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HYPERBOLIC CONSENSUS GAMES∗

RINALDO M. COLOMBO† AND MAURO GARAVELLO‡

Abstract. We introduce the use of conservation laws in multi-player consensus games. Indeed,
a general non-anticipative strategy is proposed within a rigorous analytic framework. By means of
numerical integrations, we describe peculiar features of this strategy, such as its effectiveness, the
automatic formation of coalitions and the effects of competitions.
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1. Introduction
A group of “leaders”, or broadcasting agents, aims at getting the consensus of a

variety of individuals. We identify each individual’s opinion with a “position” p moving
in RN . It is then natural to describe the leaders through their “positions” P1,P2,. ..,Pk,
also in RN . We are thus lead to the general system of ordinary differential equation

ṗ=v (t,p,P1(t),. ..,Pk(t))

t being time. The vector field v describes the interaction among individuals and agents,
which can be attractive, repulsive, or a mixture of the two. Clearly, no linearity as-
sumption can be reasonably required on v, otherwise the agent – individuals interaction
increases as their distance increases.

The task of the agent Pi, be it attractive or repulsive, is to maximize its own
consensus, i.e., to drive the maximal amount of individuals (or their opinions) as near
as possible to its own target region Ti at time T , for a suitable non-empty Ti⊂RN . The
time horizon T is finite and the same for all agents.

The presence of a high number of individuals, as well as of uncertainties in their
initial positions or specific movements, suggests to describe the dynamics underneath
the present problem through the continuity equation

∂tρ+divx (ρv (t,x,P1(t),. ..,Pk(t))) = 0, (1.1)

where the description of each individual is substituted by that of the individuals’ den-
sity distribution ρ=ρ(t,x), while the goal of the i–th leader is formalized through the
minimization of the quantity

Ji=
∫
RN

ρ(T,x)d(x,Ti) dx (1.2)

where d(x,Ti) = infy∈Ti ‖x−y‖ is the distance between the position x and the target Ti.
Aim of this paper is to formalize the above setting, to provide basic well posedness

theorems and to initiate the search for controls/strategies to tackle the above problem.
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Indeed, the case k= 1 of a single broadcasting agent leads to a control problem, while
the case k>1 of k possibly competing agents fits into game theory.

As it is usual in control theory, rather than the agents’ positions Pi, it is preferable to
use as controls/strategies the agents’ speeds ui, with ui∈RN subject to a boundedness
constraint of the type ‖ui‖≤U , for a positive U . Introducing the initial individuals’
distribution ρ̄ and agents’ positions P̄1,. ..,P̄k, the dynamics is then described by the
Cauchy Problem{

∂tρ+divx (ρv(t,x,P1(t),. ..,Pk(t))) = 0
ρ(0,x) = ρ̄(x)

where

{
Ṗi=ui(t)
Pi(0) = P̄i

i= 1,. ..,k (1.3)

where the cost functionals Ji are as in (1.2). This structure is amenable to the in-
troduction of several control/game theoretic concepts, from optimal controls to Nash
equilibria, and to the search for their existence. Below we initiate this study providing
the basic analytic framework and tackling the problem of control/strategies that min-
imize costs of the type (1.2). In particular, we introduce a control/strategy with the
following properties:

(1) it is non-anticipative, i.e. its value at time t requires knowledge neither of the state
of the systems nor of any others’ strategy at times greater than t;

(2) it is explicit, i.e. we provide it through a fully computable closed-form integral
formula, see Section 2;

(3) it is effective, i.e. not only is it competitive with other simple strategies, but it also
leads to the automatic cooperation of agents having the same goal, see Section 3;

(4) it is versatile, i.e. it applies to any sort of agent–individuals interaction: long/short
range, attractive/repulsive, .. . as well as to both competitive or cooperative agents.

A posteriori, the strategy defined below can be seen as a version of the instantaneous
control, see [1, 13,16,17,19], specialized to the present setting (1.3).

Note that this framework, restricted to the case N = 2, allows also to describe
the individual–continuum interactions considered, for instance, in [10], see also [8, 9],
and [11], where an entirely different analytic structure is exploited. From this point of
view, the present results are related to the vast literature on crowd and swarm dynamics,
see the recent works [1,2,6,7,13,15,23–25,28] or the review [3] and the references therein.

Concerning our choice of the conservation law (1.1), we stress that typical of equa-
tions of this kind is the finite speed both of propagation of information and of the sup-
port of the density. This is in contrast with the typical situation in standard differential
games ruled by parabolic equations. The present setting is completely independent of
any kinetic approach such as that pursued in [1] and does not require any moment clo-
sure procedure. Indeed, similarly to the well known situation in fluid dynamics, it can
be of interest to address a further justification of (1.3) from a kinetic point of view.

In the next section we first provide the basic notation and definitions, then we pro-
vide basic well posedness results and introduce a reasonable non-anticipative strategy.
Section 3 is devoted to sample applications, while all analytic proofs are deferred to
Section 4.

2. A non-anticipative strategy
Throughout, the positive time T and the maximal speed U are fixed. The closed

ball in Rm centered at u with radius U is BRm(u,U) and, when the space is clear, we
shorten it to B(u,U).

Introduce P ≡ (P1,. ..,Pk), so that P ∈Rm with m=kN . Below, a recurrent as-
sumption on the function v in (1.3) is the following:



COLOMBO AND GARAVELLO 1007

(v): The vector field v∈C0([0,T ]×RN ×Rm;RN ) is such that

• for all t∈ [0,T ] and P ∈Rm, the map x→v(t,x,P ) is in C1,1(RN ;RN );

• for all t∈ [0,T ] and x∈RN , the map P→v(t,x,P ) is in C0,1(Rm;RN ).

With reference to control or game theoretic problem presented in the Introduction,
below we consider the slightly more general expression

Ji=
∫
RN

ρ(T,x)ψi(x) dx (2.1)

which reduces to (1.2) in the case ψi(x) =d(x,Ti).
The i-th leader Pi seeks a control ui∈L∞

(
[0,T ];B(0,U)

)
that minimizes the

cost (2.1). Assume first that Pi knows in advance the strategies uj , for j 6= i, of the
other controllers Pj . Then, the existence of an optimal control follows thanks to the
well posedness of (1.3).

Proposition 2.1. Fix positive T and U . Let v be bounded and satisfy (v), P̄j ∈RN
for j= 1,. ..,k and uj ∈L∞([0,T ];B(0,U)) for j= 1,. ..,k with j 6= i. In each of the two
cases

ψi∈L∞(RN ;R) and ρ̄∈L1(RN ;R) or
ψi∈L∞loc(RN ;R) and ρ̄∈L1(RN ;R) compactly supported,

call ρ the solution to (1.3). Then, the map

Ji : L∞
(

[0,T ];B(0,U)
)
→ R

ui →
∫
RN

ρ(T,x)ψi(x) dx
(2.2)

is weak? sequentially continuous in L∞ and there exists an optimal control u∗i minimiz-
ing Ji.
We refer to Corollary 4.1 for the analytic details.

