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Abstract. We consider hydrodynamic scaling limits for a class of reversible interacting particle
systems, which includes the symmetric simple exclusion process and certain zero-range processes. We
study a (non-quadratic) microscopic action functional for these systems. We analyse the behaviour of
this functional in the hydrodynamic limit and we establish conditions under which it converges to the
(quadratic) action functional of Macroscopic Fluctuation Theory. We discuss the implications of these
results for rigorous analysis of hydrodynamic limits.
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1. Introduction
Recently, a canonical structure has been introduced [29, 30] to describe dynamical

fluctuations in stochastic systems. The resulting theory has several attractive features:
Firstly, it applies to a wide range of systems, including finite-state Markov chains and
Macroscopic Fluctuation Theory (MFT) [5], see [21]. Secondly, it is based on an action
functional which is a relative entropy between probability measures on path spaces —
this means that it provides a variational description of the systems under consideration,
and the action can be related to large deviation rate functionals. Thirdly, it extends
the classical Onsager-Machlup theory [34] in a natural way, by replacing the quadratic
functionals that appear in that theory with a pair of convex but non-quadratic Legendre
duals Ψ and Ψ?. (This is sometimes called a Ψ-Ψ? representation [31].) In Onsager-
Machlup theory and in MFT, the minimiser of the action describes the most probable
evolution of a macroscopic system, either in terms of thermodynamic forces and fluxes
(in Onsager-Machlup theory) or densities and fluxes (in MFT): this feature is maintained
in the canonical structure.

This structure can be applied to any finite-state Markov chain and provides a uni-
fying formulation of a wide range of systems [21]. In particular, lattice systems of
interacting particles can be described by canonical structures in two ways: either on
the microscopic (Markov chain) level via non-quadratic Legendre duals, or as a coarse-
grained version through the hydrodynamic limit, where the action reduces to a quadratic
MFT functional. One therefore expects that in the hydrodynamic scaling limit, the mi-
croscopic (non-quadratic) structure should converge (in some suitable sense) to the
macroscopic one. Such a convergence would offer a new way to understand and de-
rive hydrodynamic limits. The main question of this article is whether this natural
conjecture holds.
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We give a partial (positive) answer, by proving several theorems that relate the
microscopic and macroscopic action functionals for interacting particle systems. Specif-
ically, we consider a class of systems on periodic lattices with gradient dynamics and a
conserved number of particles, which includes as special cases the symmetric simple ex-
clusion process and a large class of reversible zero-range processes. In the hydrodynamic
limit, the number of lattice sites and the number of particles go to infinity together,
at fixed density, and the microscopic transition rates have a parabolic scaling. (These
are among the simplest models for which one can rigorously establish a hydrodynamic
limit [22].)

Our analysis is based on the microscopic action, which is a relative entropy between
two probability measures: one measure encodes the dynamics of the particle system it-
self (the reference process) and the other represents some other observed process, which
is to be compared with the reference process. We consider observed processes that con-
centrate (in the hydrodynamic limit) on deterministic paths. By comparing different
processes, we can extract information about the hydrodynamic limit of the reference
process (if this limit exists). That is, the reference process and the observed process
have different hydrodynamic limits in general, and the macroscopic action functional
measures the difference between them. It is minimised in the case where the observed
process and the reference process coincide, in which case the action is zero — under
suitable assumptions, this means that the hydrodynamic limit of the reference pro-
cess can be characterised as the minimiser of the macroscopic action. Moreover, the
macroscopic action can be represented as a sum of three terms — we show that these
individual contributions are asymptotically dominated by corresponding contributions
to the microscopic action, see Theorem 3.3. Then, for a specific choice of the observed
process (which is related to the hydrodynamic limit of the reference process), we show
that the microscopic action converges to the macroscopic one, see Theorems 3.4 and 3.5.

The inspiration for this study comes from [18] and [16], which derive hydrody-
namic (or mean-field) limits as minimisers of macroscopic action functionals, for the
simple exclusion process [18] and for a McKean-Vlasov equation on a finite graph [16].
In common with these works, our approach is (loosely) based on the Sandier-Serfaty
approach [37] to study sequences of gradient flows via Γ -convergence. However, our
approach is different from [16, 18] because it starts from the (non-quadratic) canonical
structure, instead of the quadratic structure for time-reversal symmetric Markov chains,
that was independently derived by Maas [28] and Mielke [32]. A similar structure to the
canonical one exploited here was recently used in [2] to derive a diffusive limit for the
linear Boltzmann equation. All of these approaches have in common that they consider
time-reversal symmetric systems for which the dynamics can be identified with gradient
flows of a free energy functional, so that the limiting probability measure concentrates
on curves of maximal slope, which can be identified as minimisers of the macroscopic
action. Further, our approach is also closely related to EDP-convergence, where EDP
stands for Energy-Dissipation-Principle, see e.g. [8, 14,24,33].

Compared with previous studies, our work has two novel features. First, we do
not restrict to curves of maximal slope (which follow the gradient of the free energy):
instead we consider a class of paths for which the microscopic action functional stays
controlled, in the hydrodynamic limit. In principle, this means that our methods are
not limited to time-reversal symmetric systems: the corresponding action functional
can be defined for a large class of Markov chains in a meaningful way. However, in
order to reduce the number of technical issues we have to deal with, we limit ourselves
to reversible systems in this work. (More precisely, we consider Markov chains with (in
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general) time-dependent rates, where the rates at every time obey detailed balance with
respect to an invariant measure that also (in general) depends on time. This means that
we can exploit readily-available tools from the theory of hydrodynamic limits for these
processes, notably the replacement lemma.) An extension to systems without detailed
balance is left for future work.

The second novel aspect is that we consider particle systems for which the hydro-
dynamic limit is a non-linear diffusion equation, in contrast (for example) to the sym-
metric exclusion process studied in [18], whose hydrodynamic limit is linear diffusion.
This is a significant difference for rigorous results: within the canonical structure one
sees naturally that the hydrodynamic limit is a (generalised) gradient flow, as expected
on physical grounds. However, in contrast to (linear) diffusion with a linear mobility,
where the (now-)classic Wasserstein evolution provides the natural geometrical setting
for the gradient flow, the analogous setting for diffusions with non-linear mobility is not
so well-developed. In particular, a key challenge is to establish the validity of a chain
rule for the macroscopic entropy functional, which is known for linear diffusion [1], but
whose extension to the non-linear setting is not at all straightforward. We show here
that (with some technical effort) the required results for non-linear diffusion can be ob-
tained by casting the evolution into the classic Wasserstein setting (Theorem 4.2): this
is not the most natural (physical) setting for the process of interest, but it is sufficient
to establish the required results.

This line of research — linking Markov chains and partial differential equations via
canonical structures — is quite recent. Consequently, a number of problems remain
open. In particular, our approach is not yet a hydrodynamic limit passage: for this,
the macroscopic concentration of the limiting path measure would have to be proved.
Also, the microscopic action converges in the hydrodynamic limit to a macroscopic
action functional that turns out to coincide with a large deviation rate functional [5].
However, in this work we do not establish any links to large deviation theory; this could
be a natural future line of research (e.g. one could consider similar calculations to the
ones in [15] for independent particles with Langevin dynamics). Another question is
whether (and how) the method presented here can provide guidance for limit passages
for non-reversible systems.

Our study combines techniques from a number of different fields: we have attempted
to make it self-contained (and hence accessible to a general reader), at the expense of
including some classical material (which expert readers may prefer to skip). This is
indicated in the beginning of the relevant sections. In Section 2, we describe the particle
systems and their canonical structure. Section 3 states the main results. Section 4 is
entirely devoted to technical questions of regularity and a proof of the chain rule, while
Section 5 contains the proofs of the main theorems.

2. Interacting particle systems

2.1. Particle systems on the discrete torus. The setting we analyse covers a
broad class of particle models, as we now describe. This section also collects some classic
facts on particle models. We consider systems with a fixed number of indistinguishable
particles, distributed over the Ld sites of the flat torus TdL :=Zd/(LZd). Let η(i) be the

number of particles on site i∈TdL, so the configuration space of the system is ΩL⊆NTdL
0 .

Configurations are denoted with η= (η(i))i∈TdL . Let ηi,i
′

be the configuration obtained

from η by moving a particle from site i to site i′. The total number of particles on each

site may be bounded by Nmax∈N0, that is, ΩL={0,. ..,Nmax}T
d
L , or unbounded. We

fix T >0 and consider the time interval [0,T ]. The (random) state of the system at time
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t∈ [0,T ] is denoted by ηt.
The particles hop between sites of the lattice with some rate r̂η,ηi,i′ , which is as-

sumed to be non-zero only if i and i′ are neighbours, |i− i′|= 1. We consider a parabolic
scaling, so the hydrodynamic limit is obtained by rescaling time by a factor L2, such
that the transition rates for the Markov chain are rη,ηi,i′ =L2r̂η,ηi,i′ . Let Λ be the flat

torus Td= [0,1)d. The jump rates for the particle models considered in this article de-
pend on an external potential V ∈C2(Λ;R), and two functions g1,g2 : N0→ [0,∞), such
that

r̂V
η,ηi,i′

=g1(η(i))g2(η(i′))e−
1
2 (V (i′/L)−V (i/L)). (2.1)

We also consider time-dependent potentials Ṽ ∈C1,2([0,T ]×Λ;R) which lead to a time-

heterogeneous Markov chain with transition rates rṼt at time t∈ [0,T ]. We write Ṽ for
a time-dependent potential and V for a time-independent potential. The choice in (2.1)
includes many particle processes, such as the zero-range process and the simple exclusion
process. This specific form was chosen to enable the use of existing results from the
theory of hydrodynamic limits, notably the replacement lemma employed below.

An interacting particle system has gradient dynamics (or is of gradient type) if there
exists a function d: N0→ [0,∞) such that (for V = 0) r0

η,ηi,i′
−r0

η,ηi′,i
= d(η(i))−d(η(i′)).

In this case we define φ̂i(µ) :=
∑
η∈ΩL

µ(η)d(η(i)). (Note that this is the simplest form
of a gradient system, which in more generality can consist of differences of finite cylinder
functions, cf. [22]).

2.1.1. Invariant measures, initial conditions, and microscopic free energy.
The number of particles is conserved by the dynamics, so these systems have many

possible invariant measures. The hydrodynamic limit relies on a particular structure for
these measures, as follows. Let ν∗ be a (not necessarily normalised) reference measure
on ΩL, with ν∗(η)>0 for all η∈ΩL, which is assumed to have a product structure in the
sense that ν∗(η) =

∏
i∈TdL

ν∗,1(η(i)) for some probability measure ν∗,1 on N0. We assume

that the process with rates r̂0 satisfies the detailed balance condition

ν∗(η)r̂0
η,ηi,i+ek =ν∗(η

i,i+ek)r̂0
ηi,i+ek ,η (2.2)

for all η∈ΩL, i∈TdL and k= 1,. ..,d. This implies that ν∗ is invariant for the dynamics
r̂0 and that these dynamics are time reversal-symmetric with respect to ν∗. To avoid
technical difficulties, we further assume that the one site partition function is finite,
i.e. for all θ∈R

Z1(θ) :=
∑
n∈N0

eθnν∗,1(n)<∞. (2.3)

In classical statistical mechanics (see for example [4, Section 3] or [9]), the local free
energy density is given by the Legendre dual of the cumulant generating function (or
pressure) of ν∗,1, i.e.

f(a) = sup
θ∈R

(
aθ− logZ1(θ)

)
=af ′(a)− logZ1(f ′(a)), (2.4)

which implies that f is convex. In the following, we will assume that f ∈C2([0,Nmax];R)
and that a.e. f ′′>0, see Section 2.4.2). Now, for α∈ (0,Nmax), we define the probability
measures

να,1(n) :=
ef
′(α)n

Z1(f ′(α))
ν∗,1(n) (2.5)
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and να :=
∏
i∈TdL

να,1. For each α∈ (0,Nmax) this choice implies that

Eνα
[∑

i∈TdL
η(i)/Ld

]
=α (where Eνα denotes the expectation with respect to να)

and that να is stationary and satisfies (2.2) for the process with rates r̂0. For an
external potential V ∈C2(Λ;R) the process with rates r̂V satisfies detailed balance with

respect to the probability measures νVα (η)∝να(η)e
−
∑
i∈Td

L
V (i/L)η(i)

. For the measure
νVα , the expected number of particles at u∈Λ is defined as

ρ̄α,V (u) :=
Eνα,1

[
η(0)e−V (u)η(0)

]
Eνα,1

[
e−V (u)η(0)

] <∞. (2.6)

Combining (2.6) with (2.5) allows to show that ρ̄α,V (u) = (f ′)−1(−V (u)+f ′(α)), or
equivalently f ′(ρ̄α,V (u)) =−V (u)+f ′(α). Consequently (2.6) is strictly monotonically
increasing in α. Since the number of particles is conserved, its distribution is fully
determined by the initial condition for the model. In everything that follows, we re-
strict to initial distributions (µL0 )L∈N for which the total density of particles is bounded
uniformly: there exists Ctot∈ (0,Nmax] such that for all L∈N

µL0

(
η∈ΩL

∣∣∣ 1

Ld

∑
i∈TdL

η(i)≤Ctot

)
= 1. (2.7)

This means that the Markov chain is supported on finitely many configurations, allowing
us to treat each particle system as a finite state Markov chain. Finally, for any V ∈
C2(Λ;R) and any α, define the relative entropy (or microscopic free energy) as

FVL,α(µ) :=H
(
µ|νVα

)
=
∑
η∈ΩL

µ(η)log
( µ(η)

νVα (η)

)
, (2.8)

where µ is a probability measure (on ΩL). If µ is the probability measure for our
interacting particle system at some time t then FVL,α(µ)<∞, by (2.7), since ν∗(η)>0
for all η∈ΩL.

2.1.2. Canonical structure for Markov chains. We now describe a Ψ-Ψ?

structure for finite state Markov chains which is related to a relative entropy between
path measures [21]. This structure is central to this article (see also [29, 30]). Let µ be
a probability measure on ΩL supported on finitely many configurations. We think of
this measure as a (generic) distribution of the particle system. For η,η′∈ΩL we define
the probability current from η to η′ as

Jη,η′(µ) :=µ(η)rVη,η′−µ(η′)rVη′,η. (2.9)

The divergence at η is divJ(µ)(η) :=
∑
η′∈ΩL

Jη,η′(µ). Following [21], define a mobility

aη,η′(µ) := 2
[
µ(η)rVη,η′µ(η′)rVη′,η

]1/2
(2.10)

which is independent of V since r̂Vη,η′ r̂
V
η′,η = r̂0

η,η′ r̂
0
η′,η. Let the discrete gradient of a

function h on ΩL be ∇η,η′h :=h(η′)−h(η) and define a thermodynamic force (cf. [21,
29,30]) as

FVη,η′(µ) :=−∇η,η
′
log
( µ

νVα

)
, (2.11)
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which is in fact independent of α, as να(η)/να(ηi,i
′
) =ν∗(η)/ν∗(η

i,i′). For a general
interpretation of the mobility and the force and their physical relation to thermodynamic
quantities, such as entropy production and housekeeping heat, we refer the reader to [21].

The canonical structure is based on a dual paring between currents and thermody-
namic forces. We consider generic currents j and forces F , which are arbitrary anti-
symmetric functions on ΩL×ΩL with jη,η′ =−jη′,η and Fη,η′ =−Fη′,η. The dual pairing
is 〈j,F 〉L := 1

2

∑
η,η′∈ΩL

jη,η′Fη,η′1{aη,η′ (µ)>0} (which implicitly depends on µ). Here 1A
is the indicator function of the event A, which is given by 1A= 1 if the statement A is
satisfied and 1A= 0 otherwise. Now define

Ψ?
L(µ,F ) :=

∑
η,η′∈ΩL

aη,η′(µ)
[
cosh

(
1
2Fη,η′

)
−1
]

(2.12)

and

ΨL(µ,j) :=
∑

η,η′∈ΩL

aη,η′(µ)

[
jη,η′

aη,η′(µ)
arcsinh

( jη,η′

aη,η′(µ)

)
−cosh

(
arcsinh

( jη,η′

aη,η′(µ)

))
+1

]
, (2.13)

where the summands in (2.13) have to be interpreted as being equal to zero whenever
aη,η′(µ) = 0. The two functions (2.12) and (2.13) are both symmetric and strictly convex
in their second argument. Moreover, they are Legendre dual with respect to the dual
pairing 〈j,F 〉L and give rise to the Onsager-Machlup functional,

ΦL(µ,j,F ) := ΨL(µ,j)−〈j,F 〉L+Ψ?
L(µ,F )≥0, (2.14)

where the inequality follows from the Fenchel-Young inequality (which directly follows
from the Legendre duality of Ψ and Ψ?). This functional will be used in the following to
characterise the relative entropy between path measures. In particular, we will study the
convergence of the non-quadratic functionals Ψ and Ψ? to their quadratic counterparts
to a macroscopic quadratic functional, which has the form of the macroscopic Onsager-
Machlup functional.

2.1.3. Projection onto the physical domain. So far we considered currents
and densities on the full configuration space ΩL. To obtain hydrodynamic behaviour, we
‘project’ the system onto the physical domain TdL and also embed the sequence of these
domains (indexed by L) into the flat torus Λ. This section introduces the associated
notation.

