél), 352), 353), we obtain

J3§0/|b3||Vhb||Vth| do+ C/|b3||th||VVhb| do
+/|bh||Vhb||Vth| dz+ O/|bh||th||VVhb| dz. (5.3)
Concerning the estimate for Jy, we have

J4:—/(b-Vu)Ahb dx

2 2

i,4,k=1 i,k=1
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—ZZ/bg Ogu; - Oyb; da

Jj=1k=1

§0/|b3||63u\|vvhb| da:+(]/\bh||vhb||vvhu| da. (5.4)
Thus, inserting (5.1)-(5.4) into (3.10), we obtain

o (Il + 193002 + (Il + 17,98

O/\vuSHagquhu\+\vu3|\vhu|2 dx+C/|b3||Vb||Vth| dx
=K1+ Ko+ K3+ Ky + Ks.

Firstly, suppose that (1.9) and (1.10) are satisfied, we show (u,b) remains smooth on
(0,T]. Since Ko, K4 and K3, K5 are similar, so we only estimate K, Kj.

K2=/|b3||Vb||Vth| dx
< C1bs 10 | Vlls |V V1l
< Olbs 20 [V5]13° V0l [V hullz
< Clbs]] 20| V] 3° ||vvhb||2 | ABI13° [ V'Vl

<0Hb3||w||Vb||2||Abllz (IIVVhbH%HIVthII%% (5.5)
and
K4:/|bh||Vhb||Vth| dx

<cljonl3" IIbhllé1 IVibllq HVVhUIlz

< el o IIé”G T (Vabl3 + (IIVVhUIISJrIIVVhbH%), (5.6)

1 1 22 1
where i + 11557 Liac 5= =1,q¢€ (5,6>, then 7 € <25,oo>. It follows from (5.5) and
(5.6) that

T2 T2
A< [ CKdric [ il v Ivosar
T
} , ) T
e /T b5 % 1 V31V Dl dr+C / BT | P b2

T

T 20q
0 [T ol 5T |Vl (5.7
T
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We deal with the right-hand side of (5.7) in the following. It follows from (3.22) and
(3.23), we have

T
Kydr <CeJ*(Ty).

Ty

ol IIthI“(6 ‘”HVhbllsz<Cth||£53<qq{ Toni IVabl[ Lo (1, y:12) < Ced?(T).

Similarly,

/||sz“(6 Y IIthI“(G 7| Vhul3dr < Ce*(T2).
Next, we estimate

[l Vb3 Vst ar<Csup feally K. (5.9)

ThW<1<Ts

Thus, if we can show that

sup ||bs|lw <C. (5.9)
Ty <r<Ts 3
then we obtain
J2<C+CK?. (5.10)

Now our main concern is to prove (5.9). We multiply the equation of b3 in (1.1)
atb?, + (’LL' V)bg — (bV)’U,g, — Ab3 =0
by |b3|%b3 and integrate over R3, we obtain

3d
= bl ¥ 3+ o

s/\b|\w3|<|b3\§>g dxs/\bguwswabﬁ)% dx+/|bh||w3|<\bg|%>% dz
s/\w3|<|b3|%>2 dx+/|bh||w3|<|b3|%>% dz

5 5, L
<IVuslipe 1313 [1%2se_ + 10n g, I Veell21b3]7 117 145,
B1—2 5B3—10
286 1087 1087 887 —30 9

<C||Vusl| 57 [11bs]3 15+ Cllball 577 11V ull 57 [l1ba] S 157 + 25 1VIbsl3 13

SElIv1s113

28¢ 1087 1087

5 9 5
<OV 13207 ol 5 18-+ CUomIZ 7 190l T (Wbl 13+1) + o5 191051 .
(5.11)

Then (5.9) holds true by applying Gronwall’s inequality to (5.11).
Step 2. The estimation of ||Vul|s+ || Vb||2.
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Multiplying the first two equations of (1.1) by Au and Ab, we obtain
1d

2 dt
:/[(u'Vu)Au—(b-Vb)Au—l—(u-Vb)Ab—(b-Vu)Ab] dx

(Iwull3 =+ 1913) + (Il aul} + 1 A013)

§0/|vh(u,b)\-|V(u,b)|2dx

< C|IVi(u,0) 2]V (u,b)|}

<OV ()21 (u,b) |3 IV Vi (u, b) [[2]| Au,b)]|3 - (5.12)
Then integrating in time yields

4

T>
K1) <C4C s ||vh<u,b>||2</ |Vu§+|w|2dr>
T

T1<7t<Ts
Ts B T> i
(/ |vvhu|§+vvhbn2d7> (/ ||Au||§+||Ab||2dT>
T1 Tl
<C+CJ-n-J K2<C+CJ? nK2. (5.13)

Gathering (5.10) into (5.13), and taking n sufficiently small, we obtain that K?(T3) <C,
it implies that (3.2) holds true.
Secondly, we prove regularity in conditions (1.11) and (1.12). As in the first case,

it sufficies to estimate fgf Kidr, fT:? Kydr, f;:z Kydr. In view of (1.10), for any S €

1
<75,oo>, there exists an ag which satisfies the assumption of (1.11). By using (3.22)

and (3.23), we obtain

Ts

K1d7§0< / ||VU3||(§6dT) " 2 (my)

T
<C(Ty—T)) (/ Vu3||gfﬁdf) - J(Ty) <O(Ty—Ty)eJ*(Ty). (5.14)

It is easy to find that (5.8) is also right, we just have some changes in (5.11)
3 d
10 dt
5%
SOOI _r2s5_[[Vus|lgsll1bs]® [ ® 125,
s —1) 5(B6—D)

5 9 5 5.1
||\bs\3||§+%||V|b3|3||§§/|b|\Vu3|(|bs|3)5 dx

3__5

3 5

3__5 l+i 5 % _ R 7 l_l’_i
SOHb”éL e ||VbHé1 456HVU3||66|||I)3|2H2<4 4ﬁ6)Hv|b3|§H§(4 4ﬁ6)

10(B6+5) 408 14(3B6—5)

= = 5 9 5
<CIVOll T (Vs 57 b ¥ 1,77+ 2519 1es 115

10(Bg+5) 408g

= = 5 9 5
<CYIVblly™ " Vgl 577 (1o 313+1) + =5 V10 5113 (5.15)

then we apply Grénwall’s inequality in (5.15), it follows (5.9). For the term fgf Kydr,
we obtain that
Ts

Kadr < [ ol V0] g, [Vl dr
Ty 72
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387—6 Br+6
<C / 1ol 93l 9V nully™ dr
367-6 Br+6
< C||bh||L&7(T1,T2;LB7) ”vhb”LZfZThTQ;Lz) vahu||L226(7T17T2;L2)

<CeJ*(T).

Then we can repeat Step 2 in the first case to obtain K?(Ty) < C, it implies that (3.2)
holds true. This completes the proof of Theorem 1.3.
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