Note however that the approach on which Proposition 2.1 is based can hardly be
used in the present game theoretic setting. Indeed, the possible necessary conditions
for a control u∗ to minimize J in (2.2) could not be used in a game theoretic setting.
Such conditions would require that Pi is aware of all other strategies uj , j 6= i, on the
whole time interval [0,T ]. This ability to foresee the future choices of the competitors
is unreasonable whenever different agents are confronting with each other.

We now proceed towards the definition of a non-anticipative strategy. To this aim,
always considering an arbitrary number of controllers, we fix our attention on Pi and
we simplify the notation setting P =Pi, u=ui, J =Ji and comprising within the time
dependence of the function v all the other strategies uj , for j 6= i, obtaining the problem

{
∂tρ+divx (ρv(t,x,P (t))) = 0
ρ(0,x) = ρ̄(x)

where

{
Ṗ =u(t)
P (0) = P̄ .

(2.3)

In this setting, we construct below a non-anticipative strategy u for the controller P ,
i.e., a strategy u=u(t) that depends only on ρ at times s∈ [0,t[. For a wider discussion
about non-anticipative strategies in the framework of sub–optimal techniques, we refer
to [13].
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For a positive (suitably small) ∆t, we seek the best choice of a speed w∈B(0,U)
on the interval [t,t+∆t] such that the solution ρw =ρw(τ,x) to{

∂τρw+divx (ρw v(t,x,P (t)+(τ− t)w)) = 0
ρw(t,x) =ρ(t,x)

τ ∈ [t,t+∆t] (2.4)

is likely to best contribute to decreasing the value of J . Remark that the dependence of
v on t in (2.4) is frozen at time t. It is this choice that will later lead to a non-anticipative
strategy. The proof that (2.4) is well posed is deferred to Lemma 4.4.

In the case of the functional (1.2), a natural choice for the agent P at time t is then
to choose a speed w on the time interval [t,t+∆t] to myopically minimize the myopic
functional

Jt,∆t : RN → R

w →
∫
RN

ρw(t+∆t,x)ψ(x)dx
(2.5)

see also [17, 22]. The main theorem now follows, providing an effective hint on a non-
anticipative optimal choice of w.

Theorem 2.1. Fix T >0 and U >0. Let v∈C0,1([0,T ]×RN ×RN ;RN ) and ψ∈
L∞(RN ;R). As initial data in (2.3), choose a boundedly supported ρ̄∈L1(RN ;R) and
a P̄ ∈RN . Define ρ as the solution to (2.3) and ρw as the solution to (2.4), for a
w∈B(0,U).

Then, for any t∈ [0,T [ and ∆t∈ ]0,T − t] the map (2.5) is well defined and Lipschitz
continuous.

Moreover, if v∈C2([0,T ]×RN ×RN ;RN ), the map (2.5) admits the expansion

Jt,∆t(w+δw) =Jt,∆t(w)+gradwJt,∆t(w) ·δw+o(δw) as δw→0 (2.6)

where, as ∆t→0,

gradwJt,∆t(w) =
(∆t)2

2

∫
RN

gradxρ(t,x)DP v (t,x,P (t))ψ(x)dx

− (∆t)2

2

∫
RN

ρ(t,x)gradP divxv (t,x,P (t))ψ(x)dx+o(∆t)2. (2.7)

The proof is deferred to Section 4. On the basis of Theorem 2.1, the definition of an
effective non-anticipative strategy for Pi can be easily achieved as follows. Split the
interval [0,T ] in smaller portions [t`,t`+1[, where t`= `∆t. On each of them, define
ui(t) =w`, where w` minimizes on B(0,U) the cost Jt`,∆t defined in (2.5). The leading
term in the right-hand side of (2.7) is independent of w, so that for ∆t small it is
reasonable to choose

w`=−
U

∫
RN

[
gradxρ(t`,x)DP v (t`,x,Pi(t`))−ρ(t`,x) gradP divxv (t`,x,Pi(t`))

]
ψ(x)dx∥∥∥∥∫

RN

[
gradxρ(t`,x)DP v(t`,x,Pi(t`))−ρ(t`,x) gradP divxv(t`,x,Pi(t`))

]
ψ(x)dx

∥∥∥∥
as long as the denominator above does not vanish, in which case we set w`= 0. Remark
that, through the term ρ`, the right-hand side above depends on all the past values
w0,. ..,w`−1 attained by ui. Formally, in the limit ∆t→0, the above relation thus leads
to an integro-differential equation.
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3. Qualitative features of the non-anticipative strategy
This section shows that the strategy (2.7) can be effectively used in various situa-

tions. To this aim, we present below some numerical integrations of the game (1.3)–(1.2).
For the function v in (1.3), we typically choose an expression of the form

v(t,x,P ) =

k∑
i=1

ai (‖x−Pi‖) (Pi−x), (3.1)

where P ≡ (P1,. ..,Pk) and ai : R+→R, i∈{1, ·· · ,k}, is chosen so that (v) holds. In
other words, at time t, the velocity v(t,x,P ) of the individual at x is the sum of k
vectors, each of them parallel to the straight line through x and the agent’s position Pi
and its strength depends on the distance between x and Pi. Typically, the functions ai
are chosen so that for all t and P , the map x→v(t,x,P ) is either compactly supported,
or vanishes as ‖x‖→+∞. Note that ai>0 whenever Pi is attractive, while ai<0
in the repulsive case. In the examples below, each target Ti is a single point and,
correspondingly, the cost ψi is the distance from that point.

With reference to (2.3), in each of the integrations below we use the Lax–Friedrichs
algorithm [18, Example 3.2] or [21, Section 4.6] with dimensional splitting [18, Para-
graph 4.1] or [21, Section 19.5] to integrate the conservation law, while the usual explicit
forward Euler method provides the “exact” (up to rounding errors) solutions to the or-
dinary differential equation. To ease the presentations of the results, we fix the space
dimension N = 2. Correspondingly, in each of the rectangular domains Ω considered
below, we fix a uniform regular rectangular grid consisting of nx×ny points.

3.1. Consensus pursued by a single attractive agent. Consider (2.3) in
the numerical domain Ω = [0,10]× [0,10], with

N = 2,
k= 1,
m= 2,

a1(ξ) = 1
0.1+ξ e

−0.1ξ2

,

v(t,x,P ) = (3.1),
U = 1.5,

ρ̄=χ
[6,8]×[2,8]

,

P̄1≡ (3,2),

T1 ={(1,8)},
T = 10.

(3.2)

We now compute the solution to (1.3) with u piecewise constant given by the strat-
egy (2.7), constant on intervals [j∆t,(j+1)∆t], where ∆t= 0.01. The resulting solu-
tion, obtained on a grid of nx×ny = 6000×6000 cells, is displayed in Figure 3.1.

