
COMMUN. MATH. SCI. c© 2019 International Press

Vol. 17, No. 3, pp. 669–703

GENERALIZATION OF KREISS THEORY TO HYPERBOLIC
PROBLEMS WITH BOUNDARY-TYPE EIGENMODES∗
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Abstract. The Kreiss symmetrizer technique gives sharp estimates of the solutions of the first-
order hyperbolic initial-boundary value problems both in the interior and at the boundary of the
domain. Such estimates imply robustness and strong well-posedness in the generalized sense, and the
corresponding problems are called strongly boundary stable, satisfying the Kreiss eigenvalue condition.
There are however problems that are not strongly boundary stable and yet are well-posed and robust.
For such problems sharp estimates of the solution can be obtained only in the interior and not at the
boundary. We refer to this class of problems as well-posed in the generalized sense. Examples include
hyperbolic problems, governed by elastic and Maxwell’s equations, that describe boundary-type wave
phenomena, such as surface waves and glancing waves. We introduce the notion of boundary-type
generalized eigenvalues and obtain a sufficient algebraic condition for well-posedness in the generalized
sense, thereby relaxing the Kreiss eigenvalue condition. Despite the utilization of the Laplace-Fourier
mode analysis, since the proofs are based on the construction of smooth Kreiss-type symmetrizers,
the developed theory can be applied to problems with variables coefficients in both first-order and
second-order forms.
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1. Introduction

The theory of first order linear hyperbolic initial-boundary value problems (IBVPs)
is well developed for two classes of problems: 1) the Friedrichs theory for symmetric
systems with maximally dissipative boundary conditions, and 2) the Kreiss theory for
hyperbolic systems with boundary conditions satisfying the uniform Kreiss eigenvalue
condition. For symmetric hyperbolic systems with maximally dissipative boundary
conditions, energy estimates can be derived using integration by parts; see e.g. [3–5,19].
When the system is not symmetric or when the boundary conditions are not maximally
dissipative, the Kreiss symmetrizer technique needs to be devised; see e.g. [11, 14, 15,
18, 26]. This technique is based on the principle of frozen coefficients, Fourier and
Laplace transforms, construction of Kreiss-type symmetrizers, and the theory of pseudo-
differential operators. It gives a necessary and sufficient algebraic condition, known
as Kreiss eigenvalue condition, that implies robustness and strong well-posedness in
the generalized sense. Problems that satisfy the Kreiss condition are called strongly
boundary stable; we can obtain sharp solution estimates at the boundary in terms of the
boundary data.

There are however hyperbolic problems that are neither of Friedrichs type nor of
Kreiss type and yet are well-posed and robust. For such problems sharp estimates
of the solution can be obtained only in the interior of the domain and not at the
boundary. Examples include hyperbolic problems, governed by elastic and Maxwell’s
equations, that describe boundary-type wave phenomena, such as surface waves and
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glancing waves. We refer to this class of problems as well-posed in the generalized sense
and characterize them by boundary-type eigenmodes. The main purpose of the present
paper is to develop a theory for this class of problems. Through the construction of
smooth Kreiss-type symmetrizers, we obtain a sufficient algebraic condition for well-
posedness in the generalized sense, thereby relaxing the Kreiss eigenvalue condition. A
major importance of the construction of smooth symmetrizers is that it enables us to use
the theory of pseudo-differential operators and treat problems with variable coefficients
in general smooth domains.

Well-posedness in the generalized sense was first studied in [23], where a simple
two-dimensional model problem was considered and treated. The present paper further
extends this original work to more general first-order hyperbolic problems. We note
that since the general theory is based on the theory of pseudo-differential operators,
it can also be applied to the second-order hyperbolic systems. In fact a second-order
system of differential equations can always be written as a first order system of pseudo-
differential operators [16]. It is to be noted that similar concepts of well-posedness for
second-order hyperbolic systems have been studied in [17], where the authors derive
interior estimates by first applying the Laplace-Fourier transforms and then directly
solving the transformed equations. The derivation of interior estimates in [17] does
not however rely on the construction of Kreiss-type symmetrizers and hence cannot be
applied to problems with variable coefficients. A main contribution and importance of
the present paper is the development of the theory through the construction of smooth
symmetrizers, rather than directly obtaining estimates by employing Laplace-Fourier
transforms. The developed theory can hence be applied to problems with variable
coefficients in both first-order and second-order forms.

The remainder of the paper is organized as follows. In Section 2 we provide a short,
and yet comprehensive, review of the Kreiss theory for first-order hyperbolic IBVPs. We
then extend the Kreiss theory to hyperbolic problems with boundary-type eigenmodes
in Section 3. We divide this section into two parts. We first define the boundary-
type eigenmodes and formulate the main theorem for well-posedness in the generalized
sense. We then study a simple model problem that serves as an illustrative example
shedding light on the construction of smooth symmetrizers for more general problems.
The proof of the main theorem and the construction of smooth symmetrizers for general
systems will be presented in Section 4. A number of auxiliary lemmas are collected in
the Appendix.

2. Kreiss theory: strong boundary stability

This section provides a short, and yet comprehensive, review of the Kreiss theory
for first-order hyperbolic IBVPs. The theory was introduced by Kreiss [11] for strictly
hyperbolic systems. It was later extended to systems with constant multiplicity [2] and
to a special class of systems with variable multiplicity [22].

2.1. Cauchy problems. Consider the Cauchy problem for a first-order system
of partial differential equations

∂tu=P (∂x)u+ f(x,t), P (∂x) =A∂x1 +

m∑
j=2

Bj ∂xj , x∈Rm, t≥0, (2.1)

with the initial condition

u(x,0) =h(x), x∈Rm. (2.2)
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Here u(x,t) =
(
u1(x,t),. ..,un(x,t)

)>
is a complex-valued n-dimensional vector function

of real variables t and x= (x1,. ..,xm)∈Rm, and the complex coefficient matrices A,Bj ∈
Cn×n, with j= 2,. ..,m, are constant.

A fundamental concept in the theoretical study of differential equations is well-
posedness: the existence of a unique solution (here u) depending continuously on the
given data (here f and h). A related concept in the numerical study of differential
equations is numerical stability: the boundedness of the numerical solution in some
sense; see e.g. [6,31]. A satisfactory definition of well-posedness for the Cauchy problem
(2.1)-(2.2) that can also be modified to study numerical stability is the one formulated
in the semigroup sense as follows. Let the L2-norm in Rm be defined by

||u||2L2(Rm) = (u,u), (u,v) =

∫
Rm

u∗vdx,

where u∗ is the adjoint of u.

Definition 2.1. The Cauchy problem (2.1)-(2.2) is called well-posed in the semigroup
sense, if

(1) for a dense set of smooth data, there is a smooth solution; and

(2) the solution of the homogeneous system (f ≡0) satisfies the energy estimate

||u(.,t)||L2(Rm)≤Keαt ||h||L2(Rm), ∀t≥0 (2.3)

where K>0 and α∈R are two constants.

We note that it is enough to consider homogeneous problems (with f ≡0). The
solutions of inhomogeneous systems (with f 6≡0) can then be determined and estimated
using Duhamel’s principle; see e.g. Section 2.6.3 of [15]:

||u(.,t)||L2(Rm)≤C(t)

(
||h||L2(Rm) +

∫ t

0

||f(.,τ)||L2(Rm)dτ

)
. (2.4)

Let us now consider the symbol P (iω) of the differential operator P (∂x), with
ω= (ω1,ω−)∈Rm and ω−= (ω2,. ..,ωm), formally obtained by the substitution of iωj
for ∂xj

:

P (iω) = iAω1 + iB(ω−), B(ω−) =

m∑
j=2

Bjωj . (2.5)

For a complex matrix Q∈Cn×n, let the matrix norm be denoted by ||Q|| :=
maxv∈Cn×1,|v|=1 |Qv|, where |v| :=v∗v denotes the magnitude of a complex vector
v∈Cn×1. There is an equivalent definition of well-posedness in terms of the symbol
matrix as follows.

Definition 2.2. The homogeneous Cauchy problem (2.1)-(2.2) is called well-posed in
the semigroup sense, if there are constants α and K such that the symbol (2.5) satisfies

||eP (iω)t||≤Keαt, ∀t≥0, ∀ω= (ω1,ω−)∈Rm. (2.6)

The equivalence of the above two definitions can easily be seen by taking the Fourier
transform of (2.1)-(2.2), with f ≡0, with respect to the spatial variables x. We then
obtain a system of homogeneous ordinary differential equations with the solution

û(ω,t) =eP (iω)t ĥ(ω),
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where û(ω,t) =Fu(x,t) =
∫
Rm e

−i〈ω,x〉udx and ĥ(ω) =Fh(x) are the Fourier trans-
forms of u and h with respect to x, respectively. Here 〈ω,x〉 :=∑m

j=1ωj xj for x,ω∈Rm.
By Parseval’s identity we have

||u(.,t)||L2(Rm) = ||û(ω,t)||= ||eP (iω)t ĥ(ω)||≤Keαt ||ĥ(ω)||=Keαt ||h||L2(Rm).

For a rigorous proof of the equivalence of the above two definitions see Theorem 2.2.2
in [15].

Thanks to Kreiss Matrix Theorem (see e.g. Theorem 2.3.2 in [15] and Theorem
9.4.1 in [31]), Definition 2.2 can be utilized to characterize all systems of form (2.1) for
which the Cauchy problem is well-posed.

Theorem 2.1 (Theorem 2.4.1 in [15]). The Cauchy problem (2.1)-(2.2) is well-posed
in the semigroup sense if and only if for every real ω= (ω1,ω−), ω−= (ω2,. ..,ωm) with
|ω|= 1 the following two conditions hold:

(1) The symbol (2.5) has purely imaginary eigenvalues.

(2) The symbol (2.5) can be transformed into diagonal form by a transformation T (ω)∈
Cn×n with |T (ω)|+ |T−1(ω)|≤K, where K is a constant independent of ω.

The problems characterized by the conditions of Theorem 2.1 are referred to as
strongly hyperbolic. It is to be noted that Theorem 2.1 is true only for problems with
constant coefficients. For the case of variable coefficients, the symbol should in addition
be smoothly symmetrizable, requiring smooth dependence of T (ω) on ω, in order for
the Cauchy problem to be well-posed in the semigroup sense [8]. The proof is technical
and uses the theory of pseudo-differential operators [24]; see also Theorem 6.2.2 in [15].

An important property of well-posedness in the semigroup sense is that it implies
robustness, that is, stability against lower order perturbations. If we add a zeroth-
order term to the problem (2.1), i.e. if we replace P (∂x) by Q(∂x) =P (∂x)+D, where
D∈Cn×n, then one can use Kreiss Matrix Theorem and show that the Cauchy problem
for ∂tu=Q(∂x)u is well-posed in the semigroup sense if and only if the Cauchy problem
for ∂tu=P (∂x)u is well-posed in the semigroup sense; see Lemma 2.3.5 and Section 2.6.1
in [15].

