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NUMERICAL STOCHASTIC HOMOGENIZATION BY QUASILOCAL
EFFECTIVE DIFFUSION TENSORS∗
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Abstract. This paper proposes a numerical upscaling procedure for elliptic boundary value prob-
lems with diffusion tensors that vary randomly on small scales. The method compresses the random
partial differential operator to an effective quasilocal deterministic operator that represents the ex-
pected solution on a coarse scale of interest. Error estimates consisting of a priori and a posteriori
terms are provided that allow one to quantify the impact of uncertainty in the diffusion coefficient on
the expected effective response of the process.
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1. Introduction
Homogenization is a tool of mathematical modeling to identify reduced descriptions

of the macroscopic response of multiscale models. In the context of the prototypical
elliptic model problem

−div(Aε∇uε) =f,

microscopic features on some characteristic length scale ε are encoded in the diffu-
sion coefficient Aε and homogenization studies the limit as ε tends to zero. It turns
out that suitable limits represented by the so-called effective or homogenized coeffi-
cient exist in fairly general settings in the framework of G-, H-, or two-scale conver-
gence [3,9,32,33,36]. However, the effective coefficient is rarely given explicitly and even
its implicit representation based on cell problems usually requires structural assumptions
on the sequence of coefficients Aε such as local periodicity and scale separation [6, 25].
Moreover, in many interesting applications such as geophysics and material sciences
where Aε represents porosity or permeability, complete explicit knowledge of the co-
efficient is unlikely. The coefficient is rather the result of measurements that underlie
errors or it is the result of singular measurements combined with inverse modeling. In
any case, it is very likely that there is uncertainty in the data Aε. The question is
how this uncertainty on the fine scale ε changes the expected macroscopic response of
the process. For works on analytical stochastic homogenization we refer to the classical
works [27, 35, 37] and the recent approaches [7], [10, 16–21], and [2, 4]. Computational
methods in stochastic homogenization comprise [5, 8, 11, 15, 26, 30, 38] and the review
article [1]. However, important practical and theoretical questions remain open. Among
them are the truncation of cell problems (see [12–14] for recent progress in this aspect),
the role of discretization on the different scales and its interaction with the homogeniza-
tion process as well as the incorporation of macroscopic boundary conditions.
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This paper addresses all these issues to some extent. It provides a method to
compute effective, deterministic models such that the corresponding discrete solution is
close to E[uε], the expected value of uε; closeness is meant in the L2 sense, so that a
meaningful approximation is achieved on some coarse scale of interest H (observation
scale) which is typically linked to some triangulation TH of mesh-size H. The numerical
method is based on the multiscale approach of [31], sometimes referred to as Localized
Orthogonal Decomposition (LOD), that was developed for the deterministic case (see
also [22, 24, 28, 34]). The basis functions therein are constructed by local corrections
(generally different from those of analytical homogenization theory) that solve some
elliptic fine-scale problem on localized patch domains. Their supports are determined
by oversampling lengths H|logH|, where H denotes the mesh-size of a finite element
triangulation TH on the observation scale. This choice of oversampling is justified by the
exponential decay of the correctors away from their source [24, 28, 29, 31]. The method
leads to quasi-optimal a priori error estimates and can dispense with any assumptions
on scale separation.

The recent work [23] gives a reinterpretation of the method from [31] as a quasilo-
cal discrete integral operator for the deterministic case. In a further compression step,
this representation allows to extract a piecewise constant diffusion tensor. An appli-
cation of this procedure for any atom ω in the probability space leads to an integral
operator AH (depending on the stochastic variable) and a corresponding piecewise con-
stant random field AH on the scale H. It turns out that this viewpoint is useful in
the stochastic setting because it allows to average in the stochastic variable over effec-
tive coefficients rather than over multiscale basis functions and to thereby characterize
the resulting effective model in terms of quasi-local coefficients and even deterministic
PDEs. The averages are given by ĀH :=E[AH ] and ĀH :=E[AH ] and constitute de-
terministic models which we refer to as quasi-local (ĀH) and local (ĀH), respectively.
The proposed method covers the case of bounded polytopes, which appears still open in
analytical stochastic homogenization. The method itself can dispense with any a priori
information on the coefficient. The validity of the discrete model is assessed via an
a posteriori model error estimator. In order to make the computation of ĀH and ĀH

feasible, one can exploit the structure (if available) of the stochastic coefficient Aε as
well as the underlying mesh. Provided the dependence of the stochastic variable has a
suitable structure, sampling procedures for AH are purely local and allow to restrict
the computations to reference configurations.