The strategy relying on Theorem 2.1 can be seen as myopic, in the sense that it is
based on an optimization over a short time interval, namely from t to t+∆t. However,
remarkably, in the present case the leader P1 does not move directly towards the target
T1. On the contrary, it first moves to the right to collect a higher quantity of individuals
and then moves back to the left; see Figure 3.1.

The resulting cost (1.2) is J1 = 25.4. Choosing a constant u, so that P1 moves along
a straight line, leaves P̄1 at t= 0 and reaches T at time t=T , leads to the higher cost
69.6.

3.2. Two competing attractive agents. We now test how effective the
strategy (2.7) can be when competing against an agent driven by an a priori assigned
strategy. More precisely, we let Ω = [0,10]× [0,10], with

N = 2,
k= 2,
m= 4,

a1(ξ) = 1
0.1+ξ e

−0.2ξ2

,

a2(ξ) = 1
0.1+ξ e

−0.2ξ2

,

v(t,x,P ) = (3.1),
U = 1.5,

ρ̄=χ
[7,9]×[3,7]

,

P̄1 = (8,5),
P̄2 = (8,5),

T1 ={(1,9)},
T2 ={(1,1)},
T = 10.

(3.3)
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Fig. 3.1. Numerical integration of (1.3) with the strategy (2.7) and the parameters (3.2). The
first 7 figures depict the contour plots of the solution ρ and the position of P1, the bottom right diagram
displays the trajectory of P1, whose initial position is (3,2), drawn as a black circle. Note that the
leader first moves to the right and then turns to the left.

Fig. 3.2. Numerical integration of (1.3)–(3.3) with two players. P1 is assigned strategy (3.4),
while P2 uses (2.7) with ∆t= 0,01. The first 7 figures depict the contour plots of the solution ρ, the
bottom right diagram displays the trajectories of P1 and P2, whose initial positions are as in (3.3).
The resulting cost of P2 is lower than that of P1, see Table 3.1.

The agent P1 is assigned the rectilinear trajectory with constant velocity

P1(t) =

[
8
5

]
+

[
−0.7
0.4

]
t, corresponding to u1(t) =

[
−0.7
0.4

]
, (3.4)

towards its target located at the point (1,9).
The player P2 is assigned the strategy u2 by means of (2.7), with ∆t= 0.01. The

result, obtained on a grid of nx×ny = 3000×3000 cells, is shown in Figure 3.2: strat-
egy (2.7) leads to the victory of P2. Here, P2 first moves slightly up, superimposing its
attraction to that of P1. Then, it bends downwards towards T2, see the last picture in
Figure 3.2. As a result, P2 attracts more individuals than P1 and wins the game, see
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the costs in the first line of Table 3.1.
For completeness, we compare the situation described above with that of P1 playing

alone, P2 being absent. Note the significant variation in the cost J1 of P1 due to P2

entering the game, see the costs in the second line of Table 3.1.
As a further test, we consider the case of both players using strategy (2.7). The

corresponding result, see the last line in Table 3.1, confirms that if the two players have
the same effect on the individuals, if the initial configuration is symmetric and if both
players use strategy (2.7), then the players break even.

Strategy of P1 Strategy of P2 Cost J1 of P1 Cost J2 of P2

(3.4) (2.7) 40.2 29.2
(3.4) (absent) 19.9 //
(2.7) (2.7) 33.2 33.2

Table 3.1. Values of the costs J1 and J2 resulting from (1.3)–(3.3) with different strategies. The
first line shows that strategy (2.7) wins against (3.4). On the second line, P1 plays alone. The third
line correctly shows that, in a symmetric situation, if both players use strategy (2.7), then the result
is even.

Fig. 3.3. Integration of (2.3) with parameters (3.5). The 6 players are assigned the same target
and automatically cooperate. After time T = 5, a portion of the individuals escapes the numerical
domain, distorting the computation of the cost.

3.3. Automatic cooperation among repulsive agents. The strategy in-
troduced in Section 2 fosters a sort of automatic cooperation among agents having the
same goal. Consider (2.3) with cost (1.2) and parameters, where i= 1,. ..,6,

N = 2,
k= 6,
m= 12,
T = 5,

ai(ξ) =− 1
0.1+ξ e

−0.2ξ2

,

v(t,x,P ) = (3.1),
U = 1.5,

ρ̄=χ
[6,8]×[3,7]

,

P̄1 = (3,2),
P̄2 = (3,4),
P̄3 = (3,6),

P̄4 = (3,8),
P̄5 = (9,4),
P̄6 = (9,6),
Ti={(5,5)}.

(3.5)

Then, the application of the strategy defined in Section 2, with ∆t= 0.01, automatically
results in an apparently effective team play, see Figure 3.3.
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Fig. 3.4. Upper line, integration of (2.3) with parameters (3.6) and with the same cost for all
players ψ1(x) =ψ2(x) =ψ3(x) =d(x,T1). In the lower line, we set ψ1 =ψ3 =−ψ2 as in (3.7). As a
result, P1 and P3 steal most of the followers to P2. In both cases, P1 and P3 are repulsive, while P2 is
attracting. On the first line, P2 and P3 end up superimposing to each other while, on the second line,
all 3 controllers are superimposed at the final time.

This integration is computed on the numerical domain Ω = [0,10]× [0,10] through
a grid of nx×ny = 3000×3000 cells. The resulting final cost, common to all players, is
15.5.

We stress that here we use the terms “automatic cooperation” with a naive, though
meaningful, content. Indeed, the different players do not superimpose and their positions
evolve with an apparently combined motion resulting in a effective confinement of the
individuals. Remark that each controller moves according to the strategy outlined in
Section 2, without any knowledge of each other’s future trajectory.

3.4. Competition/cooperation among attractive/repulsive agents. Fi-
nally, the following integrations of (2.3) show first that cooperation arises also between
attractive and repulsive agents. Then, it emphasizes the clear difference between coop-
eration and competition. Consider first the case

N = 2,
k= 3,
m= 6,
T = 5,

a1(ξ) =a3(ξ) =− 1
0.1+ξ e

−0.2ξ2

,

a2(ξ) = 1
0.1+ξ e

−0.2ξ2

,

v(t,x,P ) = (3.1),
U = 1.5,

ρ̄=χ
[1,2]×[3,7]

,

P̄1 = (1,1),
P̄2 = (1,5),
P̄3 = (1,9),

T1 ={(9,5)},
T2 ={(9,5)},
T3 ={(9,5)}.

(3.6)

whose solution is depicted in Figure 3.4, first line.