Remark 2.1 (Well-posedness in the sense of Hadamard). Well-posedness in the semi-
group sense requires conditions on both eigenvalues and eigenvectors of the symbol.
There is a weaker definition of well-posedness that requires conditions only on eigenval-
ues. The Cauchy problem is said to be well-posed in the sense of Hadamard (or weakly
well-posed) [7, 25] if the estimate (2.3) is replaced by

||u(.,t)||L2(Rm)≤Keαt||h||Hq(Rm), ||h||2Hq(Rm) :=
∑
|ν|≤q

|| ∂|ν|h

∂xν11 ·· ·∂xνmm
||2L2(Rm), q≥1,

(2.7)
or equivalently if (2.6) is replaced by

|eP (iω)t|≤K(1+ |ω|q)eαt, ∀t≥0, ∀ω∈Rm. (2.8)

Here, ν= (ν1,. ..,νn) is a multi-index, and |ν|=ν1 + .. .+νn. One can show that the
Cauchy problem is well-posed in the sense of Hadamard if and only if the eigenvalues
of the symbol are purely imaginary. A major problem with this weaker definition of
well-posedness is that it does not imply robustness. In other words, if the solution of
the homogeneous system satisfies only (2.7), but not (2.3), the well-posedness can be
destroyed by lower order terms; see e.g. Section 2.2.3 in [15].
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Henceforth, we assume that the system (2.1) is strictly hyperbolic, i.e., for all real
ω∈Rm with |ω|= 1, the eigenvalues of the symbol (2.5) are purely imaginary and
distinct. By Theorem 2.1, therefore, the Cauchy problem for (2.1) is well-posed in
the semigroup sense. We further assume, for simplicity and without restriction, that
the coefficient matrix A in (2.1) is nonsingular and has the form

A=

(
−AI

AII

)
, AI ∈Rr×r, AII ∈R(n−r)×(n−r), (2.9)

where AI and AII are real positive definite diagonal matrices of order r and n−r,
respectively. For the singular case see [21].

2.2. Initial-boundary value problems. Let R0 denote the half-space

R0 ={x= (x1,x−) : x1≥0,x−= (x2,. ..,xm)∈R−},

where R− is the (m−1)-dimensional space tangential to the boundary x1 = 0 of R0:

R−={x− :−∞<xj<∞, j= 2,. ..,m}.

Consider the IBVP for the system (2.1) in the half-space

∂tu=P (∂x)u+ f(x,t), P (∂x) =A∂x1
+

m∑
j=2

Bj ∂xj
, x∈R0, t≥0, (2.10)

with the initial condition

u(x,0) =h(x), x∈R0, (2.11)

and the boundary condition at x1 = 0,

uI(0,x−,t) =SuII(0,x−,t)+g(x−,t), x−∈R−. (2.12)

Here uI = (u1,. ..,ur)
> and uII = (ur+1,. ..,un)> correspond to the partitions AI and

AII , respectively, and S∈Cr×(n−r) is a rectangular matrix. We assume that all data
are smooth, compactly supported, and compatible. We refer to the IBVP (2.10)-(2.12)
as the half-space problem. It is to be noted that other types of boundary conditions,
such as Neumann and Sommerfeld conditions, can be treated similarly and will not be
addressed here.

In the remainder of this section, we first review four different definitions of well-
posedness for the half-space problem, including the strong well-posedness in the gen-
eralized sense (Definition 2.5), introduced by Kreiss [11]. The goal is to give a clearer
picture of well-posedness in the sense of Kreiss compared to other definitions of well-
posedness. We then discuss necessary and sufficient conditions for well-posedness in the
sense of Kreiss.

2.2.1. Different types of well-posedness. In general, a linear IBVP with
smooth coefficients and smooth boundary is called well-posed if for all smooth, compat-
ible data there is a unique smooth solution that can be estimated in terms of the data.
Let us first specify the norms that appear in the estimates. For a complex-valued n-
dimensional vector function u=u(x1,x−,t) of real variables x1≥0, x−∈R−, and t≥0,
we use the following norms:

||u(.,t)||2R0
:=

∫
R0

|u|2dx, ||u(x1,.,t)||2R− :=

∫
R−

|u|2dx−, |u|2 :=u∗u.
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We can formulate four “satisfactory” definitions for well-posedness (numbered I–IV
below) in the sense that “no derivatives are lost”, that is, we can control the norm of the
solution in terms of the norm of the data. In such estimates, the norm of the derivatives
of the data do not appear, and hence there is no loss of derivatives.

I. Well-posedness in the semigroup sense. By a suitable change of variables we
can make the boundary conditions homogeneous (g≡0). For instance, we can replace u
by v =u−w where w satisfies the boundary condition (2.12). We can therefore extend
Definition 2.1 for the Cauchy problem (2.1)-(2.2) to the IBVP (2.10)-(2.12).

Definition 2.3. Consider the half-space problem (2.10)-(2.12) with g≡0. We call
the problem well-posed in the semigroup sense if for all smooth, compactly supported,
and compatible data f and h there exists a unique solution u that satisfies

||u(.,t)||2R0
≤C(t)

(
||h||2R0

+

∫ t

0

||f(.,τ)||2R0
dτ

)
, (2.13)

where C(t)>0 is a function of t≥0 and independent of the data. There are two
restrictive problems in working with this definition of well-posedness. First, the estimate
(2.13) can be derived (by integration by parts) when the system (2.10) is symmetric
hyperbolic and the boundary conditions are of Friedrichs’ type. For general hyperbolic
systems and boundary conditions we may not be able to derive the desired estimates and
will therefore need to consider other definitions of well-posedness. Secondly, even if we
obtain desired estimates for the solution, we will face technical difficulties in obtaining
estimates of derivatives of the solution in terms of derivatives of data. Such estimates
require the differentiation of the PDE and the boundary condition to obtain problems of
similar type for the derivatives. If the homogeneous boundary condition involves variable
coefficients, this process will introduce inhomogeneous boundary terms. Although the
inhomogeneity can again be subtracted out by other functions w, the derivatives of w
appear as inhomogeneous terms in the PDE, and hence we “lose” derivatives in the
estimates.

II. Strong well-posedness. By generalizing the estimate (2.13), we can give a strong
definition for well-posedness involving all data as follows.

Definition 2.4. We call the half-space problem (2.10)-(2.12) strongly well-posed if
for all smooth, compactly supported, and compatible data f , h, and g, there exists a
unique solution u that satisfies

||u(.,t)||2R0
+

∫ t

0

||u(0,.,τ)||2R−dτ ≤C(t)
(
||h||2R0

+

∫ t

0

||f(.,τ)||2R0
dτ+

∫ t

0

||g(.,τ)||2R−dτ
)
,

(2.14)
where C(t)>0 is a function of t≥0 and independent of the data.

The above estimate holds for symmetric hyperbolic systems with maximally dissipa-
tive boundary conditions; see e.g. [4,19]. For more general problems other definitions of
well-posedness need to be devised. Moreover, one can show through examples that the
estimation of the boundary term

∫ t
0
||u(0,.,τ)||2R−dτ in more than one space dimension

may be impossible, independent of the technique employed; see e.g. Section 7.3 in [15].

III. Strong well-posedness in the generalized sense. Instead of transforming the
half-space problem (2.10)-(2.12) into a problem with homogeneous boundary condition
(g≡0), as in well-posedness in the semigroup sense, we can consider transformation into
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homogeneous initial data (h≡0). This can for instance be done by a suitable change
of variables, e.g. by replacing u with v =u−e−th(x).

Definition 2.5. Let h≡0. We call the half-space problem (2.10)-(2.12) strongly
well-posed in the generalized sense if there is a constant K>0 such that for all smooth,
compactly supported, and compatible data f and g a unique solution u exists that satisfies∫ ∞

0

e−2ηt
(
η||u(.,t)||2R0

+ ||u(0,.,t)||2R−
)
dt

≤K
∫ ∞
0

e−2ηt
(1

η
||f(.,t)||2R0

dt+ ||g(.,t)||2R−
)
dt, ∀η>0. (2.15)

This concept of well-posedness, introduced by Kreiss [11], is based on the Laplace trans-
form in time, where we define u(x,t) = 0 for t<0. One therefore needs u(x,0) =h(x)≡0
for the solution u to the half-space problem to be continuous. A major importance of
Definition 2.5 is that it is not limited to symmetric hyperbolic systems with maximally
dissipative boundary conditions. By applying the mode analysis (Laplace-Fourier tech-
nique), constructing Kreiss smooth symmetrizers, and utilizing the theory of pseudo-
differential operators, one can obtain necessary and sufficient conditions for the well-
posedness of more general linear hyperbolic IBVPs with variable coefficients. The the-
ory can aslo be applied to quasi-linear IBVPs; see e.g. [30]. It is to be noted that
the assumption h≡0 is not restrictive. One may think that since the transformation
v =u−e−th(x) will introduce derivatives of h in the source term f , such derivatives
would appear in the estimate (2.15), and we would “lose” a derivative over h. How-
ever, as shown in [27–29], this will not cause the loss of derivatives: the IBVPs for
strictly hyperbolic and symmetric hyperbolic systems that are strongly well-posed in
the generalized sense are also strongly well-posed in the sense of Definition 2.4.

IV. Well-posedness in the generalized sense. Kreiss has further proposed a weaker
definition of well-posedness, without presenting any analysis, by assuming that both
initial and boundary data vanish [12, 15]. As we will discuss in Section 3, this type of
well-posedness is particularly suitable for the study of boundary-type wave phenomena,
such as surface waves and glancing waves, for which the boundary estimates in Definition
2.4 and Definition 2.5 do not exist.

Definition 2.6. Let h≡g≡0. We call the half-space problem (2.10)-(2.12) well-
posed in the generalized sense if there is a constant K>0 such that for all smooth,
compactly supported f a unique solution u exists that satisfies∫ ∞

0

e−2ηt||u(.,t)||2R0
dt≤ K

η2

∫ ∞
0

e−2ηt||f(.,t)||2R0
dt, ∀η>0. (2.16)

As noted by Kreiss and Lorenz in [15], at present there is no general theory for well-
posed problems in the generalized sense. They further anticipated that any such theory
would be extremely complicated; see Section 7.3 in [15]. In Section 3 we will indeed
develop a theory for such problems utilizing the mode analysis and Kreiss smooth sym-
metrizers. In fact we will show that the Kreiss theory can be extended to study this
type of well-posedness.

In the remainder of Section 2, we focus on the strong well-posedness in the gener-
alized sense (Definition 2.5) and review the Kreiss theory.

2.2.2. A necessary condition for strong well-posedness in the generalized
sense. Consider the half-space problem (2.10)-(2.12) with the homogeneous initial
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condition u(x,0) =h≡0. We further set u(x,t)≡0 for t<0, and define a new variable

uη(x,t) =e−ηtu(x,t) =

{
e−ηtu(x,t) t>0, x∈R0

0 t≤0, x∈R0
, η>0.

Let ũ denote the Fourier transform of the new variable uη(x,t) with respect to t and
x−, with real duals ξ and ω−= (ω2,. ..,ωm), respectively:

ũ= ũ(x1,ω−,s) =F [uη(x1,x−,t)] = (2π)−m/2
∫ ∞
0

∫
R−

e−st−i〈ω−,x−〉u(x1,x−,t)dx−dt,

where s=η+ iξ and 〈ω−,x−〉 :=
∑m
j=2ωjxj . With this setup, ũ can be thought of

as the Laplace transform in t and Fourier transform in x− of the solution u to the
half-space problem (2.10)-(2.12), differing only up to a factor of (2π)1/2. Similarly,
we set f(x,t)≡g(x−,t)≡0 for t≤0, and define fη(x,t) =e−ηtf(x,t) and gη(x−,t) =

e−ηtg(x−,t), for all t∈R, x∈R0, and x−∈R−, and let f̃(x1,ω−,s) =F [fη(x1,x−,t)]
and g̃(ω−,s) =F [gη(x−,t)]. Introducing the new variables uη, fη, and gη into (2.10)
and (2.12) and Laplace-Fourier transforming the resulting equations, we obtain the
resolvent system

sũ=A
dũ

dx1
+ iB(ω−)ũ+ f̃ , forx1≥0, (2.17)

ũI =S ũII + g̃, atx1 = 0. (2.18)

In order to derive a necessary condition for well-posedness, we consider a homoge-
neous eigenvalue problem connected with (2.17)-(2.18) as follows. Let L2([0,∞)) denote
the space of all quadratically integrable complex-valued n-dimensional vector functions
φ on x1∈ [0,∞), and define

||φ||20 :=

∫ ∞
0

|φ|2dx1, |φ|2 :=φ∗φ, φ∈Cn.

