
COMMUN. MATH. SCI. c© 2019 Lin Wang and Haijun Yu

Vol. 17, No. 3, pp. 609–635

ENERGY STABLE SECOND ORDER LINEAR SCHEMES FOR THE
ALLEN-CAHN PHASE-FIELD EQUATION∗

LIN WANG† AND HAIJUN YU‡

Abstract. Phase-field model is a powerful mathematical tool to study the dynamics of interface and
morphology changes in fluid mechanics and material sciences. However, numerically solving a phase field
model for a real problem is a challenging task due to the non-convexity of the bulk energy and the small
interface thickness parameter in the equation. In this paper, we propose two stabilized second order
semi-implicit linear schemes for the Allen-Cahn phase-field equation based on backward differentiation
formula and Crank-Nicolson method, respectively. In both schemes, the nonlinear bulk force is treated
explicitly with two second-order stabilization terms, which make the schemes unconditionally energy
stable and numerically efficient. By using a known result of the spectrum estimate of the linearized
Allen-Cahn operator and some regularity estimates of the exact solution, we obtain an optimal second
order convergence in time with a prefactor depending on the inverse of the characteristic interface
thickness only in some lower polynomial order. Both 2-dimensional and 3-dimensional numerical results
are presented to verify the accuracy and efficiency of proposed schemes.
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scheme; error estimate.
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1. Introduction
In this paper, we consider numerical approximation for the Allen-Cahn equation

with Neumann boundary condition

φt=γ
(
ε∆φ− 1

ε
f(φ)

)
, (x,t)∈Ω×(0,T ], (1.1)

∂nφ= 0, (x,t)∈∂Ω×(0,T ]. (1.2)

Here Ω∈Rd,d= 2,3 is a bounded domain with a locally Lipschitz boundary, n is the
outward normal, T is a given time, φ(x,t) is the phase-field variable. f(φ), the bulk
force, is the derivative of a given energy function F (φ), which is usually non-convex with
two or more than two local minima. One commonly used energy function for two-phase
problem is the double-well potential F (φ) = 1

4 (φ2−1)2. ε is the thickness of the interface
between two phases. γ, called mobility, is related to the characteristic relaxation time
of the system. The homogeneous Neumann boundary condition implies that no mass
loss occurs across the boundary walls. The Equation (1.1) is introduced by Allen and
Cahn [1] to describe the process of phase separation in multi-component alloy systems.
It can be regarded as the L2 gradient flow with respect to the Ginzburg-Landau energy
functional

Eε(φ) :=

∫
Ω

(ε
2
|∇φ|2 +

1

ε
F (φ)

)
dx. (1.3)

The corresponding energy dissipation is given as

d

dt
Eε(φ) =− 1

γ

∫
Ω

‖φt‖2dx≤0. (1.4)
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Another popular phase field model is the Cahn-Hilliard equation, which is the H−1

gradient flow with respect to the Ginzburg-Landau energy functional. It was originally
introduced by Cahn and Hilliard [4] to describe the phase separation and coarsening
phenomena in non-uniform systems such as alloys, glasses and polymer mixtures.

The Allen-Cahn equation and the Cahn-Hilliard equation are widely used in mod-
eling many interface problems due to their good mathematical properties (cf. e.g.
[7, 14–16, 44, 53]). However, the small parameter ε and the non-convexity of energy
function F make the numerical approximation of a phase field equation a challenging
task, especially the design of time marching schemes. It is well-known that if a fully
explicit or implicit time marching scheme is used, a tiny time step-size is required for the
semi-discretized scheme to be stable or uniquely solvable since the nonlinear function F
is neither convex nor concave. A very popular approach to obtain unconditionally stable
time marching schemes is the so-called convex splitting method which appears to be in-
troduced by Elliott and Stuart [17], and popularized by Eyre [18], in which, the convex
part of F (φ) is treated implicitly and the concave part of F (φ) is treated explicitly.
This method has been applied to various gradient flows (see e.g. [2,19,21,22,40]). Tra-
ditional convex splitting schemes are first order accurate. Recently, several extensions
to second order schemes were proposed based on either the Crank-Nicolson scheme (see
e.g. [2,6,8,12,29,36]), or second order backward differentiation formula (BDF2) [35,47].
In all convex splitting schemes, no matter first order or second order, one usually obtains
a uniquely solvable nonlinear convex problem at each time step.

There are another types of second order unconditionally stable schemes for the
phase field equations. In [13], Du and Nicolaides proposed a secant-line method which
is energy stable and second order accurate. It is used and extended in several other
works, e.g. [2,3,9,20,25,26,54]. Similar to the convex splitting method, the secant-line
method leads to nonlinear semi-discretized system, which need special efforts to solve.
Recently, an augmented Lagrange multiplier(ALM) method was proposed in [27, 28]
to get second order linear energy stable schemes. The idea is generalized as invariant
energy quadratization (IEQ) by Yang et al. and successfully applied to handle several
very complicated nonlinear phase-field models (see e.g. [30, 49–51]). Based on similar
methodology, a new variant called scalar auxiliary variable (SAV) method is developed
by Shen et al. [38, 39]. In the ALM and IEQ approach, nonlinear semi-discretized
systems are avoided, but one has to solve variable-coefficient systems, while in the SAV
scheme, one only needs to solve some linear systems with constant coefficients. Different
to other methods, the energy in ALM, IEQ and SAV approaches is a modified one which
also depends on the auxiliary variable.

In this study, we focus on numerical methods that are based on semi-implicit dis-
cretization and stabilization skill. To improve the numerical stability of solving phase-
field equations, semi-implicit schemes were proposed by Chen and Shen [5] and Zhu et
al. [55]. Although not unconditionally stable, semi-implicit schemes allow much larger
time step-sizes than explicit schemes. To further improve the stability, Xu and Tang
proposed stabilized semi-implicit methods for epitaxial growth model in [45]. The pro-
posed schemes have extraordinary numerical stability even though the mathematical
proof of the stability is not complete. Similar schemes were developed for phase field
equation by He et al. [31] and Shen and Yang [40], where the latter one adopted a
mixed form for the Cahn-Hilliard equation, by using a truncated double-well potential
such that the assumption ‖f ′(φ)‖∞≤L is satisfied, the unconditional energy stability
was proved for the first order stabilized scheme. It is worth to mention that with no
truncation made to f(φ), Li et al. [33, 34] proved that the energy stable property can
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be obtained as well, but a much larger stability constant needs to be used.
In this paper, we develop two second-order unconditionally energy stable linear

schemes for the Allen-Cahn equation based on the schemes proposed in [45] and [40].
The energy dissipation is guaranteed by including two second order stabilization terms,
the first one is directly from [45], the other one is inspired by the work [44]. We also
carry out an optimal error estimate for the time semi-discretized schemes. For the
phase field equations, the error bounds will depend on the factor of 1/ε exponentially
if one uses a standard procedure. By using a spectrum estimate result of de Mottoni
and Schatzman [10, 11] and Chen [7] for the linearized Allen-Cahn operator, we are
able to get an optimal error estimate with a prefactor depending on 1/ε only in some
lower polynomial order for small ε. This spectrum estimate argument was first used by
Feng and Prohl [23, 24] for an implicit first order scheme for phase field equations. It
was also applied by Kessler et al. [32] to derive a posteriori error estimate for adaptive
time marching. Similar analysis for a first-order stabilized semi-implicit scheme of the
Allen-Cahn equation was given by Yang [48]. Recently, Feng and Li [21], Feng et al. [22]
extended this spectrum estimate argument to first order convex splitting scheme coupled
with interior penalty discontinuous Galerkin spatial discretization for Allen-Cahn and
Cahn-Hilliard equation, respectively. To the best of our knowledge, our analysis is the
first such result for second order linear schemes. In summary, the proposed methods
have several merits: 1) They are second order accurate; 2) They lead to linear systems
with constant coefficients after time discretization; 3) The stability and error analysis
is based on weak formulations, so both finite element method and spectral method can
be used for spatial discretization to satisfy discretized energy dissipation law. 4) The
methods can be easily used in more complicated systems. Note that, similar approach
can be extended to the Cahn-Hilliard equation [42, 43], where Lipschitz condition of f
is assumed based on physical intuition and the analyses are more tedious.

The remaining part of the paper is organized as follows. In Section 2, we present
the two second-order stabilized schemes for the Allen-Cahn equation and prove they are
energy stable. The error estimate to derive a convergence rate that does not depend
on 1/ε exponentially is then constructed in Section 3. Detailed implementation and
numerical experiments for problems in both 2-dimensional and 3-dimensional tensor-
product domain are presented in Section 4 to verify our theoretical results. We end the
paper with some conclusions in Section 5.

2. The two second order stabilized linear schemes
We first introduce some notations which will be used throughout the paper. We

use ‖·‖m,p to denote the standard norm of the Sobolev space Wm,p(Ω). In particular,
we use ‖·‖Lp to denote the norm of W 0,p(Ω) =Lp(Ω); ‖·‖m to denote the norm of
Wm,2(Ω) =Hm(Ω); and ‖·‖ to denote the norm of W 0,2(Ω) =L2(Ω). Let (·,·) represent
the L2 inner product. For p≥0, we define Hp

0 (Ω) :={u∈Hp(Ω)|(u,1) = 0}, and denote
L2

0(Ω) :=H0
0 (Ω).