The final cost is 7.0, the density ρ being highly concentrated near to the target T1.
Then, we keep the same parameters, but modify the costs of P1 and P3 setting

ψ1(x) =ψ3(x) =−d(x,T1) and ψ2(x) =d(x,T1). (3.7)

The resulting evolution is in Figure 3.4, second line. Note that P1 and P3 now follow
a quite different trajectory, “cutting” the density ρ so that the final cost of P2 raises
to 26.0. In both integrations, the mesh consists of nx×ny = 3000×3000 points and
∆t= 0.01.
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4. Analytic proofs
Throughout, for a,b∈R, denote 〈a,b〉= [min{a,b},max{a,b}]. By LN we mean the

Lebesgue measure in RN . In R, |· | is the absolute value, while ‖·‖ is the Euclidean norm
in RN . The norm in the functional space F is denoted ‖·‖F . The space C0(A;Rn) of
the Rn-valued functions defined on the subset A of Rm is equipped with ‖f‖C0(A;Rn) =

supx∈A‖f(x)‖. Throughout, TV(·) stands for the total variation, see [14, Chapter 5].
For a measurable function ρ defined on RN , sptρ is its support, see [5, Proposition 4.17].
Throughout, the continuous dependence of v on t, as required in (v), can be easily
relaxed to mere measurability.

The following result on ordinary differential equations deserves being recalled.

Lemma 4.1 ( [4, Chapter 3]). Let V1,V2∈C0([0,T ]×RN ;RN ) be such that the maps
x→Vi(t,x) are in C0,1(RN ;RN ) for i= 1,2 and for all t∈ [0,T ]. Then, for all (t̄, x̄)∈
[0,T ]×RN and i∈{1,2}, the Cauchy Problem{

ẋ=Vi(t,x)
x(t̄) = x̄

(4.1)

admits, on the interval [0,T ], the unique solution t→Xi(t; t̄, x̄) and the following esti-
mate holds, for all t∈ [0,T ]:

‖X1(t; t̄, x̄)−X2(t; t̄, x̄)‖≤‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R))

×exp
(
‖DxV2‖L∞(〈t̄,t〉×RN ;RN×N )|t− t̄|

)
. (4.2)

If moreover x→Vi(t,x)∈C1(RN ;RN ) for all t∈ [0,T ], the map x→Xi(t; t̄, x̄) is differ-
entiable and its derivative t→DxXi(t; t̄, x̄) solves the linear matrix ordinary differential
equation {

Ẏ =DxVi (t,Xi(t; t̄, x̄))Y
Y (t̄) = Id.

(4.3)

Lemma 4.2. Let V ∈C0([0,T ]×RN ;RN ) be such that the map x→V (t,x) is in
C1(RN ;RN ) for i= 1,2 and for all t∈ [0,T ]. Then, for all t̄∈ [0,T [, i∈{1,2}, and ρ̄∈
L1(RN ;R), the Cauchy Problem{

∂tρ+divx (ρV (t,x)) = 0
ρ(t̄,x) = ρ̄(x)

(4.4)

admits, on the interval [t̄,T ], the unique Kružkov solution

ρ(t,x) = ρ̄(X(t̄;t,x)) exp

(
−
∫ t

t̄

divxV (τ,X(τ ;t,x))dτ

)
(4.5)

and if spt ρ̄ is bounded, then

sptρ(t)⊆B
(

sptρ(t̄),‖V ‖L∞(〈t̄,t〉×spt ρ̄;RN )|t− t̄|e
‖DxV ‖L∞(〈t̄,t〉×RN ;RN×N )|t−t̄|

)
. (4.6)

The fact that (4.5) solves (4.4) in Kružkov sense follows from [9, Lemma 5.1], see
also [12, Lemma 2.7]. The bound (4.6) is a direct consequence of [12, Proposition 2.8].

Lemma 4.3. Let V1,V2∈C0([0,T ]×RN ;RN ) be such that both maps x→Vi(t,x),
i= 1,2, are in C1,1([0,T ]×RN ;RN ). If ρ̄∈C0,1(RN ;R), then

‖ρ1(t)−ρ2(t)‖L1(RN ;R)
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≤‖gradx ρ̄‖L∞(RN ;RN ) L
N
(

spt ρ̄,CeC|t−t̄||t− t̄|
)
e2C|t−t̄|‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R))

+
(
‖divx (V1−V2)‖L∞(〈t̄,t〉×RN ;R) +C‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R))

)
×‖ρ̄‖L1(RN ;R)e

2C|t−t̄||t− t̄|,

where

C= max
i=1,2


‖Vi‖L∞(〈t̄,t〉×RN ;RN )

‖DxVi‖L∞(〈t̄,t〉×RN ;RN×N )

‖gradxdivxVi‖L∞(〈t̄,t〉×RN ;RN )

. (4.7)

Proof. Using (4.5) and the triangle inequality, we have

‖ρ1(t)−ρ2(t)‖L1(RN ;R)≤ (I)+(II)+(III)

where

(I) =

∫
RN

|ρ̄(X1(t̄;t,x))− ρ̄(X2(t̄;t,x))|exp

∣∣∣∣∫ t

t̄

divxV1 (τ,X1(τ ;t,x))dτ

∣∣∣∣dx
(II) =

∫
RN

ρ̄(X2(t̄;t,x))

×
∣∣∣∣exp

[
−
∫ t

t̄

divxV1 (τ,X1(τ ;t,x))dτ

]
−exp

[
−
∫ t

t̄

divxV2 (τ,X1(τ ;t,x))dτ

]∣∣∣∣dx
(III) =

∫
RN

ρ̄(X2(t̄;t,x))

×
∣∣∣∣exp

[
−
∫ t

t̄

divxV2 (τ,X1(τ ;t,x))dτ

]
−exp

[
−
∫ t

t̄

divxV2 (τ,X2(τ ;t,x))dτ

]∣∣∣∣dx
and we now bound the three terms separately. To estimate (I), observe that by (4.6)

2⋃
i=1

sptρi(t)⊆B
(

spt ρ̄,max
i=1,2

‖Vi‖L∞(〈t̄,t〉×spt ρ̄;RN ) exp
(
‖DxVi‖L∞(〈t̄,t〉×RN ;RN )|t− t̄|

)
|t− t̄|

)
and, using (4.2),

(I) =

∫
⋃2

i=1 sptρi(t)

|ρ̄(X1(t̄;t,x))− ρ̄(X2(t̄;t,x))|exp

∣∣∣∣∫ t

t̄

divxV1 (τ,X1(τ ;t,x))dτ

∣∣∣∣dx
≤
∫
⋃2

i=1 sptρi(t)

‖gradx ρ̄‖L∞(RN ;RN )‖X1(t̄;t,x)−X2(t̄;t,x)‖

×exp
(
‖DxV1‖L∞(〈t̄,t〉×RN ;RN )|t− t̄|

)
dx

≤‖gradx ρ̄‖L∞(RN ;RN )

×LN
(

spt ρ̄,max
i=1,2

‖Vi‖L∞(〈t̄,t〉×spt ρ̄;RN ) exp
(
‖DxVi‖L∞(〈t̄,t〉×RN ;RN×N )|t− t̄|

)
|t− t̄|

)
×‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R))

×exp
((
‖DxV1‖L∞((〈t̄,t〉×RN ;RN×N ) +‖DxV2‖L∞((〈t̄,t〉×RN ;RN×N )