We provide error estimates for the expected error in the L2 norm as well as the L2

norm of the expected error. The upper bounds are combined from a priori terms and
a posteriori terms. The latter contributions are determined by the statistics of the local
fluctuations of the upscaled coefficient. Numerical evidence for an uncorrelated model
coefficient suggests that the error estimator is not the dominant part in the error, as
long as the usual scaling H≈ (ε/H)d/2 from the central limit theorem (CLT) is satisfied.

The structure of this article is as follows. Section 2 introduces the general model
problem, relevant notation for data structures and function spaces, and gives an example
of a possible model situation. Section 3 presents the upscaling procedure. Section 4 pro-
vides error estimates in the L2 norm. Numerical experiments are presented in Section 5.
The comments of Section 6 conclude the paper.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper.
The notation a. b abbreviates a≤Cb for some constant C that is independent of the
mesh-size, but may depend on the contrast of the coefficient A; a≈ b abbreviates a.
b.a. The symmetric part of a quadratic matrix M is denoted by sym(M).
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2. Model problem and notation
This section describes the model problem and some notation on finite element

spaces. Finally, an example of a possible model situation is discussed.

2.1. Model problem. Let (Ω,F,P) be a probability space with set of events Ω,
σ-algebra F⊆2Ω and probability measure P. The expectation operator is denoted by
E. Let D⊆Rd for d∈{1,2,3} be a bounded Lipschitz polytope. The set of admissible
coefficients reads

M(D,α,β) =

{
A∈L∞(D;Rd×d

sym) s.t. α|ξ|2≤ (A(x)ξ) ·ξ≤β|ξ|2

for a.e. x∈D and all ξ∈Rd

}
. (2.1)

Here, Rd×d
sym denotes the set of symmetric d×d matrices. Note that the elements of

A∈M(D,α,β) are fairly free to vary within the bounds α and β and that we do not
assume any frequencies of variation or smoothness.

Let A be an M(D,α,β)-valued, pointwise symmetric random field with β>α>0
and let, for the sake of readability, f ∈L2(D) be deterministic. Throughout this article
we suppress the characteristic length scale ε of the diffusion coefficient in the notation
and write A instead of Aε. Consider the model problem{

−div(A(ω)(x)∇u(ω)(x)) =f(x), x∈D
u(ω)(x) = 0, x∈∂D

}
for almost all ω∈Ω. (2.2)

Denote the energy space by V :=H1
0 (D). The weak formulation of (2.2) seeks a V -valued

random field u such that for almost all ω∈Ω∫
D

(A(ω)(x)∇u(ω))(x) ·∇v(x)dx=

∫
D

f(x)v(x)dx for all v∈V. (2.3)

The reformulation of this problem in the Hilbert space L2(Ω;V ) of V -valued random
fields with finite second moments leads to a coercive variational problem that seeks
u∈L2(Ω;V ) such that∫

Ω

∫
D

(A(ω)∇u(ω)(x)) ·∇v(ω)(x)dxdP(ω) =

∫
Ω

∫
D

f(x)v(ω)(x)dxdP(ω)

holds for all v∈L2(Ω;V ). It is easily checked that this is a well-posed problem in the
sense of the Lax-Milgram theorem with a coercive and bounded bilinear form

a :L2(Ω;V )×L2(Ω;V )→R,

(u,v) 7→
∫

Ω

∫
D

(A(ω)(x)∇u(ω)(x)) ·∇v(ω)(x)dxdP(ω)

and a bounded linear functional F on L2(Ω;V ) given by

v 7→
∫

Ω

∫
D

f(x)v(ω)(x)dxdP(ω).