Then φ∈L2([0,∞)) is called an eigenfunction of (2.17)-(2.18) corresponding to an eigen-
value s∈C, if φ is the nontrivial solution of the homogeneous eigenvalue problem

sφ=A
dφ

dx1
+ iB(ω−)φ, forx1≥0, (2.19)

φI =SφII , atx1 = 0. (2.20)

Definition 2.7. Let ω−∈Rm−1 be fixed. A number s∈C is called an eigenvalue of the
eigenvalue problem (2.19)-(2.20) for the parameter ω− if there is a nontrivial solution
φ to the eigenvalue problem.

We have the following result due to Agmon [1].

Theorem 2.2 (Agmon eigenvalue condition). A necessary condition for the half-space
problem to be well-posed is that the eigenvalue problem (2.19)-(2.20) has no eigenvalue
s with <s>0.

Proof. Suppose that for some ω−∈Rm−1 there is an eigenvalue s with <s>0,
and let φ be the corresponding eigenfunction. Then it is easy to see that simple wave
functions of the form

u(x,t) =est+i〈ω−,x−〉φ(x1), (2.21)
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solve (2.10) and (2.12) with f ≡g≡0. The homogeneity of the problem implies that for
every α>0,

uα(x,t) =eαst+iα〈ω−,x−〉φ(αx1),

is also a solution to (2.10) and (2.12) with homogeneous data. Since <s>0, we can
choose α arbitrarily large and have an exponentially arbitrarily growing solution, indi-
cating that the problem is not well-posed.

From the proof it is obvious that the non-existence of simple solutions of type
(2.21) is an equivalent necessary condition for well-posedness (equivalent to the Agmon
eigenvalue condition). This condition is referred to as the Lopatinsky condition.

Before further discussing sufficient conditions for well-posedness, it will be useful
and important to derive algebraic conditions that determine whether s with <s>0 is an
eigenvalue. Let κ be the solution of the following characteristic equation corresponding
to (2.19),

Det|Aκ−(sI− iB(ω−))|= 0. (2.22)

It is to be noted that the solutions of (2.22) are the eigenvalues of the matrix M =
A−1(sI− iB(ω−)). We have the following lemma [9].

Lemma 2.1. For solutions κ of the characteristic Equation (2.22), we have:

(1) For <s>0, there are no κ with <κ= 0.

(2) There are precisely r solutions with <κ<0 and n−r solutions with <κ>0.

(3) There exists a constant δ>0 such that |<κ|>δη for all s= iξ+η, with ξ∈R and
η>0, and for all ω−∈Rm−1.

Proof. For the proof see Lemma 2.1 in [11].

Assuming all eigenvalues κj =κj(ω−,s), with j= 1,. ..,n, are distinct, we can write
the solution of (2.19)-(2.20) as

φ=
∑
<κj<0

σje
κjx1vj+

∑
<κj>0

σje
κjx1vj , (2.23)

where vj =vj(ω−,s), with j= 1,. ..,n, are the eigenvectors of M corresponding to
the eigenvalues κj . Note that if the eigenvalues κj are not distinct, the usual
d’Alembert-type modifications apply. Since we are only interested in bounded solu-
tions φ∈L2([0,∞)), we set σj = 0 corresponding to <κj>0 in the second sum in (2.23).
The solution φ is then given by the first sum, consisting of r terms with <κj<0,
j= 1,. ..,r. We partition the eigenvectors vj = (vj,1,. ..,vj,n)> to vIj = (vj,1,. ..,vj,r)

> and

vIIj = (vj,r+1,. ..,vj,n)>, for every j= 1,. ..,r. Introducing φ into the boundary condition

(2.20) at x1 = 0, we get a linear system of r equations for r unknowns σ= (σ1,. ..,σr)
>,

S̃(s,ω−)σ= 0, S̃=VI−SVII ∈Cr×r, (2.24)

where

VI = [vI1 .. . vIr ]∈Cr×r, VII = [vII1 .. . vIIr ]∈C(n−r)×r.

Therefore s with <s>0 is an eigenvalue if and only if Det|S̃(s,ω−)|= 0. This suggests
that the Agmon eigenvalue condition in Theorem 2.2 is equivalent to the algebraic
condition

Det|S̃(s,ω−)| 6= 0, for <s>0. (2.25)
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The Agmon eigenvalue condition, or equivalently the algebraic condition (2.25),
is a necessary condition for the IBVP to be well-posed. Hersch [9] has shown that
this condition is also sufficient for the problem to be weakly well-posed in the sense of
Hadamard. The IBVP can indeed be solved by the Laplace-Fourier transform as follows.
If u is the solution of the IBVP with h≡0, then its Laplace-Fourier transform ũ satisfies
the resolvent problem (2.17)-(2.18). If (2.25) holds for every s with <s>0, we know that
(2.17)-(2.18) has a unique solution. Inverting the Laplace-Fourier transform we obtain
the solution to the IBVP. In general, however, the eigenvalue condition does not give
stability against lower order terms and hence is not sufficient for strong well-posedness
in the generalized sense.

2.2.3. A sufficient condition for strong well-posedness in the generalized
sense. We now introduce the concept of generalized eigenvalues and present a
sufficient condition for strong well-posedness in the generalized sense.

Consider the following normalized variables

s′ :=
s√

|s|2 + |ω−|2
=

iξ+η√
|s|2 + |ω−|2

=: iξ′+η′, ω′− :=
ω−√

|s|2 + |ω−|2
, (2.26)

and write the resolvent problem (2.17)-(2.18) as

−A dũ

dx1
+
√
|s|2 + |ω−|2

(
s′I− iB(ω′−)

)
ũ= f̃ , forx1≥0, (2.27)

ũI−S ũII = g̃, atx1 = 0. (2.28)

The corresponding normalized homogeneous eigenvalue problem then reads

−A dφ

dx1
+
√
|s|2 + |ω−|2

(
s′I− iB(ω−)

)
φ=0, forx1≥0, (2.29)

φI−SφII =0, atx1 = 0. (2.30)

One can show that the normalized determinant Det|S̃(s′,ω′−)| is a continuous function of
its arguments for all <s′≥0; see [11]. This leads to the following definition of generalized
eigenvalues.

Definition 2.8. Let (iξ′0,ω
′
0), with ξ′0∈R and ω′0∈Rm−1, be fixed and consider

the eigenvalue problem (2.29)-(2.30) for s′= iξ′0 +η′ and ω′−=ω′0, with η′>0. Then
(iξ′0,ω

′
0) is called a generalized eigenvalue corresponding to a given boundary condition

if in the limit η′→0+ the boundary condition (2.30) is satisfied, or equivalently if

lim
η′→0+

Det|S̃(iξ′0 +η′,ω′0)|= 0,

where S̃ is given by (2.24).

We can now formulate the Kreiss Eigenvalue Theorem (Main Theorem 1 in [11]) that
gives a necessary and sufficient condition for strong well-posedness in the generalized
sense.

Theorem 2.3 (Kreiss eigenvalue condition). Suppose that (2.10) is strictly hyperbolic
with a nonsingular boundary matrix A of the form (2.9). The half-space problem (2.10)-
(2.12), with h≡0, is strongly well-posed in the generalized sense, that is, an estimate
of type (2.15) holds, if and only if the Kreiss eigenvalue condition is fulfilled, that is,
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the eigenvalue problem (2.29)-(2.30) has no eigenvalue or generalized eigenvalue for
<s′≥0.

One can also phrase the Kreiss eigenvalue condition as a strong boundary stability
condition [18].

Definition 2.9. Let f ≡h≡0. We call the IBVP (2.10)-(2.12) strongly boundary stable
if there is a constant K>0 such that for all smooth boundary data g a unique solution
u exists that satisfies∫ ∞

0

e−2ηt||u(0,.,t)||2L2(R−)
dt≤K

∫ ∞
0

e−2ηt||g(.,t)||2L2(R−)
dt, ∀η>0. (2.31)

The Kreiss Eigenvalue Theorem can then be formulated in terms of Definition 2.9
as follows.

Theorem 2.4 (Kreiss boundary stability condition). Suppose that (2.10) is strictly
hyperbolic with a nonsingular boundary matrix A of the form (2.9). The half-space
problem (2.10)-(2.12), with h≡0, is strongly well-posed in the generalized sense, that
is, an estimate of type (2.15) holds, if and only if the problem is strongly boundary
stable, that is, an estimate of type (2.31) holds.

The proof of the above equivalent theorems, i.e. Theorem 2.3 and Theorem 2.4, is
based on the construction of Kreiss symmetrizers [11], formulated in Theorem 2.5. A
major advantage of strong boundary stability is that its corresponding estimate (2.31)
is easier to verify compared to the equivalent estimate (2.15) corresponding to strong
well-posedness in the generalized sense.

Theorem 2.5. Suppose that (2.10) is strictly hyperbolic with a nonsingular boundary
matrix A of the form (2.9). Assume further that the half-space problem (2.10)-(2.12),
with h≡0, is strongly boundary stable, or equivalently the Kreiss eigenvalue condition
is satisfied. Then there exists a complex symmetrizer matrix R̂= R̂(s′,ω′−) that has the
following properties for all ω′−∈Rm−1, ξ′∈R, and η′∈R with η>0:

i) R̂ is uniformly bounded and a smooth function of s′ and ω′− and of the coefficient
matrices A, Bj, with j= 2,. ..,m, and S.

ii) R̂A is Hermitian.

iii) For all vectors ũ0 satisfying the boundary condition, we have ũ∗0 R̂Aũ0≥
δ|ũ0|2−C|g̃|2, where δ and C are constants independent of ω′−, ξ′, and η′.
Here, |v|2 :=v∗v for every v∈Cn.

iv)
√
|s|2 + |ω−|2<{R̂

(
s′I− iB(ω′−)

)
}≥ηI.

Proof. For the proof see Section 4 in [11].

Proof. (Proof of Theorem 2.3 and Theorem 2.4.) Clearly, with f ≡0, the
estimate (2.15) implies the estimate (2.31). It remains to show that the converse is also
true. If (2.31) holds, then by Theorem 2.5, we know that there exists a symmetrizer
R̂ with the properties (i)-(iv) above. Let (u,v)0 :=

∫∞
0

u∗vdx1 and ||u||20 = (u,u)0. We

multiply (2.27)-(2.28) by R̂ and obtain

<(ũ,R̂ f̃)0 =−<
(
ũ,R̂A

dũ

dx1

)
0

+<
(
ũ,
√
|s|2 + |ω−|2 R̂

(
s′I− iB(ω′−)

)
ũ
)
0

=−1

2
<
[
ũ∗ R̂Aũ

]∞
0

+<
(
ũ,
√
|s|2 + |ω−|2 R̂

(
s′I− iB(ω′−)

)
ũ
)
0
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≥ 1

2
δ |ũ(0,ω−,s)|2−

1

2
C|g̃|2 +η ||ũ(.,ω−,s)||20.

The second equality above follows by integration by parts and property (ii) in Theorem
2.5. The last inequality follows from properties (iii)-(iv) in Theorem 2.5. We then use
the Cauchy-Schwarz inequality and the Young’s inequality with ε,

2<(a∗b) =a∗b+b∗a≤2|a| |b|≤ε |a|2 +ε−1|b|2, ∀a,b∈Cn, ε>0,

and set a= ũ, b= R̂ f̃ , and ε=η. After integrating with respect to x1, we get

<(ũ,R̂ f̃)0≤
η

2
||ũ(.,ω−,s)||20 +

c

2η
||f̃ ||20,

where the constant c is related to the upper bound of ||R̂||, due to property (i) in
Theorem 2.5. Combining the above two inequalities for <(ũ,R̂ f̃)0, we obtain

η ||ũ(.,ω−,s)||20 +δ |ũ(0,ω−,s)|2≤
c

η
||f̃ ||20 +C|g̃|2.

Inverting the Fourier and Laplace transforms, the estimate (2.15) follows by Parseval’s
relation.