For a (generic) probability measure µ on ΩL (which we again think of as the current
distribution of the particle system), we can define the averaged number of particles ρ̂i(µ)
at site i∈TdL and an averaged particle current ̂Vi,i′(µ), as

ρ̂i(µ) :=
∑
η∈ΩL

µ(η)η(i) and ̂Vi,i′(µ) :=
∑
η∈ΩL

µ(η)
(
r̂V
η,ηi,i′

− r̂V
η,ηi′,i

)
. (2.15)

The current ̂Vi,i′(µ) describes the expected net flow of particles from site i to site i′ if
the distribution of the particle system is given by µ. For gradient dynamics and V = 0
the current (2.15) is

̂0i,i′(µ) = φ̂i(µ)− φ̂i′(µ) =−∇i,i
′
φ̂(µ), (2.16)
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where the discrete gradient on TdL is (for h : TdL→R) defined as ∇i,i′h=h(i′)−h(i).
Similar to (2.15), define also two (averaged) mobilities for the edge connecting i and i′

as

âi,i′(µ) :=
∑
η∈ΩL

2
[
µ(η)r̂V

η,ηi,i′
µ(ηi,i

′
)r̂V
ηi,i′ ,η

]1/2
, χ̂Vi,i′(µ) :=

1

2

∑
η∈ΩL

µ(η)
(
r̂V
η,ηi,i′

+ r̂V
η,ηi′,i

)
,

(2.17)
which are related by âi,i′(µ)≤2χ̂Vi,i′(µ) (with equality for µ=νVα ). Note that the two
mobilities characterise the average particle jumps between i and i′ and are therefore
symmetric in i and i′.

For the embedding on the flat torus, letM+(Λ) be the set of finite and non-negative
Radon measures on Λ, endowed with the weak topology. Define the empirical measure
ΘL : ΩL→M+(Λ) as

ΘL(η) :=
1

Ld

∑
i∈TdL

η(i)δi/L. (2.18)

Thus, each configuration η of an interacting particle system of size L corresponds to a
measure ΘL(η)∈M+(Λ).

2.1.4. Reference process and observed process. We analyse hydrodynamic
limits by comparing different (microscopic) processes. For any given L, the reference
process is an interacting particle system on the discrete torus, as defined in Section 2.1.
The observed process is another interacting particle system on the same space, whose
path measure (see below) is absolutely continuous with respect to the reference process.
Hydrodynamic limits are analysed by considering sequences of observed and reference
processes, indexed by L. With slight abuse of terminology, we sometimes refer to the
sequence of observed processes as simply “the observed process”, and similarly for the
reference process.

We consider observed processes with unique hydrodynamic limits. This leads to
a variational characterisation of the hydrodynamic limit of the reference process, by
minimising the relative entropy between the reference process and the observed process.
This follows the usual approach in the calculus of variations: one considers observed
processes with (known) hydrodynamic limits, which are candidates for the hydrody-
namic limit of the reference process. The optimal candidate is the one that minimises
the relative entropy, and the hydrodynamic limit of this optimal candidate matches the
hydrodynamic limit of the reference process (assuming that it exists).

2.2. Path measures on the microscopic scale.

2.2.1. Path measures for the reference and observed processes. Our
analysis of the hydrodynamic limit is based on the convergence of path measures. In
this section, we introduce the notation that allows us to define the path measures QL
and limit measures Q∗ studied in the remainder of the article.

For any topological space S we denote with D([0,T ];S) the set of S valued càdlàg
paths (right-continuous paths with left limits) on [0,T ]. For details, see [7, Chapter 3],
as well as [22, Chapter 4.1] and [6]. For t∈ [0,T ] let Xt : D([0,T ];S)→S be the marginal
at time t, which evaluates a path γ= (γt)t∈[0,T ]∈D([0,T ];S) at time t: Xt(γ) =γt. We
recall that whilst Xt is measurable for all t∈ [0,T ], it is continuous only for almost all
t∈ (0,T ), as well as t= 0 and t=T . In the following, the expression path measure will
refer to a probability distribution on D([0,T ];S) for some S.
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Given some L, the reference process is a particle system with a time-dependent
potential Ṽ ∈C1,2([0,T ]×Λ;R), whose path measure [on D([0,T ];ΩL)] is denoted by

P ṼL . We can recover the distribution of this Markov chain at time t from P ṼL via the

push-forward measure (Xt)#P
Ṽ
L .

The observed process can be any (possibly time-heterogeneous) Markov chain on
ΩL, whose path measure [on D([0,T ];ΩL)] is denoted by PL. This process is assumed to
have the following properties: the path measure PL is absolutely continuous with respect

to P ṼL , the initial condition of PL coincides with the one of P ṼL , that is, (X0)#PL=

(X0)#P
Ṽ
L =µL0 , and the transition rates rLt are bounded in time, i.e. for each L∈N, we

assume that supt∈[0,T ](r
L
t )η,η′ <∞ for all η,η′∈ΩL.

We can assign to PL a unique path (µLt ,
L
t )t∈[0,T ] consisting of the density µLt :=

(Xt)#PL and the current (Lt )η,η′ :=µLt (η)(rLt )η,η′−µLt (η′)(rLt )η′,η, which are again
linked by a continuity equation ∂tµ

L
t =−divLt .

We remark that for the choice PL=P ṼL the current Lt simply coincides with the

probability current (2.9) for the time-dependent rate rṼt . In this case, one can further
show that the associated density and current (2.15) satisfy the continuity equation
∂tρ̂i(µ

L
t ) =−div ̂V (µLt )(i), where the divergence on the physical domain TdL is defined

as div ̂V (µ)(i) :=
∑
i′∈TdL

̂Vi,i′(µ).

Since every ΩL can be embedded into the flat torus Λ (as a map from ΩL to
ML(Λ)), there is a corresponding embedding of the path space D([0,T ];ΩL) into
D([0,T ];ML(Λ)). In particular, each path measure QL on D([0,T ];M+(Λ)) that is
supported on ML(Λ) :={L−d

∑
i∈TdL

kiδi/L |ki∈N0,ki≤Nmax} can be identified with a

unique measure PL on D([0,T ];ΩL). The measure on D([0,T ];M+(Λ)) that corresponds

to the reference process P ṼL is denoted with QṼL . Similarly, for the observed process,
there is a QL corresponding to PL. No information is lost on embedding the processes

into Λ, so H(QL|QṼL ) =H(PL|P ṼL ), which can be proved by two applications of Lemma
9.4.5 in [1] with the bijection from ML(Λ) to ΩL.

We summarise this notation, which will be used extensively below: the reference
process and the observed processes can be fully characterised by their path measures

[both on D([0,T ];ML(Λ))], which are denoted by QṼL and QL respectively. There are

corresponding path measures on D([0,T ];ΩL) which are denoted by P ṼL and PL.

2.2.2. Microscopic action functional. To compare the reference and the
observed process, consider the thermodynamic force for the reference process at time

t, which is F Ṽt(µLt ), evaluated from (2.11) with µLt = (Xt)#PL. Since PL is absolutely

continuous with respect to P ṼL , the relative entropyH(PL|P ṼL ) is, under the assumptions
in Section 2.2.1, finite and (cf. [21, Appendix]) coincides with

H
(
PL|P ṼL

)
=H

(
µL0 |(X0)#P

Ṽ
L

)
+

1

2

∫ T

0

ΦL
(
µLt ,

L
t ,F

Ṽt(µLt )
)
dt. (2.19)

Moreover, H(µL0 |(X0)#P
Ṽ
L ) = 0, since PL and P ṼL share the same initial condition. We

interpret 1
2ΦL(µLt ,

L
t ,F

Ṽt
α (µLt )) as an extended Lagrangian [21] and define the micro-

scopic action of the path measure QL as the relative entropy

AṼL
(
QL
)

:=H
(
QL|QṼL

)
=H

(
PL|P ṼL

)
=

1

2

∫ T

0

ΦL
(
µLt ,

L
t ,F

Ṽt(µLt )
)
dt. (2.20)

This is the central functional defined on the discrete (lattice) level studied in this article.
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2.3. Macroscopic quantities. In the hydrodynamic scaling limit, the micro-
scopic action (2.20) will converge to a macroscopic action, which is (2.30). (For the
macroscopic setting, we restrict our considerations to potentials V that are constant in
time.) We now show how the macroscopic action functional is constructed.

2.3.1. The macroscopic free energy. For α∈ (0,Nmax] and V ∈C2(Λ;R), we
define the macroscopic free energy FVα : M+(Λ)→ [0,∞] as

FVα (π) := sup
h∈C(Λ;R)

[
〈π,h〉−

∫
Λ

log

(
Z1(f ′(a)+h(u)−V (u))

Z1(f ′(a)−V (u))

)
du

]
. (2.21)

This free energy coincides with a rate function: there is a large-deviation principle for
the particle configuration ΘL sampled from the steady state νVα ; the speed of this LDP
is Ld and its rate function is FVα (π), (see e.g. Section 5.1, page 75 in [22] for the special
case of a zero-range process). From (2.3), FVα (π) is finite only if π(du) =ρ(u)du for
some density ρ∈L1(Λ;[0,∞)). In the following we thus write FVα (ρ) for FVα (π). As in
Macroscopic Fluctuation Theory [5, Section 5.A], we can represent FVα for reversible
systems as

FVα (ρ) =

∫
Λ

[
f(ρ(u))−f(ρ̄α,V (u))−f ′(ρ̄α,V (u))

(
ρ(u)− ρ̄α,V (u)

)]
du, (2.22)

where ρ̄α,V ∈L1(Λ;[0,∞)), introduced in (2.6), is the steady state density for the dy-
namics of the macroscopic system. Note that (2.22) inherits the convexity of f .

2.3.2. The hydrodynamic current and the hydrodynamic equation. In
the hydrodynamic limit, the particle density at time t is given by some ρt∈L1(Λ;[0,∞)).
The hydrodynamic current describes the resulting particle flow:

J(ρ) :=−∇φ(ρ)−χ(ρ)∇V, (2.23)

where φ and χ are functions that depend on the system of interest and are discussed
later in this section. The hydrodynamic equation is then

ρ̇t=−∇·J(ρt) = ∆φ(ρt)+∇·(χ(ρt)∇V ). (2.24)

In this article, we consider weak solutions to (2.24), in the sense that for all G∈
C1,2([0,T ]×Λ;R)∫

Λ

ρTGT du−
∫

Λ

ρ0G0du−
∫ T

0

∫
Λ

ρt∂tGtdudt

=

∫ T

0

∫
Λ

φ(ρt)∆Gtdudt−
∫ T

0

∫
Λ

χ(ρt)∇V ·∇Gtdudt. (2.25)

The dynamics on the macroscopic scale are characterised by the functions φ,χ
in (2.24). To relate these quantities to the microscopic dynamics, we consider the case
V = 0, so that Eνα,1 [η(0)] =α. Define the macroscopic mobility χ : [0,Nmax]→ [0,∞) as

χ(α) := χ̂0
i,i+ek

(να) =
1

2
âi,i+ek(να), (2.26)

which is independent of i and ek (and thus well-defined). To see this, note from (2.2)
and (2.17) that χ̂0

i,i+ek
(να) =

∑
η∈ΩL

να(η)r̂0
η,ηi,i+ek

=Eνα,1 [g1(η(0))]Eνα,1 [g2(η(0))],
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where we used (2.1) and the product structure of να. Similarly, define φ : [0,Nmax]→
[0,∞) by φ(α) := φ̂i(να) =Eνα,1 [d(η(0))], which is by construction independent of i. One
then can prove the local Einstein relation

φ′(α) =f ′′(α)χ(α), (2.27)

which relates φ and χ to the free energy f from Section 2.3.1. Equation (2.27) can
be obtained by differentiating φ(α) =Eν∗,1 [d(η(0))ef

′(α)η(0)]/Eν∗,1 [ef
′(α)η(0)]. Note that

φ′(α) = 1
2f
′′(α)

∑
η να(η)

[
d(η(i))−d(η(i′))

]
(η(i)−η(i′)) (for i,i′∈TdL arbitrary with i 6=

i′). Further, the gradient structure and detailed balance yield 1
2

∑
η να(η)

[
r̂0
η,ηi,i′

−
r̂0
η,ηi′,i

]
(η(i)−η(i′)) = 1

2

∑
η να(η)

[
r̂0
η,ηi,i′

+ r̂0
η,ηi′,i

]
=χ(α).

2.3.3. The macroscopic action functional and the chain rule. For ρ∈
L1(Λ;[0,∞)) and h : Λ→Rd, we introduce the norm ‖h‖2χ(ρ) :=

∫
Λ
χ(ρ(u))|h(u)|2du (for

full details and associated spaces, see Section 4 below). The macroscopic analogues of
the (time integrals of the) microscopic functions ΨL and Ψ?

L from (2.12), (2.13) are

E
(
(ρt)t∈[0,T ]

)
:= sup

G

[(∫
Λ

ρTGT du−
∫

Λ

ρ0G0du

−
∫ T

0

∫
Λ

ρt∂tGtdudt

)
− 1

2

∫ T

0

‖∇Gt‖2χ(ρt)
dt

]
(2.28)

and

E?
(
(ρt)t∈[0,T ]

)
:= sup

G

[(∫ T

0

∫
Λ

φ(ρt)∆Gtdudt−
∫ T

0

∫
Λ

χ(ρt)∇V ·∇Gtdudt

)
− 1

2

∫ T

0

‖∇Gt‖2χ(ρt)
dt

]
, (2.29)

where the supremum is in both cases over C1,2([0,T ]×Λ;R). We will show in Proposi-
tions 4.1 and 4.3 that, under certain assumptions, these functionals can be expressed as
time integrals of suitably defined norms

E
(
(ρt)t∈[0,T ]

)
=

1

2

∫ T

0

‖ρ̇t‖2−1,χ(ρt)
dt

and

E?
(
(ρt)t∈[0,T ]

)
=

1

2

∫ T

0

‖∆φ(ρt)+∇·(χ(ρt)∇V )‖2−1,χ(ρt)
dt

=
1

2

∫ T

0

‖f ′′(ρt)∇ρt+∇V ‖2χ(ρt)
dt.

In particular, we will show that non-quadratic Ψ and Ψ? of (2.13) and (2.12) can be
bounded by the quadratic expressions E and E?, respectively.

Finally, for (πt)t∈[0,T ] absolutely continuous with respect to the Lebesgue measure,
we define the macroscopic action as

A
(
(πt)t∈[0,T ]

)
:=

1

2

[
FVα (ρT )−FVα (ρ0)+E

(
(ρt)t∈[0,T ]

)
+E?

(
(ρt)t∈[0,T ]

)]
. (2.30)
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If (πt)t∈[0,T ] is not absolutely continuous with respect to the Lebesgue measure, we set

A
(
(πt)t∈[0,T ]

)
= +∞.

In a nutshell, the main results of this article are twofold: Firstly, we establish

relations between suitably scaled AṼL of (2.20) and the continuum limit (2.30): see The-
orems 3.3 to 3.5. Secondly, we show that under suitable regularity assumptions, in par-
ticular if the free energy FVα satisfies a chain rule (see Equation (3.4)), the macroscopic
action can be re-written in a way which reveals the hydrodynamic limit as minimiser of
this functional, see (3.5) below.

2.4. Assumptions on the particle systems studied.

2.4.1. Local equilibrium assumption and the replacement lemma. When
taking the hydrodynamic limit, one must prove a local equilibration condition, which
means that the system resembles — in a small neighbourhood around any point — an
equilibrium system. To make this precise, take `∈N and define the average number of
particles in a box with diameter 2`+1 as

η`(i) :=
1

(2`+1)d

∑
|m|≤`

η(i+m).

Similarly, we also define the averages χ̂`i,i+ek(µ) := (2`+1)−d
∑
|m|≤` χ̂i+m,i+m+ek(µ)

and φ̂`i(µ) := (2`+1)−d
∑
|m|≤` φ̂i+m(µ).

Now assume that L�1 and ε�1 and that the state of the system is given by
η∈ΩL. Define `= bεLc, which is the size of a macroscopic box with diameter ≈2ε

(measured on the macroscopic scale). Hence χ̂
bεLc
i,i+ek

(δη) is a locally averaged mobility.
Local equilibration means that χ̂i,i+ek(νηbεLc(i)) is close to the expected mobility for an
equilibrium distribution να with the same (locally-averaged) particle density. That is,

the time averaged distributions µL[0,T ] := 1
T

∫ T
0
µLt dt satisfy in local equilibrium

limsup
ε→0

limsup
L→∞

1

Ld

∑
i∈TdL

d∑
k=1

∑
η∈ΩL

µL[0,T ](η)
∣∣∣χ̂bεLci,i+ek

(δη)− χ̂i,i+ek(νηbεLc(i))
∣∣∣= 0, (2.31)

as well as

limsup
ε→0

limsup
L→∞

1

Ld

∑
i∈TdL

∑
η∈ΩL

µL[0,T ](η)
∣∣∣φ̂bεLci (δη)− φ̂i(νηbεLc(i))

∣∣∣= 0. (2.32)

Remark 2.1 (Replacement Lemma). Note that results like (2.31) and (2.32) are
classically obtained by proving the stronger replacement lemma, which in our notation
amounts to proving for χ̂ (and analogously for φ̂)

limsup
ε→0

limsup
L→∞

sup
µ

1

Ld

∑
i∈TdL

d∑
k=1

∑
η∈ΩL

µ(η)
∣∣∣χ̂bεLci,i+ek

(δη)− χ̂i,i+ek(νηbεLc(i))
∣∣∣= 0, (2.33)

where the supremum is taken over a class of measures µ satisfying certain bounds on
the relative entropy (i.e. the free energy) and the Dirichlet form, which can be identified
with 1

2Ψ?(µ,FV (µ)) (see e.g. the remark in the proof of Proposition 5.3 below). In the
following, we will follow the classical approach and work with (2.33). We state sufficient
conditions for the replacement lemma in Section 3.2 below and establish in this way the
validity of (2.31) and (2.32).
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2.4.2. Assumptions on the path measures P ṼL . We have presented a general
framework for interacting particles on lattices and their hydrodynamic scaling limits.
The results of the next section are similarly general and can be applied to a range
of systems, including the symmetric simple exclusion process and certain zero-range
processes, as discussed in Section 3.4 below. However, our results for hydrodynamic
limits clearly do not apply to all interacting-particle systems. We summarise here the

main assumptions on the reference process P ṼL required in the following analysis: these
need to be verified in order to apply our results to a particular system.