This shows that, for any f ∈L2(D), there exists a unique solution u∈L2(Ω;V ) with

‖∇u‖L2(Ω;V ) :=

(∫
Ω

∫
D

|∇(u(ω))(x)|2dxdP(ω)

)1/2

≤C(D)α−1‖f‖L2(D).
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Though it would be possible, we disregard the possibility of more general f ∈H−1(D)
or uncertainty in the right-hand side f in this article.

Remark 2.1. The parameter ε refers to some scale that resolves the stochastic data.
We do not assume any particular structure; the coefficient A=Aε is not necessarily
part of some ergodic sequence. Our viewpoint is that of coarsening/reducing the given
model on the fixed scale ε to the observation scale H rather than that of the asymptotics
for small ε.

2.2. Finite element spaces. Let TH be a quasi-uniform regular simplicial
triangulation of D and let VH denote the standard P1 finite element space, that is, the
subspace of V consisting of piecewise first-order polynomials. Given any subdomain
S⊆D, define its neighbourhood via

N(S) := int
(
∪{T ∈TH : T ∩S 6=∅}

)
.

Furthermore, we introduce for any m≥2 the patch extensions

N1(S) :=N(S) and Nm(S) :=N(Nm−1(S)).

Throughout this paper, we assume that the coarse-scale mesh TH is quasi-uniform.
The global mesh-size reads H := max{diam(T ) :T ∈TH}. Note that the shape-regularity
implies that there is a uniform bound C(m) on the number of elements in the mth-order
patch, card{K ∈TH :K⊆Nm(T )}≤C(m) for all T ∈TH . The constant C(m) depends
polynomially on m. The set of interior (d−1)-dimensional hyper-faces of TH is denoted
by FH . For a piecewise continuous function ϕ, we denote the jump across an interior
edge by [ϕ]F , where the index F will be sometimes omitted for brevity. The space
of piecewise constant functions (resp. d×d matrix fields) is denoted by P0(TH) (resp.
P0(TH ;Rd×d)).

Let IH :V →VH be a surjective quasi-interpolation operator that acts as an H1-
stable and L2-stable quasi-local projection in the sense that IH ◦IH = IH and that for
any T ∈TH and all v∈V there holds

H−1‖v−IHv‖L2(T ) +‖∇IHv‖L2(T )≤CIH‖∇v‖L2(N(T ))

‖IHv‖L2(T )≤CIH‖v‖L2(N(T )).

Since IH is a stable projection from V to VH , any v∈V is quasi-optimally approximated
by IHv in the L2(D) norm as well as in the H1(D) norm. One possible choice is to define
IH := IcH ◦ΠH , where ΠH is the L2(D)-orthogonal projection onto the space P1(TH) of
piecewise affine (possibly discontinuous) functions and IcH is the averaging operator
that maps P1(TH) to VH by assigning to each free vertex the arithmetic mean of the
corresponding function values of the neighbouring cells, that is, for any v∈P1(TH) and
any free vertex z of TH ,

(IcH(v))(z) =
∑

T∈TH
with z∈T

v|T (z)

/
card{K ∈TH : z∈K}.

This choice of IH is employed in our numerical experiments.

2.3. Discrete stochastic setting. In this subsection we briefly describe one
possible discrete stochastic setting where the uncertainty is encoded by a triangulation
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Tε. Although it is not the most general coefficient that can be treated with the methods
described below, it appears as a natural model situation in a multiscale setting and will
therefore be utilized in the numerical experiments from Section 5.

We assume that the triangulation Tε describing the multiscale structure of A is a
uniform refinement of the triangulation TH on the observation scale. Let Tε denote a
uniform triangulation. The probability space reads

Ω =
∏

T∈Tε

[α,β] = [α,β]cardTε .

Each ω= (ωT )T∈Tε
∈Ω can be identified with a scalar Tε-piecewise constant function ιω

over D with ιω|T =ωT for any T ∈Tε. The scalar random diffusion coefficient A=Aε

is a random variable A∈L2(Ω;M(D,α,β)). The values are piecewise constant in space,
that is

A(•,ω) = ιω∈P0(Tε) for any ω∈Ω.

Of course, similar settings are possible for tensor-valued diffusion coefficients.