It is to be noted that strong well-posedness in the generalized sense has several good
properties. First, the estimate (2.31), and consequently the estimate (2.15), can easily
be derived by direct algebraic manipulations, as we only need to solve the system of or-
dinary differential Equations (2.27)-(2.28) with constant coefficients and homogeneous
data (g̃≡0). Secondly, Definition 2.5 (or equivalently Definition 2.9) implies robustness,
i.e. stability against both lower order terms and boundary perturbations [2, 11, 20]. If
we add a zeroth-order term to the PDE or if we add a low-order term to the bound-
ary condition (here since we have a Dirichlet condition a low-order term means a term
independent of u), then the perturbed problem remains well-posed if the original unper-
turbed problem is well-posed in the sense of Definition 2.5. Moreover, if the problem is
strongly boundary stable, one can derive similar estimates for higher-order derivatives
of the solution in terms of derivatives of the data. Finally, since the derivation of the
estimates is through the construction of smooth symmetrizers, one can use the theory
of pseudo-differential operators and treat problems with variable coefficients in general
smooth domains. In this case the principle of frozen coefficients holds: the variable-
coefficient problem is strongly well-posed in the generalized sense if all corresponding
frozen-coefficient problems are strongly well-posed in the generalized sense. We can
formulate this result as follows [11].

Theorem 2.6. Consider the half-space problem (2.10)-(2.12) with variable and suf-
ficiently smooth coefficients. Then an estimate of type (2.15) holds if we can construct
a smooth symmetrizer R̂(x,t,ω−,s) with the properties stated in Theorem 2.5 for every
fixed boundary point (0,x−,t).

Proof. For the proof see the proof of Theorem 8.4.9 in [15].

3. Extension of Kreiss theory
The Kreiss theory gives necessary and sufficient conditions for the well-posedness

and robustness of strongly boundary stable problems. There are, however, problems
that are not strongly boundary stable and yet are well-posed and robust. Examples
include surface waves and glancing waves which are boundary-type wave phenomena
that often occur in elastodynamics and electromagnetism.
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In this section we will consider hyperbolic problems that describe boundary-type
wave phenomena and characterize them by boundary-type eigenmodes. Using the
Laplace-Fourier technique and through the construction of smooth symmetrizers, we
will develop a theory for the well-posedness and robustness of such class of problems in
the sense of Definition 2.6. After formulating the main theorem and related definitions
in Section 3.1, we will present a two-dimensional model problem in a half-plane subject
to different types of boundary conditions resulting in different types of well-posedness in
Section 3.2. This simple model problem will serve as an illustrative example to better
understand various concepts of well-posedness and to shed light on the construction
of more general symmetrizers, which is known to be a technical task [10]. The proof
of the main theorem and the construction of symmetrizers for general systems will be
presented in Section 4.

3.1. Well-posedness in the generalized sense. The main goal is to relax
the Kreiss eigenvalue condition, stated in Theorem 2.3, and obtain a sufficient condition
for the half-space problem (2.10)-(2.12) to be well-posed in the sense of Definition 2.6.
Clearly, the Agmon eigenvalue condition, stated in Theorem 2.2, is a necessary condition
for well-posedness in any sense, and we cannot have eigenvalues s′∈C with <s′>0.
We will hence keep the Agmon eigenvalue condition and relax the requirement on the
generalized eigenvalues with <s′= 0. We recognize a particular class of generalized
eigenvalues, referred to as boundary-type generalized eigenvalues, defined below.

Definition 3.1. Let (iξ′0,ω
′
0), with ξ′0∈R and ω′0∈Rm−1, be fixed and consider

the eigenvalue problem (2.29)-(2.30) for s′= iξ′0 +η′ and ω′−=ω′0, with η′>0. Then
(iξ′0,ω

′
0) is called a boundary-type generalized eigenvalue corresponding to a boundary

condition if the following conditions hold:

(1) In the limit η′→0+ the boundary condition (2.30) is satisfied, that is, (iξ′0,ω
′
0)

is a generalized eigenvalue according to Definition 2.8.

(2) The eigenfunction corresponding to the generalized eigenvalue is of either sur-
face mode, decaying exponentially in the direction normal to the boundary, or
glancing mode, being independent of the variable normal to the boundary. This
can be characterized by solutions κ of the characteristic Equation (2.22):
◦ For surface eigenmodes: limη→0+ κ=−c|ω0|,with c>0and ∀κwith <κ<0.
◦ For glancing eigenmodes: limη→0+ κ= 0.

We can now formulated the main theorem of the present work as follows.

Theorem 3.1 (Main Theorem). Consider the half-space problem (2.10)-(2.12) with
h≡0 and constant, complex-valued coefficient matrices A,B2,. ..,Bm∈Cn×n and S∈
Cr×(n−r), where A is nonsingular and has the form (2.9). Suppose that the system
(2.10) is strictly hyperbolic, and assume further that there is no eigenvalue s with <s>0
to the corresponding homogeneous eigenvalue problem (2.29)-(2.30). Then we have the
following results:

1) The problem is strongly well-posed in the generalized sense if and only if there
is no generalized eigenvalue s with <s= 0.

2) The problem is well-posed in the generalized sense if the generalized eigenvalue
s with <s= 0 is of either glancing or surface type.

The first part of the Main Theorem is the Kreiss eigenvalue theorem (Theorem 2.3).
The second part of the theorem is the new contribution of the present work. We will
present the proof in Section 4.

It is to be noted that well-posedness in the generalized sense (Definition 2.6) has
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several good properties, similar to the case of strong well-posedness in the generalized
sense. First, it can be verified by algebraic manipulations. Secondly, the definition
implies robustness, i.e. stability against both low-order terms and boundary perturba-
tions. For instance, if we assume that the problem ∂tu=P (∂x)u+ f is well-posed in the
generalized sense, then the perturbed problem ∂tv =P (∂x)v+Dv+ f is also well-posed
in the generalized sense, provided D is a bounded matrix. Indeed, we can think of
q :=Dv+ f as a forcing function and consider the system ∂tv =P (∂x)v+q. Then the
available estimate for v in terms of q, thanks to the well-posedness of the unperturbed
problem, can be utilized to derive the desired estimate for v in terms of f ; see Theorem
2.4.1 in [13] for the proof. We conjecture that well-posedness in the generalized sense
is the weakest definition of well-posedness that has this stability property, i.e., if the
problem is not well-posed in the generalized sense, then we can make a perturbation
such that there are solutions which grow exponentially arbitrarily fast. Finally, as we
will show in the following sections, one can extend the construction of Kreiss-type sym-
metrizers to this case. One is therefore able to treat systems with variable coefficients
in general smooth domains. In particular, the same result as the result in the Main
Theorem holds for hyperbolic systems with variable coefficients.

Remark 3.1. Similar to the original work of Kreiss [11], discussed in Section 2, we
assume strict hyperbolicity and consider a nonsingular boundary matrix A. The former
assumption seems to be restrictive for many applications. However, we conjecture that,
similar to the work of Agranovich [2] on the original theory of Kreiss, it is possible
to show that the Main Theorem remains valid for strongly hyperbolic systems with
variable coefficients if there exists smooth transformations S(x,t,ω) that diagonalize the
symbol P (x,t,ω) of the differential operator. For singular boundary matrices, similar
modifications to [21] need to be applied.

3.2. A 2D model problem. In this section we consider a model problem in a 2D
half-plane R0 ={(x,y) |x≥0,−∞<y<∞}. We discuss in details different types of well-
posedness, emphasizing on the well-posedness in the generalized sense (Definition 2.6).
We obtain desired interior estimates (2.16) via two approaches: 1) employing Laplace-
Fourier technique and directly solving the resulting family of ordinary boundary value
problems, and 2) constructing Kreiss-type symmetrizers. The first approach will help
understand the behavior of the solution in the presence of boundary-type eigenmodes.
The second approach will facilitate the construction of symmetrizers for more general
problems, needed to extend the theory to problems with variable coefficients.

Consider the following model problem,

∂tu=A∂xu+B∂yu+ f(x,y,t), A=

(
−1 0
0 1

)
, B=

(
0 1
1 0

)
, (x,y)∈R0, t≥0,

(3.1)
with the initial condition

u(x,y,0) =0, (3.2)

and the boundary condition at x= 0,

u1(0,y,t) =au2(0,y,t)+g(y,t), a∈C. (3.3)

Here u= (u1,u2)> is a complex-valued two-dimensional vector function. The data are
assumed to be smooth, compactly supported, and compatible at t= 0 and x= 0. More-
over, we are only interested in solutions with bounded L2-norm and therefore assume
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that ||u(.,t)||L2(R0)<∞ for every fixed t. It is to be noted that the general theory of
hyperbolic systems suggests that we impose only one boundary condition at x= 0 to
express the in-going characteristic field in terms of the out-going one.

We Fourier-Laplace transform the problem in y-t, respectively, and obtain the or-
dinary boundary problem

dũ

dx
=M ũ−A−1 f̃ , M =

(
−s iω
−iω s

)
, s∈C, ω∈R, (3.4)

with the boundary conditions

ũ1(0,ω,s) =aũ2(0,ω,s)+ g̃(ω,s), ||ũ||20 =

∫ ∞
0

|ũ(x)|2dx<∞. (3.5)

We have indeed considered the boundedness requirement ||ũ||0<∞ as the boundary
condition at infinity.

A family of eigenvalue problems. We let f ≡g≡0 and construct simple wave solu-
tions of type

u(x,y,t) =est+iωyφ(x), <s>0, (3.6)

where φ= (φ1,φ2)> and ||φ||20<∞. Substituting (3.6) into (3.1) and (3.3), we obtain
the following family of eigenvalue problems

sφ=A
dφ

dx
+ iωBφ, x≥0, (3.7)

φ1(0) =aφ2(0), ||φ||20<∞. (3.8)

Agmon and Kreiss eigenvalue conditions. We now discuss the requirements on
the boundary parameter a∈C so that the necessary and sufficient conditions for well-
posedness in the Kreiss sense are fulfilled.

Lemma 3.1. The Agmon eigenvalue condition is satisfied, that is, there is no eigen-
value of (3.7)-(3.8) with <s>0, only in two cases: when a∈R, or when a∈C with
|a|≤1.

Proof. For the proof see Lemma 8.4.2 in [15].

This lemma gives the Agmon eigenvalue condition that is necessary for well-
posedness: if |a|>1 and a /∈R, there exist eigenvalues of (3.7)-(3.8) with <s>0 and
therefore the problem will be ill-posed. Now assume that a∈R or |a|≤1. We can
then solve (3.4)-(3.5) with f ,g 6≡0. Inverting the Laplace-Fourier transforms, we obtain
the solution of the IBVP (3.1)-(3.3). Obtaining the solution will however not imply
well-posedness. The problem will be well-posed only if we can derive proper solution
estimates in terms of the data. To derive a sufficient condition for well-posedness, we
first check if there is any generalized eigenvalue.

Lemma 3.2. The Kreiss eigenvalue condition is satisfied, that is, there is no eigenvalue
and generalized eigenvalue of (3.7)-(3.8) with <s≥0, only in the case |a|<1.

Proof. For the proof see Section 8.4.3 in [15].

This lemma shows that the condition |a|<1 is both necessary and sufficient for the
problem to be strongly boundary stable in the sense of Kreiss.
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Discussion of generalized eigenvalues. We now focus on the case <s= 0 where
a generalized eigenvalue exists. In this case the Agmon necessary condition for well-
posedness is still fulfilled, but the Kreiss necessary and sufficient condition is not satis-
fied. Hence the problem is neither ill-posed nor strongly boundary stable. By Lemma
3.1 and Lemma 3.2, there are two cases for which there exists a generalized eigenvalue:

(1) |a|>1, a∈R,

(2) |a|= 1, a∈C.

These two cases are fundamentally different and correspond to different types of gen-
eralized eigenvalues. As we will show, in the first case the problem is not well-posed,
while in the second case the problem is well-posed in the generalized sense. In fact, only
the second case corresponds to boundary-type eigenmodes.