On the microscopic scale, we assume that the transition rates are given by (2.1) and
are of gradient type. The initial conditions and invariant measures are as described in
Section 2.1.1. We note that many of the proofs given below make use of assumption (2.7).
Despite the fact that it is a non-standard assumption for hydrodynamic limits (unless
Nmax<∞, in which case (2.7) holds trivially), it is not too restrictive, in the sense
that the typical initial conditions (µL0 )L∈N can be shown to satisfy (cf. equation (1.4) in
Section 5.1 on page 71 in [22]) limA→∞ limsupL→∞µ

L
0 (η∈ΩL |L−d

∑
i∈TdL

η(i)≥A) = 0.

When taking the hydrodynamic limit, we assume that for any sequence of measures
(µL)L∈N satisfying (2.7), it holds that

Cχ̂ := limsup
L→∞

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µL)<∞, (2.34)

which ensures that the total rate of particle jumps for the reference process stays con-
trolled as L→∞. Similarly we suppose that any sequence of measures (µL)L∈N obey-
ing (2.7) also satisfies

Cφ̂ := limsup
L→∞

1

Ld

∑
i∈TdL

φ̂i(µ
L)<∞. (2.35)

In addition, our proofs require the following technical assumptions on the func-
tions f , φ and χ that characterise the hydrodynamic limit itself: We assume
that f ∈C2([0,Nmax];R) with f(0) = 0, f ′′>0 a.e. and that limr→0f

′(r) =−∞ and
limr→Nmax f

′(r) =∞. Note that this implies by (2.5) that φ(0) = 0 =χ(0). Further,
we assume that φ,χ>0 on (0,Nmax) and that both φ and χ are Lipschitz continu-
ous on [0,Nmax], without loss of generality with common Lipschitz constant CLip>0.
Since φ(0) =χ(0) = 0, we have in particular 0<φ(a),χ(a)≤CLipa for a∈ (0,Nmax]. We
further assume that φ is continuously differentiable on (0,Nmax) (by the above Lip-
schitz condition with bounded derivative) and also strictly monotonically increasing.
This implies the existence of a continuous inverse φ−1 : φ([0,Nmax])→ [0,Nmax], where
φ([0,Nmax]) ={φ(a) :a∈ [0,Nmax]}. We also suppose that φ−1 has a bounded derivative
(which is by the inverse function theorem equivalent to saying that there exists C∗>0
such that φ′(a)≥C∗ for all a∈ (0,Nmax]).

3. Statement of the results
In this section, we discuss the behaviour of the microscopic action in the limit

L→∞, and the implications of this behaviour for hydrodynamic limits. Sections 3.1
and 3.2 derive preliminary results, which establish properties of the action functionals
and sufficient conditions for local equilibration. Section 3.3 states the main results,
consisting of three theorems (Theorems 3.3–3.5). Finally Section 3.4 discusses the ap-
plications of these theorems in two specific particle systems, and their implications for
hydrodynamic limits.
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3.1. Properties of the microscopic and macroscopic action functions.

3.1.1. Chain rule on microscopic scale. Consider (µLt ,
L
t )t∈[0,T ] as in Sec-

tion 2.2.1. The force FV (µLt ) can be linked to the free energy (2.8) via the classical
chain rule formula (cf. Theorem 9.2 of Appendix 1 in [22], Proposition 2.2 in [18] and

also [21]) FVL,α(µLt2)−FVL,α(µLt1) =−
∫ t2
t1
〈Lt ,FV (µLt )〉Ldt, which is a special case of the

following result (proved in Section 5.1 below).

Proposition 3.1 (Chain rule for the microscopic free energy). Let Ṽ ∈C1,2([0,T ]×
Λ;R) and consider a path measure PL on ΩL, as described in Section 2.2.1, with as-

sociated density and current (µLt ,
L
t )t∈[0,T ]. Then the map t 7→F ṼtL,α(µLt ) is absolutely

continuous for t∈ [0,T ] and satisfies the following chain rule. For all 0≤ t1<t2≤T

F Ṽt2L,α(µLt2)−F Ṽt1L,α(µLt1) =−
∫ t2

t1

〈Lt ,F Ṽt(µLt )〉Ldt+

∫ t2

t1

∑
i∈TdL

(
ρ̂i(µ

L
t )− ρ̄α,Ṽt(i)

)
∂tṼt(

i
L )dt.

(3.1)

Now fix some α∈ (0,Nmax) and combine Proposition 3.1 with (2.14) and (2.19),
which yields

AṼL
(
QL
)

=
1

2

[
F ṼTL,α(µLT )−F Ṽ0

L,α(µL0 )
]
+

1

2

∫ T

0

ΨL(µLt ,
L
t )dt+

1

2

∫ T

0

Ψ?
L

(
µLt ,F

Ṽt(µLt )
)
dt

− 1

2

∫ T

0

∑
i∈TdL

(
ρ̂i(µ

L
t )− ρ̄α,Ṽt(i)

)
∂tṼt(

i
L )dt≥0. (3.2)

3.1.2. Macroscopic action. We now establish some properties of A, as
defined in (2.30). If A

(
(πt)t∈[0,T ]

)
<∞ one can show that

A
(
(πt)t∈[0,T ]

)
=

1

2

[
FVα (ρT )−FVα (ρ0)

]
+

1

4

∫ T

0

(
‖ρ̇t‖2−1,χ(ρt)

+‖∆φ(ρt)+∇·(χ(ρt)∇V )‖2−1,χ(ρt)

)
dt, (3.3)

see Proposition 4.1 and Proposition 4.3. For a definition of the norm ‖·‖−1,χ(ρt) (and
the associated inner product 〈·, ·〉−1,χ(ρt)) we also refer to Section 4 below.

Note that A((πt)t∈[0,T ]) as defined here might in general be negative. A sufficient
condition for non-negativity of A((πt)t∈[0,T ]) is ensured by the validity of the follow-
ing chain rule, which can be seen as a macroscopic counterpart to (3.1) for potentials
constant in time. A formal calculation yields for 0≤ t1<t2≤T the chain rule

FVα (ρt2)−FVα (ρt1) =

∫ t2

t1

〈
ρ̇t,

δFVα
δρt

〉
dt=−

∫ t2

t1

〈ρ̇t,∆φ(ρt)+∇·(χ(ρt)∇V )〉−1,χ(ρt)dt.

(3.4)
Combined with (3.3) this allows us to (formally!) rewrite the macroscopic action func-
tional (3.3) as

A
(
(πt)t∈[0,T ]

)
=

1

4

∫ T

0

∥∥ρ̇t−∆φ(ρt)−∇·(χ(ρt)∇V )
∥∥2

−1,χ(ρt)
dt. (3.5)

In Section 4.2 we summarise some geometrical properties of the relevant function
spaces and we establish sufficient conditions for the chain rule:
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Theorem 3.1. Let the assumptions from Section 2.4.2 hold and additionally assume
that χ′(a)≥C∗ for all a∈ (0,Nmax] (for some C∗>0). If d>1, then further assume
that the free energy density f satisfies the McCann condition for geodesic convexity
(stated in Equation (4.13) below). Then any path (πt)t∈[0,T ] with A((πt)t∈[0,T ])<∞ and
FVα (ρ0)<∞ satisfies the identities in Equation (3.4).

Note that the McCann condition is always satisfied in one spatial dimension (where
it reduces to convexity of f). We further stress that in Macroscopic Fluctuation Theory
the validity of the chain rule is implicitly assumed by Equation (2.15) in [5], which
relates the large deviation rate for a forward path to its time-reversed counterpart.

3.2. Sufficient Conditions for local equilibration. The following theorem,
proved in Section 5.1 below, yields a sufficient condition for the local equilibration
discussed in Section 2.4.1 in terms of the free energy (2.8) of the initial condition and
the action functional (2.20).

Theorem 3.2. Let (PL)L∈N be as in Section 2.2.1 with densities (µLt )t∈[0,T ], for
L∈N, and associated path measures (QL)L∈N on D([0,T ];M+(Λ)). Assume there exist
V ∈C2(Λ;R) and α∈ [0,Nmax) such that

limsup
L→∞

1

Ld
FVL,α(µL0 )<∞ (3.6)

and Ṽ ∈C1,2([0,T ]×Λ;R) such that

limsup
L→∞

1

Ld
AṼL
(
QL
)
<∞. (3.7)

Then (µL[0,T ])L∈N satisfies the local equilibrium assumption, (2.31) and (2.32). Moreover,

Equations (3.6) and (3.7) are independent of V , Ṽ and α, such that these conditions
can equivalently be stated as limsupL→∞L

−dH(QL|Qνα)<∞, where Qνα denotes the
measure on D([0,T ];ΩL) with marginals equal to να, in the sense that (Xt)#Qνα =
(ΘL)#να for all t∈ [0,T ].

3.3. Particle systems on hydrodynamic scale. We now present our
main results. We consider sequences of path measures (QVL )L∈N and (QL)L∈N on
D([0,T ];M+(Λ)), as defined in Section 2.2.1, as well as the corresponding sequences
(PVL )L∈N and (PL)L∈N. We define Q∗ as a (possibly non-unique) limit point of the se-
quence of observed processes (QL)L∈N and we establish various properties of this limit.
The physical idea is that the path on which Q∗ is supported is a candidate for the hydro-
dynamic limit for the reference process (QVL )L∈N. By analysing the large-L behaviour of
the microscopic action AVL (QL), the aim is to show that the only admissible candidate
path is the true hydrodynamic limit. For specific examples, see Section 3.4, below.

3.3.1. Assumptions for scaling limits. To apply the results of this section to
a specific interacting particle system (reference process), several assumptions have to be
satisfied. We assume that the conditions given in Section 2.4.2 have been verified. We
assume also that the initial distributions (µL0 )L∈N of (PVL )L∈N converge to a fixed density
ρ0∈L1(Λ;[0,∞)) in the sense that (ΘL)#µ

L
0 → δπ0 with π0(du) =ρ0(u)du. For the rest

of this Section 3.3, we fix α uniquely by requiring that
∫

Λ
ρ0(u)du=

∫
Λ
ρ̄α,V (u)du.

Further, we assume that the observed processes (QL)L∈N are relatively compact [7,
22]. Then there is a measure Q∗ on D([0,T ];M+(Λ)) and a subsequence of (QL)L∈N
converging to Q∗ (such that the marginal at time t= 0 satisfies (X0)#Q

∗= δπ0
). Finally,
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we assume that the measure Q∗ is concentrated on paths that are absolutely continuous
with respect to the Lebesgue measure,

Q∗
(

(πt)t∈[0,T ]∈D([0,T ];M+(Λ)) :πt(du) =ρt(u)du for a.a. t∈ [0,T ]
)

= 1. (3.8)

We note that the paths in (3.8) satisfy ρt∈L1(Λ;[0,∞)). Moreover, if Nmax<∞, then
clearly also ρt≤Nmax a.e. on Λ for almost all t∈ [0,T ]. However, the limit Q∗ is not
assumed to be unique: there could exist other subsequences of (QL)L∈N with different
limits.

Given a specific model, the compactness of the sequence (QL)L∈N and the support
on absolutely continuous paths (3.8) often follow from (3.6) in combination with an
assumption on the transition rates of the particle system. This is the case for the
examples considered in Section 3.4 below.

3.3.2. Comparison with classical proofs of the hydrodynamic limit. To
provide context for our analysis, we briefly summarise the classical approach to hydro-
dynamic limits. Here, we consider separately the observed process and the reference
process, but the classical approach takes (PL)L∈N = (PVL )L∈N. The task of proving a hy-
drodynamic limit for (QL)L∈N then consists of characterising all limiting distributions.
The first step is to establish relative compactness [7, 22], which ensures the existence
of a (possibly non-unique) limit Q∗. One then shows that Q∗ is unique and that it is
concentrated on a single path (ρt)t∈[0,T ] (i.e. Q∗= δ(πt)t∈[0,T ]

and πt(du) =ρt(u)du for
almost all t∈ [0,T ]). This general approach includes both the entropy method and the
relative entropy method [22]: note that it first establishes that Q∗ is supported on weak
solutions to (2.25) and then uses a uniqueness result for this solution to infer that Q∗

is supported on this unique solution, see e.g. [22, Chapter 4].

Our approach here differs in two main points: We consider an observed process
that is different from the reference process (PL 6=PVL in general) and we assume that
the sequence (QL)L has a unique limiting distribution Q∗ that is concentrated on a single
path, as in (3.8). (As a special case, one may take PL=PVL , under the assumption that
the hydrodynamic limit exists, but the following results are not restricted to this case.)
These assumptions mean that the results in this work do not prove the existence of a
hydrodynamic limit, neither for the observed process nor the reference process. Rather,
they assume the existence of such a limit, and they establish properties of the associated
path (πt)t∈[0,T ] and its macroscopic action A

(
(πt)t∈[0,T ]

)
.

3.3.3. Convergence of free energy and action for deterministic limits.
The following first main theorem yields regularity results for (PL)L∈N under the

assumptions of Section 3.3.1 and those of Theorem 3.2. In particular, it shows that the
macroscopic action (and its individual contributions) are asymptotically dominated by
their (more detailed) microscopic counterparts.

Theorem 3.3 (Regularity of the limit and asymptotic lower bounds). Let (PL)L∈N be
a sequence as in Section 3.3.1, with density and current (µLt ,

L
t )t∈[0,T ], for L∈N. We

suppose that the associated sequence (QL)L∈N has a unique limit point Q∗= δ(πt)t∈[0,T ]

for some (πt)t∈[0,T ]∈D([0,T ];M+(Λ)) and that the initial condition is well prepared in
the sense that the free energies converge (cf. [18, 33, 37])

lim
L→∞

1

Ld
FVL,α

(
µL0
)

=FVα (ρ0). (3.9)



754 A VARIATIONAL STRUCTURE FOR INTERACTING PARTICLE SYSTEMS

Further assume that (QL)L∈N satisfies (3.7) for Ṽt=V , such that

limsup
L→∞

1

Ld
AVL
(
QL
)
<∞. (3.10)

Then (πt)t∈[0,T ] is narrowly continuous, i.e. (πt)t∈[0,T ]∈C([0,T ];M+(Λ)) and the action
satisfies the lower bound

liminf
L→∞

1

Ld
AVL
(
QL
)
≥A((πt)t∈[0,T ]). (3.11)

Further, the free energy satisfies for all t∈ [0,T ]

liminf
L→∞

1

Ld
FVL,α

(
µLt
)
≥FVα (ρt), (3.12)

as well as

liminf
L→∞

1

Ld

∫ T

0

ΨL

(
µLt ,

L
t

)
dt≥ 1

2

∫ T

0

‖ρ̇t‖2−1,χ(ρt)
dt (3.13)

and

liminf
L→∞

1

Ld

∫ T

0

Ψ?
L

(
µLt ,F

V (µLt )
)
dt≥ 1

2

∫ T

0

‖∆φ(ρt)+∇·(χ(ρt)∇V )‖2−1,χ(ρt)
dt. (3.14)

In this theorem, we see for the first time a connection between the non-quadratic mi-
croscopic functionals Ψ and Ψ? and their macroscopic quadratic counterparts, see (3.13)
and (3.14).

Proof. Note that the assumptions of Theorem 3.2 are satisfied, so that the local
equilibration assumptions (2.31) and (2.32) hold. The result (3.11) follows from the
representation of AVL in (3.2), the definition of A in (2.30) combined with (3.9) and the
following three inequalities (for which the proofs will be given in Section 5.2). Firstly,
for the free energy at the final time T , we obtain from Proposition 5.4 and the continuity
of XT (the evaluation of the path at the final time t=T ) that

liminf
L→∞

1

Ld
FVL,α(µLT )≥FVα (ρT ). (3.15)

Secondly,

liminf
L→∞

1

Ld

∫ T

0

ΨL

(
µLt ,

L
t

)
dt≥E

(
(ρt)t∈[0,T ]

)
, (3.16)

which follows from Proposition 5.5, and thirdly

liminf
L→∞

1

Ld

∫ T

0

Ψ?
L

(
µLt ,F

V (µLt )
)
dt≥E?