For any given function φ(t) of t, we use φn to denote an approximation of
φ(nτ), where τ is the step-size. We will frequently use the shorthand nota-

tions: δtφ
n+1 :=φn+1−φn, δttφ

n+1 :=φn+1−2φn+φn−1, Dτφ
n+1 := 3φn+1−4φn+φn−1

2τ =
1
τ δtφ

n+1 + 1
2τ δttφ

n+1, φ̂n+ 1
2 := 3

2φ
n− 1

2φ
n−1 and φ̂n+1 := 2φn−φn−1. Following identi-

ties will be used frequently as well

2(hn+1−hn,hn+1) =‖hn+1‖2−‖hn‖2 +‖hn+1−hn‖2, (2.1)

(Dτh
n+1,hn+1) =

1

4τ

(
‖hn+1‖2−‖hn‖2
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+‖2hn+1−hn‖2−‖2hn−hn−1‖2 +‖δtthn+1‖2
)
. (2.2)

To prove energy stability of the numerical schemes, we assume that the derivative of f
in Equation (1.1) is uniformly bounded, i.e.

max
φ∈R
|f ′(φ)|≤L, (2.3)

where L is a non-negative constant.

Remark 2.1. Note that the commonly used double-well potential does not satisfy the
above assumption. But, thanks to the maximum principle that the Allen-Cahn equation
has (cf. e.g. [1, 7, 23, 48]), the solution to Equation (1.1) is bounded by value −1 and 1
if the initial condition is bounded by −1 and 1. So it is safe to modify the double-well
energy F (φ) for |φ| larger than 1 to be quadratic growth without affecting the exact
solution if the initial condition is bounded by −1 and 1, such that Assumption (2.3) is
satisfied. This argument also applies to the Assumption (3.1) in the next section.

2.1. The stabilized linear BDF2 scheme. Suppose φ0 =φ0(·) and φ1≈
φ(·,τ) are given, our stabilized linear BDF2 scheme (SL-BDF2) calculates φn+1,n=
1,2,. ..,N =T/τ−1 iteratively, using

3φn+1−4φn+φn−1

2τγ
=ε∆φn+1− 1

ε
f(2φn−φn−1)−Aτδtφn+1−Bδttφn+1, (2.4)

where A and B are two non-negative constants to stabilize the scheme.

Theorem 2.1. Assume that (2.3) is satisfied. Under the condition

A≥ L

2ετ
− 1

τ2γ
, B≥ L

ε
− 1

2τγ
, (2.5)

the following energy dissipation law

En+1
B ≤EnB−

ε

2
‖∇δtφn+1‖2−

(
1

τγ
+Aτ− L

2ε

)
‖δtφn+1‖2

−
(

1

4τγ
+
B

2
− L

2ε

)
‖δttφn+1‖2, ∀n≥1, (2.6)

holds for the scheme (2.4), where

En+1
B =Eε(φ

n+1)+

(
1

4τγ
+
L

2ε
+
B

2

)
‖δtφn+1‖2. (2.7)

Proof. Pairing (2.4) with δtφ
n+1, we get( 1

γ
Dτφ

n+1,δtφ
n+1
)

=ε(∆φn+1,δtφ
n+1)− 1

ε
(f(φ̂n+1),δtφ

n+1)

−Aτ‖δtφn+1‖2−B(δttφ
n+1,δtφ

n+1). (2.8)

By integration by parts, following identities hold(
1

γ
Dτφ

n+1,δtφ
n+1

)
=

1

τγ
‖δtφn+1‖2 +

1

4τγ

(
‖δtφn+1‖2−‖δtφn‖2 +‖δttφn+1‖2

)
, (2.9)
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ε(∆φn+1,δtφ
n+1) =− ε

2
(‖∇φn+1‖2−‖∇φn‖2 +‖∇δtφn+1‖2), (2.10)

−B(δttφ
n+1,δtφ

n+1) =− B
2
‖δtφn+1‖2 +

B

2
‖δtφn‖2−

B

2
‖δttφn+1‖2. (2.11)

To handle the term involving f in (2.8), we expand F (φn+1) and F (φn) at φ̂n+1 as

F (φn+1) =F (φ̂n+1)+f(φ̂n+1)(φn+1− φ̂n+1)+
1

2
f ′(ζn1 )(φn+1− φ̂n+1)2,

F (φn) =F (φ̂n+1)+f(φ̂n+1)(φn− φ̂n+1)+
1

2
f ′(ζn2 )(φn− φ̂n+1)2,

where ζn1 is a number between φn+1 and φ̂n+1, ζn2 is a number between φn and φ̂n+1.

Taking the difference of above two equations, using the fact φn+1− φ̂n+1 = δttφ
n+1 and

φn− φ̂n+1 =−δtφn, we obtain

F (φn+1)−F (φn)−f(φ̂n+1)δtφ
n+1 =

1

2
f ′(ζn1 )(δttφ

n+1)2− 1

2
f ′(ζn2 )(δtφ

n)2

≤L
2
|δttφn+1|2 +

L

2
|δtφn|2. (2.12)

Taking inner product of the above equation with constant 1/ε, then combining the
result with (2.8), (2.9), (2.10) and (2.11), we obtain

1

ε
(F (φn+1)−F (φn),1)+

ε

2
(‖∇φn+1‖2−‖∇φn‖2)

+
1

4τγ
(‖δtφn+1‖2−‖δtφn‖2)+

( L
2ε

+
B

2

)
(‖δtφn+1‖2−‖δtφn‖2)

≤− 1

4τγ
‖δttφn+1‖2− 1

τγ
‖δtφn+1‖2− ε

2
‖∇δtφn+1‖2−Aτ‖δtφn+1‖2

+
L

2ε
‖δtφn+1‖2− B

2
‖δttφn+1‖2 +

L

2ε
‖δttφn+1‖2. (2.13)

Combining the above equation and the inequality 1
τγ +Aτ ≥ L

2ε ,
B
2 + 1

4τγ ≥
L
2ε , we get

energy dissipation law (2.6).

Remark 2.2. From Equation (2.5), we see that the SL-BDF2 scheme is stable with
any non-negative A including A= 0, if

τ ≤ 2ε

Lγ
. (2.14)

If one takes time step size even smaller,

τ ≤ ε

2Lγ
, (2.15)

then the SL-BDF2 scheme is stable with any non-negative A and B, including the case
A=B= 0.

On the other hand, if we take

A= max
τ≥0

{ L

2ετ
− 1

τ2γ

}
=
γL2

16ε2
, B=

L

ε
, (2.16)

then the SL-BDF2 scheme is unconditionally stable for any τ .
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2.2. The stabilized linear Crank-Nicolson scheme. Suppose φ0 =φ0(·) and
φ1≈φ(·,τ) are given, our stabilized linear Crank-Nicolson scheme (SL-CN) calculates
φn+1,n= 1,2,. ..,N =T/τ−1 iteratively, using

φn+1−φn

τγ
=ε∆

(φn+1 +φn

2

)
− 1

ε
f
(3

2
φn− 1

2
φn−1

)
−Aτδtφn+1−Bδttφn+1, (2.17)

where A and B are two non-negative constants.

Theorem 2.2. Assume that (2.3) is satisfied. Under the condition

A≥ L

2ετ
− 1

τ2γ
; B≥ L

2ε
, (2.18)

the following energy law holds

En+1
C ≤EnC−

( 1

τγ
+Aτ− L

2ε

)
‖δtφn+1‖2−

(B
2
− L

4ε

)
‖δttφn+1‖2, ∀n≥1, (2.19)

for the scheme (2.17), where we define

En+1
C =E(φn+1)+

( L
4ε

+
B

2

)
‖δtφn+1‖2. (2.20)

Proof. Pairing the Equation (2.17) with δtφ
n+1, we get

1

τγ
‖δtφn+1‖2 =− ε

2
(‖∇φn+1‖2−‖∇φn‖2)− 1

ε

(
f(

3

2
φn− 1

2
φn−1),φn+1−φn

)
−Aτ‖δtφn+1‖2− B

2
(‖δtφn+1‖2−‖δtφn‖2 +‖δttφn+1‖2). (2.21)

We use Taylor expansion at φ̂n+ 1
2 = 3

2φ
n− 1

2φ
n−1,

F (φn+1) =F (φ̂n+ 1
2 )+f(φ̂n+ 1

2 )(φn+1− φ̂n+ 1
2 )+

1

2
f ′(ηn1 )(φn+1− φ̂n+ 1

2 )2, (2.22)

F (φn) =F (φ̂n+ 1
2 )+f(φ̂n+ 1

2 )(φn− φ̂n+ 1
2 )+

1

2
f ′(ηn2 )(φn− φ̂n+ 1

2 )2. (2.23)

Subtracting (2.23) from (2.22), we obtain

F (φn+1)−F (φn) =f(φ̂n+ 1
2 )(φn+1−φn)+

1

2
f ′(ηn1 )(φn+1− φ̂n+ 1

2 )2

− 1

2
(f ′(ηn1 )+f ′(ηn2 )−f ′(ηn1 ))(φn− φ̂n+ 1

2 )2

=f( 3
2φ

n− 1
2φ

n−1)(φn+1−φn)+
1

2
f ′(ηn1 )δtφ

n+1δttφ
n+1

− 1

8
(f ′(ηn2 )−f ′(ηn1 ))(δtφ

n)2, (2.24)

which gives us

1

ε

(
f( 3

2φ
n− 1

2φ
n−1),φn+1−φn

)
=

1

ε
(F (φn+1)−F (φn),1)− 1

2ε

(
f ′(ηn1 ), δtφ

n+1δttφ
n+1
)

+
1

8ε

(
f ′(ηn2 )−f ′(ηn1 ), (δtφ

n)2
)
.