Before getting into the discussion, let us first write the Equation (3.7) in the form

dφ

dx
=Mφ, M =

(
−s iω
−iω s

)
, s∈C, ω∈R. (3.9)

The matrix M has two eigenvalues

κ1 =−κ, κ2 =κ, κ=
√
s2 +ω2, (3.10)

with the corresponding eigenvectors

v1 =

(
s+κ
iω

)
, v2 =

(
s−κ
iω

)
. (3.11)

Since for <s>0, we have <κ1<0<<κ2, then the general L2-solution of (3.7) is given
by

φ=σe−κx
(
s+κ
iω

)
, σ∈C. (3.12)

Inserting this expression into the boundary condition (3.8), we get

S̃ σ= 0, S̃=s+κ− iaω.

Hence, by definition 2.8, (iξ0,ω0) is a generalized eigenvalue if

lim
η→0+

S̃(η;ξ0,ω0,a) = 0, S̃(η;ξ,ω,a) = (η+ iξ+
√

(η+ iξ)2 +ω2− iaω). (3.13)

We notice that for a complex number z∈C, the argument of
√
z is defined by

arg
√
z=

1

2
argz, −π<argz≤π. (3.14)

In what follows, we will need the following two transformations of the matrix M in
(3.9). First, if the two eigenvalues in (3.10) are distinct (κ 6= 0), we can diagonalize the
matrix M ,

ΛD =T−1MT =

(
κ1 0
0 κ2

)
, T = (v1 v2) =

(
s+κ s−κ
iω iω

)
, (3.15)

and write the ordinary boundary problem (3.4)-(3.5) as

dṽ

dx
= ΛD ṽ+F, ṽ =T−1ũ, F =−T−1A−1 f̃ , (3.16)
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S1 ṽ1(0,ω,s)+S2 ṽ2(0,ω,s) = g̃(ω,s), S1 =s+κ− iaω, S2 =s−κ− iaω. (3.17)

Secondly, if the two eigenvalues in (3.10) are multiple (κ= 0), we use the Schur de-
composition and by a unitary transformation matrix we transform M into an upper
triangular form

ΛT =T ∗MT =

(
κ1 p
0 κ2

)
, T =

(
(s+κ)(s̄+ κ̄)+ω2

)− 1
2

(
s+κ iω
iω s̄+ κ̄

)
, (3.18)

where

p=−iω (2s− s̄− κ̄)(s̄+ κ̄)+ω2

(s+κ)(s̄+ κ̄)+ω2
.

The ordinary boundary problem (3.4)-(3.5) is then written as

dṽ

dx
= ΛT ṽ+F, ṽ =T ∗ũ, F =−T ∗A−1 f̃ , (3.19)

S1 ṽ1(0,ω,s)+S2 ṽ2(0,ω,s) = g̃(ω,s), S1 =s+κ− iaω, S2 =−a(s̄+ κ̄)+ iω. (3.20)

We note that in both cases (distinct κ’s and multiple κ’s) we have S̃=S1. This will be
used later to find the generalized eigenvalues. We are now ready to study the two cases
of a that lead to generalized eigenvalues. We treat each case separately.

3.2.1. The case |a|>1, a∈R. As discussed above, the problem is not strongly
boundary stable in this case. Here, we will show that the problem is also not well-posed
in the generalized sense. We only consider the case when a∈R and a>1. The other
case when a<−1 can be treated similarly. We first find the generalized eigenvalue.

Theorem 3.2. The generalized eigenvalue of (3.7)-(3.8) with a>1,a∈R is

s0 = iξ0, ξ0 =
1+a2

2a
ω0. (3.21)

and the corresponding eigen-solution reads

u= exp
(
iω0(−a

2−1

2a
x+y+

1+a2

2a
t)
)

v1. (3.22)

Furthermore, the generalized eigenvalue (3.21) is not of boundary-type.

Proof. Let s= i 1+a
2

2a ω+η, where 0<η�|ω|. Then

κ=
√
s2 +ω2≈

√
−(a2−1)2

4a2
ω2 +2iη

1+a2

2a
ω

= i
a2−1

2a
|ω|
√

1−2iη
2a(1+a2)

(a2−1)2
1

ω

≈ i a
2−1

2a
|ω|
(

1− iη 2a(1+a2)

(a2−1)2
1

ω

)
.

Since, by Lemma 5.3 of the Appendix, <κ>0 for <s>0, we only consider ω>0 and
therefore

κ≈ i a
2−1

2a
ω+

1+a2

a2−1
η, ω>0. (3.23)
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This gives

S̃(η;ξ,ω,a) = (η+ iξ+
√

(η+ iξ)2 +ω2− iaω)

≈η(1+
1+a2

a2−1
)+ iω(

1+a2

2a
+
a2−1

2a
−a) =

2a2

a2−1
η,

and hence limη→0+ S̃(η;ξ,ω,a) = 0, meaning that (3.21) is the generalized eigenvalue
according to (3.13). The eigen-solution (3.22) is easily obtained by plugging (3.12) into
(3.6) at the generalized eigenvalue (3.21). Clearly, κ in (3.23) is purely imaginary in
the limit η→0+, and hence by Definition 3.1 the generalized eigenvalue (3.21) is not of
boundary-type.

We next obtain the solution estimates. We need to derive the estimates only in a
neighborhood of the generalized eigenvalue (3.21). We set

s= i
1+a2

2a
ω+η, ω=ω0, 0<η�|ω0|. (3.24)

Since κ 6= 0, we can diagonalize the system and employ (3.16)-(3.17) with

S1 =s+κ− iaω≈η(1+
1+a2

a2−1
)+ iω(

1+a2

2a
+
a2−1

2a
−a) =

2a2

a2−1
η,

S2 =s−κ− iaω≈ −2

a2−1
η− i a

2−1

a
ω.

We hence have

|S1|≈
2a2

a2−1
η, |S2|≈

a2−1

a
ω. (3.25)

In order to obtain estimates, we split the solution of (3.16)-(3.17) into two parts; one
part solving the homogeneous Equation (3.16) with an inhomogeneous boundary con-
dition (3.17), and the other part satisfying the full inhomogeneous equation but with a
homogeneous boundary condition.

We first assume F ≡0 and g̃ 6≡0. From the second equation of (3.16), we get

ṽ2(x,ω,s) = 0, (3.26)

because otherwise, the solution would not be bounded (since <κ>0). The boundary
condition (3.17) and the relation (3.25) give us

|ṽ1(0,ω,s)|2≈
(
a2−1

2a2

)2
1

η2
|g̃|2. (3.27)

To obtain interior estimates, we use the first equation of (3.16), and by (3.27) we write

||ṽ1(x,ω,s)||20 =

∫ ∞
0

|ṽ1(0,ω,s)e−<κx|2dx=
1

2<κ |ṽ1(0,ω,s)|2≈ (a2−1)3

8a4 (1+a2)

1

η3
|g̃|2.

(3.28)
We next let F = (F1,F2)> 6≡0 and g̃≡0. By Lemma 5.1 of the Appendix for the

second equation of (3.16), we obtain

|ṽ2(0,ω,s)|2≤ 2

<κ ||F2||20≈
2(a2−1)

η(1+a2)
||F2||20, (3.29)
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||ṽ2(.,ω,s)||20≤
1

(<κ)2
||F2||20≈

(a2−1)2

η2(1+a2)2
||F2||20. (3.30)

For the first equation of (3.16) we use Lemma 5.2 and write

||ṽ1(.,ω,s)||20≤
1

(<κ)2
||F1||20 +

1

2<κ |ṽ1(0,ω,s)|2.

Moreover, from the boundary condition (3.17) and the relation (3.25) we get

|ṽ1(0,ω,s)|≈ (a2−1)2

2a3
ω

η
|ṽ2(0,ω,s)|.

We therefore obtain

|ṽ1(0,ω,s)|2≤ (a2−1)5

2a6 (1+a2)

ω2

η3
||F2||20, (3.31)

||ṽ1(.,ω,s)||20≤
(
a2−1

1+a2

)2
1

η2
||F1||20 +

(a2−1)6

4a6 (1+a2)2
ω2

η4
||F2||20. (3.32)

We collect the estimates (3.26)-(3.32) in the following lemma.

Lemma 3.3. For the solution ṽ of the transformed resolvent system (3.16)-(3.17) with
a>1,a∈R the following estimates near the generalized eigenvalue (3.21) hold

|ṽ1(0,ω,s)|2≤C1

(
ω2

η3
||F2||20 +

1

η2
|g̃|2
)
,

|ṽ2(0,ω,s)|2≤C2
1

η
||F2||20,

||ṽ1(.,ω,s)||20≤C3

(
1

η2
||F1||20 +

ω2

η4
||F2||20 +

1

η3
|g̃|2
)
,

||ṽ2(.,ω,s)||20≤C4
1

η2
||F2||20,

where the constants C1,C2,C3,C4 are independent of ω, η, and the data. The same
estimates hold for the solution ũ of the resolvent system (3.4)-(3.5), with F replaced by
f̃ in the right-hand side of the estimates.

Theorem 3.3. The IBVP (3.1)-(3.3) with a>1,a∈R is not well-posed in the gener-
alized sense.

Proof. Let g≡0. Then by Lemma 3.3, we have the interior estimate

||ũ(.,ω,s)||0≤Kη (1+ω) ||f̃ ||0, (3.33)

where Kη is a constant of the form 1/ηα, independent of ω and f̃ . This estimate is
equivalent with ∫ ∞

0

e−2ηt||u(.,t)||2R0
dt≤K2

η

∫ ∞
0

e−2ηt||f(.,t)||2H1(R0)
dt, (3.34)
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where

||f ||2H1(R0)
:=
∑
|ν|≤1

|| ∂
|ν|f

∂ν1x ∂ν2y
||2R0

, ν= (ν1,ν2)∈Z2
+, |ν|=ν1 +ν2.

This simply follows by inverting the Fourier and Laplace transforms and employing
Parseval’s relation:∫ ∞

0

e−2ηt||u(.,t)||2R0
dt=

∫ ∞
0

||e−ηtu(.,t)||2R0
dt=

∫ ∞
−∞

∫ ∞
−∞
||ũ(.,ω,η+ iξ)||20dωdξ.

Obviously, due to the proportionalities in (3.25), the interior solution in Fourier space
cannot be bounded independent of ω, and we cannot get a sharper estimate than (3.33)
independent of ω. Hence, the interior solution in the physical space cannot be bounded
by the data. It is rather bounded by the first derivative of the data. The estimate (3.34)
is weaker than the desired interior estimate of form (2.16), and hence by Definition 2.6
the problem is not well-posed in the generalized sense.

Remark 3.2. The weak estimate (3.34) in the proof of Theorem 3.3 implies that
the solution in the interior loses one derivative over the data at each reflection from the
boundary. Therefore, if we consider the problem in the strip 0≤x≤1, −∞<y<∞ and
add another boundary condition

u1(1,y,t) = bu2(1,y,t), |b|>1, b∈R,

the solution will lose many derivatives over the data as the time goes by. We refer to
such problems as ill-posed in the asymptotic sense.

Remark 3.3. The generalized eigenvalue (3.21) is not of boundary-type. This
suggests that the existence of boundary-type generalized eigenvalues may also be a
necessary condition for well-posedness in the generalized sense, in addition to being a
sufficient condition.

3.2.2. The case |a|= 1, a∈C. We now show that in this case the problem
is well-posed in the generalized sense. We will indeed obtain desired interior solution
estimates of type (2.16). We consider two approaches. First, we employ Fourier and
Laplace transforms and directly solve the resulting family of ordinary boundary value
problems. Secondly, we construct Kreiss-type symmetrizers to obtain interior estimates.
The latter approach is intended to show that the Kreiss theory can indeed be extended to
treat well-posed problems in the generalized sense. We distinguish between the following
two different cases, as depicted in Figure 3.1, and study each case separately:

I. |a|= 1,=a 6= 0.

II. a=±1.
As we will show, these two different cases correspond to two different boundary-type

eigenmodes: I) surface modes, and II) glancing modes.

