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THE MORI-ZWANZIG FORMALISM FOR THE DERIVATION OF
A FLUCTUATING HEAT CONDUCTION MODEL FROM

MOLECULAR DYNAMICS∗

WEIQI CHU† AND XIANTAO LI‡

Abstract. Energy transport equations are derived directly from a many-particle system as a
coarse-grained (CG) description. This effort is motivated by the observation that the conventional heat
equation is unable to describe the heat conduction process at the nano-mechanical scale. With the local
energy density chosen as the CG variables, we apply the Mori-Zwanzig formalism to derive a reduced
model, in the form of a generalized Langevin equation. A Markovian embedding technique is then em-
ployed to eliminate the history dependence. Meanwhile, auxiliary variables are introduced to establish
auxiliary equations that govern the dynamics of the energy flux. In sharp contrast to conventional
energy transport models, this derivation yields stochastic dynamical models for the spatially averaged
energy. The random force in the generalized Langevin equation is typically modeled by additive white
Gaussian noise. As an initial attempt, we consider multiplicative white Gaussian noise, to ensure the
correct statistics of the non-Gaussian solution.
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1. Introduction
During the past two decades, there has been a rapidly growing interest in modeling

heat transport at the microscopic scale [8, 26, 36, 57, 58]. Such renewed interest has
been driven by the progress in designing and manufacturing micro mechanical and
electrical devices, for which thermal conduction properties have great influences on the
performance and reliability. As the size of electrical and mechanical devices is decreased
to the micron and sub-micron scales, they often exhibit heat conduction properties that
are quite different from the observations at the macroscopic level. For example, there
has been overwhelming evidence indicating the failure of the conventional Fourier’s law
(and therefore the standard heat equation). Furthermore, heat pulses were observed in
experiments [96], which are typical behavior of wave equations.

From a modeling viewpoint, a natural approach to incorporate (and predict) some
of the observed behavior is to modify the traditional heat equation, e.g., by introduc-
ing nonlocal terms or higher order derivatives [96, 97]. These generalized models have
been successful in interpreting heat pulse propagation and they are easy to work with,
but they are quite ad hoc. For example, such a generalization inevitably introduces
additional model parameters that are difficult to determine.

Thus far, the most popular approach to study heat conduction is direct molecular
dynamics (MD) simulations, which are often designed to mimic experimental setup.
Given an interatomic potential V , either empirically constructed or derived from more
fundamental considerations, an MD model is typically expressed in terms of Newton’s
equations of motion. There are many well established computational techniques for MD
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simulations [2,33]. They have motivated a lot of recent efforts to understand the origin
and limitations of Fourier’s Law [9, 10, 36, 57–59]. Furthermore, most of the studies
have focused on the dependence of the heat conductivity on the geometry, length and
temperature of the system. A typical setup is to connect the boundaries to two heat
baths with different temperatures, modeled by stochastic (Langevin) or deterministic
(Nosé-Hoover [75]) thermostats. The MD equations are solved to drive the system to
a steady state, at which point the heat flux can be measured to estimate the heat
conductivity. More general transient heat conduction problems, however, would require
more substantial efforts.

Nevertheless, in spite of the many contributions that have recently appeared on the
studies of heat conduction processes (e.g., [14,15,26,37,42,47,68,69,78,88,99,101–103]),
direct MD models have several serious limitations when applied to heat conduction
problems. The first obvious limitation is the computational cost. One has to work
with a large number of atoms, and the system needs to be integrated for millions or
billions of steps. As a consequence, most current MD studies are restricted to quasi-
one-dimensional systems, e.g., nanowires [16, 17, 23, 26, 60, 65, 100, 104], nanotubes [13,
35,44,51,67,76,78,99,107], and nanoribbons [31,45,87].

Further, while it is often straightforward to incorporate quantities such as displace-
ment, velocity, temperature, and pressure into MD simulations as constraints, however,
the temperature gradient is very difficult to impose. The temperature gradient that
can be imposed is usually on the order of 108−109K/m, which is too large to model
realistic systems. It is unclear whether results obtained in such MD simulations can be
appropriately extrapolated to the correct regime.