)
|t− t̄|

)
.
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Passing to the estimate of (II), using the inequality
∣∣ea−eb∣∣≤emax{a,b}|a−b|,∣∣∣∣exp

(
−
∫ t

t̄

divxV1 (τ,X1(τ ;t,x))dτ

)
−exp

(
−
∫ t

t̄

divxV2 (τ,X1(τ ;t,x))dτ

)∣∣∣∣
≤exp

(
max
i=1,2

‖DxVi‖L∞(〈t̄,t〉×RN ;RN×N ) |t− t̄|
)

×
∣∣∣∣∫ t

t̄

|divxV2 (τ,X1(τ ;t,x))−divxV1 (τ,X1(τ ;t,x))|dτ
∣∣∣∣

≤exp

(
max
i=1,2

‖DxVi‖L∞(〈t̄,t〉×RN ;RN×N ) |t− t̄|
)
‖divxV1−divxV2‖L∞(〈t̄,t〉×RN ;R) |t− t̄|

so that

(II)≤ exp

(
max
i=1,2

‖DxVi‖L∞(〈t̄,t〉×RN ;RN×N ) |t− t̄|
)
‖divx (V1−V2)‖L∞(〈t̄,t〉×RN ;R)

×‖ρ̄‖L1(RN ;R) |t− t̄|.

To bound (III), use (4.2) and proceed similarly:∣∣∣∣exp

(
−
∫ t

t̄

divxV2 (τ,X1(τ ;t,x))dτ

)
−exp

(
−
∫ t

t̄

divxV2 (τ,X2(τ ;t,x))dτ

)∣∣∣∣
≤ exp

(
‖DxV2‖L∞(〈t̄,t〉×RN ;RN×N )|t− t̄|

)
×
∣∣∣∣∫ t

t̄

|divxV2 (τ,X1(τ ;t,x))−divxV2 (τ,X2(τ ;t,x))|dτ
∣∣∣∣

≤ exp
(

2‖DxV2‖L∞(〈t̄,t〉×RN ;RN×N )|t− t̄|
)
‖gradxdivxV2‖L∞(〈t̄,t〉×RN ;RN )

×‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R)) |t− t̄|

so that

(III)≤exp
(

2‖DxV2‖L∞(〈t̄,t〉×RN ;RN×N )|t− t̄|
)
‖ρ̄‖L1(RN ;R)

×‖gradxdivxV2‖L∞(〈t̄,t〉×RN ;RN )‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R)) |t− t̄|.

Summing up the expressions obtained:

‖ρ1(t)−ρ2(t)‖L1(RN ;R)

≤‖gradx ρ̄‖L∞(RN ;RN ) ‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R))

×LN
(

spt ρ̄,max
i=1,2

‖Vi‖L∞(〈t̄,t〉×spt ρ̄) exp
(
‖DxVi‖L∞(〈t̄,t〉×RN )|t− t̄|

)
|t− t̄|

)
×exp

((
‖DxV1‖L∞((〈t̄,t〉×RN ;RN×N ) +‖DxV2‖L∞((〈t̄,t〉×RN ;RN×N )

)
|t− t̄|

)
+exp

[
max
i=1,2

‖DxVi‖L∞(〈t̄,t〉×RN )|t− t̄|
]
‖divx (V1−V2)‖L∞(〈t̄,t〉×RN ;R)‖ρ̄‖L1(RN ;R)|t− t̄|

+exp
(

2‖DxV2‖L∞(〈t̄,t〉×RN ;RN×N )|t− t̄|
)
‖ρ̄‖L1(RN ;R) ‖gradxdivxV2‖L∞(〈t̄,t〉×RN ;RN )

×‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R)) |t− t̄|.
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Introduce C as in (4.7). Then,

‖ρ1(t)−ρ2(t)‖L1(RN ;R)

≤‖gradx ρ̄‖L∞(RN ;RN )L
N
(

spt ρ̄,CeC|t−t̄||t− t̄|
)
e2C|t−t̄|‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R))

+‖ρ̄‖L1(RN ;R) e
2C|t−t̄| ‖divx (V1−V2)‖L∞(〈t̄,t〉×RN ;R) |t− t̄|

+‖ρ̄‖L1(RN ;R)C e
2C|t−t̄| ‖V1−V2‖L1(〈t̄,t〉;L∞(RN ;R)) |t− t̄|

completing the proof.

We now prove well posedness and basic estimates for (1.3) or, equivalently, (2.3).

Proposition 4.1. Fix positive T and U . Let v∈C0([0,T ]×RN ×Rm;RN ) be such
that for all t∈ [0,T ] and P ∈Rm, the map x→v(t,x,P ) is in C0,1(RN ;RN ). For any
ρ̄∈L1(RN ;R), P̄ ∈Rm and u∈L∞([0,T ];BRm(0,U)), problem (2.3) admits the unique
solution

ρ(t,x) = ρ̄(X(0;t,x))exp

(
−
∫ t

0

divxv (τ,X(τ ;t,x),P (τ))dτ

)

where t→X(t; t̄, x̄) solves

{
ẋ=v (t,x,P (t))
x(t̄) = x̄

and P (t) = P̄ +

∫ t

0

u(τ)dτ for t∈ [0,T ].

Moreover, if v satisfies (v) and u1,u2∈L∞([0,T ];BRm(0,U)), then (with obvious no-
tation) for all t∈ [0,T ],

‖X1(t;0,x̄)−X2(t;0,x̄)‖≤CteCt ‖P1−P2‖C0([0,t];Rm) (4.8)

‖ρ1(t)−ρ2(t)‖L1(RN ;R)≤C
(
‖gradx ρ̄‖L∞(RN ;RN )L

N
(
B(spt ρ̄,CteCt)

)
+‖ρ̄‖L1(RN ;R) (1+Ct)

)
te2Ct‖P1−P2‖C0([0,t];Rm) (4.9)

where C is independent of the initial datum, more precisely:

C= max

{
‖v‖L∞([0,t]×RN×Rm;RN ), ‖Dxv‖L∞([0,t]×RN×Rm;RN×N ),

‖DP v‖L∞([0,t]×RN×Rm;RN×m), ‖gradxdivxv‖L∞([0,t]×RN×Rm;RN )

}
. (4.10)

Here, the term “solution” means Kružkov solution [20, Definition 1], which is also a
strong solution as soon as ρ̄ is smooth, see [26].

Proof. The first statement follows from Lemma 4.2. Define Vi(t,x) =v (t,x,Pi(t)),

with Pi(t) = P̄ +
∫ t

0
ui(τ)dτ , for i= 1,2. Then, direct computations yield:

‖Vi‖L∞([0,t]×RN ;RN )≤‖v‖L∞([0,t]×RN×Rm;RN ).

‖DxVi‖L∞([0,t]×RN ;RN×N ) =‖Dxv‖L∞([0,t]×RN×Rm;RN×N) .