(
(ρt)t∈[0,T ]

)
, (3.17)

which is proved in Proposition 5.6. Proposition 4.1 and Proposition 4.3 then yield (3.13)
and (3.14), respectively. Proposition 4.2 further shows that the path is 2-absolutely
continuous in the Wasserstein sense (see (4.6) in Section 4), from which we can deduce
the narrow continuity using Lemma 4.1. The inequality (3.12) for the free energy at
any time t∈ [0,T ] then follows from another application of Proposition 5.4.
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It is instructive to consider Theorem 3.3 in the case where the observed process is
equal to the reference process PL=PVL . In this case the microscopic action AVL

(
QL
)

= 0
and the theorem has implications for the hydrodynamic limit of the reference process,
as follows. Either Q∗ does not concentrate on a single path, in which case the theorem
is inapplicable; or Q∗ does concentrate on a single path, and the theorem shows that the
macroscopic action of that path satisfies A((πt)t∈[0,T ])≤0, by (3.11). In the examples
that we consider below, this macroscopic action is zero, see below.

We consider a special case for the observed process PL. We keep the reference
process PVL as outlined in Section 3.3.1 and consider for some (possibly time-dependent)

potential H̃ ∈C1,2([0,T ]×Λ;R) the process PL=P ṼL for the potential Ṽt=V +H̃t as
defined in Section 2.2.1. Note that both processes have the same initial condition

µL0 and their transition rates rV+H̃t and rV coincide up to a change of the external
potential (i.e. the functions g1 and g2 in (2.1) coincide for both processes). We assume

that the corresponding path measures (QV+H̃
L )L∈N satisfy, as in Section 2.3.2 above, a

hydrodynamic limit with hydrodynamic equation

ρ̇t= ∆φ(ρt)+∇·(χ(ρt)∇(V +H̃t)). (3.18)

In this case one can improve the result (3.11) from Theorem 3.3 by showing that the

action functionals AVL (QV+H̃
L ) converge, as described by the following second main the-

orem.

Theorem 3.4. Assume that PL=PV+H̃
L for some H̃ ∈C1,2([0,T ]×Λ;R) and that

(PL)L∈N satisfies the assumptions in Theorem 3.3. Moreover, assume that the density
of the path (πt)t∈[0,T ] is a weak solution to (3.18), in the sense of (2.25). Then

lim
L→∞

1

Ld
AVL
(
QV+H̃
L

)
=

1

4

∫ T

0

∥∥∇H̃t

∥∥2

χ(ρt)
dt

=
1

4

∫ T

0

∥∥ρ̇t−∆φ(ρt)−∇·(χ(ρt)∇V )
∥∥2

−1,χ(ρt)
dt. (3.19)

We postpone the proof of Theorem 3.4 to Section 5.3 below. See also Section 10
in [22] for the specific calculations for the simple exclusion process, which can be seen
as a special case of our computations. We further stress that for measures of the form

(P ṼL )L∈N the assumption on (3.10) in Theorem 3.3 is satisfied trivially, since AṼL
(
QṼL
)

=
0.

Theorem 3.4 clarifies the relationship between the microscopic and macroscopic
action functionals. It shows how the non-quadratic (Ψ-Ψ?) form of the microscopic
action AVL converges to a (simpler) quadratic form, when viewed on the macroscopic
scale. Of course, this convergence requires some information about the regularity of the
path that dominates Q∗: this comes from the assumption (3.18).

Recall that the lower bound (3.11) in Theorem 3.3 and the limit (3.19) in Theo-
rem 3.4 coincide (by (3.5)) if and only if the chain rule (3.4) holds. The validity of the
chain rule (3.4) for the path (πt)t∈[0,T ] in Theorem 3.4 can be shown to be equivalent
to the case where the limits in (3.12), (3.13) and (3.14) exist and all three inequalities
are equalities.

Theorem 3.5. Let the assumptions in Theorem 3.4 hold. Further assume that FVα
satisfies the chain rule (3.4) for the path (ρt)t∈[0,T ]. Then the free energy converges for
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all t∈ [0,T ],

lim
L→∞

1

Ld
FVL,α

(
µLt
)

=FVα (ρt). (3.20)

Moreover,

lim
L→∞

1

Ld

∫ T

0

ΨL

(
µLt ,

L
t

)
dt=

1

2

∫ T

0

‖ρ̇t‖2−1,χ(ρt)
dt (3.21)

and

lim
L→∞

1

Ld

∫ T

0

Ψ?
L

(
µLt ,F

V (µLt )
)
dt=

1

2

∫ T

0

‖∆φ(ρt)+∇·(χ(ρt)∇V )‖2−1,χ(ρt)
dt. (3.22)

Also the opposite implication holds: If (3.20), (3.21) and (3.22) are satisfied, then FVα
satisfies the chain rule (3.4) for (ρt)t∈[0,T ].

Proof. This proof is similar to calculations performed in [23] and [18], where
the authors establish (3.20) for the hydrodynamic limit of the simple exclusion process.
Note that (3.19), (3.3), (3.5) and the chain rule (3.4) imply

lim
L→∞

1

Ld

(
FVL,α

(
µLT
)

+

∫ T

0

ΨL

(
µLt ,

L
t

)
dt+

∫ T

0

Ψ?
L

(
µLt ,F

V (µLt )
)
dt

)
=FVα (ρT )+

1

2

∫ T

0

‖ρ̇t‖2−1,χ(ρt)
dt+

1

2

∫ T

0

‖∆φ(ρt)+∇·(χ(ρt)∇V )‖2−1,χ(ρt)
dt.

We apply the inequality limsupn→∞(an+bn+cn)≥ limsupn→∞an+liminfn→∞ bn+
liminfn→∞ cn to the expression on the left-hand side to obtain the inequality

limsup
L→∞

1

Ld
FVL,α

(
µLT
)
≤FVα (ρT ).

The result for an arbitrary time t∈ [0,T ] then follows by repeating the above proof for
the time interval [0,t]. The remaining two limits (3.21) and (3.22) follow in a similar
way by a slight modification of the above steps.

For the opposite implication, we assume that (3.20), (3.21) and (3.22) hold. In this
case we have

1

2

∫ T

0

∥∥ρ̇t−∆φ(ρt)−∇·(χ(ρt)∇V )
∥∥2

−1,χ(ρt)
dt

=FVα (ρT )−FVα (ρ0)+
1

2

∫ T

0

‖ρ̇t‖2−1,χ(ρt)
dt

+
1

2

∫ T

0

‖∆φ(ρt)+∇·(χ(ρt)∇V )‖2−1,χ(ρt)
dt,

which is equivalent to (3.4) for t1 = 0 and t2 =T . Repeating the above steps for [0,t]
(for any t∈ [0,T ]) then finishes the proof.

Remark 3.1 (Remark on Chain Rule). In summary, we have seen that there are at
least three ways to verify the chain rule (3.4). One way is to prove the assumptions of
Theorem 3.1. Alternatively, one can derive a Large Deviation Principle, as in Macro-
scopic Fluctuation Theory (cf. the discussion below Theorem 3.1); or one can directly
calculate the limits in Theorem 3.5.
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Now recall the case where the observed process and the reference process coincide,
PL=PVL . One sees that (3.20)–(3.22) in Theorem 3.5 are similar to (3.12)–(3.14) in
Theorem 3.3, but Theorem 3.5 is stronger, in that the limits have been shown to exist.
To prove this, the additional assumption (3.18) was required, as well as (3.4). For the
example systems considered below, these assumptions can be proven by other means.
This establishes that the macroscopic action A((πt)t∈[0,T ]) is non-negative, as long as

the density ρ associated with π is a solution of (3.18), for some H̃. In this case one sees
that the hydrodynamic limit of the reference system can be characterised as the unique
zero of A, within this class of paths.

Moreover, the quadratic structure of A together with the macroscopic chain rule
means that the minimiser of A can be identified as a gradient flow for the free energy.
Such gradient flows are widespread in macroscopic descriptions of physical systems: we
speculate that the structure presented here is similarly general. That is, it is natural to
expect gradient flows as macroscopic descriptions of physical systems whose microscopic
descriptions are reversible Markov chains, because the non-quadratic Ψ-Ψ? form of the
microscopic action often converges to a quadratic functional on the macroscopic scale.

3.4. Examples
Standard examples of particle models described by the class of models in Section 2.1

are (i) the zero-range process (ZRP) for which ΩL=NTdL
0 , and g1 is a function that sat-

isfies g1(0) = 0 and g2 = 1; and (ii) the (symmetric) simple exclusion process (SEP),

where ΩL={0,1}TdL , g1(n) =1{n=1} and g2(n) =1{n=0}; and (iii) the generalised exclu-

sion processes, where ΩL={0,·· · ,m}TdL , g1(n) =1{n≥1} and g2(n) =1{n≤m} for some
fixed m∈N [22]. The latter is an example of a non-gradient system. We focus on the
two gradient models ZRP and SEP, which have d(k) =g1(k) and d(k) =k, respectively.

3.4.1. Zero-Range Process
The ZRP satisfies the assumptions of Section 2.4.2 if we assume that the rates are

strictly monotonically increasing and sub-linear. That is, we assume that there exists
g∗>0 such that 0<g1(k+1)−g1(k)≤g∗. Since g1(0) = 0 we have g1(k)≤g∗k. The
mobility for the ZRP is given by χ(a) =φ(a), where Eνα [g1(η(0))] =φ(α). The reference
measure is ν∗,1(n) = 1/(

∏n
k=1g(k)) and the α-dependent invariant distribution is for

z(φ(α)) :=
∑∞
n=0φ(α)nν∗,1(n) given by

να,1(η(0)) =
φ(α)η(0)

z(φ(α))
ν∗,1(η(0)).

Finally, the free energy is

FVα (ρ) =

∫
Λ

[
ρ(u)log

(
φ(ρ(u))

e−V (u)φ(α)

)
− log

(
z(φ(ρ(u)))

z(e−V (u)φ(α))

)]
du

for f(a) =ρ logφ(a)− logz(φ(a)) and ρ̄α,V (u) =φ−1(e−V (u)φ(α)).
These considerations establish that Theorems 3.3 to 3.5 can be applied to the ZRP.

We now consider the implications of these theorems for hydrodynamic limits. We first
compare the path measures for the ZRP (that is, the sequence of PVL indexed by L) with
some sequence of path measures PL which concentrate on an absolutely continuous path
(πt)t∈[0,T ] and satisfies the assumptions of Theorem 3.2. In this case one may apply
Theorem 3.3, which establishes an asymptotic lower bound on the rescaled microscopic
action L−dAVL (QL). If (πt)t∈[0,T ] is the hydrodynamic limit of the ZRP then PVL has to

concentrate on (πt)t∈[0,T ], but one also has (in general) that L−dAVL (QVL ) = 0. Hence,
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if L−dAVL (QL) is bounded away from zero then the path (πt)t∈[0,T ] associated with PL
can be ruled out as a possible hydrodynamic limit.

In fact the hydrodynamic limit of the ZRP is known to be given by (3.18) with
H̃= 0 (see Section 5 in [22]), in which case Theorem 3.3 bounds the macroscopic action
by zero: A((πt)t∈[0,T ])≤0. However this bound is not yet sufficient to show that PVL
concentrates on (πt)t∈[0,T ], so it does not prove the hydrodynamic limit.

We now restrict our consideration to measures of the form PL=PV+H̃
L that con-

centrate on paths which satisfy (3.18), for some H̃. In this case, Theorem 3.4 may

be applied. This establishes that the limit of L−dAVL (QV+H̃
L ) exists. We moreover can

verify the assumptions of Theorem 3.1 (at least for d= 1) or alternatively rely on the
existence of the pathwise LDP (see [3]), which shows that also Theorem 3.5 holds – this
establishes a lower bound A((πt)t∈[0,T ])≥0 for any path (πt)t∈[0,T ] that solves (3.18),

with some H̃. This means that (πt)t∈[0,T ] is only admissible as a candidate for the hy-

drodynamic limit of the ZRP, if it is a (weak) solution to (3.18) with H̃= 0 (otherwise
one has the contradiction 0 = limL→∞L

−dAVL (QVL ) =A((πt)t∈[0,T ])>0).

3.4.2. Simple Exclusion Process
For the SEP the invariant reference measure is ν∗,1(0) =ν∗,1(1) = 1 and the α-

dependent invariant product measure are Bernoulli distributed να,1(η(0)) =αη(0)(1−
α)1−η(0). The functions φ and χ are given by φ(α) =α and χ(α) =α(1−α). The free
energy is given by

FVα (ρ) =

∫
Λ

[
ρ(u)log

(
ρ(u)

αe−V (u)

)
+(1−ρ(u))log

(
1−ρ(u)

1−α

)
+log

(
αe−V (u) +(1−α)

)]
du,

which is of the form (2.22) for the free energy density f(a) =aloga+(1−a)log(1−a)
and the stationary density is ρ̄α,V (u) =αe−V (u)/(αe−V (u) +(1−α)).

For the sequence PV+H̃
L the hydrodynamic limit is again given in (3.18), which has,

for suitable initial condition, a unique weak solution (see Proposition 5.1 on page 273
in [22]). We can proceed as for the ZRP and can establish (under suitable assumptions)
that the results of Theorem 3.3 and Theorem 3.4 hold.

Note that this process does not satisfy the assumptions of Theorem 3.1 (as the
assumption χ′(a)≥C∗ is not satisfied). Nonetheless, we can establish the chain rule (3.4)
if the pathwise LDP holds (cf. the discussion at the end of Section 3.1). This was
e.g. proved in [22, Chapter 10] (see also [6]), such that also in this case the results of
Theorem 3.5 hold.

4. Regularity of paths and the chain rule
The main aim of this section is to prove Theorem 3.1. The central difficulty is that

classical approaches to establish chain rules in metric spaces rely on λ-convexity of the
functional under consideration; this property is delicate and apparently not sufficiently
well understood in a context other than the classic (unweighted) Wasserstein setting.
The processes considered here are, however, naturally linked to weighted Wasserstein
spaces, where important elements of the classic Wasserstein theory are still missing.
We circumvent this problem by showing that while the classic Wasserstein space is not
the natural space for the processes we study, they can be cast in this setting. The
analysis is then somewhat technical, but largely follows arguments in [1]. The novel
Ψ-Ψ?-structure is thus less relevant in this section than for the proofs in Section 5.
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In the following, we consider paths with conserved volume, for which also the action
is finite: A((ρt)t∈[0,T ])<∞. Combined with FVα (ρ0)<∞ and (2.30), this implies that
E((ρt)t∈[0,T ])<∞ and E?((ρt)t∈[0,T ])<∞. We will see that the former of the two implies
regularity in time (that (ρt)t∈[0,T ] is absolutely-continuous in the Wasserstein sense) and
the latter yields certain regularity in space (such that e.g. the weak gradient∇φ(ρ) exists
a.e. in Λ).

The following steps are based on ideas from Section 4 in [10]. For a more re-
cent and concise representation of the following material, we refer to Appendices D.5
and D.6) in [19]. A discussion of similar content in terms of interacting particle systems
can e.g. be found in [6].

For any topological space S, we denote with D(S;R) =C∞c (S;R) the vector space of
real-valued infinitely often differentiable and compactly supported functions on S and
equip D(S;R) with the usual topology for test functions, see e.g. [19, Appendix D.1]. Its
topological dual, the space of (Schwartz) distributions, will be denoted with D ′(S;R).
The application of g∈D(S;R) to a distribution ϑ∈D ′(S;R) is denoted by 〈ϑ,g〉.

The Otto calculus yields a formal interpretation ofM+(Λ) as an infinite dimensional
Riemannian manifold (see for example Chapter 15 in [39] or Section 8.1.2 in [38]). For
a measure π∈M+(Λ), one can define three isometric spaces H1

π(Λ;R), H−1
π (Λ;R) and

L2
∇,π(Λ;Rd), which all can play the role of the ‘tangent space’ at π. We next give

precise definitions of all three spaces. For h : Λ→Rd, we define the norm ‖h‖2π :=∫
Λ
|h(u)|2π(du). For g∈W 1

loc(Λ;R) this norm gives rise to the semi-norm ‖g‖1,π :=
‖∇g‖π, where ∇g denotes the weak derivative of g. Since {g∈D(Λ;R) :

∫
Λ
gdu= 0}

equipped with ‖·‖1,π is a normed space, we can define its completion to be H1
π(Λ;R).

For ϑ∈D ′(Λ;R) the dual norm, which is defined as

‖ϑ‖2−1,π := sup
g∈H1

π(Λ;R)

(
2〈ϑ,g〉−‖g‖21,π

)
, (4.1)

gives rise to H−1
π (Λ;R) :={ϑ∈D ′(Λ;R) :‖ϑ‖−1,π<∞}, the dual of H1

π(Λ;R). Note that
H1
π(Λ;R) is a Hilbert space (with inner product 〈·,·〉1,π defined in the obvious way using

the polarisation identity for inner products); it therefore is reflexive, which implies the
existence of a linear and isometric map from H1

π(Λ;R) to H−1
π (Λ;R), formally given

by g 7→−∇·(π∇g). The inner product on H−1
π (Λ;R) will be denoted with 〈·, ·〉−1,π.

Finally, let L2
∇,π(Λ;Rd) be the completion of {∇ζ : ζ ∈D(Λ;R)} with respect to ‖·‖π. It

is then easy to see that H1
π(Λ;R) is also isometric to L2

∇,π(Λ;Rd) (cf. page 379 in [19]).