(2.25)
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Plugging (2.25) into (2.21), we obtain

ε

2
(‖∇φn+1‖2−‖∇φn‖2)+

1

ε
(F (φn+1)−F (φn),1)+

B

2
(‖δtφn+1‖2−‖δtφn‖2)

≤− 1

τγ
‖δtφn+1‖2−Aτ‖δtφn+1‖2 +

L

4ε
‖δtφn+1‖2 +

L

4ε
‖δtφn‖2

+
L

4ε
‖δttφn+1‖2− B

2
‖δttφn+1‖2. (2.26)

By the definition of En+1
C and Aτ+ 1

τγ ≥
L
2ε , B

2 ≥
L
4ε , we get the desired results.

Remark 2.3. If we take

A=
γL2

16ε2
, B=

L

2ε
, (2.27)

then the SL-CN scheme is unconditionally stable for any τ .
On the other hand, by using the inequality ‖δttφn+1‖2≤2‖δtφn+1‖2 +2‖δtφn‖2, it

is easy to prove that when A=B= 0, the SL-CN scheme (2.17) is stable for

τ ≤ 2ε

3Lγ
. (2.28)

Remark 2.4. To make SL-BDF2 and SL-CN scheme unconditionally stable, i.e.
stable for any time step size τ >0, we need to take A∼O(γ/ε2). It seems that A needs
to be very large in a real simulation since physically ε is very small. But actually, it
is not necessary. It is proved that the numerical interface for the Allen-Cahn equation
converges with the rate O(ε2| lnε|2) if no singularities appear [21, 23], which suggests
that we don’t need to take ε as small as the width of a physical interface. Furthermore,
A has a linear dependence on the value of γ. It was showed by Magaletti et al. [37] and
Xu et al. [46] that the phase-field Cahn-Hilliard–Navier-Stokes model for binary fluids
has a fast convergence with respect to ε when the phenomenological mobility γ∼O(ε2).
When coupled with hydrodynamics, what is a proper choice for the mobility γ in the
Allen-Cahn model is an interesting question. We leave this to a future study.

Remark 2.5. Recently, Li, Qiao and Tang [34], Li and Qiao [33] studied several
first order and second order stabilized semi-implicit Fourier schemes, respectively, for
the Cahn-Hilliard equation with double-well potential

F (φ) =
1

4
(φ2−1)2. (2.29)

Without a Lipschitz condition on F ′(φ), they proved that those schemes are uncondi-
tionally stable when a very large stability constant A is used. For example, according to
Theorem 1.3 in [33], for a classical second order semi-implicit stabilized scheme proposed
by Xu and Tang [45] applied to the Cahn-Hilliard equation, the stabilization constant
A needs to be as large as O(| lnε|2/ε8) to make the scheme unconditionally stable (Note
that the A in [33] corresponds to εB in this paper). However, the constants A,B in this
paper are only of order O(γ/ε2),O(1/ε), respectively. The reasons are in two aspects.
Firstly, the Cahn-Hilliard equation is much harder to solve than the Allen-Cahn equa-
tion. For the Allen-Cahn equation, since its solution satisfies a maximum principle, it
is reasonable to modify F defined in (2.29) for |φ|>1, such that the Lipschitz condition
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(2.3) is satisfied. Secondly, we use two stabilization terms instead of only one stabiliza-
tion term, the extra one helps to maintain the stability for larger time step sizes. The
approach presented in this paper can be extended to the Cahn-Hilliard equation with
quadratic growth energy as well [42, 43].

3. Convergence analysis
In this section, we shall establish the error estimate of the two proposed schemes for

the Allen-Cahn equation in the norm of l∞(0,T ;L2)∩ l2(0,T ;H1). We will show that, if
the interface is well developed in the initial condition, the error bounds depend on 1/ε
only in some lower polynomial order for small ε. Let φ(tn) be the exact solution at time
t= tn to the Allen-Cahn Equation (1.1) and φn be the solution at time t= tn to the time
discrete numerical scheme (2.4) (or (2.17)); we define error function en :=φn−φ(tn).
Obviously e0 = 0.

Before presenting the detailed error analysis, we first make some assumptions. For
simplicity, we take γ= 1 in this section, and assume 0<ε<1. We use notation . in the
way that f .g means that f ≤Cg with positive constant C independent of τ,ε.

Assumption 3.1. We make following assumptions on f : f =F ′, for F ∈C4(R), such
that f ′ and f ′′ are uniformly bounded, i.e. f satisfies (2.3) and

max
φ∈R
|f ′′(φ)|≤L2, (3.1)

where L2 is a non-negative constant.

Since the solution of Allen-Cahn equation satisfies maximum principle (see Remark
2.1), one can always modify f(φ) for large |φ| such that Assumption 3.1 holds without
affecting the exact solution.

Assumption 3.2.
(i) We assume that there exist non-negative constants σ1 such that

Eε(φ
0) :=

ε

2
‖∇φ0‖2 +

1

ε
‖F (φ0)‖L1 .ε−2σ1 , (3.2)

‖φ0
t‖2 .ε−2σ1−1, (3.3)

‖∇φ0
t‖2 .ε−2σ1−3, (3.4)

‖∇φ0
tt‖2 .ε−2σ1−7. (3.5)

(ii) Assume that an appropriate scheme is used to calculate the numerical solution
at first step, such that

Eε(φ
1)≤Eε(φ0).ε−2σ1 , (3.6)

1

τ
‖δtφ1‖2 .ε−2σ1 . (3.7)

Then it is easy to get

E1
C .ε−2σ1 , (3.8)

E1
B.ε−2σ1 . (3.9)

(iii) There exists a constant σ0>0,

‖e1‖2 +ε‖∇e1‖2 .ε−σ0τ4. (3.10)
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Given Assumptions 3.1 and 3.2 (i), we have following estimates for the exact solution
to the Allen-Cahn equation.

Lemma 3.1. Let φ be the exact solution of (1.1), under the condition of Assumption
3.1 and 3.2 (i), the following regularities hold:

(i)
∫∞

0
‖φt‖2dt+Eε(φ).ε−2σ1 ;

(ii) 2ε
∫∞

0
‖∇φt‖2dt+ess sup

[0,∞]

‖φt‖2 .ε−2σ1−1;

(iii)
∫∞

0
‖φtt‖2dt+ess sup

[0,∞]

ε‖∇φt‖2 .ε−2σ1−2;

(iv) ε
∫∞

0
‖∆φtt‖2dt+ess sup

[0,∞]

‖∇φtt‖2 .ε−4σ1−8;

(v)
∫∞

0
‖φttt‖2dt+ess sup

[0,∞]

ε‖∇φtt‖2 .ε−4σ1−7.

Proof. Taking γ= 1 in Equation (1.1), we have

φt−ε∆φ=−1

ε
f(φ). (3.11)

(i) Pairing (3.11) with φt and taking integration by parts on the second term, we
get

‖φt‖2 +
ε

2

d

dt
‖∇φ‖2 =−1

ε
(f(φ),φt) =−1

ε

d

dt

∫
Ω

|F (φ)|dx. (3.12)

After integration over [0,∞] and using the inequality (3.2), we obtain (i).

(ii) We differentiate (3.11) in time to obtain

φtt−ε∆φt=−1

ε
f(φ)t. (3.13)

Pairing (3.13) with φt yields

1

2

d

dt
‖φt‖2 +ε‖∇φt‖2 =−1

ε
(f ′(φ)φt,φt)≤

1

ε
‖f ′(φ)‖L∞‖φt‖2. (3.14)

Integrating (3.14) over [0,∞), yields

ess sup
[0,∞]

‖φt‖2 +2ε

∫ ∞
0

‖∇φt‖2 .
2

ε
‖f ′(φ)‖L∞

∫ ∞
0

‖φt‖2dt+‖φ0
t‖2. (3.15)

The assertion then follows from (i) and the inequality (3.3).