3. Upscaling method
This section describes the proposed upscaling methods.

3.1. Upscaling with a quasi-local effective model. This subsection describes
the computation of a quasi-local effective coefficient. The underlying model does not
correspond to a PDE but rather to a discrete integral operator on finite element spaces.
The method is very flexible in that it is not restricted to (quasi-)periodic situations and
is able to include boundary conditions.

The upscaling procedure presented here is based on the multiscale approach of
[24,31]. For the deterministic case, it was shown in [23] that a variant of those methods
corresponds to a finite element system with a quasilocal discrete integral operator. Its
construction for the stochastic setting is described in the following.

Let W := kerIH ⊆V denote the kernel of IH . The space W is referred to as fine-scale
space. For any element T ∈TH define the extended element patch DT :=N`(T ) of order
`. The nonnegative integer ` is referred to as the oversampling parameter. As a crucial
parameter in the design of the multiscale method, it is inherent to all quantities in the
upscaled model. The parameter will always be chosen `≈|logH|. For better readability
we will suppress the explicit dependence on ` whenever there is no risk of confusion, but
stress the fact that quantities like qT,j C, AH , etc. defined below should be understood

as q
(`)
T,j C(`), A

(`)
H .

Let WDT
⊆W denote the space of functions from W that vanish outside DT . For

any T ∈TH , any j∈{1,. ..,d}, and any vH ∈VH , the function qT,j ∈L2(Ω;WDT
) solves∫

DT

∇w ·(A∇qT,j)dx=

∫
T

∇w ·(Aej)dx for all w∈WDT
. (3.1)

Here ej (j= 1,. ..,d) is the jth Cartesian unit vector. The functions qT,j are called
element correctors. We emphasize that the element correctors qT,j are WDT

-valued
random variables. Given vH ∈VH , we define the corrector CvH ∈L2(Ω;W ) by

CvH =
∑

T∈TH

d∑
j=1

(∂jvH |T )qT,j . (3.2)
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Again, the operator C depends on the uncertainty parameter ω. Define the piecewise
constant matrix field AH ∈L2(Ω;P0(TH×TH ;Rd×d)) over TH×TH , for T,K ∈TH by

(AH |T,K)jk :=
1

|T ||K|

(
δT,K

∫
T

Ajkdx−ej ·
∫
K

A∇qT,kdx

)
(3.3)

(j,k= 1,. ..,d) where δ is the Kronecker symbol. The bilinear form a :V ×V →L2(Ω;R)
is given by

a(vH ,zH) :=

∫
D

∫
D

∇vH(x) ·(AH(x,y)∇zH(y))dydx for any vH ,zH ∈VH .

As pointed out in [23], there holds for all finite element functions vH ,zH ∈VH that∫
D

∇vH ·(A∇(1−C)zH)dx=a(vH ,zH). (3.4)

Remark 3.1. The nonlocal operator AH is sparse in the sense that AH |T,K equals
zero whenever dist(T,K)& `H for T,K ∈TH . It is therefore referred to as quasilocal.

Remark 3.2. The left-hand side of (3.4) corresponds to a Petrov-Galerkin method
with finite element trial functions and modified test functions. Such multiscale basis
functions were proposed in [31]. For averaging procedures over the stochastic variable,
it will turn out that the representation from the right-hand side of (3.4) is preferable.
In other words, we average the nonlocal integral kernel rather than multiscale basis
functions. Therefore we employ the variant from [23] where, in the discretization, the
right-hand side of the PDE is only tested with standard finite element functions, while
in the original method [31] the right-hand side was tested with multiscale test functions.
Those would be random variables in our case.

If the oversampling parameter ` is chosen in the order of magnitude O(|logH|), it
can be shown (see e.g., [23, proof of Prop. 6]) that the bilinear form a is coercive and
continuous

‖∇vH‖L2(D) .a(vH ,vH).‖∇vH‖L2(D) for all vH ∈VH (3.5)

for any ω∈Ω. Hence, there exists a unique solution uH ∈L2(Ω;VH) to

a(uH ,vH) = (f,vH)L2(D) for all vH ∈VH . (3.6)

Is is known that the method of [31] produces quasi-optimal results for every fixed
ω. More precisely, for the variant considered here, [23, Prop. 1] states