We will denote the map from H1
π(Λ;R) to L2

∇,π(Λ;Rd) with ∇.

For our purposes, the spaces H−1
π (Λ;R) and L2

∇,π(Λ;Rd) yield the more relevant
representations. The two prominent cases that will appear in the following are π(du) =
ρ(u)du and π(du) =χ(ρ(u))du. In these cases we will identify the densities ρ and χ(ρ)
as measures and write H1

ρ(Λ;R) and H1
χ(ρ)(Λ;R) instead of H1

π(Λ;R) (and similar for

the other spaces we just introduced).

4.1. Regularity of paths on the hydrodynamic scale. Now, fix a path
(πt)t∈[0,T ]∈D([0,T ];M+(Λ)) that is absolutely continuous with respect to the Lebesgue
measure with density (ρt)t∈[0,T ]. We equip C1,2([0,T ]×Λ;R) with the (ρt)t∈[0,T ] depen-

dent semi-norm G 7→ (
∫ T

0
‖∇Gt‖2χ(ρt)

dt)1/2, on which we define the two real valued linear
operators

LE(G) :=

∫
Λ

ρTGT du−
∫

Λ

ρ0G0du−
∫ T

0

∫
Λ

ρt∂tGtdudt
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and

LE?(G) :=

∫ T

0

∫
Λ

φ(ρt)∇·∇Gtdudt−
∫ T

0

∫
Λ

χ(ρt)∇V ·∇Gtdudt.

Note that these two operators coincide with the left and right-hand side of (2.25),
respectively. Moreover, the corresponding operator norms are given by E((ρt)t∈[0,T ])
in (2.28) and E?((ρt)t∈[0,T ]) in (2.29), respectively (cf. e.g. [10, 19]).

Under the assumptions of Theorem 3.3, we have prior information on the regularity
of the path (ρt)t∈[0,T ], i.e. we can assume that E((ρt)t∈[0,T ]),E?((ρt)t∈[0,T ])<∞ (such
that LE and LE? are bounded linear operators).

Note that LE and LE? are both invariant under addition of a constant in the sense
that LE?(G) =LE?(G+c) for any c∈R. We thus can (with slight abuse of notation)
redefine LE and LE? as operators on {∇G :G∈C1,2([0,T ]×Λ;R)}, equipped with ∇G 7→
(
∫ T

0
‖∇Gt‖2χ(ρt)

dt)1/2, as

LE(∇G) :=LE(G) and LE?(∇G) :=LE?(G).

Let L2
∇,χ([0,T ]×Λ;Rd) be the (ρt)t∈[0,T ] dependent completion of {∇G :G∈

C1,2([0,T ]×Λ;R)} with respect to ∇G 7→ (
∫ T

0
‖∇Gt‖2χ(ρt)

dt)1/2. Note that if h=

(ht)t∈[0,T ]∈L2
∇,χ([0,T ]×Λ;Rd), then ht∈L2

∇,χ(ρt)
(Λ;Rd) for a.a. t∈ [0,T ]. In Sec-

tion 4.2 we will also consider L2
∇,id([0,T ]×Λ;Rd), where the norm is replaced with

∇G 7→ (
∫ T

0
‖∇Gt‖2ρtdt)

1/2.
Since E((ρt)t∈[0,T ]),E?((ρt)t∈[0,T ])<∞ the Bounded Linear Transformation Theo-

rem (see e.g. Theorem I.6 in [35]), allows us to extend LE(∇G) and LE?(∇G) to bounded
linear operators on L2

∇,χ([0,T ]×Λ;Rd) with the same operator norms as above. For

h∈L2
∇,χ([0,T ]×Λ;Rd) we have

LE(h) =

∫
Λ

ρT∇−1hT du−
∫

Λ

ρ0∇−1h0du−
∫ T

0

∫
Λ

ρt∂t(∇−1ht)dudt,

where ∇−1 denotes (for each t∈ [0,T ]) the isometric map from L2
∇,χ(ρt)

(Λ;Rd) to

H1
χ(ρt)

(Λ;R). Further

LE?(h) =

∫ T

0

∫
Λ

φ(ρt)∇·htdudt−
∫ T

0

∫
Λ

χ(ρt)∇V ·htdudt.

By Riesz’ representation theorem (e.g. Theorem II.4 in [35]), there exist unique elements
v,w∈L2

∇,χ([0,T ]×Λ;Rd), with v= (vt)t∈[0,T ] and w= (wt)t∈[0,T ], for which these two
bounded operators can be represented by

LE(h) =

∫ T

0

∫
Λ

χ(ρt)vt ·htdudt, LE?(h) =

∫ T

0

∫
Λ

χ(ρt)wt ·htdudt. (4.2)

Substituting (4.2) in (2.28) and (2.29) yields (c.f. Lemma 4.8 in [10])

E
(
(ρt)t∈[0,T ]

)
=

1

2

∫ T

0

‖vt‖2χ(ρt)
dt, E?

(
(ρt)t∈[0,T ]

)
=

1

2

∫ T

0

‖wt‖2χ(ρt)
dt. (4.3)
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Proposition 4.1. Assume that E((ρt)t∈[0,T ])<∞ and that χ satisfies the assumptions

of Section 2.4.2. Then the weak time derivative of ρt, denoted ρ̇t, exists in H−1
χ(ρt)

(Λ;R)

for a.a. t∈ [0,T ]. Moreover,

E
(
(ρt)t∈[0,T ]

)
=

1

2

∫ T

0

‖ρ̇t‖2−1,χ(ρt)
dt. (4.4)

Proof. Results of this kind are standard and we hence only sketch the proof. Con-
sider the unique v∈L2

∇,χ([0,T ]×Λ;Rd) from (4.2) and recall that vt∈L2
∇,χ(ρt)

(Λ;Rd)
for a.a. t∈ [0,T ].

Following e.g. Lemma 4.8 in [10] (see also [13]), one shows that E((ρt)t∈[0,T ])<∞
implies that t 7→ 〈ρt,·〉 is absolutely continuous in the sense of distributions, such that
the distributional derivative ρ̇t∈D ′(Λ;R) exists for a.a. t∈ (0,T ). In our case, the latter
satisfies for G∈D(Λ;R) and a.a. t∈ (0,T )

d

dt

∫
Λ

ρtGdu= 〈ρ̇t,G〉=
∫

Λ

χ(ρt)vt ·∇Gdu. (4.5)

Thus ρ̇t=−∇·(χ(ρt)vt) in the distributional sense for a.a. t∈ (0,T ), such that vt∈
L2
∇,χ(ρt)

(Λ;Rd) can uniquely be identified with ρ̇t. Further the isometry from

L2
∇,χ(ρt)

(Λ;Rd) to H−1
χ(ρt)

(Λ;R) (for a.a. t∈ [0,T ]) implies that ρ̇t∈H−1
χ(ρt)

(Λ;R) and (4.4)

also follows.

Let p∈ [1,∞]. We say a path (πt)t∈[0,T ] is p-absolutely continuous (in the Wasser-
stein sense), if there exists a function m∈Lp([0,T ];R), such that for any 0≤ t1<t2≤T

W2(πt1 ,πt2)≤
∫ t2

t1

m(s)ds, (4.6)

where W2 denotes the 2-Wasserstein distance [1,38]. In this case, the metric derivative
(cf. equation (1.1.3) in [1]) exists for a.a. t∈ (0,T ),

|π′t| := limsup
h→0

(
W2(πt,πt+h)

h

)
<∞

and t 7→ |π′t| is the minimal function that satisfies (4.6), see Theorem 1.1.2 in [1]. In
other words, (πt)t∈[0,T ] is p-absolutely continuous if and only if the map t 7→ |π′t| is an
element of Lp([0,T ];R). From now on we consider the case p= 2.

Lemma 4.1. A path (πt)t∈[0,T ]∈D([0,T ];M+(Λ)) is 2-absolutely continuous if and

only if there exists a vector field ṽ= (ṽt)t∈[0,T ] with ṽt∈L2
∇,πt(Λ;Rd) and

∫ T
0
‖ṽt‖πtdt<

∞ that satisfies π̇t+∇·(πtṽt) = 0 in the distributional sense for almost all t∈ [0,T ]. In
this case we have in particular (πt)t∈[0,T ]∈C([0,T ];M+(Λ)).

Proof. The result follows from a modification of Lemma 8.1.2 and Theorem 8.3.1
in [1] to the domain Λ. Assume first that (πt)t∈[0,T ] is 2-absolutely continuous. Then
Theorem 8.3.1 implies that the continuity equation π̇t+∇·(πtṽt) = 0 holds for some
ṽt, which can, by Lemma 8.4.2 in [1], without loss of generality be chosen to satisfy
ṽt∈L2

∇,πt(Λ;Rd).
For the opposite implication we assume that the continuity equation holds and

that moreover
∫ T

0
‖ṽt‖πtdt<∞. An application of the Hölder inequality combined with
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supt∈[0,T ]πt(Λ)<∞ ensures that
∫ T

0

∫
Λ
|ṽt(u)|πt(du)dt<∞. Lemma 8.1.2 thus implies

that the curve has a weakly continuous modification (π̃t)t∈[0,T ]∈C([0,T ];M+(Λ)). Now,
since every right-continuous path that admits a continuous modification already has to
be continuous, we have (πt)t∈[0,T ] = (π̃t)t∈[0,T ]. This allows us to apply the reverse
implication of Theorem 8.3.1 to (πt)t∈[0,T ], which yields that (πt)t∈[0,T ] is 2-absolutely
continuous.

The Wasserstein distance W2 has a fluid dynamical representation in terms of the
Brenier-Benamou formula (compare Equation (8.0.3) in [1] and Section 8.1 in [38]). The
distance of two measures π,π̂∈M+(Λ) with π(Λ) = π̂(Λ)>0 is given by

W 2
2 (π,π̂) = inf

{∫ 1

0

‖ṽt‖2µtdt
∣∣∣ µ0 =π, µ1 = π̂, µ̇t+∇·(µtṽt) = 0

}
,

where the infimum is taken over all 2-absolutely continuous paths of measures (µt)t∈[0,T ]

and velocities ṽt∈L2
∇,µt(Λ;Rd) satisfying the continuity equation above.

Let (πt)t∈[0,T ] be absolutely continuous with respect to the Lebesgue measure with
density (ρt)t∈[0,T ]. We say that (ρt)t∈[0,T ] is 2-absolutely continuous if (πt)t∈[0,T ]

is 2-absolutely continuous. Moreover, we will identify densities with their associ-
ated measures. In particular, we write W 2

2 (ρ,ρ̂) =W 2
2 (π,π̂) for π(du) =ρ(u)du and

π(du) =ρ(u)du.

Proposition 4.2. Assume that E((ρt)t∈[0,T ])<∞ and that χ satisfies the assumptions
of Section 2.4.2. Then (ρt)t∈[0,T ] is 2-absolutely continuous in the Wasserstein sense.

Proof. We choose the time rescaling t̄= t(t2− t1)+ t1 and set µt=ρt̄ and ṽt=
(t2− t1)(χ(ρt̄)vt̄)/ρt̄, such that µ̇t+∇·(µtṽt) = 0 by construction. We obtain for all
0≤ t1<t2≤T

W 2
2 (ρt1 ,ρt2)≤ (t2− t1)

∫ t2

t1

‖(χ(ρt)vt)/ρt‖2ρtdt≤ (t2− t1)

∫ t2

t1

CLip‖vt‖2χ(ρt)
dt<∞,

such that the metric derivative satisfies for almost all t∈ [0,T )

|ρ′t|= limsup
h→0

(
W2(ρt,ρt+h)

h

)
≤
√
CLip‖vt‖χ(ρt). (4.7)

The square integrability of the right-hand side now implies that (ρt)t∈[0,T ] is 2-absolutely
continuous.

Proposition 4.3. Assume that E?
(
(ρt)t∈[0,T ]

)
<∞ and that f,φ and χ satisfy the

assumptions of Section 2.4.2. Then

E?
(
(ρt)t∈[0,T ]

)
=

1

2

∫ T

0

‖∆φ(ρt)+∇·(χ(ρt)∇V )‖2−1,χ(ρt)
dt

=
1

2

∫ T

0

‖f ′′(ρt)∇ρt+∇V ‖2χ(ρt)
dt. (4.8)

Proof. E?
(
(ρt)t∈[0,T ]

)
<∞ implies that the distributional derivative of φ(ρt)∈

L1
loc(Λ;R) satisfies ∇φ(ρt)∈L1

loc(Λ;Rd) for a.a. t∈ [0,T ] (cf. Appendix D.6 in [19]).

Equivalently, φ(ρt)∈W 1,1
loc (Λ;R) for a.a. t∈ [0,T ]. The first identity in (4.8) can be

established as in Appendix D.6 in [19] (for the choice µ(du) =χ(ρt(u))du). We turn
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to the second identity. Since φ−1 is continuously differentiable with bounded deriva-
tive, we obtain by the chain rule for functions in W 1,1

loc (Λ;R) with bounded derivative

(see e.g. Theorem 4 (ii) in [17]) that also ∇ρt∈L1
loc(Λ;R), and thus ρt∈W 1,1

loc (Λ;R), for
almost all t∈ [0,T ]. The derivative is for almost all u∈Λ given by

∇ρt(u) = (φ−1)′(φ(ρt(u)))∇φ(ρt(u)) =
∇φ(ρt(u))

φ′(ρt(u))
, (4.9)

where the last identity follows from the Implicit Function Theorem. Multiplying with
φ′(ρt) and using the local Einstein relation (2.27) we obtain that almost everywhere

∇φ(ρt) =φ′(ρt)∇ρt=χ(ρt)f
′′(ρt)∇ρt. (4.10)

Combined with w in (4.3), we have for any G∈D(Λ;R) and almost all t∈ [0,T ] that∫
Λ

χ(ρt)wt ·∇Gdu=

∫
Λ

(
∇φ(ρt)+χ(ρt)∇V

)
·∇Gdu=

∫
Λ

χ(ρt)[f
′′(ρt)∇ρt+∇V ] ·∇Gdu

such that we can identify wt=f ′′(ρt)∇ρt+∇V . Substituting this identity in (4.3) yields
the final result.

4.2. Chain rule for the free energy. In this section, we prove Theo-
rem 3.1, which establishes rigorously the validity of the macroscopic chain rule (3.4),
for which we so far gave only a formal derivation. Consider a given path (ρt)t∈[0,T ]

that satisfies A((ρt)t∈[0,T ])<∞. We restrict ourselves to densities ρ,ρ̂∈L1(Λ;[0,∞))
s.t.

∫
Λ
ρdu=

∫
Λ
ρ̂du>0 and continue to identify densities with measures. The con-

stant volume implies that free energy differences do not depend on α. Indeed, defining
F(ρ) :=

∫
Λ
f(ρ(u))du and V(ρ) :=

∫
Λ
V (u)ρ(u)du (for V ∈C2(Λ;R)), we can define an

α-independent modification of the free energy

FV (ρ) :=F(ρ)+V(ρ), (4.11)

which is (with (2.22)) easily seen to satisfy FVα (ρ̂)−FVα (ρ) =FV (ρ̂)−FV (ρ).
We assume that f ∈C2([0,∞);R) satisfies the assumptions in Section 2.4.2, such

that the functional F : L1(Λ;[0,∞))→ (−∞,∞] is proper and lower-semicontinuous (see
Remark 9.3.8 in [1]). Note that for Nmax =∞ the assumption limr→Nmax f

′(r) =∞
implies super linearity of f .

We set

Lf (a) :=af ′(a)−f(a) =

∫ a

0

rf ′′(r)dr

and note the similarity to φ(a) =
∫ a

0
φ′(r)dr=

∫ a
0
χ(r)f ′′(r)dr (where we again used the

local Einstein relation (2.27)); in particular L′f (a)/a=f ′′(a) =φ′(a)/χ(a). The quantity
Lf is sometimes referred to as a ‘pressure’ function due to its relation to the thermody-
namic pressure in classical thermodynamics, see e.g. Remark 5.18 (ii) in [38].

We denote the (2-)Wasserstein distance between ρ and ρ̂ with W2(ρ,ρ̂). A constant
speed geodesic (connecting ρ to ρ̂) is a curve (ρt)t∈[0,1] such that (ρ0 =ρ, ρ1 = ρ̂ and)
W2(ρs,ρt) = |t−s|W2(ρ,ρ̂) for all s,t∈ [0,T ]. With this, a functional G is called λ-convex
(also called semi-convex) for λ∈R if the inequality

G(ρt)≤ (1− t)G(ρ0)+ tG(ρ1)− λ
2
t(1− t)W 2

2 (ρ0,ρ1) (4.12)
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holds for each constant speed geodesic (ρt)t∈[0,1]. Note that if two functionals Gi are
λi-convex for i= 1,2, then clearly G1 +G2 is λ-convex with λ= min(λ1,λ2).