(iii) Testing (3.13) with φtt, we get

‖φtt‖2 +
ε

2

d

dt
‖∇φt‖2 = − 1

ε
(f ′(φ)φt,φtt)

≤ 1

2ε2
‖f ′(φ)‖2L∞‖φt‖2 +

1

2
‖φtt‖2. (3.16)

Integrating (3.16) over [0,∞), we get∫ ∞
0

‖φtt‖2dt+ess sup
[0,∞]

ε‖∇φt‖2 .
1

ε2
‖f ′(φ)‖2L∞

∫ ∞
0

‖φt‖2dt+ε‖∇φ0
t‖2. (3.17)

By using (i) and the inequality (3.4) of Assumption 3.2, we obtain (iii).
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(iv) We differentiate (3.13) in time to derive

φttt−ε∆φtt=−1

ε
f(φ)tt. (3.18)

Testing (3.18) with −∆φtt and using H1(Ω) ↪→L4(Ω) for d≤4, we have

1

2

d

dt
‖∇φtt‖2 +ε‖∆φtt‖2 =

1

ε
(f(φ)tt,∆φtt) =

1

ε
(f ′′(φ)φ2

t +f ′(φ)φtt,∆φtt)

≤ 1

ε3
(‖f ′′(φ)‖2L∞‖φt‖4L4 +‖f ′(φ)‖2L∞‖φtt‖2)+

ε

2
‖∆φtt‖2

≤ 1

ε3
(Cs‖f ′′(φ)‖2L∞(‖∇φt‖4 +‖φt‖4)+‖f ′(φ)‖2L∞‖φtt‖2)+

ε

2
‖∆φtt‖2. (3.19)

Integrating (3.19) over [0,∞), we obtain

ess sup
[0,∞]

‖∇φtt‖2 +ε

∫ ∞
0

‖∆φtt‖2

.
2

ε3

(
Cs‖f ′′(φ)‖2L∞

∫ ∞
0

(‖∇φt‖4 +‖φt‖4)dt+‖f ′(φ)‖2L∞
∫ ∞

0

‖φtt‖2dt
)

+‖∇φ0
tt‖2

≤ 2

ε3
Cs‖f ′′(φ)‖2L∞

(
ess sup

[0,∞]

‖∇φt‖2
∫ ∞

0

‖∇φt‖2dt+ess sup
[0,∞]

‖φt‖2
∫ ∞

0

‖φt‖2dt
)

+
2

ε3
‖f ′(φ)‖2L∞

∫ ∞
0

‖φtt‖2dt+‖∇φ0
tt‖2. (3.20)

The assertion then follows from (i), (ii), (iii) and the inequality (3.5).
(v) Testing (3.18) with φttt, we have

‖φttt‖2 +
ε

2

d

dt
‖∇φtt‖2 =−1

ε
(f(φ)tt,φttt)

≤ 1

ε2
(‖f ′′(φ)‖2L∞‖φt‖4L4 +‖f ′(φ)‖2L∞‖φtt‖2)+

1

2
‖φttt‖2. (3.21)

Integrating in time yields∫ ∞
0

‖φttt‖2 +ess sup
[0,∞]

ε‖∇φtt‖2

.
2

ε2
Cs‖f ′′(φ)‖2L∞

(
ess sup

[0,∞]

‖∇φt‖2
∫ ∞

0

‖∇φt‖2dt+ess sup
[0,∞]

‖φt‖2
∫ ∞

0

‖φt‖2dt
)

+
2

ε2
‖f ′(φ)‖2L∞

∫ ∞
0

‖φtt‖2dt+ε‖∇φ0
tt‖2. (3.22)

The assertion then follows from (i), (ii), (iii) and the inequality (3.5).

3.1. Convergence analysis of the SL-BDF2 scheme. Now, we present our
first error estimate result, which is a coarse estimate obtained by a standard approach.

Proposition 3.1 (Coarse error estimate). Given Assumptions 3.1, 3.2, ∀τ ≤ 1
12 ,

following error estimates hold for the SL-BDF2 scheme (2.4).

1

2
‖en+1‖2 +‖2en+1−en‖2 +2Aτ2‖en+1‖2 +4ετ‖∇en+1‖2
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+2Aτ2‖δten+1‖2 +‖δtten+1‖2 +4Bτ‖en+1‖2

.‖en‖2 +‖2en−en−1‖2 +2Aτ2‖en‖2

+ε−(4σ1+7)τ4 +4
(
B2 +

L2

ε2

)
τ‖2en−en−1‖2, n≥1, (3.23)

and

max
1≤n≤N

(
‖en+1‖2 +2‖2en+1−en‖2 +4Aτ2‖en+1‖2

)
+8ετ

N∑
n=1

‖∇en+1‖2

+4Aτ2
N∑
n=1

‖δten+1‖2 +2

N∑
n=1

‖δtten+1‖2 +8Bτ

N∑
n=1

‖en+1‖2

.exp
(

80
(
B2 +

L2

ε2

)
T +12T

)
ε−max{4σ1+7,σ0}τ4. (3.24)

Proof. By taking the difference of Equation (1.1) and (2.4), we obtain the following
error equation

Dτe
n+1 =R̃n+1

1 +ε∆en+1− 1

ε
[f(2φn−φn−1)−f(φ(tn+1))]

−Aτδten+1−Bδtten+1−AR̃n+1
2 −BR̃n+1

3 , (3.25)

where

Dτe
n+1 : =

3en+1−4en+en−1

2τ
,

R̃n+1
1 : =φt(t

n+1)−Dτφ(tn+1),

R̃n+1
2 : = τδtφ(tn+1) = τ(φ(tn+1)−φ(tn)),

R̃n+1
3 : = δttφ(tn+1) =φ(tn+1)−2φ(tn)+φ(tn−1).

Pairing (3.25) with en+1, we obtain

(Dτe
n+1,en+1)+ε‖∇en+1‖2 +Aτ(δte

n+1,en+1)

=(R̃n+1
1 ,en+1)−A(R̃n+1

2 ,en+1)−B(R̃n+1
3 ,en+1)

−B(δtte
n+1,en+1)− 1

ε

(
f(2φn−φn−1)−f(φ(tn+1)),en+1

)
= :J1 +J2 +J3 +J4 +J5. (3.26)

First, for the terms on the left-hand side of (3.26), using identity (2.2), we have

(Dte
n+1,en+1) =

1

4τ
(‖en+1‖2 +‖2en+1−en‖2)

− 1

4τ
(‖en‖2 +‖2en−en−1‖2)+

1

4τ
‖δtten+1‖2, (3.27)

and using identity (2.1), we get

Aτ(δte
n+1,en+1) =

1

2
Aτ(‖en+1‖2−‖en‖2 +‖δten+1‖2). (3.28)
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Then we estimate the terms on the right-hand side of (3.26).

J1 = (R̃n+1
1 ,en+1)≤‖R̃n+1

1 ‖2 +
1

4
‖en+1‖2, (3.29)

J2 =−A(R̃n+1
2 ,en+1)≤A2‖R̃n+1

2 ‖2 +
1

4
‖en+1‖2, (3.30)

J3 =−B(R̃n+1
3 ,en+1)≤B2‖R̃n+1

3 ‖2 +
1

4
‖en+1‖2 (3.31)

J4 =−B(δtte
n+1,en+1) =−B(en+1−(2en−en−1),en+1)

≤−B‖en+1‖2 +B2‖2en−en−1‖2 +
1

4
‖en+1‖2. (3.32)

J5 =−1

ε

(
f(2φn−φn−1)−f(φ(tn+1)),en+1

)
≤ L
ε

(
|2φn−φn−1−φ(tn+1)|,|en+1|

)
=
L

ε

(
|2en−en−1−δttφ(tn+1)|, |en+1|

)
≤ L

2

ε2
‖2en−en−1‖2 +

L2

ε2
‖R̃n+1

3 ‖2 +
1

2
‖en+1‖2. (3.33)

Combining (3.26)-(3.33) together, yields

1

4τ
(‖en+1‖2 +‖2en+1−en‖2)+

1

2
Aτ‖en+1‖2

+
1

2
Aτ‖δten+1‖2 +ε‖∇en+1‖2 +

1

4τ
‖δtten+1‖2 +B‖en+1‖2

≤ 1

4τ
(‖en‖2 +‖2en−en−1‖2)+

1

2
Aτ‖en‖2

+‖R̃n+1
1 ‖2 +A2‖R̃n+1

2 ‖2 +

(
B2 +

L2

ε2

)
‖R̃n+1

3 ‖2

+

(
B2 +

L2

ε2

)
‖2en−en−1‖2 +

3

2
‖en+1‖2. (3.34)

By using Taylor expansions in integral form, one can get estimates for the residuals

‖R̃n+1
1 ‖2≤8τ3

∫ tn+1

tn−1

‖φttt(t)‖2dt. τ3ε−4σ1−7, (3.35)

‖R̃n+1
2 ‖2≤ τ3

∫ tn+1

tn

‖φt(t)‖2dt. τ3ε−2σ1 , (3.36)

‖R̃n+1
3 ‖2≤6τ3

∫ tn+1

tn−1

‖φtt(t)‖2d. τ3ε−2σ1−2. (3.37)

Taking τ ≤ 1
12 , combining (3.35)-(3.37) and the assumptions about the first step error,

by using a discrete Grönwall’s inequality, we obtain (3.24). (3.23) is obtained without
using Grönwall’s inequality.