‖u(ω)−uH(ω)‖L2(D)

‖f‖L2(D)
.H2 +wcba(A(ω),TH). (3.7)

The term wcba(A(ω),TH) denotes the worst-case best-approximation error

wcba(A(ω),TH) := sup
g∈L2(D)\{0}

inf
vH∈VH

‖u(g,A(ω))−vH‖L2(D)

‖g‖L2(D)
(3.8)

where for g∈L2(D), u(g,A(ω))∈V solves the deterministic model problem with diffu-
sion coefficient A(ω) and right-hand side g. In particular, the right-hand side of (3.7)
is always controlled by H‖f‖L2(D).
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The approximation by a deterministic model is based on the averaged integral kernel
ĀH :=E[AH ]. In view of (3.3), the values of the piecewise constant integral kernel ĀH

on two simplices T,K ∈TH are given by

(ĀH |T,K)jk =
1

|T ||K|

(
δT,K

∫
T

E[Ajk]dx−ej ·
∫
K

E[A∇qT,k]dx

)
. (3.9)

The corresponding bilinear form ā(·,·) given by

ā(vH ,zH) :=

∫
D

∫
D

∇vH(x) ·(ĀH(x,y)∇zH(y))dydx for any vH ,zH ∈VH .

The discrete solution uH ∈VH to the quasilocal deterministic model is given by

ā(uH ,vH) = (f,vH)L2(D) for all vH ∈VH . (3.10)

Remark 3.3. In practice, the stochastic averages in (3.9) are approximated through
sampling procedures. This is indeed feasible because for some T ∈TH and ω∈Ω, the
computation of AH |T,K(ω) for any K ∈TH corresponds to the solution of problem (3.1),
which is posed on the quasilocal neighbourhood DT of T .

3.2. Compression to a local deterministic coefficient. Given the quasilocal
upscaled coefficient, one may ask whether there exists a suitable approximation by a
PDE model. In order to provide a fully local model, a further compression step is
introduced [23]. The nonlocal bilinear form a(·, ·) is approximated by a quadrature-like
procedure as follows. Define the piecewise constant coefficient

AH ∈L2(Ω;P0(TH ;Rd×d)) by AH |T :=
∑

K∈TH

|K|AH |T,K .

For fixed ω∈Ω, the tensor field AH(ω) is the local effective diffusion coefficient of [23] on
the mesh TH . In particular, AH still depends on x and ω. We define the deterministic
diffusion tensor by

ĀH :=E[AH ].

By linearity of the expectation operator, ĀH is equivalently obtained by compressing
the averaged operator ĀH .

It is not guaranteed a priori that ĀH is uniformly positive definite. In what follows
we therefore assume that ĀH ∈M(D,α/2,2β). This condition can be checked a poste-
riori. We denote by ũH ∈VH the solution to the following finite element system∫

D

∇ũH ·(ĀH∇vH)dx= (f,vH)L2(D) for all vH ∈VH . (3.11)

This effective equation is the discretization of a PDE. As described in Subsection 4.2,
the coefficient ĀH can be regularized to some Āreg

H that leads to comparable accuracy.

4. Error analysis
This section provides L2 error estimates for the upscaling schemes. The estimates

combine a priori and a posteriori terms. The measure for quantifying the error is the
L2(Ω;L2(D)) norm, denoted by

|||v||| :=
√
E[‖v‖2L2(D)].

We will also provide error estimates for the L2 norm of the expected error.
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4.1. Error estimate for the quasilocal method.

Definition 4.1 (model error estimator). For any T ∈TH , denote

X(T ) := max
K∈TH

K∩N`(T )6=∅

|T |
∣∣∣AH |T,K−ĀH |T,K

∣∣∣.
The model error estimator γ is defined by

γ := max
T∈TH

(√
E[X(T )2]

)/(
max
T∈TH

max
K∈TH

|T |
(
ĀH |T,K

))
.

Remark 4.1 (normalization of γ). Throughout the analysis of this paper, the
constants hidden in the notation . may involve the contrast β/α. We use the scaling
of γ as in Definition 4.1.

The random variable X measures local fluctuations of AH . Its expectation deter-
mines the model error estimator γ that is part of the upper bound in the subsequent
error estimate. It is a term to be computed a posteriori.