We call G geodesically convex if the map t 7→G(ρt) is convex for any geodesic
(ρt)t∈[0,1] (which is equivalent to λ-convexity for λ= 0). A useful criterion for geodesic
convexity of the free energy F is the McCann condition (see Proposition 9.3.9 and
equation (9.3.11) in [1]): A convex function f ∈C2([0,∞);R) with f(0) = 0 satisfies the
McCann condition (in d dimensions) if the map

s 7→sdf(s−d) (4.13)

is convex on (0,∞) (cf. the discussion in Section 9.3 in [1]). In the case d= 1, convexity of
f is sufficient to establish geodesic convexity. For a potential energy of the form V(ρ) =∫

Λ
V (u)ρ(u)du λ-convexity is equivalent to λ-convexity (also called strong convexity)

of V on Λ (see equation (9.3.3) and Proposition 9.3.2 in [1]), which is V ((1− t)x+
ty)≤ (1− t)V (x)+ tV (y)−(λ/2)t(1− t)‖x−y‖2. For V ∈C2(Λ;R) the Hessian matrix is
bounded and this assumption is trivially satisfied. Note that under the assumption that
F is geodesically-convex and V is λ-convex for some λ≤0, also FV is λ-convex.

4.2.1. Assumptions for chain rule. To our knowledge, minimal sufficient
conditions for the validity of a chain rule of the form (3.4) are still an open question. One
difficulty is that the existing theory requires λ-convexity of the functional in question. In
the case of independent particles (with χ(a) =φ(a) =a) sufficient conditions for λ-convex
functionals can be obtained from the general theory for gradient flows in Wasserstein
spaces, which was established in [1] (see also [36,38]). We note that generalisations of the
gradient flow theory in Wasserstein spaces with non-linear (usually concave) mobilities
have been considered in the literature, see e.g. [11,12,25–27]. Yet, establishing the chain
rule in a weighted Wasserstein metric is fraught with technical difficulties, in particular
λ-convexity of the functional. We overcome this difficulty here by showing that in the
setting studied here, where a weighted Wasserstein metric is the natural space, the chain
rule can be established in an unweighted (classical) Wasserstein setting, where strong
tools are available.

In this section, we establish the chain rule (3.4) in the special case that the density
f of the free energy FV satisfies the McCann condition for geodesic convexity (4.13) and
the particle process is ‘not too far away’ from the process with independent particles
(where χ(a) =φ(a) =a): We consider the case Nmax =∞ and assume there exists C∗>0
(without loss of generality the same constant which bounds φ′(a) from below) such that

C∗≤χ′(a) (4.14)

for almost all a∈ (0,∞). This implies that C∗≤χ′(a),φ′(a)≤CLip, such that also C∗a≤
χ(a),φ(a)≤CLipa. We obtain for any ρ∈L1(Λ;[0,∞)) that the norms ‖·‖ρ and ‖·‖χ(ρ)

are equivalent,

C∗‖·‖ρ≤‖·‖χ(ρ)≤CLip‖·‖ρ. (4.15)

In this case also the limit points coincide such that L2
∇,χ(ρ)(Λ;Rd) =L2

∇,ρ(Λ;Rd). This

will allow us to leverage results from the classical Wasserstein framework in [1].

Remark 4.1. The Lipschitz continuity of χ(a) implies that L2
∇,ρ(Λ;Rd)⊆

L2
∇,χ(ρ)(Λ;Rd). In general, this is a strict inclusion (consider e.g. the case of the SEP
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with χ(a) =a(1−a) and ρ= 1 on a subset O⊆Λ with positive Lebesgue measure). A
(weaker, density ρ dependent) condition for the opposite inclusion to hold is

inf
u∈Λ

χ(ρ(u))

ρ(u)
>0,

which can in this case replace the constant in the lower bound of (4.15). Note that this
is a density specific condition, whereas the above condition (4.14) is a model specific
condition (which is independent of ρ). For the SEP, this condition is satisfied precisely in
the case when ρ is bounded away from the maximal possible local particle density, i.e. ρ≤
Nmax−ε (for some ε>0). The same considerations show that in general L2

∇,id([0,T ]×
Λ;Rd)⊆L2

∇,χ([0,T ]×Λ;Rd) and that (4.14), or alternatively

inf
(t,u)∈[0,T ]×Λ

χ(ρt(u))

ρt(u)
>0,

ensures that L2
∇,id([0,T ]×Λ;Rd) =L2

∇,χ([0,T ]×Λ;Rd).

4.2.2. Validity of the chain rule. The following results, which are mainly
based on Chapter 9 and 10 in [1], relate Lf (ρ) to the directional derivative, the Fréchet-
subdifferential, and the metric slope of F(ρ). Below we sketch results which can be
obtained by a suitable modification of the results in [1]. More precisely, we are interested
in the case where the domain is Λ =Td and the measures of interest are absolutely
continuous with respect to the Lebesgue measure.

As shown in Theorem 1.25 in [36] there exists for any ρ,ρ̂∈L1(Λ;[0,∞)) with∫
Λ
ρdu=

∫
Λ
ρ̂du>0 a unique optimal transport map from ρ to ρ̂ of the form r= i−∇ϕ,

where ϕ is semi-concave (i.e. there exists a constant C>0 such that ϕ(u)−C|u|2 is
concave). Moreover, the interpolation rt := (1− t)i+ tr between r and the identity i on
Λ is such that (rt)#ρ has a Lebesgue density for all t∈ [0,1] (which can e.g. be shown
by a modification of the proof of Proposition 9.3.9. in [1]).

Now, assume that f satisfies the McCann condition for geodesic convexity (4.13),
that F(ρ),F(ρ̂)<∞, and that Lf (ρ)∈W 1,1(Λ;R). Then∫

Λ

∇[Lf (ρ)] ·(r− i)du≤−
∫

Λ

Lf (ρ)tr∇̃(r− i)du= lim
t↘0

F((rt)#ρ)−F(ρ)

t
<∞,

where ∇̃r denotes the approximate derivative (see Definition 5.5.1 in [1]) and i is
the identity on Λ. This result can be obtained from a modification of the proofs of
Lemma 10.4.4 and Lemma 10.4.5 in [1].

For a λ-convex functional G, the Fréchet-subdifferential ∂G(ρ) at ρ∈L1(Λ;[0,∞))
with

∫
Λ
ρdu>0 consists of all vectors ζ ∈L2

ρ(Λ;Rd) :={ζ : Λ→Rd :‖ζ‖ρ<∞} such that
for all ρ̂∈L1(Λ;[0,∞)) with

∫
Λ
ρdu=

∫
Λ
ρ̂du

G(ρ̂)−G(ρ)≥
∫

Λ

ζ ·(r− i)ρdu+
λ

2
W 2

2 (ρ,ρ̂), (4.16)

where r is the optimal transport map from ρ to ρ̂ (see Equation (10.1.7) in [1]).

Lemma 4.2 (Slope and subdifferential, cf. Theorem 10.4.6 in [1]). Assume that f
satisfies the McCann condition for geodesic convexity (4.13). For ρ∈L1(Λ;[0,∞)) with∫

Λ
ρdu>0 and F(ρ)<∞ the following statements are equivalent.

(1) The Fréchet-subdifferential (4.16) is non-empty, ∂FV (ρ) 6=∅.
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(2) The metric derivative at ρ is finite,

|∂FV |(ρ) := limsup
W2(ρ,ρ̂)→0

(FV (ρ)−FV (ρ̂))+

W2(ρ,ρ̂)
<∞.

(3) Lf (ρ)∈W 1,1
loc (Λ;R) with ∇[Lf (ρ)]+ρ∇V =ρw for some w∈L2

∇,ρ(Λ;Rd).

If either of the above holds we have w∈∂F(ρ) and ‖w‖ρ= |∂F|(ρ). Moreover, if the
additional assumption (4.14) holds, then the above conditions are also equivalent to

(4) φ(ρ)∈W 1,1
loc (Λ;R) with ∇[φ(ρ)]+χ(ρ)∇V =χ(ρ)w for some w∈L2

∇,χ(ρ)(Λ;Rd).

Proof. The equivalence between (1) and (2) holds since (by Lemma 10.1.5 in [1])
the metric slope for (regular and thus in particular) λ-convex functionals is given by

|∂F|(ρ) = min{‖ζ‖ρ : ζ ∈∂F(ρ)}. (4.17)

We next show that (2) implies (3). The result follows from a standard calculation,
cf. e.g. the proof of Lemma 3.5 in [26]. Consider a smooth function ξ∈C∞c (Λ;R).
We define the flow associated to ∇ξ as the unique solution X(t,u) to Ẋ(t,u) =

∇ξ(X(t,u)), X(0,u) =u for u∈Λ and t∈ (0,1). For ρξt :=X(t,·)#ρ we have (cf. (3.32)
in [26])

W 2
2 (ρ,ρξt )≤ t

∫ t

0

‖∇ξ‖2
ρξs

ds= t2(‖∇ξ‖2ρ+o(1)). (4.18)

Similar to (3.35) and (3.36) in [26] one finds

lim
t→0

F(ρξt )−F(ρ)

t
=

∫
Λ

∇[Lf (ρ)] ·∇ξdu and lim
t→0

V(ρξt )−V(ρ)

t
=

∫
Λ

ρ∇V ·∇ξdu.

(4.19)
Using (4.18) and FV =F+V we obtain (cf. (3.33) in [26])

|∂FV |(ρ)≥ 1

‖∇ξ‖ρ
lim
t→0

FV (ρξt )−FV (ρ)

t
=

1

‖∇ξ‖ρ

∫
Λ

(∇[Lf (ρ)]+ρ∇V ) ·∇ξdu.

Similar to the discussion at the beginning of Section 4.1, |∂FV |(ρ)<∞ implies that the
linear operator v 7→

∫
Λ

(∇[Lf (ρ)]+ρ∇V ) ·vdu from L2
∇,ρ(Λ;Rd) to R is bounded, such

that Riesz’ representation theorem implies the existence of w∈L2
∇,ρ(Λ;Rd) for which

∇[Lf (ρ)]+ρ∇V =ρw, such that Lf (ρ)∈W 1,1
loc (Λ;R). In particular |∂FV |(ρ)≥‖w‖ρ.

For the implication (3) to (2) consider any ρ̂∈L1(Λ;[0,∞)) with
∫

Λ
ρdu=

∫
Λ
ρ̂du

and F(ρ̂)<∞. Then

F(ρ̂)−F(ρ)≥ lim
t→0

F((rt)#ρ)−F(ρ)

t
≥
∫

Λ

∇[LF (ρ)] ·(r− i)du,

where the first inequality follows from the monotonicity of the difference quotient (see
Equation (10.4.24) in [1]). The λ-convexity of V yields (cf. (4.12))

V(ρ̂)−V(ρ)≥ lim
t→0

V((rt)#ρ)−V(ρ)

t
+
λ

2
W 2

2 (ρ,ρ̂) =

∫
Λ

ρ∇V ·(r− i)du+
λ

2
W 2

2 (ρ,ρ̂).

This implies that w= (∇[LF (ρ)]/ρ+∇V )∈∂FV (ρ) and thus |∂FV |(ρ)≤‖w‖ρ<∞ by
Equation (4.17).
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The equivalence between (3) and (4) can be seen as follows: Recall that C∗L
′
f (a)≤

φ′(a)≤CLipL
′
f (a) and also C∗Lf (a)≤φ(a)≤CLipLf (a). With the same argument

as in the proof of Proposition 4.3 we obtain that the chain rule holds as in (4.9),
i.e. L′f (ρ)∇ρ=∇[Lf (ρ)] and φ′(ρ)∇ρ=∇[φ(ρ)], such that C∗‖∇[Lf (ρ)]‖≤‖∇[φ(ρ)]‖≤
CLip‖∇[Lf (ρ)]‖. This proves that φ(ρ)∈W 1,1(Λ;R) if and only if Lf (ρ)∈W 1,1(Λ;R).
Moreover w=∇[Lf (ρ)]/ρ=∇[φ(ρ)]/χ(ρ).

Finally, we can outline a proof for Theorem 3.1, which follows ideas from [1, 26].
Since we work on the torus Λ =Td (rather than Rd), we sketch the argument.

Proof. (Proof of Theorem 3.1.) Since A is finite and the assumptions of Sec-
tion 2.4.2 are valid, Propositions 4.1 and 4.2 and 4.3 hold. Moreover, since f satisfies
the McCann condition (4.13) and also the assumption (4.14) on χ′ holds, we can apply
Lemma 4.2. Combining all these results we have that the map t 7→ |ρ′t||∂FV |(ρt) is in
L1

loc([0,T ];R). This then implies that t 7→FV (ρt) is locally absolutely continuous (see
e.g. Lemma 3.4 in [26]), with a.e. derivative

d

dt
FV (ρt) =−〈vt,wt〉χ(ρt) =−〈ρ̇t,∆(ρt)+∇·(χ(ρt)∇V )〉−1,χ(ρt),

which implies the chain rule (3.4).

5. Proofs and supplementary content
For nearest neighbour transitions, the following proposition yields a special repre-

sentation for symmetric summands.

Proposition 5.1. Let Aη,η′ be a symmetric function (such that Aη,η′ =Aη′,η) with
Aη,η = 0 and Aη,ηi,j = 0 whenever |i−j| 6= 1. If either

∑
η,η′∈ΩL

|Aη,η′ |<∞ or Aη,η′ ≥0
for all η,η′∈ΩL, then

∑
η,η′∈ΩL

Aη,η′ = 2
∑
i∈TdL

d∑
k=1

∑
η∈ΩL

Aη,ηi,i+ek1{η(i)>0}. (5.1)

Proof. Note that by definition
∑
η,η′∈ΩL

Aη,η′ =
∑
i∈TdL

∑d
k=1

∑
η∈ΩL

(
Aη,ηi,i+ek +

Aη,ηi,i−ek
)
1{η(i)>0}. Using symmetry, the second summand is equal to Aηi,i−ek ,η, such

that first replacing the configuration η with ηi−ek,i before replacing the index i with
i+ek yields (5.1).

Following [22] Chapter 5, we define for ε>0 the approximation of the identity ιε :=
(2ε)−d1[−ε,ε)d(·). Recall that the convolution of a measure π∈M+(Λ) with a function
f ∈L1(Λ;R) is defined as [π∗f ](u) :=

∫
Λ
f(u′−u)π(du′). The convolution of ιε with the

empirical measure (2.18) is the function

[ΘL(η)∗ ιε](u) = (2εL)−d
∑
i∈TdL

1[ 2i−1
2L , 2i+1

2L )d(u)
∑

j:|i−j|≤bεLc

η(j), (5.2)

which is piecewise constant on {[ 2i−1
2L , 2i+1

2L )d}i∈TdL . This allows us to represent the
averaged particle density as a function of the empirical distribution, i.e.

[ΘL(η)∗ ιε](i/L) =
(2bεLc+1

2εL

)d
ηbεLc(i).

For π(du) =ρ(u)du the convolution yields [π∗ ιε](u) = (2ε)−d
∫

[u−ε,u+ε)d
ρ(u′)du′. Since

limε→0[π∗ ιε](u) =ρ(u) for almost all u∈Λ, we define [π∗ ι0](u) :=ρ(u).
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5.1. Proofs of the statements in Section 3.1.
Proof. (Proof of Proposition 3.1.) Recall that (µLt )t∈[0,T ] is finitely sup-

ported in the sense that the set N0 :={η∈ΩL|µLt (η)>0 for some t∈ [0,T ]} is fi-
nite. Since rLt consists of nearest neighbour transitions, also the set N1 :={(η,η′)∈
ΩL×ΩL|µLt (η)(rLt )η,η′ >0 or µLt (η′)(rLt )η′,η>0 for some t∈ [0,T ]} is finite. Thus the
left-hand side of (3.1) is equal to

∑
η∈N0

[
µLt2(η)log

(
µLt2(η)

να(η)

)
−µLt1(η)log

(
µLt1(η)

να(η)

)]

+
∑
η∈N0

∑
i∈TdL

(
µLt2(η)η(i)Ṽt2( iL )−µLt1(η)η(i)Ṽt1( iL )

)
+log

(∑
η∈ΩL

να(η)e
−
∑
i∈Td

L
Ṽt2 (i/L)η(i)

)
− log

(∑
η∈ΩL

να(η)e
−
∑
i∈Td

L
Ṽt1 (i/L)η(i)

)
.

Similar to Theorem 9.2 of Appendix 1 in [22], one then shows using (2.3) that the latter
is equal to

∑
η∈N0

∫ t2

t1

d

dt

[
µLt (η)log

(
µLt (η)

να(η)

)]
dt+

∑
η∈N0

∑
i∈TdL

∫ t2

t1

d

dt

[
µLt (η)η(i)Ṽt(

i
L )
]
dt

−
∫ t2

t1

∑
η∈ΩL

νṼtα (η)
∑
i∈TdL

η(i)∂tṼt(
i
L )dt.

A straightforward calculation (using ∂tµ
L
t (η) =−divLt (η), the fact that the transition

rates rLt are bounded, and the fact that µLt is supported on a finite number of configu-
rations) allows to show that

F Ṽt2L,α(µLt2)−F Ṽt1L,α(µLt1) =−
∑
η∈N0

∫ t2

t1

divLt (η)

(
log

(
µLt (η)

να(η)

)
+1

)
dt

−
∑
η∈N0

∫ t2

t1

divLt (η)
∑
i∈TdL

η(i)Ṽt(
i
L )dt+

∫ t2

t1

∑
η∈ΩL

(
µLt (η)−νṼtα (η)

)∑
i∈TdL

η(i)∂tṼt(
i
L )dt.

(5.3)

Using once more the boundedness of the nearest neighbour transition rates and that
µ0 is supported on finitely many configurations, we can show, employing the bound
log(µLt (η)/να(η))≤|log(να(η))|, that∫ T

0

∑
η,η′∈ΩL

∣∣∣(Lt )η,η′ log

(
µLt (η)

να(η)

)∣∣∣dt
≤
∫ T

0

∑
(η,η′)∈N1

(
µLt (η)(rLt )η,η′+µLt (η′)(rLt )η′,η

)
|log(να(η))|dt<∞.