Proposition 3.1 is the usual error estimate, in which the error growth depends
on 1/ε exponentially. To obtain a finer estimate on the error, we will need to use a
spectral estimate of the linearized Allen-Cahn operator by Chen [7] for the case when
the interface is well developed in the Allen-Cahn system.
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Lemma 3.2. Let φ be the exact solution of the Allen-Cahn Equation (1.1) with
interfaces being well developed in the initial condition (i.e. conditions (1.9)-(1.15) in [7]
are satisfied). Then there exist 0<ε0�1 and positive constant C0 such that the principal
eigenvalue of the linearized Allen-Cahn operator LAC :=−(ε∆− 1

εf
′(φ)I)/ε satisfies for

all t∈ [0,T ]

λCH = inf
06=v∈H1(Ω)

ε‖∇v‖2 + 1
ε (f ′(φ(·,t))v,v)

ε‖v‖2
≥−C0, (3.38)

for ε∈ (0,ε0).

Theorem 3.1. Suppose all of the Assumptions 3.1, 3.2 hold. Let time step τ satisfy
the following constraint

τ .min
{
ε2,ε

1
3 max{4σ1+7,σ0}+ 5

3−
2
d ,ε

1
4 max{4σ1+7,σ0}+ 9

2(6−d)

}
, (3.39)

then the solution of (2.4) satisfies the following error estimate

max
1≤n≤N

{‖en+1‖2 +2‖2en+1−en‖2 +4Aτ2‖en+1‖2}

+4Aτ2
N∑
n=1

‖δten+1‖2 +ε2
N∑
n=1

‖∇en+1‖2

≤exp(8T (C0ε+L+2))ε−max{4σ1+7,σ0}τ4. (3.40)

Proof. We refine the result of Proposition 3.1 by re-estimating J4 in Equation
(3.26) as

J4 =−B(δtte
n+1,en+1)≤B2‖δtten+1‖2 +

1

4
‖en+1‖2, (3.41)

and rewriting J5 as

J5 =J6 +J7, (3.42)

J6 =−1

ε

(
f(2φn−φn−1)−f(φn+1),en+1

)
≤ L
ε

(|δtten+1|+ |R̃n+1
3 |, |en+1|)

≤ L
2

ε2

(
‖δtten+1‖2 +‖R̃n+1

3 ‖2
)

+
1

2
‖en+1‖2, (3.43)

J7 =−1

ε

(
f(φn+1)−f(φ(tn+1)),en+1

)
≤−1

ε

(
f ′(φ(tn+1))en+1,en+1

)
+
L2

ε
‖en+1‖3L3 . (3.44)

The spectrum estimate (3.38) give us

ε‖∇en+1‖2 +
1

ε
(f ′(φ(tn+1))en+1,en+1)≥−εC0‖en+1‖2. (3.45)

Applying (3.45) with a scaling factor −(1−ε), we get

−(1−ε)1

ε
(f ′(φ(tn+1))en+1,en+1)≤C0ε(1−ε)‖en+1‖2 +(1−ε)ε‖∇en+1‖2. (3.46)
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On the other hand,

−(f ′(φ(tn+1))en+1,en+1)≤L‖en+1‖2. (3.47)

Now, we estimate the L3 term in (3.44) by interpolating L3 between L2 and H1

‖en+1‖3L3 ≤K(‖∇en+1‖ d
2 ‖en+1‖

6−d
2 +‖en+1‖3),

where K is a constant independent of ε and τ . We continue the estimate by using
Young’s inequality

L2

ε
‖en+1‖3L3 ≤

d

6
ε

3
d ‖∇en+1‖3 +

6−d
6

(L2K

ε
3
2

) 6
6−d ‖en+1‖3 +

L2K

ε
‖en+1‖3. (3.48)

Substituting (3.46), (3.47) and (3.48) into (3.44), we get

J7≤ (C0ε(1−ε)+L)‖en+1‖2 +(1−ε)ε‖∇en+1‖2 +
d

6
ε

3
d ‖∇en+1‖3

+
(6−d

6

(L2K

ε
3
2

) 6
6−d

+
L2K

ε

)
‖en+1‖3. (3.49)

Substituting the estimate of (3.27)-(3.31), (3.41)-(3.43) and (3.49) into (3.26), we
get

1

4τ
((‖en+1‖2 +‖2en+1−en‖2)−(‖en‖2 +‖2en−en−1‖2))

+
1

2
Aτ(‖en+1‖2−‖en‖2)+

1

2
Aτ‖δten+1‖2 +

1

4τ
‖δtten+1‖2 +ε2‖∇en+1‖2

≤‖R̃n+1
1 ‖2 +A2‖R̃n+1

2 ‖2 +
(
B2 +

L2

ε2

)
‖R̃n+1

3 ‖2

+

(
C0ε(1−ε)+L+

3

2
+Gn+1

)
‖en+1‖2 +

(
B2 +

L2

ε2

)
‖δtten+1‖2

+Qn+1‖∇en+1‖2, (3.50)

where Qn+1 = d
6ε

3
d ‖∇en+1‖, Gn+1 =

(
6−d

6

(
L2K

ε
3
2

) 6
6−d

+ L2K
ε

)
‖en+1‖.

If Qn+1 is uniformly bounded by constant ε2

2 , Gn+1 is uniformly bounded by con-

stant 1
2 , then choose τ ≤max{ ε2

4(B2ε2+L2) ,
1

8(C0ε(1−ε)+L+2)}; by Grönwall’s inequality

and the first step error estimate (3.10) in Assumption 3.2, we will get the finer error
estimate (3.40).

We prove this by induction. Assuming that the finer estimate holds for all first
n≤N time steps:

max
1≤n≤N

{‖en‖2 +2‖2en−en−1‖2 +4Aτ2‖en‖2}

+4Aτ2
N∑
n=1

‖δten‖2 +4τε2
N∑
n=1

‖∇en‖2

≤exp(8T (C0ε+L+2))ε−max{4σ1+7,σ0}τ4. (3.51)

Combining (3.51) with the coarse estimate (3.23) leads to

‖eN+1‖2 +2‖2eN+1−eN‖2 +4Aτ2‖eN+1‖2
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+4Aτ2‖δteN+1‖2 +8ετ‖∇eN+1‖2 +2‖δtteN+1‖2 +8Bτ‖eN+1‖2

.ε−max{4σ1+7,σ0}τ4, N ≥1. (3.52)

Then by taking τ .ε
1
3 max{4σ1+7,σ0}+ 5

3−
2
d , we have

QN+1 .ε
3
d ε−

1
2 max{4σ1+7,σ0}− 1

2 τ
3
2 .

ε2

2
, (3.53)

By taking τ .ε
1
4 max{4σ1+7,σ0}+ 9

2(6−d) , we have

GN+1 .ε−
9

6−d ε−
1
2 max{4σ1+7,σ0}τ2 .

1

2
. (3.54)

So, by taking step-sizes as defined in (3.39), the finer error estimate for N+1 step can
be obtained, and the proof is completed by mathematical induction.

3.2. Convergence analysis of the SL-CN scheme. Similar as the error
estimate of SL-BDF2 scheme, we first present the coarse error estimate for SL-CN
scheme.

Proposition 3.2 (Coarse error estimate). Given Assumptions 3.1, 3.2, ∀τ .ε,
following error estimate holds for the SL-CN scheme (2.17).

1

2
‖en+1‖2 +2τε‖∇e

n+1 +en

2
‖2 +Aτ2‖en+1‖2 +Bτ‖en+1‖2

.ε−max{4σ1+7,σ0}τ4 +2Bτ‖en−en−1‖2 +
2L

ε
τ‖3

2
en− 1

2
en−1‖2

+

(
5

2
+
B

2
+
L

2ε

)
τ‖en‖2 +2Aτ2‖en‖2 +2Bτ‖en‖2, ∀n≥1. (3.55)

and

max
1≤n≤N

(
‖en+1‖2 +2Aτ2‖en+1‖2 +2Bτ‖eN+1‖2

)
+4ετ

N∑
n=1

‖∇e
n+1 +en

2
‖2

.exp
(

17B+5+
11L

ε

)
Tε−max{4σ1+7,σ0}τ4. (3.56)

Proof. The following equation for the error functions holds:

en+1−en

τ
=Rn+1

1 +ε∆
en+1 +en

2
− 1

ε

(
f(

3

2
φn− 1

2
φn−1)−f(φ(tn+ 1

2 ))
)

−Aτδten+1−ARn+1
2 −Bδtten+1−BRn+1

3 +ε∆Rn+1
4 . (3.57)

where

Rn+1
1 =φ

n+ 1
2

t − φ(tn+1)−φ(tn)

τ
, (3.58)

Rn+1
2 = τ(φ(tn+1)−φ(tn)), (3.59)

Rn+1
3 =φ(tn+1)−2φ(tn)+φ(tn−1), (3.60)

Rn+1
4 =

φ(tn+1)+φ(tn)

2
−φ(tn+ 1

2 ). (3.61)
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Pairing (3.57) with en+1+en

2 , we get

1

2τ
(‖en+1‖2−‖en‖2)+ε‖∇e

n+1 +en

2
‖2 +

Aτ

2
(‖en+1‖2−‖en‖2)

=
(
Rn+1

1 ,
en+1 +en

2

)
−A

(
Rn+1

2 ,
en+1 +en

2

)
−B

(
Rn+1

3 ,
en+1 +en

2

)
+ε
(

∆Rn+1
4 ,

en+1 +en

2

)
−B

(
δtte

n+1,
en+1 +en

2

)
− 1

ε

(
f(

3

2
φn− 1

2
φn−1)−f(φ(tn+ 1

2 )),
en+1 +en

2

)
=:J1 +J2 +J3 +J4 +J5 +J6 =:J, (3.62)