Remark 4.2. Note that we have not assumed any particular structure of the coefficient
A. Information on the validity of the discrete model is instead extracted from the
a posteriori model error estimator γ. It is expected that small values of γ require a
certain scale separation in the stochastic variable in the sense of the CLT scaling. If,
for example, A is i.i.d. over Tε (with Tε from Subsection 2.3), then the value of γ is
basically determined by the ratio (ε/H)d/2.

Lemma 4.2. Let `≈|logH|. Let uH solve (3.6) and let uH solve (3.10) with right-hand
side f ∈L2(D). Then, for ρ := |logH|,

|||∇(uH−uH)|||.ρdγ‖f‖L2(D)

for the model error estimator γ from Definition 4.1.

Proof. Denote eH :=uH−uH . The coercivity (3.5) of the multiscale bilinear form
for any atom ω∈Ω and the representation as integral operator reveal

‖∇eH‖2L2(D) .a(eH ,eH) =

∫
D

∫
D

∇(uH(x)−uH(x)) ·(AH(x,y)∇eH(y))dydx.

Abbreviate E|T,K := ĀH |T,K−AH |T,K . Adding and subtracting ĀH(x,y) together with
the discrete solution properties of uH and uH lead to

‖∇eH‖2L2(D) .
∫
D

∫
D

∇uH(x) ·(ĀH(x,y)−(AH(x,y))∇eH(y))dydx

=
∑

T∈TH

∑
K∈TH

K∩N`(T )6=∅

|T ||K|∇uH |T ·(E|T,K∇eH |K)

where it was used that ∇uH and ∇eH are piecewise constant. For any fixed T ∈TH , the
shape regularity of the mesh and equivalence of norms in the finite-dimensional space
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RN with N =O(`d) lead to∑
K∈TH

K∩N`(T ) 6=∅

|T ||K|∇uH |T ·(E|T,K∇eH |K)

.X(T )|T |1/2|∇uH |T |
∑

K∈TH

K∩N`(T ) 6=∅

|K|1/2|∇eH |K |

.`d/2X(T )‖∇uH‖L2(T )‖∇eH‖L2(N`(T )).

The combination of the foregoing two displayed estimates with the Cauchy inequality
and the finite overlap of the patch domains N`(T ) containing O(`d) elements therefore
proves

‖∇eH‖2L2(D) . `
d

√ ∑
T∈TH

X(T )2‖∇uH‖2L2(T )‖∇eH‖L2(D).

After dividing by ‖∇eH‖L2(D), taking squares and the expectation, we arrive at

|||∇eH |||2 . `2dE

[ ∑
T∈TH

X(T )2‖∇uH‖2L2(T )

]
.

This and the stability of the discrete problem for uH prove

|||∇eH |||2 . `2d max
T∈TH

(
E[X(T )2]

)
‖f‖2L2(D) . `

2dγ2‖f‖2L2(D).

This concludes the proof.

Proposition 4.3 (error estimate for the quasilocal method). Let `≈|logH|.
Let u solve (2.3) and let uH solve (3.10) with right-hand side f ∈L2(D). Then, for
ρ := |logH|,

|||u−uH |||. (H2 +E[wcba(A,TH)]+ρdγ)‖f‖L2(D)

. (H+ρdγ)‖f‖L2(D)

(4.1)

for the model error estimator γ from Definition 4.1. Furthermore, the following higher-
order error estimate holds for the norm of the expected error

‖E[u]−uH‖L2(D) . (H2 +E[wcba(A,TH)]+ρ2dγ2)‖f‖L2(D). (4.2)

Proof. Recall that uH denotes the solution to (3.6). We start from the triangle
inequality

|||u−uH |||≤ |||u−uH |||+ |||uH−uH |||. (4.3)

The first term on the right-hand side of (4.3) is bounded with the estimate (3.7)

|||u−uH |||. (H2 +E[wcba(A,TH)])‖f‖L2(D). (4.4)

The second term on the right-hand side of (4.3) is controlled through Friedrichs’ inequal-
ity and Lemma 4.2, so that we obtain the first stated estimate of (4.1). The second
follows from the observation that wcba(A,TH).H.
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For the proof of (4.2), we employ a duality argument. Denote eH :=uH−uH and
let zH ∈L2(Ω;V ) solve

a(vH ,zH) = (E[eH ],vH)L2(D) for all vH ∈VH P-a.s. (4.5)

Let zH ∈VH denote the solution to

ā(vH ,zH) = (E[eH ],vH)L2(D) for all vH ∈VH . (4.6)

Then, (4.5) implies

‖E[eH ]‖2L2(D) =E[(E[eH ],eH)L2(D)] =E[a(uH−uH ,zH)].