The latter allows us to combine the first two summands on the right-hand side of (5.3),

which are equal to −
∑
η∈ΩL

divLt (η)log(µLt (η)/νṼtα (η)) =−〈Lt ,F Ṽt(µLt )〉L, where the
last identity follows by a summation by parts (cf. Equation (15) in [21]). This finishes
the proof.
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The proof of Theorem 3.2 relies on an auxiliary statement of independent interest,
which we prove first. The result gives sufficient conditions for local equilibration.

Lemma 5.1. Consider (PL)L∈N from Section 2.2.1 with associated density (µLt )t∈[0,T ].

Assume there exists Ṽ ∈C1,2([0,T ]×Λ;R) such that the inequalities

limsup
L→∞

1

Ld

∫ T

0

F ṼtL,α(µLt )dt<∞ (5.4)

and

limsup
L→∞

1

Ld

∫ T

0

Ψ?
L

(
µLt ,F

Ṽt(µLt )
)
dt<∞ (5.5)

are satisfied. Then (µL[0,T ])L∈N (where again µL[0,T ] := 1
T

∫ T
0
µLt dt) is in the class consid-

ered by the replacement lemma (2.33). In particular (2.31) and (2.32) are satisfied for
(µL[0,T ])L∈N. Moreover, these assumptions are independent of the choices of Ṽ and α:

We can replace Ṽ with Ṽ +H̃ for some H̃ ∈C1,2([0,T ]×Λ;R) and also replace α with
α′∈ (0,Nmax) in (5.4) arbitrary. Then (5.4) and (5.5) are satisfied for Ṽ and α if and
only if they are satisfied for Ṽ +H̃ and α′.

Proof. The bound (5.4) for Ṽ +H̃ and α′ follows similar to Remark 1.2 on
page 70 of [22]. For (5.5) note that the basic estimate cosh(x+y)≤ cosh(x)e|y| combined
with (2.34) yields

1

Ld

∫ T

0

Ψ?
L

(
µLt ,F

Ṽt+H̃t
α (µLt )

)
dt≤

CH̃
Ld

∫ T

0

Ψ?
L

(
µLt ,F

Ṽt(µLt )
)
dt+2(CH̃−1)TCχ̂ (5.6)

for some CH̃ >0 that only depends on H. We thus can restrict to the special case Ṽt= 0.
The two bounds needed for the replacement lemma (2.33) then follow from convexity,

i.e. F0
L,α(µL[0,T ])≤

1
T

∫ T
0
F0
L,α(µLt )dt and Ψ?

L

(
µL[0,T ],F

0(µL[0,T ])
)
≤ 1
T

∫ T
0

Ψ?
L

(
µLt ,F

0(µLt )
)
dt

(cf. the discussion in Chapter 5.3 near equation (3.1) on page 81 in [22]).

With this result at hand, we can turn to the proof of Theorem 3.2.

Proof. (Proof of Theorem 3.2.) Since the relative entropy is non-negative, we
obtain with a modification of (3.2) to the time interval [t,T ] (for each t∈ [0,T ]) that

F ṼtL,α(µLt )≤F ṼTL,α(µLT )+

∫ T

t

ΨL(µLs ,
L
s )ds+

∫ T

t

Ψ?
L

(
µLs ,F

Ṽs
α (µLs )

)
ds

−
∫ T

t

∑
i∈TdL

(
ρ̂i(µ

L
s )− ρ̄α,Ṽs(i)

)
∂sṼs(

i
L )ds

≤AṼL
(
QL
)

+F Ṽ0

L,α(µL0 )+CṼ

(
TLdCtot +

∫ T

0

∑
i∈TdL

ρ̄α,Ṽt(i/L)dt

)
, (5.7)

where CṼ is a constant that only depends on Ṽ . Thus

limsup
L→∞

1

Ld

∫ T

0

F ṼtL,α(µLt )dt≤ limsup
L→∞

T

Ld
AṼL
(
QL
)

+limsup
L→∞

T

Ld
F Ṽ0

L,α(µL0 )
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+T 2CṼ Ctot +TCṼ

∫ T

0

∫
Λ

ρ̄α,Ṽt(u)dudt<∞. (5.8)

The second inequality follows from a similar estimate to (5.7): Consider the second

inequality in (5.7) for t= 0 and drop the term FVL,α(µLT )+
∫ T

0
ΨL(µLt ,

L
t )dt≥0. Then

∫ T

0

Ψ?
L

(
µLt ,F

Ṽt(µLt )
)
dt

≤AṼL
(
QL
)

+F Ṽ0

L,α(µL0 )+2CṼ

(
TLdCtot +

∫ T

0

∑
i∈TdL

ρ̄α,Ṽt(i/L)dt

)

and we can conclude as in (5.8). We then apply Lemma 5.1 to obtain that the equa-
tions (2.31) and (2.32) are satisfied for (µL[0,T ])L∈N. The independence of V , Ṽ and α
follows from the considerations in Lemma 5.1.

5.2. Proofs of liminf inequalities. This section is devoted to the proof of
the liminf inequalities in the proof of Theorem 3.3. Many of the ideas of the following
proofs are borrowed from the entropy method developed in [20]. We here follow the
presentation of this method in Chapter 5 of the book by Kipnis and Landim [22]. The
results we want to prove are of the form liminfL→∞BL≥B∗. The general strategy
involves replacing BL by some (possibly ε dependent) CεL and to show that

liminf
ε→0

liminf
L→∞

CεL≥B∗ and limsup
ε→0

limsup
L→∞

|BL−CεL|= 0.

5.2.1. Bounds for ΨL and Ψ?
L. In order to achieve the projection to the

physical domain anticipated in Section 2.1 we consider functions which are linear
in η. For this we fix a function G∈C1(Λ;R) and define G̃L : ΩL→R by G̃L(η) :=
Ld〈ΘL(η),G〉=

∑
i∈TdL

G(i/L)η(i), for which the discrete derivative satisfies the identity

∇η,ηi,i+ek G̃L=∇i,i+ekG(·/L). Note that this last identity allows us to reduce the depen-
dence on the configuration space to a dependence on the physical domain. Choosing the
‘force’ F =∇G̃L, we obtain with Proposition 5.1 (since all summands are non-negative)
that

Ψ?
L(µ,∇G̃L) = 2

∑
i∈TdL

d∑
k=1

âi,i+ek(µ)L2
[
cosh

(
1
2∇

i,i+ekG(·/L)
)
−1
]

(5.9)

and similarly, for the current jGη,η′ =aη,η′(µ)sinh
(

1
2∇

η,η′G̃L
)

associated with the above
force (cf. [21])

ΨL(µ,jG) = 2
∑
i∈TdL

d∑
k=1

âi,i+ek(µ)L2
[
sinh

(
1
2∇

i,i+ekG(·/L)
)

1
2∇

i,i+ekG(·/L)

−
(

cosh
(

1
2∇

i,i+ekG(·/L)
)
−1
)]
. (5.10)

We next derive upper bounds for (5.9) and (5.10) and a lower bound for Ψ?
L(µ,FV (µ)).
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Proposition 5.2 (Upper bounds for ΨL and Ψ?
L). Let µ be a measure on ΩL. Further

let fη,η′ :=∇η,η
′
G̃L for some G : Λ→R and jGη,η′ :=aη,η′(µ)sinh

(
1
2∇

η,η′G̃L
)
. Then

Ψ?
L(µ,∇G̃L)≤ΨL(µ,jG)≤ 1

2

∑
i∈TdL

d∑
k=1

χ̂0
i,i+ek

(µ)
[
2Lsinh

(
1
2∇

i,i+ekG(·/L)
)]2

.

(5.11)

Proof. The proof follows from the basic inequalities cosh(x)−1≤xsinh(x)−
(cosh(x)−1)≤ 1

2 sinh(x)2 applied to (5.9) and (5.10), together with the inequality
âi,i+ek(µ)≤2χ̂0

i,i+ek
(µ) stated below (2.17).

Proposition 5.3 (Lower bound for Ψ?
L). Let µ be a measure on ΩL, α∈ (0,Nmax)

and V ∈C2(Λ;R). Then, for any G : Λ→R we have the following lower bound on
Ψ?
L

(
µ,FV (µ)

)
uniform in α

Ψ?
L

(
µ,FV (µ)

)
≥
∑
i∈TdL

d∑
k=1

[(
L̂Vi,i+ek(µ)

)
(L∇i,i+ekG(·/L))− 1

2
χ̂Vi,i+ek(µ)

[
L∇i,i+ekG(·/L)

]2]
. (5.12)

Proof. We use the notation ρ :=µ/νVα (s.t. ρ is the density of µ with re-
spect to νVα ) and qη,η′ :=νVα (η)rVη,η′ , such that the relation qη,η′ = qη′,η (detailed bal-

ance) holds. Then FVη,η′(µ) =−∇η,η′ logρ and aη,η′(µ) = 2
√
ρ(η)qη,η′ρ(η′)qη′,η. Further,

aη,η′(µ)[cosh( 1
2F

V
η,η′(µ))−1] =

√
qη,η′qη′,η(

√
ρ(η)−

√
ρ(η′))2. Using the representation

in Proposition 5.1 and qη,η′ =
√
qη,η′qη′,η = qη′,η, we obtain

Ψ?
L

(
µ,FV (µ)

)
=
∑
η∈ΩL

∑
i∈TdL

d∑
k=1

2qη,ηi,i+ek

(√
ρ(η)−

√
ρ(ηi,i+ek)

)2

.

Define Hη,η′ =
1
4

(√
ρ(η)+

√
ρ(η′)

)
∇η,η′G̃L. Using ∇η,ηi,i+ek G̃L=∇i,i+ekG(·/L) one

easily establishes

2
(√

ρ(η)−
√
ρ(ηi,i+ek)

)2

≥4
(√

ρ(η)−
√
ρ(ηi,i+ek)

)
Hη,ηi,i+ek −2H2

η,ηi,i+ek

=
(
ρ(η)−ρ(ηi,i+ek)

)
∇i,i+ekG(·/L)− 1

8

(√
ρ(η)+

√
ρ(ηi,i+ek)

)2
(∇i,i+ekG(·/L))2.

Using qη,η′ = qη′,η, the inequality 1
2 (x+y)2≤x2 +y2, and µ(η)rVη,η′ =ρ(η)qη,η′ thus al-

lows to bound 2qη,ηi,i+ek (
√
ρ(η)−

√
ρ(ηi,i+ek))2 from below by(

µ(η)rVη,ηi,i+ek −µ(ηi,i+ek)rVηi,i+ek ,η
)
∇i,i+ekG(·/L)

− 1

4

(
µ(η)rVη,ηi,i+ek +µ(ηi,i+ek)rVηi,i+ek ,η

)
(∇i,i+ekG(·/L))2.

Note that
∑
η∈ΩL

µ(η)rV
η,ηi+ek,i

=
∑
η∈ΩL

µ(ηi,i+ek)rV
ηi,i+ek ,η

implies that

Ψ?
L

(
µ,FV (µ)

)
≥
∑
i∈TdL

d∑
k=1

[( ∑
η∈ΩL

µ(η)
(
rVη,ηi,i+ek −r

V
η,ηi+ek,i

))
∇i,i+ekG(·/L)
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− 1

4

( ∑
η∈ΩL

µ(η)
(
rVη,ηi,i+ek +rVη,ηi+ek,i

))(
∇i,i+ekG(·/L)

)2]
, (5.13)

which coincides by (2.15) and (2.17) with the right-hand side of (5.12).

5.2.2. Asymptotic lower bound for the free energy.
Proposition 5.4. Let the assumptions of Theorem 3.3 hold and let t∈ [0,T ] be such
that the path (πt)t∈[0,T ] is continuous at t. Then

liminf
L→∞

1

Ld
FVL,α

(
µLt
)
≥FVα (ρt). (5.14)

Proof. For each h∈C(Λ;R) the entropy inequality (a special case of the Fenchel
inequality, see Proposition 8.1 and page 340 in Appendix 1 in [22]) implies

1

Ld
FVL,α

(
µLt
)
≥ 1

Ld

[ ∑
η∈ΩL

µLt (η)
∑
i∈TdL

h(i/L)η(i)− log

(∑
η∈ΩL

νVα (η)e
∑
i∈Td

L
h(i/L)η(i)

)]

=
∑
η∈ΩL

µLt (η)〈ΘL(η),h〉− 1

Ld

∑
i∈TdL

log

(
Eνα,1 [e(h(i/L)−V (i/L))η(0)]

Eνα,1 [e−V (i/L)η(0)]

)
.

By the assumption of finite moments in (2.3) the dominated convergence theorem yields
that u 7→Eνα,1 [e(h(u)−V (u))η(0)] is continuous.

By (2.7), we can restrict to measures with bounded volume, such that a truncation
argument, combined with the weak convergence QL→Q∗= δ(πt)t∈[0,T ]

and the continuity

of the projection/evaluation at time t implies
∑
η∈ΩL

µLt (η)〈ΘL(η),h〉=EQL [〈πt,h〉]→
EQL [〈πt,h〉] = 〈πt,h〉. Thus

liminf
L→∞

1

Ld
FVL,α

(
µLt
)
≥〈πt,h〉−

∫
Λ

log

(
Eνα,1 [e(h(u)−V (u))η(0)]

Eνα,1 [e−V (u)η(0)]

)
du. (5.15)

Taking the supremum with respect to h∈C(Λ;R) combined with (2.21) then finishes
the proof.

5.2.3. Asymptotic lower bound for Ψ. The following proofs will depend on
uniform continuity of functions (which follows here from continuity and the compactness
of the domain Λ (or [0,T ]×Λ)).

Lemma 5.2. Under the assumptions of Theorem 3.3, we have for any G∈C1,2([0,T ]×
Λ;R)

limsup
ε→0

limsup
L→∞

∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µLt )
[
L∇i,i+ekGt(·/L)

]2
dt

−
∫ T

0

∫
Λ

∑
η∈ΩL

µLt (η)χ
(
[ΘL(η)∗ ιε](u)

)
|∇Gt(u)|2dudt

∣∣∣∣= 0. (5.16)

Proof. We first show that without loss of generality we can set V = 0 for the
rates (2.1). We denote with χ̂V the mobility for a smooth potential V and with χ̂0 the
mobility for V = 0. Note that
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0

1

Ld

∑
i∈TdL

d∑
k=1

(
χ̂Vi,i+ek(µLt )− χ̂0

i,i+ek
(µLt )

)[
L∇i,i+ekGt(·/L)

]2
dt

∣∣∣∣
≤
∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂0
i,i+ek

(µLt )2
(
cosh

(
1
2∇

i,i+ekV (·/L)
)
−1
)[
L∇i,i+ekGt(·/L)

]2
dt.

(5.17)

Taylor’s theorem enables us to find for each t∈ [0,T ] a number ξ∈ (i/L,(i+ek)/L) for

which L∇i,i+ekGt(·/L) =∂kGt(ξ). Defining CG :=
∑d
k=1 supt∈[0,T ]‖∂kGt‖2∞<∞ allows

us to bound the right-hand side of (5.17) from above by

2CGT

Ld

∑
i∈TdL

d∑
k=1

(
cosh

(
1
2∇

i,i+ekV (·/L)
)
−1
)
χ̂0
i,i+ek

(
1

T

∫ T

0

µLt dt

)
. (5.18)

Using the uniform continuity of V (on the compact set Λ), we obtain for each ε>0
that |∇i,i+ekV (·/L)|<ε as L→∞ independent of i and ek, such that (5.18) is (for L
large enough) with (2.34) bounded by 2CGCχ̂T (cosh(ε/2)−1). Thus, taking the limit
superior ε→0 after taking L→∞ in (5.18) shows that the left-hand side of (5.17)
vanishes. This justifies the replacement of V with V = 0 in the mobility. We thus drop
the indices V and 0 and simply write χ̂ for the mobility with V = 0.

To prove (5.16) it is sufficient to show that

limsup
ε→0

limsup
L→∞∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µLt )

(2bεLc+1)d

∑
|m|≤bεLc

([
L∇i,i+ekGt(·/L)

]2−[∂kGt((i+m)/L)
]2)

dt

∣∣∣∣
+
CGT

Ld

∑
i∈TdL

d∑
k=1

∑
η∈ΩL

(
1

T

∫ T

0

µLt (η)dt

)∣∣∣χ̂bεLci,i+ek
(δη)− χ̂i,i+ek

(
νηbεLc(i)

)∣∣∣
+
CGT

Ld

∑
i∈TdL

∑
η∈ΩL

(
1

T

∫ T

0

µLt (η)dt

)∣∣∣χ(ηbεLc(i))−χ(( 2εL

2bεLc+1

)d
ηbεLc(i)

)∣∣∣
+

∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

∑
η∈ΩL

µLt (η)χ
(
[ΘL(η)∗ ιε](i/L)

)
|∇Gt(i/L)|2dt

−
∫ T

0

∫
Λ

∑
η∈ΩL

µLt (η)χ
(
[ΘL(η)∗ ιε](u)

)
|∇Gt(u)|2dudt

∣∣∣∣= 0.