I. Surface eigenmodes (|a|= 1,=a 6= 0). Let a=eiθ with θ 6=kπ, k=Z. We first
find the generalized eigenvalue.

Theorem 3.4. The generalized eigenvalue of (3.7)-(3.8) with |a|= 1,=a 6= 0 is of
boundary-type, given by

s0 = iξ0, ξ0 = cosθω0, sinθω0<0, (3.35)
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boundary. Therefore, if we consider the problem in the strip 0 ≤ x ≤ 1, −∞ < y < ∞
and add another boundary condition

u1(1, y, t) = b u2(1, y, t), |b| > 1, b ∈ R,

the solution looses many derivatives as the time goes by. We call the problem illposed
in the asymptotic sense.

3.2 The case |a| = 1

In this case, the hyperbolic IBVP is not boundary stable and no theory exists for
investigating the well-posedness. We will show that the Kreiss theory can be applied
for this problem. We will prove that the problem is well-posed in the generalized
sense by constructing the Kreiss symmetrizers and deriving estimates of type (27) for
the solution inside the domain.

There are two different cases as depicted in Figure 1:

i) |a| = 1 with ℑa ≠ 0,

ii) a = ∓1.

ℜa

ℑa

1

(a) |a| = 1 and ℑa ≠ 0

ℜa

ℑa

1

(b) a = ∓1

Figure 1: Two different cases of |a| = 1

As we will show, these two different cases correspond to two different types of waves:
surface waves and glancing waves which are important phenomena in Elastic wave
equations and Maxwell’s equations.

3.2.1 Surface Waves, |a| = 1 with ℑa ≠ 0

Let a = eiθ with θ ≠ nπ, n = 0, ±1, ±2, . . . . We first find the generalized eigenvalue.
By Lemma A4, for s0 = i cos θ ω0 and sin θ ω0 < 0, we have L1(s0, ω0) = 0.

15

Fig. 3.1. A schematic representation of the two different cases of |a|= 1.

and the corresponding eigen-solution reads

u= exp
(
−|sinθω0|x+ iω0(cosθt+y)

)
v1, (3.36)

which represents a surface wave decaying exponentially in the direction normal to the
boundary.

Proof. At the point (3.35) we have

S̃(s0,ω0) =s0 +
√
s20 +ω2

0− iaω0 = icosθω0 +

√
sin2θω2

0− i(cosθ+ isinθ)ω0 = 0,

where sinθω0<0. Hence this point corresponds to a generalized eigenvalue. The eigen-
solution (3.36) is easily obtained by plugging (3.12) into (3.6) at the generalized eigen-
value (3.35), noting that at this point we have κ=−sinθω0 = |sinθω0|>0. Moreover,
since the first eigenvalue κ1 of M in (3.10) with <κ1<0 is negative and proportional
to |ω0| in the limit η→0+, by Definition 3.1 the generalized eigenvalue (3.35) is of
boundary-type.

We consider a neighborhood of the generalized eigenvalue (3.35), and set

s= icosθω+η, sinθω<0, ω=ω0, 0<η�|ω0|.

Then

κ=
√
s2 +ω2 =

√
sin2θω2 +2i cosθηω+η2≈|sinθω|

(
1+ iη

cosθ

sin2θ

1

ω

)
.

Since sinθω<0, we have

κ≈−sinθω− i cosθ

sinθ
η, sinθω<0. (3.37)

Hence κ 6= 0, and we can employ (3.16)-(3.17) with

S1 =s+κ− iaω≈ (1− i cosθ

sinθ
)η,

S2 =s−κ− iaω≈ (1+ i
cosθ

sinθ
)η+2sinθω.



690 GENERALIZATION OF KREISS THEORY TO BOUNDARY-TYPE PROBLEMS

We have

|S1|≈
1

|sinθ|η, |S2|≈2|sinθ||ω|. (3.38)

We are now ready to obtain solution estimates. We will employ two approaches: first by
directly obtaining estimates for the solution of (3.16)-(3.17), and next by constructing
Kreiss-type symmetrizers.

Direct calculation of estimates. We first assume that F ≡0 and g̃ 6≡0 in (3.16)-
(3.17). From the second equation of (3.16), since <κ>0 in (3.37), we get

ṽ2(x,ω,s) = 0, (3.39)

because otherwise, the solution would not be bounded. The boundary condition (3.17)
and the relation (3.38) give

|ṽ1(0,ω,s)|2≈ |sinθ|
2

η2
|g̃|2. (3.40)

We obtain the following interior estimate from the first equation of (3.16) and using
(3.40),

||ṽ1(.,ω,s)||20 =

∫ ∞
0

|ṽ1(0,ω,s)e−<κx|2dx=
1

2<κ |ṽ1(0,ω,s)|2≈ |sinθ|
2η2 |ω| |g̃|

2. (3.41)

We next let F = (F1,F2)> 6≡0 and g̃≡0. By Lemma 5.1 of the Appendix from the
second equation of (3.16), we obtain

|ṽ2(0,ω,s)|2≤ 2

<κ ||F2||20≈
C1

|ω| ||F2||20, (3.42)

||ṽ2(.,ω,s)||20≤
1

(<κ)2
||F2||20≈

C2

|ω|2 ||F2||20. (3.43)

From the first equation of (3.16) and using Lemma 5.2, we get

||ṽ1(.,ω,s)||20≤
1

(<κ)2
||F1||20 +

1

2<κ |ṽ1(0,ω,s)|2.

Moreover, from the boundary condition (3.17), and the relations (3.38) and (3.42), we
have

|ṽ1(0,ω,s)|≈ |ω|
η
|ṽ2(0,ω,s)|≤ C |ω|

1/2

η
||F2||0. (3.44)

We therefore obtain

||ṽ1(.,ω,s)||20≤
C3

|ω|2 ||F1||20 +
C4

η2
||F2||20. (3.45)

We collect the estimates (3.39)-(3.45) in the following lemma.
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Lemma 3.4. For the solution ṽ of the transformed resolvent system (3.16)-(3.17) with
|a|= 1,=a 6= 0 the following estimates near the generalized eigenvalue (3.35) hold

|ṽ1(0,ω,s)|2≤C1

( |ω|
η2
||F2||20 +

1

η2
|g̃|2
)
,

|ṽ2(0,ω,s)|2≤C2
1

|ω| ||F2||20,

||ṽ1(.,ω,s)||20≤C3

(
1

|ω|2 ||F1||20 +
1

η2
||F2||20 +

1

η2 |ω| |g̃|
2

)
,

||ṽ2(.,ω,s)||20≤C4
1

|ω|2 ||F2||20,

where the constants C1,C2,C3,C4 are independent of ω, η, and the data. The same
estimates hold for the solution ũ of the resolvent system (3.4)-(3.5).

Theorem 3.5. The IBVP (3.1)-(3.3) with |a|= 1,=a 6= 0 is well-posed in the general-
ized sense.

Proof. Let g≡0. Inverting the Fourier and Laplace transforms and employing
Parseval’s relation, from Lemma 3.4 we obtain the interior estimate of form (2.16), and
hence by Definition 2.6 the problem is well-posed in the generalized sense.

Remark 3.4. It is to be noted that the first estimate in Lemma 3.4 indicates that
the solution at the boundary loses half a derivative over the force data. Indeed, at each
reflection at the boundary, the amplitude |ṽ| jumps by a factor of |ω|1/2. This will
cause the problem not to be strongly boundary stable. However, the jump in amplitude
concentrates only in a boundary layer and decays exponentially off the boundary, thanks
to the eigen-solution that corresponds to a surface eigenmode. Hence, in the interior
we obtain the desired estimate of the solution in terms of data without any loss of
derivatives.

Remark 3.5 (In-going and out-going characteristics at the boundary). The jump
in the amplitude at each reflection can also be explained in terms of characteristics.
Consider the boundary condition (3.17) with homogeneous data (g̃≡0). By (3.38) we
have

|ṽ1|≈ c
|ω|
η
|ṽ2|, at x= 0.

In other words, when the out-going characteristic, corresponding to |ṽ2|, reaches the
boundary, it gets reflected and turns into an in-going characteristic, corresponding to
|ṽ1|, amplified by a large number proportional to |ω|/η. In fact, |Ŝ| := |S2|/|S1|∝ |ω|/η
is typical to the generalized eigenvalues of surface type. Fortunately, as noted in Re-
mark 3.4, the in-going characteristic field decays exponentially as it propagates off the
boundary and in the interior.

Construction of Kreiss-type symmetrizers. We now let g̃≡0. Since κ 6= 0 at the
generalized eigenvalue (3.35), we consider the diagonal system (3.16) augmented with
a homogeneous boundary condition (3.17). We will show how to obtain the desired
interior estimate by constructing a symmetrizer in a neighborhood of the generalized
eigenvalue. It is to be noted that away from the generalized eigenvalue the general
theory of Kreiss works, and hence we do not need to consider it here. We use the
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normalized variables (2.26) and consider a neighborhood of the normalized generalized
eigenvalue,

s′= icosθω′0 +η′, sinθω′0<0, 0<η′�1. (3.46)

We use the transformation matrix T in (3.15) in the neighborhood of the generalized
eigenvalue, i.e. for the variables in (3.46),

T =

(
icosθω′0−sinθω′0 icosθω′0 +sinθω′0

iω′0 iω′0

)
+η′

(
1− icotθ 1+ icotθ

0 0

)
,

and use the system (3.16) with ΛD =
√
|s|2 + |ω|2Λ′D, where

Λ′D =T−1M ′T =

(
−κ′ 0

0 κ′

)
=

(
sinθω′0 + icotθη′ 0

0 −sinθω′0− icotθη′

)
. (3.47)

Following [11], we consider a symmetrizer of the form

R̃=

(
−b1 0

0 b2

)
, b1,b2>0. (3.48)

Clearly, R̃ is Hermitian. We note that although the matrix (3.48) is a Kreiss-type
symmetrizer, the Kreiss approach in [11] cannot be applied here. The Kreiss approach
is suitable for obtaining boundary estimates in the case of inhomogeneous boundary
conditions and in the absence of generalized eigenvalues. We take a different approach
that consists of: 1) splitting the symmetrized system into two scalar equations, one
corresponding to the in-going characteristic and the other corresponding to the out-
going characteristic; 2) deriving estimates for each component of the solution; and 3)
connecting the two components through the homogeneous boundary condition.

Let F= (F1,F2)>. Since R̃ and Λ′D are both diagonal, we have

<(ṽ,−R̃F)0=<(ṽ1,b1F1)0+<(ṽ2,−b2F2)0

=<(ṽ1,
√
|s|2+ |ω0|2 b1κṽ1)0− b1

2
|ṽ1(0)|2+<(ṽ2,

√
|s|2+ |ω0|2 b2κṽ2)0+ b2

2
|ṽ2(0)|2

= b1<κ||ṽ1||20−
b1
2
|ṽ1(0)|2+b2<κ||ṽ2||20+

b2
2
|ṽ2(0)|2.

We now use the Cauchy-Schwarz inequality and Young’s inequality with ε1 = b1<κ>0
and ε2 = b2<κ>0 for ṽ1 and ṽ2, respectively, and write

<(ṽ1,b1F1)0≤
1

2
b1<κ||ṽ1||20 +

b1
2<κ ||F1||20, <(ṽ2,−b2F2)0≤

1

2
b2<κ||ṽ2||20 +

b2
2<κ ||F2||20.