For the right-hand side of (3.62), by using the Cauchy-Schwarz inequality, we obtain
the following estimate:

J1 =
(
Rn+1

1 ,
en+1 +en

2

)
≤‖Rn+1

1 ‖2 +
1

4
‖e

n+1 +en

2
‖2, (3.63)

J2 =A
(
Rn+1

2 ,
en+1 +en

2

)
≤A2‖Rn+1

2 ‖2 +
1

4
‖e

n+1 +en

2
‖2, (3.64)

J3 =−B
(
Rn+1

3 ,
en+1 +en

2

)
≤B2‖Rn+1

3 ‖2 +
1

4
‖e

n+1 +en

2
‖2, (3.65)

J4 =ε
(

∆Rn+1
4 ,

en+1 +en

2

)
≤ε2‖∆Rn+1

4 ‖2 +
1

4
‖e

n+1 +en

2
‖2, (3.66)

For J5 on the right-hand side of (3.62), by using the equation δtte
n+1 = δte

n+1−δten,
we have

J5 =−B
(
δtte

n+1,
en+1 +en

2

)
=−B

2
(‖en+1‖2−‖en‖2)+

B

2
(δte

n,en+1 +en)

≤−B
2

(‖en+1‖2−‖en‖2)+B‖en−en−1‖2 +
B

4
‖e

n+1 +en

2
‖2. (3.67)

J6 =−1

ε

(
f(

3

2
φn− 1

2
φn−1)−f(φ(tn+ 1

2 )),
en+1 +en

2

)
≤ L
ε

(
|Rn+1

5 |,|e
n+1 +en

2
|
)

+
L

ε

(
|3
2
en− 1

2
en−1|, |e

n+1 +en

2
|
)

≤ L
2

ε2
‖Rn+1

5 ‖2 +
1

4
‖e

n+1 +en

2
‖2 +

L

ε
‖3

2
en− 1

2
en−1‖2 +

L

4ε
‖e

n+1 +en

2
‖2, (3.68)

where

Rn+1
5 =

3

2
φ(tn)− 1

2
φ(tn−1)−φ(tn+ 1

2 ). (3.69)

Substituting J1,·· · ,J6 into (3.62), we have

1

2τ
(‖en+1‖2−‖en‖2)+ε‖∇e

n+1 +en

2
‖2 +

Aτ

2
(‖en+1‖2−‖en‖2)+

B

2
(‖en+1‖2−‖en‖2)

≤‖Rn+1
1 ‖2 +A2‖Rn+1

2 ‖2 +B2‖Rn+1
3 ‖2 +ε2‖∆Rn+1

4 ‖2 +
L2

ε2
‖Rn+1

5 ‖2

+B‖en−en−1‖2 +
L

ε
‖3

2
en− 1

2
en−1‖2 +

(5

4
+
B

4
+
L

4ε

)
‖e

n+1 +en

2
‖2, (3.70)
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By using Taylor expansions in integral form, one can get estimates for the residuals

‖Rn+1
1 ‖2≤τ3

∫ tn+1

tn
‖φtt(t)‖2dt.ε−2σ1−2τ3, (3.71)

‖Rn+1
2 ‖2≤τ3

∫ tn+1

tn
‖φt(t)‖2dt.ε−2σ1τ3, (3.72)

‖Rn+1
3 ‖2≤6τ3

∫ tn+1

tn−1

‖φtt(t)‖2dt.ε−2σ1−2τ3, (3.73)

‖∆Rn+1
4 ‖2≤τ3

∫ tn+1

tn
‖∆φtt(t)‖2dt.ε−4σ1−9τ3, (3.74)

‖Rn+1
5 ‖2≤τ3

∫ tn+1

tn−1

‖φtt(t)‖2dt.ε−2σ1−2τ3. (3.75)

Taking τ <1/
(

5
2 + B

2 + L
2ε

)
.ε, combining (3.71)-(3.75) and the error assumption of the

first step, by using a discrete Grönwall’s inequality, one gets (3.56). (3.55) is obtained
without using Grönwall’s inequality.

Proposition 3.2 is the usual error estimate, in which the error growth depends on
1/ε exponentially. Next, we give a finer error estimate by using Lemma 3.2.

Theorem 3.2. Suppose all of the Assumptions 3.1, 3.2 hold. Let τ satisfy the
following constraint

τ .min
{
ε2,ε

1
3 max{4σ1+11,σ0}+ 5

3−
2
d ,ε

1
4 max{4σ1+11,σ0}+ 9

2(6−d)

}
, (3.76)

then the solution of (2.17) satisfies the following error estimate

max
1≤n≤N

{
‖en+1‖2 +2ετ‖∇en+1‖2 +

(
2B+8B2 +

2L

ε
+

2L2

ε2

)
τ‖δten+1‖2

}
+2ε2τ

N∑
n=1

‖∇e
n+1 +en

2
‖2

.exp((12+4C0ε+4L)T )ε−max{4σ1+11,σ0}τ4. (3.77)

Proof. To get better convergence results, we re-estimate J5 in (3.67) as

J5 =−B
(
δtte

n+1,
en+1 +en

2

)
≤B2‖δtten+1‖2 +

1

4
‖e

n+1 +en

2
‖2. (3.78)

For J6, we have

J6 =− 1

ε

(
f(

3

2
φn− 1

2
φn−1)−f(φ(tn+ 1

2 )),
en+1 +en

2

)
=− 1

ε

(
f(

3

2
φn− 1

2
φn−1)−f(

φn+1 +φn

2
),
en+1 +en

2

)
− 1

ε

(
f(
φn+1 +φn

2
)−f(φ(tn+ 1

2 )),
en+1 +en

2

)
:=J7 +J8. (3.79)
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J7 =− 1

ε

(
f(

3

2
φn− 1

2
φn−1)−f(

φn+1 +φn

2
),
en+1 +en

2

)
≤ L

2ε

(
|δttφn+1|,|e

n+1 +en

2
|
)

=
L

2ε

(
|δtten+1 +Rn+1

3 |,|e
n+1 +en

2
|
)

≤ L
2

4ε2
‖δtten+1‖2 +

L2

4ε2
‖Rn+1

3 ‖2 +
1

2
‖e

n+1 +en

2
‖2. (3.80)

By Taylor expansion, there exists ϑn+1∈
(
φn+1+φn

2 ,φ(tn+ 1
2 )
)

such that

J8 =− 1

ε

(
f(
φn+1 +φn

2
)−f(φ(tn+ 1

2 )),
en+1 +en

2

)
=− 1

ε

(
f ′(φ(tn+ 1

2 ))
(en+1 +en

2
+Rn+1

4

)
,
en+1 +en

2

)
− 1

2ε

(
f ′′(ϑn+1)

(en+1 +en

2
+Rn+1

4

)2

,
en+1 +en

2

)
≤− 1

ε

(
f ′(φ(tn+ 1

2 ))
en+1 +en

2
,
en+1 +en

2

)
+
L2

ε
‖e

n+1 +en

2
‖3L3

+
1

ε2
C2‖Rn+1

4 ‖2 +
1

2
‖e

n+1 +en

2
‖2, (3.81)

where L2 +4L2
2‖φ(t)‖2∞≤L2 +4L2

2C
2 =:C2. For the first term on the right-hand side of

(3.81), we use the spectrum estimate (3.38) to get

ε‖∇e
n+1 +en

2
‖2L2 +

1

ε

(
f ′(φ(tn+ 1

2 ))
en+1 +en

2
,
en+1 +en

2

)
≥−C0ε‖

en+1 +en

2
‖2. (3.82)

Applying (3.82) with a scaling factor (1−ε), we get

−(1−ε)1

ε

(
f ′(φ(tn+1))

en+1 +en

2
,
en+1 +en

2

)
≤C0ε(1−ε)‖

en+1 +en

2
‖2 +(1−ε)ε‖∇e

n+1 +en

2
‖2. (3.83)

On the other hand,

−
(
f ′(φ(tn+1))

en+1 +en

2
,
en+1 +en

2

)
≤L‖e

n+1 +en

2
‖2. (3.84)

Now, we estimate the L3 term. By interpolating L3 between L2 and H1, we get

‖e
n+1 +en

2
‖3L3 ≤K

(
‖∇e

n+1 +en

2
‖ d

2 ‖e
n+1 +en

2
‖

6−d
2 +‖e

n+1 +en

2
‖3
)
,

where K is a constant independent of ε and τ . We continue the estimate by using
Young’s inequality

L2

ε
K
(
‖∇e

n+1 +en

2
‖ d

2 ‖e
n+1 +en

2
‖

6−d
2

)
≤d

6
ε

3
d ‖∇e

n+1 +en

2
‖3 +

6−d
6

(L2K

ε
3
2

) 6
6−d ‖e

n+1 +en

2
‖3. (3.85)
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Substituting (3.83), (3.84) and (3.85) into (3.81), we get