‖gradxdivxVi‖L∞([0,t]×RN ;RN )≤‖gradxdivxv‖L∞([0,t]×RN×Rm;RN ).

‖V1−V2‖L1([0,t];L∞(RN ;R)) =

∫ t

0

sup
x∈RN

‖v (τ,x,P1(τ))−v (τ,x,P2(τ))‖dτ

≤‖DP v‖L∞([0,t]×RN×Rm;RN×m) t‖P1−P2‖L∞([0,t];Rm).

‖divx (V1−V2)‖L∞([0,t]×RN ;R)≤‖divxv‖L∞([0,t]×RN×Rm;R)‖P1−P2‖L∞([0,t];RN ).

Now, (4.8) directly follows from (4.2) in Lemma 4.1. To prove (4.9) use Lemma 4.3.
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Corollary 4.1. Fix positive T and U . Let v be bounded and satisfy (v),

ρ̄∈L1(RN ;R) and P̄ ∈Rm. If un,u∗∈L∞([0,T ];BRm(0,U)) are such that un
?
⇀u∗ in

L∞([0,T ];Rm) as n→+∞, then, up to subsequences,

Pn→P∗ in C0([0,T ];RN ) and
ρn(t)→ρ∗(t) in L1(RN ;R) for all t∈ [0,T ],
ρn→ρ∗ in C0

(
[0,T ];L1(RN ;R)

)
.

If ρ̄∈C1(RN ;R), then

gradxρn(t)→ gradxρ∗(t) in L1(RN ;R) for all t∈ [0,T ],
gradxρn → gradxρ∗ in C0

(
[0,T ];L1(RN ;R)

)
.

The poof is a straightforward consequence of (4.8) and (4.9) in Proposition 4.1. We
now verify that (2.4) is well posed.

Lemma 4.4. Fix positive T , U , and ∆t∈]0,T [. Let v∈C0,1([0,T ]×RN ×RN ;RN ).
For any ρ̄∈L1(RN ;R), P̄ ∈RN , u∈L∞([0,T ];B(0,U)), t∈ [0,T −∆t[ and w∈RN , prob-
lem (2.4) admits a unique solution given by

ρw(τ,x) =ρ(t,Xt,w(t;τ,x)) exp

(
−
∫ τ

t

divxv (t,Xt,w(s;τ,x),P (t)+(s− t)w)ds

)
(4.11)

where

τ→Xt,w(τ ; t̄,x) solves

{
ξ′=v (t,ξ,P (t)+(τ− t)w)
ξ(t̄) =x

for t̄,τ ∈ [t,t+∆t]. (4.12)

Moreover, if ρ̄∈C1,1(RN ;R) and LN (spt ρ̄)<+∞, for all w1,w2∈RN

‖ρw1
(t+∆t)−ρw2

(t+∆t)‖L1(RN ;R)

≤
(
‖gradx ρ̄‖L∞(RN ;RN )L

N
(
spt ρ̄,CeC∆t∆t

)
+(1+C∆t)‖ρ̄‖L1(RN ;R)

)
×Ce2C∆t (∆t)2‖w1−w2‖ (4.13)

where

C= max

{‖v‖L∞([t,t+∆t]×RN×B(P (t),U∆t);RN ),‖Dxv‖L∞([t,t+∆t]×RN×B(P (t),U∆t);RN×N ),
1
2‖DP v‖L∞([t,t+∆t]×RN×RN ;RN×N ), ‖DP divxv‖L∞([t,t+∆t]×RN×RN ;RN )

}
.

(4.14)
(Above and in the sequel, ξ′= dξ

dτ ).

Proof. The first statement is a direct consequence of Lemma 4.2. To prove (4.13),
we apply Lemma 4.3 with V (τ,x) =v(t,x,P (t)+(τ− t)w) for τ ∈ [t,t+∆t]:

‖Vi‖L∞([t,t+∆t]×RN ;RN )≤‖v‖L∞([t,t+∆t]×RN×B(P (t),∆t‖wi‖);RN ),

‖DxVi‖L∞([t,t+∆t]×RN ;RN×N )≤‖Dxv‖L∞([t,t+∆t]×RN×B(P (t),∆t‖wi‖),RN×N ),

‖V1−V2‖L1([t.t+∆t],L∞(RN ;RN ))≤
1

2
‖DP v‖L∞([t,t+∆t]×RN×RN ;RN×N )(∆t)

2‖w1−w2‖,

‖divx (V1−V2)‖L∞([t.t+∆t]×RN ;RN )≤‖DP divxv‖L∞([t,t+∆t]×RN×RN ;RN )(∆t)‖w1−w2‖.

With the notation (4.14), and assuming that C≥1,

‖ρ1(t+∆t)−ρ2(t+∆t)‖L1(RN ;R)
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≤‖gradx ρ̄‖L∞(RN ;RN )L
N
(
spt ρ̄,CeC∆t∆t

)
e2C∆tC(∆t)2‖w1−w2‖

+‖ρ̄‖L1(RN ;R) e
2C∆tC(∆t)2‖w1−w2‖+‖ρ̄‖L1(RN ;R)C

2e2C∆t (∆t)3‖w1−w2‖

≤
(
‖gradx ρ̄‖L∞(RN ;RN )L

N
(
spt ρ̄,CeC∆t∆t

)
+(1+C∆t)‖ρ̄‖L1(RN ;R)

)
×Ce2C∆t (∆t)2‖w1−w2‖

completing the proof.

For the reader’s convenience, we recall here, without proof, the following result.

Lemma 4.5 ( [27, Lemma 1.15]). Let X,Y be Banach spaces, A⊆X be open, xo∈A
and J : A→Y be Gâteaux differentiable at all x∈A in all directions v∈X. Assume that

(1) the map v→DvJ(x) is linear and continuous for all x∈A;

(2) lim
x→xo

sup
‖v‖X=1

‖DvJ(x)−DvJ(xo)‖Y = 0.

Then, J is Fréchet differentiable at xo.

The next result describes the Fréchet differentiability of the characteristic curves.

Lemma 4.6. Fix t∈ [0,T [, ∆t∈ ]0,T − t] and x∈RN . If v∈C2([0,T ]×RN ×RN ;RN ),
then the map

Xt,x : RN → C0([t,t+∆t];RN )
w → Xt,x(w),

defined so that τ→ (Xt,x(w))(τ) solves the Cauchy problem{
ξ′=v (t,ξ,P (t)+(τ− t)w)
ξ(t) =x,

(4.15)

is Fréchet differentiable in RN . Moreover Xt,x has the Taylor expansion

Xt,x(w+δw) =Xt,x(w)+DXt,x(w)δw+o(δw) in C0 as δw→0

where τ→ (DXt,x(w))(τ) solves the linear first order N×N matrix differential equation


Y ′=Dxv (t,Xt,x(w)(τ),P (t)+(τ− t)w)Y

+(τ− t)DP v (t,Xt,x(w)(τ),P (t)+(τ− t)w)

Y (t) = 0

(4.16)

and the term DXt,x(w) satisfies the expansion, as τ→ t,

(DXt,x(w))(τ) =
(τ− t)2

2
DP v (t,x,P (t))+o(τ− t)2. (4.17)

Proof. Since t and x are kept fixed throughout this proof, we write X (w) for
Xt,x(w). Recall that, for τ ∈ [t,t+∆t],

X (w)(τ) =x+

∫ τ

t

v (t,X (w)(s),P (t)+(s− t)w)ds.