Hence, for ṽ1 we obtain

||ṽ1||20≤
1

<κ |ṽ1(0)|2 +
1

(<κ)2
||F1||20, (3.49)

and for ṽ2 we get

||ṽ2||20≤
1

(<κ)2
||F2||20, |ṽ2(0)|2≤ 1

<κ ||F2||20. (3.50)

We also recall that from the boundary condition we have

|ṽ1|2 = |Ŝ|2 |ṽ2(0)|2, |Ŝ|= |S2|
|S1|
≈ |ω|

η
. (3.51)
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Noting that <κ≈|sinθω|, we obtain the desired interior estimate in a neighborhood of
the generalized eigenvalue by (3.49), (3.50), and (3.51),

||ṽ||20 = ||ṽ1||20 + ||ṽ2||20≤
c

η2
(||F1||20 + ||F2||20) =

c

η2
||F||20.

The problem is therefore well-posed in the generalized sense. We notice that the values
of b1 and b2 do not matter as long as they are both positive. Generally speaking, the
desired interior estimate is obtained thanks to the fact that <κ∝|S2|∝ |ω|, a typical
characteristic of the generalized eigenvalues of surface type.

II. Glancing eigenmodes (a=±1). We only consider the case a= 1. The other
case a=−1 can be treated similarly. We first find the generalized eigenvalue.

Theorem 3.6. The generalized eigenvalue of (3.7)-(3.8) with a= 1 is of boundary-
type, given by

s0 = iξ0, ξ0 =ω0, ω0>0, (3.52)

and the corresponding eigen-solution reads

u= exp
(
iω0 (t+y)

)
v1, (3.53)

which represents a glancing wave being independent of the variable x.

Proof. At the point (3.52) we have

S̃(s0,ω0) =s0 +
√
s20 +ω2

0− iaω0 = iω0 +
√
−ω2

0 +ω2
0− iω0 = 0,

Hence this point corresponds to a generalized eigenvalue. The eigen-solution (3.53) is
easily obtained by plugging (3.12) into (3.6) at the generalized eigenvalue (3.52), where
κ= 0. Clearly, by Definition 3.1 the generalized eigenvalue (3.52) is of boundary-type.

We consider a neighborhood of the generalized eigenvalue (3.52), and set

s= iω0 +η, ω=ω0>0, 0<η�|ω0|,

Then

κ≈ (2iηω)1/2 = (1+ i)|ηω|1/2, ω>0. (3.54)

Note that since <κ>0, we only consider ω>0. Since at η= 0, we have κ= 0, the
eigenvalues are multiple (κ1 =κ2 = 0), and hence we employ the system (3.19)-(3.20)
with

S1 =s+κ− iω=η+κ,

S2 =−s̄− κ̄+ iω=−η+2iω− κ̄.

We hence have

|S1|2≈2ηω, |S2|2≈4ω2. (3.55)

We are now ready to obtain interior estimates of the solution. Again, we will employ
two approaches: first by directly obtaining estimates for the solution of (3.19)-(3.20),
and next by constructing Kreiss-type symetrizers.
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Direct calculation of estimates. We first assume that F ≡0 and g̃ 6≡0. From the
second equation of (3.19), since <κ>0 in (3.54), we get

ṽ2(x,ω,s) = 0, (3.56)

because otherwise, the solution would not be bounded. The boundary condition (3.20)
and the first relation in (3.55) give

|ṽ1(0,ω,s)|2≈ 1

2ηω
|g̃|2. (3.57)

To obtain interior estimates, we use the first equation of (3.19) together with (3.54) and
(3.57) and get

||ṽ1(.,ω,s)||20 =

∫ ∞
0

|ṽ1(0,ω,s)e−<κx|2dx=
1

2<κ |ṽ1(0,ω,s)|2≈ 1

4(ηω)3/2
|g̃|2. (3.58)

We next let F = (F1,F2)> 6≡0 and g̃≡0. By Lemma 5.1 of the Appendix, from the
second equation of (3.19) we obtain

|ṽ2(0,ω,s)|2≤ 2

<κ ||F2||20≈
C1

(ηω)1/2
||F2||20, (3.59)

||ṽ2(.,ω,s)||20≤
1

(<κ)2
||F2||20≈

C2

ηω
||F2||20. (3.60)

From the first equation of (3.19) and using Lemma 5.2, we have

||ṽ1(.,ω,s)||20≤
1

(<κ)2
||F1||20 +

(<p)2
(<κ)2

||ṽ2||20 +
1

2<κ |ṽ1(0,ω,s)|2.

By simple algebraic manipulations, from (3.18) we obtain <p≈2(ηω)1/2 in a neighbor-
hood of the generalized eigenvalue. Moreover, from the boundary condition (3.20), and
the relations (3.55) and (3.59), we have

|ṽ1(0,ω,s)|2≈ 2ω2

ηω
|ṽ2(0,ω,s)|2≤ 2C1ω

1/2

η3/2
||F2||20. (3.61)

We therefore obtain

||ṽ1(.,ω,s)||20≤
C3

ηω
||F1||20 +C4 (

1

η2
+

1

ηω
) ||F2||20. (3.62)

We collect the estimates (3.56)-(3.62) in the following lemma.

Lemma 3.5. For the solution ṽ of the transformed resolvent system (3.19)-(3.20) with
a= 1 the following estimates near the generalized eigenvalue (3.35) hold

|ṽ1(0,ω,s)|2≤C1

(
ω1/2

η3/2
||F2||20 +

1

ηω
|g̃|2
)
,

|ṽ2(0,ω,s)|2≤C2
1

(ηω)1/2
||F2||20,

||ṽ1(.,ω,s)||20≤C3

(
1

ηω
||F1||20 +(

1

η2
+

1

ηω
) ||F2||20 +

1

(ηω)3/2
|g̃|2
)
,

||ṽ2(.,ω,s)||20≤C4
1

ηω
||F2||20,
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where the constants C1,C2,C3,C4 are independent of ω, η, and the data. The same
estimates hold for the solution ũ of the resolvent system (3.4)-(3.5).

Theorem 3.7. The IBVP (3.1)-(3.3) with a= 1 is well-posed in the generalized
sense.

Proof. Let g≡0. Inverting the Fourier and Laplace transforms and employing
Parseval’s relation, from Lemma 3.5 we obtain the interior estimate of form (2.16), and
hence by Definition 2.6 the problem is well-posed in the generalized sense.

Remark 3.6. It is to be noted that the first estimate in Lemma 3.5 indicates that the
solution at the boundary loses a quarter of derivative over the force data. This is indeed
why the problem is not strongly boundary stable. However, in the interior we obtain
the desired estimate of the solution in terms of data without any loss of derivatives.
Physically, this is due to the fact that the eigen-solution corresponds to a glancing wave
that propagates only in the boundary layer and will not get reflected back into the
interior of domain.

Construction of Kreiss-type symmetrizers. We now let g̃≡0 and consider (3.19)
augmented with a homogeneous boundary condition (3.20). We show how to obtain
the desired interior estimate by constructing the symmetrizer in a neighborhood of the
generalized eigenvalue (3.52). We use the normalized variables (2.26) and consider a
neighborhood of the normalized generalized eigenvalue,

s′= iω′0 +η′, ω′0>0, 0<η′�1.

In general, we can use the unitary transformation matrix T in (3.18) in the neighborhood
of the generalized eigenvalue and obtain the desired interior estimate with a proper
choice of symmetrizer. However, as we will show here, it turns out that the derivations
will be easier if we consider the unitary transformation matrix T in (3.18) precisely at
the generalized eigenvalue (with η′= 0),

T0 =
i√
2

(
1 1
1 −1

)
.

By this choice we can easily cancel out the boundary terms. We then employ the system
(3.19) with ΛT =

√
|s|2 + |ω|2Λ′T , where

Λ′T =T ∗0M
′T0 =

(
0 −2iω′0−η′
−η′ 0

)
. (3.63)

With the transformation T0, we let ṽ =T ∗0 ũ, and hence from the boundary condition
(3.20) with g̃= 0 we obtain

ṽ2(0,ω,s) = 0, (3.64)

because otherwise, since S1 = 0 and S2 6= 0, there will be no solution ṽ that would satisfy
the boundary condition. Following [11], we consider a symmetrizer of the form,

R̃=

(
0 d1
d1 d2

)
− iη′

(
0 −f
f 0

)
. (3.65)

We then obtain

2<(R̃Λ′T ) =

(
−2d1η

′ −d2η′
−d2η′ −2d1η

′−4fω′0η
′

)
+O(η′2).
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By choosing d2 = 0, d1 =−1, and f ≤0, we get

<(R̃Λ′T )≥η′I. (3.66)

For the boundary terms, by (3.64) we get

〈ṽ,R̃ ṽ〉x=0 = (d1− if η′) ṽ1 ṽ∗2 +(d1 + if η′) ṽ∗1 ṽ2 = 0. (3.67)

We finally obtain the desired interior estimate,

η

2
||ṽ||20 +

c

2η
||F ||20≥<(ṽ,−R̃F )0 =−<(ṽ,R̃

dṽ

dx
)0 +<

(
ṽ,
√
|s|2 + |ω|2R̃Λ′T ṽ

)
0

=
1

2
<〈ṽ,R̃ṽ〉x=0 +<

(
ṽ,
√
|s|2 + |ω|2R̃Λ′T ṽ

)
0

≥η′
√
|s|2 + |ω|2 ||ṽ(x,ω,s)||20.

The first inequality is a direct application of the Cauchy-Schwarz inequality and Young’s
inequality with ε=η, where the constant c is related to the upper bound of ||R̃||. The
second inequality is a consequence of (3.66)-(3.67). We finally obtain the desired interior
estimate

||ṽ||20≤
c

η2
||F ||20.

The problem is therefore well-posed in the generalized sense.

Summary of well-posedness for the model problem. We summarize the results
for the well-posedness of the IBVP (3.1)-(3.3):

1) if |a|<1, then the problem is strongly well-posed in the generalized sense.

2) if |a|= 1, then the problem is well-posed in the generalized sense.

3) if |a|>1,a∈R, then the problem is ill-posed in the asymptotic sense, i.e. the
solution loses one derivative over the data at each reflection from the boundary.

4) if |a|>1,a /∈R, then the problem is ill-posed in the sense that there are solutions
which grow exponentially, arbitrarily fast.

It is to be noted that Kreiss theory can address only the first and fourth cases. With
the generalization presented here, we can further study the second and third cases, and
hence making the Kreiss theory a far more comprehensive theory applicable to all types
of well-posedness.

4. Proof of the main theorem (Theorem 3.1)
In this section we present the proof of Theorem 3.1. We consider the half-space

problem (2.10)-(2.12) with homogeneous initial and boundary conditions (h≡g≡0).
We Fourier and Laplace transform the problem with respect to the tangential variables
x− and t, respectively, and obtain the resolvent problem

dũ

dx1
=M ũ−A−1f̃ , M =A−1(sI− iB(ω−)), forx1≥0, (4.1)

ũI =S ũII , atx1 = 0. (4.2)

We assume that there are no eigenvalues s with <s>0 to the corresponding homoge-
neous eigenvalue problem. Because otherwise, by Theorem 2.2, the problem would be
ill-posed.
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The first part of the Main Theorem is indeed the Kreiss eigenvalue theorem (Theo-
rem 2.3). We therefore concentrate on the second part of the theorem and assume that
there exists a boundary-type generalized eigenvalue (iξ′0,ω

′
0). Using the normalized

variables (2.26), we consider a neighborhood of this generalized eigenvalue

s′= iξ′0 +η′, ω′−=ω′0, 0<η′�1, (4.3)

and write the matrix M in (4.1) as

M(s,ω−) =
√
|s|2 + |ω−|2M(s′,ω′−), M(s′,ω′−) =A−1(s′ I− iB(ω′−)). (4.4)

The eigenvalues κ′ of M(s′,ω′−) are the solutions of the characteristic equation

Det|κ′ I−A−1(s′ I− iB(ω′−))|= 0. (4.5)

Depending on the type of the generalized eigenvalue (either surface or glancing eigen-
modes), the eigenvalues κ′ of M(s′,ω′−) will have different properties. Accordingly,
we will use different types of matrix transformations for M . We treat each case sepa-
rately and derive desired interior estimates of type (2.16) by constructing appropriate
Kreiss-type symmetrizers.