J8≤ (C0ε(1−ε)+L)‖e
n+1 +en

2
‖2 +(1−ε)ε‖∇e

n+1 +en

2
‖2

+
d

6
ε

3
d ‖∇e

n+1 +en

2
‖3 +

(6−d
6

(L2K

ε
3
2

) 6
6−d

+
L2

ε
K
)
‖e

n+1 +en

2
‖3

+
1

ε2
C2‖Rn+1

4 ‖2 +
1

2
‖e

n+1 +en

2
‖2. (3.86)

Substituting J1,·· · ,J8 into (3.62), we have

1

2τ
(‖en+1‖2−‖en‖2)+

Aτ

2
(‖en+1‖2−‖en‖2)+ε2‖∇e

n+1 +en

2
‖2

≤‖Rn+1
1 ‖2 +A2‖Rn+1

2 ‖2 +B2‖Rn+1
3 ‖2 +ε2‖∆Rn+1

4 ‖2 +
L2

4ε2
‖Rn+1

3 ‖2 +
C2

ε2
‖Rn+1

4 ‖2

+
9

4
‖e

n+1 +en

2
‖2 +

(
B2 +

L2

4ε2

)
‖δtten+1‖2 +(C0ε(1−ε)+L)‖e

n+1 +en

2
‖2

+
d

6
ε

3
d ‖∇e

n+1 +en

2
‖3 +

(6−d
6

(L2K

ε
3
2

) 6
6−d

+
L2K

ε

)
‖e

n+1 +en

2
‖3. (3.87)

To control the 8th term on the right-hand side, we pair (3.57) with δte
n+1 to get

1

τ
‖δten+1‖2 +

ε

2
(‖∇en+1‖2−‖∇en‖2)+Aτ‖δten+1‖2

+
B

2
(‖δten+1‖2−‖δten‖2 +‖δtten+1‖2)

=(Rn+1
1 ,δte

n+1)−A(Rn+1
2 ,δte

n+1)−B(Rn+1
3 ,δte

n+1)

+ε(∆Rn+1
4 ,δte

n+1)− 1

ε

(
f(

3

2
φn− 1

2
φn−1)−f(φ(tn+ 1

2 )),δte
n+1
)

=:J̃1 + J̃2 + J̃3 + J̃4 + J̃5 =: J̃ , n≥1. (3.88)

Analogously, applying the method for J1,·· · ,J4 to J̃1, ·· · ,J̃4, yields

J̃1 =(Rn+1
1 ,δte

n+1)≤ε‖Rn+1
1 ‖2 +

1

4ε
‖δten+1‖2, (3.89)

J̃2 =−A(Rn+1
2 ,δte

n+1)≤A2ε‖Rn+1
2 ‖2 +

1

4ε
‖δten+1‖2, (3.90)

J̃3 =B(Rn+1
3 ,δte

n+1)≤B2ε‖Rn+1
3 ‖2 +

1

4ε
‖δten+1‖2, (3.91)

J̃4 =ε(∆Rn+1
4 ,δte

n+1)≤ε3‖∆Rn+1
4 ‖2 +

1

4ε
‖δten+1‖2. (3.92)

For J̃5 of (3.88), we have

J̃5 =− 1

ε

(
f(

3

2
φn− 1

2
φn−1)−f(φ(tn+ 1

2 )),δte
n+1
)

≤− 1

ε

(
f ′(ξn+1)

(
− 1

2
δtte

n+1− 1

2
Rn+1

3 +
en+1 +en

2
+Rn+1

4

)
,δte

n+1
)

≤ L
2ε

(3

2
‖δten+1‖2 +‖δten‖2

)
+
L2

4ε
‖Rn+1

3 ‖2 +
L2

ε
‖Rn+1

4 ‖2 +
1

2ε
‖δten+1‖2
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+
1

4
‖e

n+1 +en

2
‖2 +

L2

ε2
‖δten+1‖2. (3.93)

Substituting J̃1,·· · , J̃5 into (3.88), we have

1

τ
‖δten+1‖2 +

ε

2
(‖∇en+1‖2−‖∇en‖2)+

L

2ε
(‖δten+1‖2−‖δten‖2)

+Aτ‖δten+1‖2 +
B

2
(‖δten+1‖2−‖δten‖2 +‖δtten+1‖2)

≤ε‖Rn+1
1 ‖2 +A2ε‖Rn+1

2 ‖2 +B2ε‖Rn+1
3 ‖2 +ε3‖∆Rn+1

4 ‖2 +
L2

4ε
‖Rn+1

3 ‖2

+
L2

ε
‖Rn+1

4 ‖2 +
(5L

4ε
+

3

2ε
+
L2

ε2

)
‖δten+1‖2 +

1

4
‖e

n+1 +en

2
‖2. (3.94)

By combining (3.87) and (3.94), we get

1

2τ
(‖en+1‖2−‖en‖2)+

ε

2
(‖∇en+1‖2−‖∇en‖2)+

Aτ

2
(‖en+1‖2−‖en‖2)

+
(B

2
+2B2 +

L

2ε
+
L2

2ε2

)
(‖δten+1‖2−‖δten‖2)

+Aτ‖δten+1‖2 +
B

2
‖δtten+1‖2 +

1

τ
‖δten+1‖2 +ε2‖∇e

n+1 +en

2
‖2

≤(1+ε)

(
‖Rn+1

1 ‖2 +A2‖Rn+1
2 ‖2 +B2‖Rn+1

3 ‖2 +ε2‖∆Rn+1
4 ‖2 +

L2

4ε2
‖Rn+1

3 ‖2
)

+

(
C2

ε2
+
L2

ε

)
‖Rn+1

4 ‖2 +
(

4B2 +2
L2

ε2
+

5L

4ε
+

3

2ε

)
‖δten+1‖2

+
(5

2
+C0ε(1−ε)+L

)
‖e

n+1 +en

2
‖2 +Gn+1‖e

n+1 +en

2
‖2

+Qn+1‖∇e
n+1 +en

2
‖2, (3.95)

where Qn+1 = d
6ε

3
d ‖∇ en+1+en

2 ‖, Gn+1 =
(

6−d
6

(
L2K

ε
3
2

) 6
6−d

+ L2K
ε

)
‖ e

n+1+en

2 ‖. Taking τ ≤

1/
(

4B2 +2L
2

ε2 + 5L
4ε + 3

2ε

)
, if Qn+1 is uniformly bounded by constant ε2

2 , Gn+1 is uni-

formly bounded by constant 1
2 , then by Grönwall’s inequality, we get the finer error

estimate (3.77).
We prove this by induction. Assuming that the finer estimate (3.77) holds for all

first N time steps, the coarse estimate (3.55) leads to

‖eN+1‖2 +2τε‖∇e
N+1 +eN

2
‖2 +Aτ2‖eN+1‖2 +Bτ‖eN+1‖2

.ε−max{4σ1+11,σ0}τ4. (3.96)

Then, if τ .ε
1
3 max{4σ1+11,σ0}+ 5

3−
2
d , we have

QN+1 .ε
3
d ε−

1
2 max{4σ1+11,σ0}− 1

2 τ
3
2 .

ε2

2
. (3.97)

If τ .ε
1
4 max{4σ1+11,σ0}+ 9

2(6−d) , we have

GN+1 .ε−
9

6−d ε−
1
2 max{4σ1+11,σ0}τ2 .

1

2
. (3.98)
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By taking τ that satisfies inequality (3.76), we get the finer error estimate for N+1
step, and the proof is completed by mathematical induction.

Remark 3.1. Theorems 3.2 and 3.1 are valid for the special cases i) A= 0, ii) B= 0,
iii) both A= 0 and B= 0, since the conditions (2.5) and (2.18) are not used in the
proof. On the other hand, in Theorems 3.2 and 3.1, the step size needs to be smaller
than ε2 to guarantee the convergence, which is much stronger than the requirement for
the unstabilized schemes (i.e. the case A=B= 0) to be stable.

Remark 3.2. The proofs of Theorem 3.1 and Theorem 3.2 are inspired by the
works [21, 24, 32] and [22] for first order convex splitting schemes. The main difference
is that we use a mathematical induction to handle high order terms coming from the
L3 term, while a generalized Grönwall’s lemma is used in [21, 22], and a continuation
argument is used in [32].

Remark 3.3. For the case that γ=O(1/ε), we can get similar second order con-
vergence results where the constant does not depend on 1/ε exponentially for both
SL-BDF2 and SL-CN schemes. Take the SL-BDF2 scheme as an example. By using
a Cauchy inequality with ε, one can put an ε in front of the ‖en+1‖2 terms in (3.29),
(3.30), (3.31), (3.41) and (3.43). Then, by replacing the factor (1−ε) in (3.46) with
1−ε2, and multiplying (3.47) by ε, we can get an estimate similar to (3.40) for time
steps small enough, but the exponential factor now scales like exp(O(ε)T ).

4. Implementation and numerical results
In this section, we numerically verify that our schemes are second order accurate in

time and energy stable.
We use the commonly used double-well potential F (φ) = 1

4 (φ2−1)2. Since the exact
solution satisfies the maximum principle |φ|≤1, it is a common practice to modify F (φ)
to have a quadratic growth for |φ|>1, such that a global Lipschitz condition is satisfied
(cf. e.g. [9, 40]). To get a C4 smooth double-well potential with quadratic growth, we
introduce F̃ (φ)∈C∞(R) as a smooth mollification of

F̂ (φ) =


11
2 (φ−2)2 +6(φ−2)+ 9

4 , φ>2,
1
4 (φ2−1)2, φ∈ [−2,2],
11
2 (φ+2)2−6(φ+2)+ 9

4 , φ<−2.