Fix a direction δw ∈RN \{0}. First we show the boundedness of the difference quotient

‖X (w+εδw)(τ)−X (w)(τ)‖
ε

.
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For τ ∈ [t,t+∆t], we have

1

ε
‖X (w+εδw)(τ)−X (w)(τ)‖

≤1

ε

∫ τ

t

‖v (t,X (w+εδw)(s),P (t)+(s− t)(w+εδw))−v (t,X (w)(s),P (t)+(s− t)w)‖ds

≤1

ε

∫ τ

t

∥∥v (t,X (w+εδw)(s),P (t)+(s−t)(w+εδw))−v (t,X (w)(s),P (t)+(s−t)(w+εδw))
∥∥ds

+
1

ε

∫ τ

t

‖v (t,X (w)(s),P (t)+(s− t)(w+εδw))−v (t,X (w)(s),P (t)+(s− t)w)‖ds

≤‖v‖C1([0,T ]×RN×RN ;RN )

[∫ τ

t

‖X (w+εδw)(s)−X (w)(s)‖
ε

ds+

∫ τ

t

(s− t)‖δw‖ds
]

≤‖v‖C1([0,T ]×RN×RN ;RN )

[∫ τ

t

‖X (w+εδw)(s)−X (w)(s)‖
ε

ds+(∆t)
2‖δw‖

]
.

Hence an application of Grönwall Lemma, see, e.g., [4, Chapter 3, Lemma 3.1] ensures
that

‖X (w+εδw)(τ)−X (w)(τ)‖
ε

≤K1 (∆t)
3‖δw‖exp(K1∆t) , (4.18)

where K1 =‖v‖C1([0,T ]×RN×RN ;RN ). Consequently

lim
ε→0

sup
τ∈[t,t+∆t]

‖X (w+εδw)(τ)−X (w)(τ)‖= 0. (4.19)

We now prove the existence of directional derivatives of X along the direction δw ∈
RN \{0}. Calling τ→Y (τ) the solution to the Cauchy problem (4.16), we have

X (w+εδw)(τ)−X (w)(τ)

ε
−Y (τ) δw

=
1

ε

∫ τ

t

[v(t,X (w+εδw)(s),P (t)+(s− t)(w+εδw))−v(t,X (w)(s),P (t)+(s− t)w)]ds

−
∫ τ

t

Dxv (t,X (w)(s),P (t)+(s− t)w)Y (s)ds δw

−
∫ τ

t

(s− t)DP v (t,X (w)(s),P (t)+(s− t)w)ds δw

=
1

ε

∫ τ

t

[
v(t,X (w+εδw)(s),P (t)+(s− t)(w+εδw))

−v(t,X (w)(s),P (t)+(s− t)(w+δw))
]
ds

−
∫ τ

t

Dxv (t,X (w)(s),P (t)+(s− t)w)Y (s)ds δw

+
1

ε

∫ τ

t

[v(t,X (w)(s),P (t)+(s− t)(w+εδw))−v(t,X (w)(s),P (t)+(s− t)w)]ds

−
∫ τ

t

(s− t)DP v (t,X (w)(s),P (t)+(s− t)w)ds δw

=

∫ τ

t

∫ 1

0

(
Dxv (t,ϑX (w+εδw)(s)+(1−ϑ)X (w)(s),P (t)+(s− t)(w+εδw))dϑ
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×X (w+εδw)(s)−X (w)(s)

ε

)
ds

−
∫ τ

t

Dxv (t,X (w)(s),P (t)+(s− t)w)Y (s)ds δw

+

∫ τ

t

(s− t)
(∫ 1

0

DP v (t,X (w)(s),P (t)+(s− t)(w+(1−ϑ)εδw))dϑ

−DP v (t,X (w)(s),P (t)+(s− t)w)
)

ds δw

=

∫ τ

t

∫ 1

0

(
Dxv (t,ϑX (w+εδw)(s)+(1−ϑ)X (w)(s),P (t)+(s− t)(w+εδw))dϑ

×X (w+εδw)(s)−X (w)(s)

ε

)
ds

∓
∫ τ

t

Dxv (t,X (w)(s),P (t)+(s− t)w)
X (w+εδw)(s)−X (w)(s)

ε
ds

−
∫ τ

t

Dxv (t,X (w)(s),P (t)+(s− t)w)Y (s)ds δw

+

∫ τ

t

(s− t)
(∫ 1

0

DP v (t,X (w)(s),P (t)+(s− t)(w+(1−ϑ)εδw))dϑ

−DP v (t,X (w)(s),P (t)+(s− t)w)
)

ds δw

=

∫ τ

t

∫ 1

0

(
Dxv (t,ϑX (w+εδw)(s)+(1−ϑ)X (w)(s),P (t)+(s− t)(w+εδw))dϑ

−Dxv (t,X (w)(s),P (t)+(s− t)w)
)X (w+εδw)(s)−X (w)(s)

ε
ds

+

∫ τ

t

Dxv (t,X (w)(s),P (t)+(s− t)w)

×
(
X (w+εδw)(s)−X (w)(s)

ε
−Y (s)δw

)
ds

+

∫ τ

t

(s− t)
(∫ 1

0

DP v (t,X (w)(s),P (t)+(s− t)(w+(1−ϑ)εδw))dϑ

−DP v (t,X (w)(s),P (t)+(s− t)w)
)

ds δw.

Calling O(1) a constant dependent on the C2 norm of v and on the right-hand side
of (4.18), the above equality leads to∥∥∥∥X (w+εδw)(τ)−X (w)(τ)

ε
−Y (τ) δw

∥∥∥∥
≤O(1)+

∫ τ

t

O(1)

∥∥∥∥X (w+εδw)(τ)−X (w)(τ)

ε
−Y (τ) δw

∥∥∥∥ds

+

∫ τ

t

O(1) (s− t)εds δw.

Thanks to (4.19), an application of Grönwall Lemma proves the directional differentia-
bility of w→X (w) in the direction δw.

To prove the differentiability of X , we are left to verify that (1) and (2) in Lemma 4.5
hold. The linearity of δw→DX (w)(δw) is immediate, thanks to the homogeneous ini-
tial datum in (4.16). The assumed C2 regularity of v ensures the C1 regularity of the
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right-hand side in (4.16) and, hence, the boundedness of δw→DX (w)(δw) (in the sense
of linear operators), completing the proof of 1. Standard theorems on the continuous
dependence of solutions to ordinary differential equations on parameters, see [4, Theo-
rem 4.2], ensure that also 2. in Lemma 4.5 holds, completing the proof of the differen-
tiability of X .