4.1. Surface eigenmodes. We will take an approach similar to the approach
presented for the model problem in Section 3.2.2 and decompose the resolvent system
(4.1) into two systems, one with in-going characteristics and one with out-going char-
acteristics. We first formulate the following important lemma.

Lemma 4.1. Let (s′,ω′−) be given by (4.3), where (iξ′0,ω
′
0) is a generalized eigen-

value of surface type. For M(s′,ω′−) in (4.4), there exists a smooth transformation
T =T (s′,ω′−) such that Λ(s′,ω′−) =T−1MT has block diagonal form

Λ(s′,ω′−) =

(
ΛI 0
0 ΛII

)
, ΛI ∈Cr×r, ΛII ∈C(n−r)×(n−r), (4.6)

with

ΛI +Λ∗I ≤−δ |ω′0|I, ΛII +Λ∗II ≥ δ |ω′0|I, δ >0. (4.7)

Proof. By definition 3.1, in a neighborhood (4.3) of a generalized eigenvalue of
surface type, there is a constant c>0 such that |<κ′|≥ c|ω′0|>0. Then similar to Lemma
2.1, there are exactly r eigenvalues κ′ with <κ′>0 and n−r eigenvalues with <κ′<
0. Finally, the smoothness of the transformation T is due to the strict hyperbolicity
assumption on the system (2.1).

Corresponding to the block form (4.6) we have a partition of vectors ṽ =T−1ũ=
(ṽ>I ,ṽ

>
II)
>. We also partition the force term F=−T−1A−1f̃ = (F>I ,F

>
II)
>. The resol-

vent problem (4.1)-(4.2) is then transformed into two separate systems

dṽI
dx1

=
√
|s|2 + |ω−|2ΛI ṽI +FI ,

dṽII
dx1

=
√
|s|2 + |ω−|2ΛII ṽII +FII , forx1≥0,

(4.8)
coupled through the boundary condition

SI ṽI =SII ṽII , atx1 = 0, (4.9)
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We note that in a neighborhood of the generalized eigenvalue, SI is non-singular. We
then write

|ṽI |≤ ||Ŝ|||ṽII |, Ŝ=S−1I SII , atx1≥0. (4.10)

According to the structure of Λ in (4.6), we consider a Hermitian symmetrizer of the
form

R̃=

(
−b1 I

b2 I

)
, b1,b2>0.

With this choice, similar to the proof for the model problem, we can write

<(ṽ,−R̃F)0 =<(ṽI ,b1FI)0 +<(ṽII ,−b2FII)0
=<(ṽI ,−

√
|s|2 + |ω0|2 b1ΛI ṽI)0−

b1
2
|ṽI(0)|2 +

+ <(ṽII ,
√
|s|2 + |ω0|2 b2ΛII ṽII)0 +

b2
2
|ṽII(0)|2

≥ b1
2
δ |ω0| ||ṽI ||20−

b1
2
|ṽI(0)|2 +

b2
2
δ |ω0| ||ṽII ||20 +

b2
2
|ṽII(0)|2,

where we have used the first system in (4.8) and the first inequality in (4.7). We now
use the Cauchy-Schwarz inequality and Young’s inequality with ε1 = b1δ|ω0|/2>0 and
ε2 = b2δ|ω0|/2>0 for ṽI and ṽII , respectively, and write

<(ṽI ,b1FI)0≤
b1
4
δ|ω0| ||ṽI ||20 +

b1
δ|ω0|

||FI ||20,

<(ṽII ,−b2FII)0≤
b2
4
δ|ω0| ||ṽII ||20 +

b2
δ|ω0|

||FII ||20.

Hence, for ṽI we obtain

||ṽI ||20≤
2

δ|ω0|
|ṽI(0)|2 +

4

δ2|ω0|2
||FI ||20, (4.11)

and for ṽII we get

||ṽII ||20≤
2

δ2|ω0|2
||FII ||20, |ṽII(0)|2≤ 2

δ|ω0|
||FII ||20. (4.12)

Noting that ||Ŝ||∝ |ω0|/η, from the boundary condition we will have

|ṽI(0)|≤ c |ω0|
η
|ṽII(0)|.

Hence by (4.11)-(4.12), we obtain the desired interior estimate in a neighborhood of the
generalized eigenvalue

||ṽ||20 = ||ṽI ||20 + ||ṽII ||20≤
c

η2
(||FI ||20 + ||FII ||20) =

c

η2
||F||20.

Inverting the Fourier and Laplace transforms, the estimate (2.16) follows by Parseval’s
relation. The problem is therefore well-posed in the generalized sense.
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4.2. Glancing eigenmodes. Similar to the approach we took for the model
problem in Section 3.2.2, it is possible to use a unitary transformation matrix precisely at
the glancing generalized eigenvalue and cancel the boundary terms. Nevertheless, here
we closely follow [11] and transform the resolvent system (4.1) into a Jordan normal
form in a neighborhood of the generalized eigenvalue. This can be done thanks to the
fact that in the case of glancing eigenmodes, the eigenvalues κ of matrix M vanish as
η→0+. We first formulate the following important lemma.

Lemma 4.2. Let (s′,ω′−) be given by (4.3), where (iξ′0,ω
′
0) is a generalized eigenvalue

of glancing type. For M(s′,ω′−) in (4.4), there exists a smooth transformation T =
T (s′,ω′−) such that Λ(s′,ω′−) =T−1MT has the block diagonal form

Λ(s′,ω′−) =


M1

M2

. . .

Ml

, (4.13)

where

Mj(s
′,ω′−) =Mj(iξ

′
0,ω
′
−)+η′Nj(iξ

′
0,ω
′
−)+O(η′2)∈Cmj×mj , 1≤ j≤ l, (4.14)

with

Mj(iξ
′
0,ω
′
−) =


λj i

λj i
. . . i

λj

, <λj = 0, λp 6=λq for p 6= q, 1≤p,q≤ l.

Furthermore, the real part of the left lower corner element of Nj is non-zero, i.e.
<(Nj)mj ,1 6= 0, and Mj(s

′,ω′−) has precisely ρj eigenvalues with negative real parts
standing in the first rows, where

ρj =

mj/2, mj≡0 (mod 2),
(mj−1)/2, mj≡1 (mod 2) and <(Nj)mj ,1>0,
(mj+1)/2, mj≡1 (mod 2) and <(Nj)mj ,1<0.

Proof. The proof follows by Lemmas 2.3-2.7 in [11] for the case when A and
Bj are real-valued matrices. We also refer to [26] where the proof is extended to the
case of complex-valued matrices. The present lemma is a particular case of the lemmas
in [11,26] with limη→0+ κ= 0.

Corresponding to the block form (4.13) we have a partition of vectors ṽ =T−1ũ=
(ṽ>1 ,. ..,ṽ

>
l )>. Now assume that we can find a set of smooth Hermitian matrices R̃j ,

with 1≤ j≤ l, such that for each block Mj ,

<{R̃jMj}≥η′ I, (4.15)

and for any vector ṽj ,

ṽ∗j R̃j ṽj≥0. (4.16)
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Then with a symmetrizer of the form

R̃= (T−1)∗


R̃1

R̃2

. . .

R̃l

(T−1),

we will have by (4.13) and (4.15)

<{R̃M}= (T−1)∗


<{R̃1M1}

<{R̃2M2}
. . .

<{R̃lMl}

 (T−1)≥ δη′ I, δ >0.

(4.17)
Furthermore, for all vectors ũ satisfying the boundary condition, by (4.16) we have at
the boundary

ũ∗ R̃ũ
∣∣
x1=0

= ṽ∗


R̃1

R̃2

. . .

R̃l

ṽ =

l∑
j=1

ṽ∗j R̃jṽj
∣∣
x1=0

≥0. (4.18)

Now if we multiply (4.1)-(4.2) by R̃, thanks to (4.17)-(4.18), we obtain

<(ũ,R̃A−1 f̃)0 =−<
(
ũ,R̃

dũ

dx1

)
0

+<
(
ũ,
√
|s|2 + |ω−|2 R̃M ũ

)
0

=−1

2
<
[
ũ∗ R̃ũ

]∞
0

+<
(
ũ,
√
|s|2 + |ω−|2 R̃M ũ

)
0
≥ δη ||ũ||20.

We then use the Cauchy-Schwarz inequality and Young’s inequality with ε= δη and
write

<(ũ,R̃A−1 f̃)0≤
δη

2
||ũ||20 +

c

2δη
||f̃ ||20,

where the constant c is related to the upper bound of ||R̃A−1||. Combining the above
two inequalities, we obtain

||ũ||20≤
c

η2
||f̃ ||20.

Inverting the Fourier and Laplace transforms, the estimate (2.16) follows by Parseval’s
relation.

It now remains to construct R̃j such that (4.15) and (4.16) hold. We set

R̃j =D− iη′F, D=


d1

d1 d2
...

d1 d2 .. . dmj

 , F =



0 −f1
f1 0 −f2

f2
. . .

. . .

. . . 0 −fmj−1
fmj−1 0

,
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where the matrices D and F are real symmetric (D=D∗) and real anti-symmetric
(F =−F ∗), respectively. It is easy to see that

2<{R̃jMj}= R̃jMj+M∗j R̃j =η′ (DNj+N∗j D+F C+C∗F ∗)+O(η′2),

where C is the nilpotent matrix with 1’s along the superdiagonal and zeros everywhere
else. The left upper corner element of DNj+N∗j D is 2d1<(Nj)mj ,1. By Lemma 4.2,
we know that <(Nj)mj ,1 6= 0. Therefore, if we choose d1 so that 2d1<(Nj)mj ,1≥3, then
there is a constant β=β(||Nj ||, ||D||)>0 such that

DNj+N∗j D≥


3
−β

. . .

−β

 .
We further choose the elements of F to be fk =dk

2

, with k= 1,. ..,mj−1, for some d>0
to be determined. Then by Lemma 4.4 in [11], we have

F C+C∗F ∗≥


−1

d/2
. . .

d/2

, d>0.

We then have

DNj+N∗j D+F C+C∗F ∗≥
(

2
(d/2−β)I

)
.

Then (4.15) will follow if we choose d≥4+2β. The inequality (4.16) follows easily
noting that for any vector ṽj , we have

v∗i R̃jvj =v∗jDvj+O(η′) |vj |2.

We therefore need to choose d2,. ..,dmj
as a sufficiently fast increasing positive sequence.

This completes the proof.
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Appendix. In this Appendix we collect a number of auxiliary lemmas.

Lemma 5.1. Consider the ordinary differential equation ux=λu+F with <λ>0,
0≤x<∞. Then if the solution u vanishes at infinity, it satisfies the estimate

|u(0)|2≤ 2

<λ ||F ||
2
0, ||u||20≤

1

(<λ)2
||F ||20.

Proof. Integration by parts gives us

(u,ux) =−|u(0)|2−(ux,u),
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i.e.,

2<(u,ux) =−|u(0)|2.

Therefore

1

2
|u(0)|2 +<λ ||u||2≤||u||||F ||,

and the lemma follows, considering each term in the left-hand side of the above inequality
separately.

Lemma 5.2. Consider ux=−λu+F with <λ>0, 0≤x<∞. Then if the solution u
vanishes at infinity, it satisfies the estimate

||u||20≤
1

(<λ)2
||F ||20 +

1

2<λ |u(0)|2.

Proof. For u(0) = 0, we use integration by parts, and for F ≡0, we can explicitly
calculate the solution,

u(x) =u(0)e−λx.

This gives

||u||20 = |u(0)|2
∫ ∞
0

e−<λxdx.

The lemma follows after simple manipulations.

Lemma 5.3. There is a constant δ>0 such that for all ω∈R,

<κ=<
√
s2 +ω2≥ δη, η=<s>0.

Proof. For the proof see Lemma 2 in [18].
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