Furthermore, (3.6), the definition of ā and (3.10) lead to the Galerkin orthogonality

E[a(uH−uH ,zH)] = (f,zH)L2(D)−E[a(uH ,zH)] = (f,zH)L2(D)− ā(uH ,zH) = 0.

Thus,

‖E[eH ]‖2L2(D) =E[a(uH−uH ,zH−zH)]. |||∇(uH−uH)||||||∇(zH−zH)|||.

Each of the terms on the right-hand side can be bounded with help of Lemma 4.2
because (4.5) and (4.6) correspond to (3.6) and (3.10) where the right-hand side f is
replaced by E[eH ]. Therefore,

‖E[eH ]‖2L2(D) .ρ
2dγ2‖f‖L2(D)‖E[eH ]‖L2(D).

This proves ‖E[eH ]‖L2(D) .ρ2dγ2‖f‖L2(D). In order to conclude the proof of (4.2), we
use the triangle inequality

‖E[u]−uH‖L2(D)≤‖E[u−uH ]‖L2(D) +‖E[eH ]‖L2(D)

and observe that Jensen’s inequality implies ‖E[u−uH ]‖L2(D)≤|||u−uH |||. Altogether

‖E[u]−uH‖L2(D) . |||u−uH |||+ρ2dγ2‖f‖L2(D)

and the combination with (4.4) implies (4.2).

4.2. Error estimate for the fully local method. While the quasilocal
method admits an error estimate under mild regularity assumptions on the solution, the
error estimate for the fully local method is restricted to the planar case and provides
sublinear rates depending on the W s,q regularity of the solution to the deterministic
model problem with some regularized coefficient. More precisely, it was shown in [23,
Lemma 7] that, given ĀH , there exists a regularized coefficient Āreg

H ∈W 1,∞(D;Rd×d)
such that

1) The piecewise integral mean is conserved, i.e.,∫
T

Āreg
H dx=

∫
T

ĀH dx for all T ∈TH .

2) The eigenvalues of sym(Āreg
H ) lie in the interval [α/4,4β].

3) The derivative satisfies the bound

‖∇Āreg
H ‖L∞(D)≤Cη(ĀH)
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for some constant C that depends on the shape-regularity of TH and for the expression

η(ĀH) :=H−1‖[ĀH ]‖L∞(FH)

(
1+α−1‖[ĀH ]‖L∞(FH)

)/(
(α+β)/2

)
. (4.7)

Here [·] defines the inter-element jump and FH denotes the set of interior hyper-faces of
TH . The coefficients ĀH and Āreg

H lead to the same finite element solution. Let ureg ∈V
denote the solution ∫

Ω

∇ureg ·(Āreg
H ∇v)dx=F (v) for all v∈V. (4.8)

In particular, the integral conservation property for Āreg
H stated above implies that

ũH is the finite element approximation to ureg . The solution ureg with respect to the
regularized coefficient Āreg

H serves to quantify smoothness in terms of elliptic regularity.

Proposition 4.4 (error estimate for the fully local method). Assume that the
solution ureg to (4.8) belongs to H1+s(D) for some 0<s≤1. Then, for f ∈L2(D) and
ρ := |logH|,

|||u− ũH |||.H‖f‖L2(D) +ρdγ‖f‖L2(D) +Hsρs+d/2
(
1+η(Ā

(`)
H )
)s‖f‖L2(D)

for γ from Definition 4.1. If the domain D is convex, then s can be chosen as s= 1.

Proof. The triangle inequality reads

|||u− ũH |||≤ |||u−uH |||+‖uH− ũH‖L2(D).