(4.1)

with a mollification parameter much smaller than 1, to replace F (φ). Note that the
truncation points −2 and 2 used here are for convenience only. Other values outside of
region [−1,1] can be used as well. For simplicity, we still denote the modified function
F̃ by F .

4.1. Space discretization and implementation. To test the numerical
scheme, we solve (1.1) in a 2-dimensional domain Ω =[−1,1]2 and a 3-dimensional do-
main Ω = [−1,1]3. We use a Legendre Galerkin method similar as in [41, 52] for spatial
discretization. For example, we define

VM = span{ϕk(x)ϕj(y)ϕi(z), k,j,i= 0,. ..,M−1}∈H1(Ω),

as Galerkin approximation space for φn+1 in 3-dimensional case. Here ϕ0(x) =
L0(x);ϕ1(x) =L1(x);ϕk(x) =Lk(x)−Lk+2(x),k= 2,. ..,M−1. Lk(x) denotes the Leg-
endre polynomial of degree k. Then the full discretized form for the SL-BDF2 scheme
reads:
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Find (φn+1,µn+1)∈ (VM )2 such that

1

2τγ
(3φn+1−4φn+φn−1,ω) = −ε(∇φn+1,∇ϕ)− 1

ε
(f(2φn−φn−1),ϕ)

−Aτ(δtφ
n+1,ϕ)−B(δttφ

n+1,ϕ), ∀ϕ∈VM . (4.2)

This is a linear system with constant coefficients for φn+1, which can be efficiently
solved. We use a spectral transform with double quadrature points to eliminate the
aliasing error and efficiently evaluate the integration (f(2φn−φn−1),ϕ) in Equation
(4.2).

Given φ0, to start the second order schemes, we use following first order stabilized
scheme with smaller time steps to generate φ1,

ϕn+1−ϕn

τγ
=ε∆ϕn+1− 1

ε
f(ϕn)−Aδtϕn+1, n= 0,. ..,m−1, (4.3)

where ϕ0 =φ0, φ1 =ϕm.
We take ε= 0.075 and M = 63 and use random initial values φ0 to test the stability

and accuracy of the proposed schemes. For the 3-dimensional case, the initial value
is given as {φ0(xi,yj ,zk)}∈R2M×2M×2M with xi,yj ,zk are tensor product Legendre-
Gauss quadrature points and φ0(xi,yj ,zk) is a uniformly distributed random number
between −1 and 1 (shown in the first picture of Figure 4.1);
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Fig. 4.1. The view of five different slices of the initial value φ0 and the corresponding solution.
(First) the random initial values φ0; (Second) φ1, the solution at t= 0.64 of the Allen-Cahn equation
with initial value φ0; (Third) the solution at t= 2.56 of the Allen-Cahn equation with initial value φ0.
Equation parameters γ= 1, ε= 0.075.

τ
SL-BDF2 SL-CN

B= 0 B= 5 B= 10 B= 0 B= 5 B= 10
10 3 2 1 3 2 1
1 30 20 10 30 20 10

0.1 100 0 0 200 100 0
0.01 0 0 0 0 0 0

Table 4.1. The minimum values of A (only values {0,1, .. .,5}∪{10,15, .. .,50}∪{100,150, .. .,500}
are tested for A) to make SL-BDF2 and SL-CN scheme stable when B and τ taking different values.
The results are from 3-dimensional simulations with γ= 1, ε= 0.075.

4.2. Stability results. We present the required minimum values of A (resp. B)
with different B (resp. A) and τ values for stably solving the Allen-Cahn Equation (1.1)
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τ
SL-BDF2 SL-CN

A= 0 A= 10 A= 20 A= 0 A= 10 A= 20
10 20 0 0 30 0 0
1 20 10 5 30 10 3

0.1 10 10 10 10 10 10
0.01 0 0 0 0 0 0

Table 4.2. The minimum values of B (only values {0,1, .. .,5}∪{10,15, .. .,50} are tested for B)
to make scheme SL-BDF2 and SL-CN stable when A and τ taking different values. The results are
from 3-dimensional simulations with γ= 1, ε= 0.075.

τ
SL-BDF2 SL-CN

B= 0 B= 5 B= 10 B= 0 B= 5 B= 10
10 3 2 1 4 2 1
1 35 20 20 30 20 10

0.1 100 10 0 200 100 0
0.01 0 0 0 0 0 0

Table 4.3. The minimum values of A (only values {0,1, .. .,5}∪{10,15, .. .,50}∪{100,150, .. .,500}
are tested for A) to make SL-BDF2 and SL-CN scheme stable when B and τ taking different values.
The results are from 2-dimensional simulations with γ= 1, ε= 0.075.

τ
SL-BDF2 SL-CN

A= 0 A= 10 A= 20 A= 0 A= 10 A= 20
10 20 0 0 20 0 0
1 20 15 0 20 10 3

0.1 10 5 2 10 10 10
0.01 0 0 0 0 0 0

Table 4.4. The minimum values of B (only values {0,1, .. .,5}∪{10,15, .. .,50} are tested for B)
to make scheme SL-BDF2 and SL-CN stable when A and τ taking different values. The results are
from 2-dimensional simulations with γ= 1, ε= 0.075.

10
−1

10
0

4

6

8

10

12

t

E
n
e
rg

y

 

 

dt=0.05

dt=0.025

dt=0.0125

10
−1

10
0

4

6

8

10

12

t

E
n
e
rg

y

 

 

dt=0.05

dt=0.025

dt=0.0125

Fig. 4.2. The discrete energy dissipation of the two schemes solving the Allen-Cahn equation with
initial value φ1, and parameters γ= 1, ε= 0.075. (Left) result of SL-BDF2 scheme; (Right) result of
SL-CN scheme.

in 3-dimensional case in Table 4.1 (resp. 4.2). Here by “stably solving”, we mean that
the energy keeps dissipating in first 1024 time steps. The corresponding 2-dimensional
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τ L2 Error Order H1 Error Order
0.032 3.21 E-01 3.41
0.016 1.19E-01 1.425 1.49 1.189
8E-3 2.90E-02 2.043 3.68E-01 2.021
4E-3 7.15E-03 2.019 8.91E-02 2.047
2E-3 1.82E-03 1.976 2.26E-02 1.980
1E-3 4.50E-04 2.016 5.58E-03 2.016

Table 4.5. The convergence of the SL-BDF2 scheme with B= 5, A= 10 for the Allen-Cahn
equation with initial value φ1, parameters γ= 0.5,ε= 0.05. The errors are calculated at T = 1.28.

τ L2 Error Order H1 Error Order
0.032 2.84E-01 3.11
0.016 9.71E-02 1.548 1.25 1.320
8E-3 2.19E-02 2.152 2.76E-01 2.178
4E-3 5.33E-03 2.035 6.63E-02 2.055
2E-3 1.34E-03 1.997 1.66E-02 2.000
1E-3 3.27E-04 2.031 4.06E-03 2.032

Table 4.6. The convergence of the SL-CN scheme with B= 5, A= 10 for the Allen-Cahn equation
with initial value φ1, parameters γ= 0.5,ε= 0.05. The errors are calculated at T = 1.28.

results are given in Table 4.3 and 4.4. Those results are obtained by using initial value
φ0, the results for the cases taking initial value φ1 are similar. From those tables, we
see that the maximum required A values are of order O(ε2) and the maximum required
B values are of order O(ε). For τ small enough, both schemes are stable with A= 0
and B= 0. This is consistent with our analysis result. On the other hand, by using a
nonzero B, e.g. B= 10, the requirement for a large A will be dramatically reduced.

To check the energy dissipation property, we present in Figure 4.2 the log-log plot
of the energy versus time for the two schemes using different time step-sizes. We see
that the energy decaying property is maintained.

4.3. Accuracy results. We take initial value φ1 (see the second plot in
Figure 4.1) for (1.1) to test the accuracy of the two schemes in a 2-dimensional do-
main Ω = [−1,1]× [−1,1]. The Allen-Cahn equation with the time relaxation parameter
γ= 0.5 is solved from t= 0 to T = 1.28. To calculate the numerical error, we use the
numerical result generated using τ = 10−4 as a reference to the exact solution. The
results are given in Table 4.5 and Table 4.6. We see that the schemes are second order
accurate in both L2 and H1 norm.

5. Conclusions

We proposed two second order stabilized linear schemes, namely the SL-BDF2 and
the SL-CN scheme, for the phase-field Allen-Cahn equation. In both schemes, the
nonlinear bulk forces are treated explicitly with two additional linear stabilization terms
to guarantee unconditionally energy stable schemes. The schemes lead to linear systems
with constant coefficients and thus can be efficiently solved. An optimal error estimate
is given by using a spectrum argument to remove the exponential dependence on 1/ε.
The error analysis also holds for the special cases when one of the stabilization constants
or both of them take zero values. Numerical results verified the stability and accuracy
of the proposed schemes.
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