(5.19)

By uniform continuity of (∂kGt)
2 for each δ>0 there exists an ε>0 such that |u−

u′|<ε implies that |(∂kGt(u))2−(∂kGt(u
′))2|<δ uniformly in t∈ [0,T ]. Thus, by (2.34),

the first term in (5.19) is, for ε small enough, bounded by

∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µLt )

(2bεLc+1)d

∑
|m|≤bεLc

∣∣∣[L∇i,i+ekGt(·/L)
]2−[∂kGt((i+m)/L)

]2∣∣∣dt
≤TδCχ̂.
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Letting δ→0 shows that the first term in (5.19) vanishes.
The second term is controlled by the local equilibrium assumption (2.31); the third

term vanishes using the Lipschitz continuity of χ and the bound on the expected number
of particles: The Lipschitz continuity yields that the third summand in (5.19) is bounded
by

CGCLipT

∣∣∣∣1−( 2εL

2bεLc+1

)d∣∣∣∣ ∑
η∈ΩL

(
1

T

∫ T

0

µLt (η)dt

)
1

Ld

∑
i∈TdL

ηbεLc(i).

By the conservation of particles, the last expression can be bounded by CGCLipCtotT
∣∣1−(

2εL
2bεLc+1

)d∣∣, which vanishes as L→∞.

For the last term in (5.19) recall that [ΘL(η)∗ ιε](u) is piecewise constant on
{[ 2i−1

2L , 2i+1
2L )d}i∈TdL (cf. (5.2)). The proof thus reduces to establishing a bound for∫ T

0

∑
i∈TdL

∑
η∈ΩL

µLt (η)χ
(
[ΘL(η)∗ ιε](i/L)

)∣∣∣∣∫
[ 2i−1

2L , 2i+1
2L )d

(
|∇Gt(i/L)|2−|∇Gt(u)|2

)
du

∣∣∣∣dt,
which is easily obtained, as the last expression is, by the Lipschitz continuity, (2.7),
and (5.2) bounded above by

CLipCtot(2ε)
−d
∫ T

0

∑
i∈TdL

∫
[ 2i−1

2L , 2i+1
2L )d

∣∣∇Gt(i/L)|2−|∇Gt(u)|2
∣∣dudt,

which converges by the uniform continuity of ∇G to zero for L→∞.

Note that the above proof does not depend on the fact that we consider the square
gradient of a function G. We can replace the square by the product of two different
gradients and immediately obtain the following results.

Lemma 5.3. Under the assumptions of Theorem 3.3 we have for any G,H ∈C1([0,T ]×
Λ;R) that

limsup
ε→0

limsup
L→∞

∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µLt )
[
L∇i,i+ekHt(·/L)

][
L∇i,i+ekGt(·/L)

]
dt

−
∫ T

0

∫
Λ

∑
η∈ΩL

µLt (η)χ
(
[ΘL(η)∗ ιε](u)

)
∇Ht(u) ·∇Gt(u)dudt

∣∣∣∣= 0. (5.20)

Corollary 5.1. Under the assumptions of Theorem 3.3 we have for any G∈
C1,2([0,T ]×Λ;R) that

limsup
ε→0

limsup
L→∞

∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µLt )
[
2Lsinh

(
1
2∇

i,i+ekGt(·/L)
)]2

dt

−
∫ T

0

∫
Λ

∑
η∈ΩL

µLt (η)χ
(
[ΘL(η)∗ ιε](u)

)
|∇Gt(u)|2dudt

∣∣∣∣= 0 (5.21)

and for any G,H ∈C1,2([0,T ]×Λ;R)
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limsup
ε→0

limsup
L→∞∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µLt )
[
2Lsinh

(
1
2∇

i,i+ekGt(·/L)
)][
L∇i,i+ekHt(·/L)

]
dt

−
∫ T

0

∫
Λ

∑
η∈ΩL

µLt (η)χ
(
[ΘL(η)∗ ιε](u)

)
∇Gt(u) ·∇Ht(u)dudt

∣∣∣∣= 0. (5.22)

We now turn to the proof of the lower bound in (3.16).

Proposition 5.5. Let the assumptions of Theorem 3.3 hold. Then (3.16) is satisfied.

Proof. For any G∈C1,2([0,T ]×Λ;R) we have

∑
η∈ΩL

G̃L(T,η)µLT (η)−
∑
η∈ΩL

G̃L(0,η)µL0 (η)−
∫ T

0

∑
η∈ΩL

∂tG̃L(t,η)µLt (η)dt

=

∫ T

0

〈Lt ,∇G̃L(t,·)〉Ldt≤
∫ T

0

ΨL(µLt ,
L
t )dt+

∫ T

0

Ψ?
L(µLt ,∇G̃L(t,·))dt. (5.23)

Combined with Proposition 5.2 we obtain that 1
Ld

∫ T
0

ΨL(µLt ,
L
t )dt is bounded below by

∑
η∈ΩL

µLT (η)〈ΘL(η),GT 〉−
∑
η∈ΩL

µL0 (η)〈ΘL(η),G0〉−
∫ T

0

∑
η∈ΩL

µLt (η)〈ΘL(η),∂tGt〉dt

− 1

2Ld

∫ T

0

∑
i∈TdL

d∑
k=1

χ̂0
i,i+ek

(µLt )
[
2Lsinh

(
1
2∇

i,i+ekGt(·/L)
)]2

dt. (5.24)

For ε>0 and G fixed we define the function f ε,G : D([0,T ];M+(Λ))→R which
assigns to a path (π̃t)t∈[0,T ] the value

f ε,G((π̃t)t∈[0,T ]) := 〈π̃T ,GT 〉−〈π̃0,G0〉−
∫ T

0

〈π̃t,∂tGt〉dt

− 1

2

∫ T

0

∫
Λ

χ
(
[π̃t ∗ ιε](u)

)
|∇Gt(u)|2dudt.

By (2.7), we can restrict f ε,G to measures with bounded volume. In this case f ε,G is
continuous and bounded, which follows from dominated convergence using the estimate
χ
(
[πt ∗ ιε](u)

)
|∇Gt(u)|2≤CGCLipCtot/(2ε)

d<∞. We can rewrite (5.24) as

EQL
[
f ε,G

]
+

1

2

∫ T

0

∫
Λ

∑
η∈ΩL

µLt (η)χ
(
[ΘL(η)∗ ιε](u)

)
|∇Gt|2dudt

− 1

2Ld

∫ T

0

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µLt )
[
2Lsinh

(
1
2∇

i,i+ekGt(·/L)
)]2

dt

and define the remainder
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RεL :=
1

2

∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µt)
[
2Lsinh

(
1
2∇

i,i+ekGt(·/L)
)]2

dt

−
∫ T

0

∫
Λ

∑
η∈ΩL

µt(η)χ
(
[ΘL(η)∗ ιε](u)

)
|∇Gt|2dudt

∣∣∣∣
to obtain L−d

∫ T
0

ΨL(µt,jt)dt≥EQL
[
f ε,G

]
−RεL.

Since f ε,G is continuous and bounded, the weak convergence QL→Q∗=
δ(πt)t∈[0,T ]

implies that limL→∞EQL
[
f ε,G

]
=EQ∗

[
f ε,G

]
=f ε,G((πt)t∈[0,T ]). Furthermore

limsupε→0 limsupL→∞R
ε
L= 0 by Corollary 5.1. Thus liminfL→∞L

−d∫ T
0

ΨL(µt,jt)dt≥
liminfε→0f

ε,G((πt)t∈[0,T ]).
For πt(du) =ρt(u)du the distance |f ε,G((πt)t∈[0,T ])−f0,G((πt)t∈[0,T ])| is bounded

from above by

CG
2

∫ T

0

∫
Λ

∣∣∣χ([ρt ∗ ιε](u)
)
−χ(ρt(u))

∣∣∣dudt≤ CGCLip

2

∫ T

0

∫
Λ

∣∣[ρt ∗ ιε](u)−ρt(u)
∣∣dudt,

(5.25)
which is integrable. The dominated convergence theorem then implies that

f ε,G((πt)t∈[0,T ])→f0,G((πt)t∈[0,T ]), which proves liminfL→∞L
−d∫ T

0
ΨL(µt,jt)dt≥

f0,G((πt)t∈[0,T ]). Taking the supremum over all G∈C1,2([0,T ]×Λ;R) finally
yields (3.16).

5.2.4. Asymptotic lower bound for Ψ?. The proofs in this section are very
similar to the proofs in Section 5.2.3. We will therefore be brief.

Lemma 5.4. Suppose the assumptions of Theorem 3.3 hold. Then

limsup
ε→0

limsup
L→∞∣∣∣∣∫ T

0

(
1

Ld

∑
i∈TdL

d∑
k=1

[(
L̂Vi,i+ek(µLt )

)
(L∇i,i+ekGt(·/L))− 1

2
χ̂Vi,i+ek(µLt )

[
L∇i,i+ekGt(·/L)

]2]
−EQL

[∫
Λ

φ
(
[πt ∗ ιε](u)

)
∆Gtdu−

∫
Λ

χ
(
[πt ∗ ιε](u)

)
∇V ·∇Gtdu

− 1

2

∫
Λ

χ
(
[πt ∗ ιε](u)

)
|∇Gt|2du

])
dt

∣∣∣∣= 0. (5.26)

Proof. Note that

̂Vi,i+ek(µ) = ̂0i,i+ek(µ)cosh
(

1
2∇

i,i+ekV (·/L)
)

+ χ̂0
i,i+ek

(µ)2sinh
(
− 1

2∇
i,i+ekV (·/L)

)
.

(5.27)
Using (2.16) and (5.27), a discrete integration by parts (i.e. a shift of the index) yields

∑
i∈TdL

d∑
k=1

(
L̂Vi,i+ek(µ)

)
(L∇i,i+ekGt(·/L))− 1

2
χ̂i,i+ek(µ)

[
L∇i,i+ekGt(·/L)

]2
=
∑
i∈TdL

d∑
k=1

φ̂i(µ)L2
[
cosh

(
1
2∇

i,i+ekV (·/L)
)
∇i,i+ekGt(·/L)

−cosh
(

1
2∇

i−ek,iV (·/L)
)
∇i−ek,iGt(·/L)

]
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+ χ̂0
i,i+ek

(µ)2Lsinh
(
− 1

2∇
i,i+ekV (·/L)

)
(L∇i,i+ekGt(·/L))

− 1

2
χ̂i,i+ek(µ)

[
L∇i,i+ekGt(·/L)

]2
.

Combining this with the expression in (5.26), it is sufficient to show that

limsup
ε→0

limsup
L→∞

∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

φ̂i(µ
L
t )L2

[
cosh

(
1
2∇

i,i+ekV (·/L)
)
∇i,i+ekGt(·/L)

−cosh
(

1
2∇

i−ek,iV (·/L)
)
∇i−ek,iGt(·/L)

]
−EQL

[∫
Λ

φ
(
[πt ∗ ιε](u)

)
∆Gt(u)du

]
dt

∣∣∣∣= 0,

(5.28)

as well as

limsup
ε→0

limsup
L→∞

∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂0
i,i+ek

(µLt )2Lsinh
(

1
2∇

i,i+ekV (·/L)
)
(L∇i,i+ekGt(·/L))

−EQL
[∫

Λ

χ
(
[πt ∗ ιε](u)

)
∇V (u) ·∇Gt(u)du

]
dt

∣∣∣∣
+

1

2

∣∣∣∣∫ T

0

1

Ld

∑
i∈TdL

d∑
k=1

χ̂i,i+ek(µLt )
[
L∇i,i+ekGt(·/L)

]2
−EQL

[∫
Λ

χ
(
[πt ∗ ιε](u)

)
|∇Gt(u)|2du

]
dt

∣∣∣∣= 0. (5.29)

Note that (5.29) follows from the above considerations (Lemma 5.3 and Corollary 5.1),
such that we are only left to prove (5.28), which can be proven with the same calculations

as above (with χ̂ replaced by φ̂ combined with (2.34) and using (2.32) instead of (2.31)).

Proposition 5.6. Under the assumptions of Theorem 3.3 the inequality (3.17) holds.

Proof. We only sketch the proof, which is very similar to the one of Proposition 5.5.
For

f ε,G((π̃t)t∈[0,T ]) :=

∫ T

0

∫
Λ

φ
(
[π̃t ∗ ιε](u)

)
∆Gtdudt

−
∫ T

0

∫
Λ

χ
(
[π̃t ∗ ιε](u)

)
∇V ·∇Gtdudt− 1

2

∫ T

0

∫
Λ

χ
(
[π̃t ∗ ιε](u)

)
|∇Gt|2dudt.

Proposition 5.3 implies that

Ψ?
L

(
µ,FV (µ)

)
≥
∑
i∈TdL

d∑
k=1

[(
L̂Vi,i+ek(µ)

)
(L∇i,i+ekG(·/L))− 1

2
χ̂Vi,i+ek(µ)

[
L∇i,i+ekG(·/L)

]2]
.

As in the proof of Proposition 5.5, one obtains 1
Ld

∫ T
0

Ψ?
L(µLt ,F

S(µLt ))dt≥EQL
[
f ε,G

]
−

RεL, where RεL coincides with (5.26) in Lemma 5.4.
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The latter implies that limsupε→0 limsupL→∞R
ε
L= 0, such that again by weak con-

vergence with ε→0

liminf
L→∞

1

Ld

∫ T

0

Ψ?
L(µLt ,F

S(µLt ))dt≥f0,G((πt)t∈[0,T ]).

Taking the supremum with respect to G∈C1,2([0,T ]×Λ;R) yields (3.17).

5.3. Proof of Theorem 3.4.
Proof. We extend the proof in [3]. We will skip some details, as they are similar

to the above calculations. Let H̃ ∈C1,2([0,T ]×Λ;R). The log density of PV+H̃
L with

respect to PVL (where both measures have the same initial condition µL0 ) has the explicit
representation (cf. [3] and the Appendix in [21])

log
dPV+H̃

L

dPVL
((ηt)t∈[0,T ]) =

Ld

2

[
〈ΘL(ηT ),H̃T 〉−〈ΘL(η0),H̃0〉−

∫ T

0

〈ΘL(ηt),∂tH̃t〉dt
]

−
∫ T

0

∑
i∈TdL

∑
i′:|i−i′|=1

r̂V
ηt,η

i,i′
t

L2
(
e−

1
2 (H̃t(i

′/L)−H̃t(i/L))−1
)
dt.

Using 2(ac+bd) = (a−b)(c−d)+(a+b)(c+d) we can represent the expression in the
last line as ∫ T

0

∑
i∈TdL

d∑
k=1

[
L
(
r̂V
ηt,η

i,i+ek
t

− r̂V
ηt,η

i+ek,i
t

)(
Lsinh

(
− 1

2∇
i,i+ekH̃t(

·
L )
))

+
(
r̂V
ηt,η

i,i+ek
t

+ r̂V
ηt,η

i+ek,i
t

)
L2
(
cosh

(
− 1

2∇
i,i+ekH̃t(

·
L )
)
−1
)]

dt.

Taking the expected value of this expression with respect to PVL , in combined with (2.15)
and (2.17), yields

∫ T

0

∑
i∈TdL

d∑
k=1

[(
L̂Vi,i+ek(µLt )

)(
Lsinh

(
− 1

2∇
i,i+ekH̃t(

·
L )
))

+2χ̂Vi,i+ek(µLt )L2
(
cosh

(
1
2∇

i,i+ekH̃t(
·
L )
)
−1
)]

dt, (5.30)

which is asymptotically equivalent to∫ T

0

1

2

∑
i∈TdL

d∑
k=1

[
−
(
L̂Vi,i+ek(µLt )

)(
L∇i,i+ekH̃t(

·
L )
)

+
1

2
χ̂Vi,i+ek(µLt )L2

∣∣∇i,i+ekH̃t(
·
L )
∣∣2]dt.

A result similar to Lemma 5.4 yields

lim
L→∞

1

Ld
AVL
(
QV+H̃
L

)
= lim
ε→0

lim
L→∞

1

2
EQL

[
f ε,H̃

]
=

1

2
f0,H̃((πt)t∈[0,T ]),

where the functional f ε,H̃ is given by

f ε,H̃((πt)t∈[0,T ]) := 〈πT ,H̃T 〉−〈π0,H̃0〉−
∫ T

0

〈πt,∂tH̃t〉dt−
∫ T

0

∫
Λ

φ
(
[πt ∗ ιε](u)

)
∆H̃tdudt
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+

∫ T

0

∫
Λ

χ
(
[πt ∗ ιε](u)

)
∇V ·∇H̃tdudt− 1

2

∫ T

0

∫
Λ

χ
(
[πt ∗ ιε](u)

)
|∇H̃t|2dudt.

Finally, since the hydrodynamic path (πt)t∈[0,T ] solves ρ̇t= ∆φ(ρt)+∇·(χ(ρt)∇(V +

H̃t)), we obtain

f0,H̃((πt)t∈[0,T ]) =
1

2

∫ T

0

‖H̃t‖21,χ(ρt)
=

1

2

∫ T

0

‖ρ̇t−∆φ(ρt)−∇·(χ(ρt)∇V )‖2−1,χ(ρt)
.
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[29] C. Maes and K. Netočný, Canonical structure of dynamical fluctuations in mesoscopic nonequi-
librium steady states, Europhys. Lett., 82(3):Art. 30003, 6, 2008. 1, 2.1.2, 2.1.2
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