The first term is estimated via Proposition 4.3 and the observation that the term
E[wcba(A,TH)] is bounded by some constant times H. It remains to estimate the
second, purely deterministic term. The difference of uH and ũH was already estimated
in [23, Proposition 8] as

‖∇(uH− ũH)‖L2(D) .H
s|logH|s+d/2

(
1+η(Ā

(`)
H )
)s‖f‖L2(D).

This concludes the proof.

5. Numerical illustration
We consider the planar square domain D= (0,1)2 with homogeneous Dirichlet

boundary and the right-hand side f ≡1. The finite element meshes are uniform red
refinements of the triangulation displayed in Figure 5.1. We adopt the setting of Sub-
section 2.3 and the mesh Tε has mesh-size ε={2−5,2−6,2−7}

√
2. The coefficient is scalar

i.i.d. and, on each cell of Tε, it is uniformly distributed in the interval [α,β] = [1,10].
The fine-scale mesh for the solution of the corrector problems and the reference solution
uh has mesh-size h= 2−9

√
2. All expected values are replaced with suitable empirical

means.
Figure 5.2 displays the relative errors |||u−uH ||| and |||u− ũH ||| for the solution

uH ∈VH to the quasilocal effective model (3.10) and the solution ũH ∈VH to the local
effective model (3.11) in the L2-L2 norm ||| · |||. The two approximations are compared
on a sequence of meshes with mesh size H={2−2,2−3,2−4,2−5}

√
2. We consider only

errors with respect to the reference solution uh. It is observed that the quasilocal
method always leads to a smaller error than the local method. For coarse meshes we
observe a convergence rate between H and H2. For fine meshes with H.

√
ε, the



648 NUMERICAL STOCHASTIC HOMOGENIZATION

Figure 5.1. Initial mesh of size H = 2−2
√

2.

10−1 100

10−2

10−1

H

ε = 2−5
√
2 quasilocal

ε = 2−5
√
2 local

ε = 2−6
√
2 quasilocal

ε = 2−6
√
2 local

ε = 2−7
√
2 quasilocal

ε = 2−7
√
2 local

O(H)

O(H2)

Figure 5.2. Relative errors |||u−uH ||| (quasilocal) and |||u− ũH ||| (local) in dependence of the
coarse mesh size H.
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Figure 5.3. Model error estimators H for ε= 2−7
√

2.
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Figure 5.4. Relative errors ‖E[uh]−uH‖L2(D) (quasilocal) and ‖E[uh]− ũH‖L2(D) (local) in
dependence of the coarse mesh size H.

approximation by the quasilocal method does not improve with respect to the previous
mesh. Our interpretation is that the stochastic error dominates in this regime. In terms
of the error estimate of Proposition 4.3, this means that the term γ (resp. γ2) on the
right-hand side is larger than the error that would be possible in a deterministic setting.
For ε= 2−7

√
2, the values of the model error estimators γ and Hη are displayed in

Figure 5.3. The value of γ was rescaled as suggested in Remark 4.1. It is observed that
its values scale as ε/H. This is what one would expect from the central limit theorem
because, in the planar case, each coarse cell covers O((H/ε)2) many cells in Tε.

Figure 5.4 displays the relative errors ‖E[u]h−uH‖L2(D) and ‖E[u]h− ũH‖L2(D).
On coarse meshes, the convergence rate H2 can be observed. Again, for fine meshes
with H&

√
ε, no improvement is achieved through mesh-refinement. Altogether, we

observe that the methods perform well up to the critical regime H≈
√
ε in this two-

dimensional example where a pure (local or quasi-local) deterministic approximation is
no longer sufficiently accurate.

6. Conclusive comments

The proposed numerical homogenization procedure approximates the stochastic co-
efficient by the expectation of a quasilocal effective model. The design of intermediate
stochastic models that carry more information on the stochastic dependence than a
purely deterministic coefficient will be considered in future work. The presented error
estimates are independent of any assumptions on the uncertainty and contain an a pos-
teriori model error estimator γ. In the case that more structure on the coefficient is
given, we expect that an a priori error estimate for γ in terms of H and ε can be derived.
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