The proof of the Taylor expansion (4.17) follows easily using (4.16). Indeed,
by (4.16), we deduce that Y (t) =Y ′(t) = 0, while Y ′′(t) =DP v (t,x,P (t)), so that, if
τ ∈ [t,t+∆t], then

Y (τ) =
(τ− t)2

2
DP v (t,x,P (t))+o

(
(τ− t)2

)
.

This completes the proof of (4.17) and of the lemma.

Proof. (Proof of Theorem 2.1.) The map Jt,∆t is well defined by Lemma 4.4.
To prove its Lipschitz continuity, let w1,w2∈RN . Denote Vi(τ,x) =v(t,x,P (t)+(τ−
t)wi); Xi=Xt,wi

the solution to (4.1) and ρi=ρwi
the corresponding solution to (4.4).

Straightforward computations yield

|Jt,∆t(w1)−Jt,∆t(w2)|≤
∫
Rn

|ρ1(t+∆t,x)−ρ2(t+∆t,x)||ψ(x)|dx

≤‖ρ1(t+∆t)−ρ2(t+∆t)‖L1(RN ;R) ‖ψ‖L∞(RN ;R).

and the proof of Lipschitzeanity is completed thanks to (4.13).
To prove (2.7), recall (2.4)–(4.11). Fix t,t+∆t in [0,T ]. The solution τ→

Xw(τ ;t+∆t,x) to {
ξ′=v (t,ξ,P (t)+(τ− t)w)
ξ(t+∆t) =x

τ ∈ [t,t+∆t] (4.20)

will be shortened to τ→Xw(τ ;x). By Lemma 4.6, we have the expansion

Xw+εδw(τ ;x) =Xw(τ ;x)+εDwXw(τ ;x)δw+o(ε) in C0 as ε→0, (4.21)

where τ→DwXw(τ ;t+∆t,x), or τ→DwXw(τ ;x) for short, solves the Cauchy Problem

{
Y ′=Dxv(t,Xw(τ ;x),P (t)+(τ− t)w)Y +(τ− t)DP v(t,Xw(τ ;x),P (t)+(τ− t)w)
Y (t+∆t) = 0

(4.22)
for τ ∈ [t,t+∆t]. With reference to (2.5), denote for simplicity J =Jt,∆t, ψ=ψ and
compute:

1

ε
(J (w+εδw)−J (w))

=
1

ε

∫
RN

(ρw+εδw(t+∆t,x)−ρw(t+∆t,x))ψ(x)dx

=
1

ε

∫
RN

[
ρ(t,Xw+εδw(t;x))

×exp

(
−
∫ t+∆t

t

divxv (s,Xw+εδw(s;x),P (t)+(s− t)(w+εδw))ds

)
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−ρ(t,Xw(t;x))

×exp

(
−
∫ t+∆t

t

divxv (s,Xw(s;x),P (t)+(s− t)w)ds

)]
ψ(x)dx

= (I)+(II)+(III)

where

(I) =
1

ε

∫
RN

[ρ(t,Xw+εδw(t;x))−ρ(t,Xw(t;x))]

×exp

(
−
∫ t+∆t

t

divxv (s,Xw+εδw(s;x),P (t)+(s− t)(w+εδw))ds

)
ψ(x)dx

(II) =
1

ε

∫
RN

ρ(t,Xw(t;x))

×
[

exp

(
−
∫ t+∆t

t

divxv (s,Xw+εδw(s;x),P (t)+(s− t)(w+εδw))ds

)

−exp

(
−
∫ t+∆t

t

divxv (s,Xw+εδw(s;x),P (t)+(s− t)w)ds

)]
ψ(x)dx

(III) =
1

ε

∫
RN

ρ(t,Xw(t;x))

×
[

exp

(
−
∫ t+∆t

t

divxv (s,Xw+εδw(s;x),P (t)+(s− t)w)ds

)

−exp

(
−
∫ t+∆t

t

divxv (s,Xw(s;x),P (t)+(s− t)w)ds

)]
ψ(x)dx.

The following estimate uses DwXw as defined in (4.22) and is of use to compute (I):

1

ε
(ρ(t,Xw+εδw(t;x))−ρ(t,Xw(t;x)))

=

∫ 1

0

gradxρ(t,ϑXw+εδw(t;x)+(1−ϑ)Xw(t;x))dϑ
Xw+εδw(t;x)−Xw(t;x)

ε
ε→0→ gradxρ(t,Xw(t;x))DwXw(t;x) δw,

so that,

(I)
ε→0→

∫
RN

gradxρ(t,Xw(t;x))DwXw(t;x)δw

×exp

(
−
∫ t+∆t

t

divxv (s,Xw(s;x),P (t)+(s− t)w)ds

)
ψ(x)dx

while

(II)
ε→0→ −

∫
RN

ρ(t,Xw(t;x)) exp

(
−
∫ t+∆t

t

divxv (s,Xw(s;x),P (t)+(s− t)w)ds

)

×
∫ t+∆t

t

gradP divxv (s,Xw(s;x),P (t)+(s− t)w)(s− t)dsδwψ(x)dx
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and similarly, using DwXw defined as solution to (4.22),

(III)
ε→0→ −

∫
Rn

ρ(t,Xw(s;x)) exp

(
−
∫ t+∆t

t

divxv (s,Xw(s;x),P (t)+(s− t)w)ds

)

×
∫ t+∆t

t

gradxdivxv (s,Xw(s;x),P (t)+(s− t)w)DwXw(s;x)dsψ(x)dx δw.

Adding the three terms we get:

lim
ε→0

1

ε
(J (w+εδw)−J (w))

=

∫
RN

[
gradxρ(t,Xw(t;x))DwXw(t;x)

−ρ(t,Xw(t;x))

∫ t+∆t

t

(
gradP divxv (s,Xw(s;x),P (t)+(s− t)w)(s− t)

+gradxdivxv (s,Xw(s;x),P (t)+(s− t)w)DwXw(s;x)
)

ds
]

×exp

(
−
∫ t+∆t

t

divxv (s,Xw(s;x),P (t)+(s− t)w)ds

)
ψ(x)dx δw.

To compute the limit as ∆t→0 of the expression above, recall that as ∆t→0,

Xw(t;t+∆t,x) = x−v (t,x,P (t)) ∆t+o(∆t) [by (4.20)]
DwXw(t;t+∆t,x) = 1

2DP v (t,x,P (t)) (∆t)2 +o(∆t)2 [by (4.17)]

so that

lim
ε→0

1

ε
(J (w+εδw)−J (w))

=
(∆t)2

2

∫
RN

(gradxρ(t,x)DP v (t,x,P (t))−ρ(t,x) gradP divxv (s,x,P (t)))ψ(x) dx δw

+o(∆t)2

completing the proof.
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