This paper is strongly motivated by the above-mentioned issues, and the purpose
is to present a coarse-grained (CG) model to alleviate these fundamental modeling
difficulties. The CG procedure drastically reduces the number of degrees of freedom
and offers a practical alternative. Coarse-graining methodologies have found enormous
applications in material science problems and biological problems [5,21,22,38–40,46,49,
61,72–74,79–81,84–86,89,90,93,108]. Many CG models have been developed and they
have shown great promise in reducing the computational cost and efficiently capturing
the primary quantities of interest. However, most existing CG molecular models are
focused on finding the effective potentials, known as the potential of mean forces, at
a constant temperature. These existing CG models are in the similar form as the MD
models with a possible addition of damping terms or random forces and typically take
the CG variables as the linear combination of positions and velocities, describing only
the time evolution of the averaged position and momentum.

Our approach aims at energy transport process, and we pick the CG variables to
be the local energy, which is in general a nonlinear function. In order to derive from
the many-particle dynamics a physical model in the ambient space, we start by defining
a locally averaged internal energy as CG variables, and we use the Mori-Zwanzig (MZ)
formalism [71, 109] to first derive an exact equation for these variables. In particular,
we choose Mori’s orthogonal projection [71] to project the equations to the subspace
spanned by the CG variables. For such CG variables, this projection yields a memory
term, which exhibits a simple form of a convolution in time. To alleviate the effort to
compute the memory term at every step, we use the Markovian embedding techniques,
recently developed in [12,56,66], to approximate the memory using an extended system
of differential equations with no memory. The additional equations govern the dynamics
of the energy flux, and they will only reduce to the conventional Fourier’s law in a
limiting case.
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The idea of using such a generalized constitutive model dates back as early as in
1950’s. For instance, Cattaneo and Vernotte have proposed a relaxation model for the
heat flux [11,98], which unlike the traditional heat equation, admits thermal waves with
finite propagation speed. Later, Guyer and Krumhansl [41] derived higher order models
from the linearized phonon Boltzmann equation by using asymptotic expansions. The
application of the MZ formalism to derive hydrodynamics equations, including energy
transport, has been discussed in [1], and the extended system can be expressed in
a continued-fraction form. Jou and co-workers formulated a unified framework and
established the principle of extended irreversible thermodynamics [3, 48], where the
entropy is generalized to include fluxes which led to additional thermodynamic relations.
Determining the coefficients for such extended system is usually a nontrivial task. Singh
and Tadmor [91] proposed a parameter identification algorithm using cosine and sine
signals.

We propose to determine the parameters from the statistics of the underlying atom-
istic description, which would take into account the crystal structure, the size of the
system, and the detailed interactions between the atoms. In particular, the parameters
are obtained through a Hermite interpolation of the Laplace transform of the time cor-
relation function, where the function values are directly linked to the statistics of the
CG variables, which can be extracted from an equilibrium MD simulation (or possibly,
from experimental measurements).

In principle, the noise term can be averaged out by simply taking the average of
every term in the CG model. This is a particular advantage of the Mori’s projec-
tion [21]. However, motivated by the crucial observation that many mechanical systems
at the micron scale or smaller are subject to strong fluctuations, we will forgo such
an averaging step, and work with the models with the random noise. This results in
an energy transport model with fluctuations, represented by a system of stochastic dif-
ferential equations (SDE). This is in the same spirit as the fluctuating hydrodynamics
models [7, 27]. Consequently, the solutions are expected to be stochastic in nature. An
important issue naturally arises: How does one guarantee that the corresponding solu-
tion has the correct statistics? This is an issue that has not been thoroughly investigated
in the literature. The second half of this paper will be focused on the approximation
of the noise. We first consider an approximation of the random force by an additive
Gaussian white noise, in which case the solution should have Gaussian statistics. Unfor-
tunately, by examining a one-dimensional chain model, we have found that the correct
statistics behave more like a Gamma distribution. In particular, the energy must have
a lower bound. Although the approximation by an additive noise yields reasonable ap-
proximations to the time correlations, the probability density function (PDF) of the
solution is incorrect.

To ensure that the correct PDF is obtained, we make an attempt to approximate
the noise by a multiplicative noise. In this case, the diffusion constant depends on the
solution itself. We determine the diffusion coefficient by solving the steady-state Fokker-
Planck equation. We are able to find a diagonal matrix for the diffusion coefficient
matrix such that the Gamma distribution is an equilibrium probability density. As a
further extension, we introduce a higher order approximation where both the CG energy
variables and their time derivatives have the correct PDF. This leads to a Langevin type
of equation with multiplicative noise. To the best of our knowledge, such models have
not been reported in the literature.

We point out that existing stochastic heat conduction models have been proposed by
Español et al. in [4,28,82], as extensions of the dissipative particle dynamics (DPD) [30].
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Other relevant efforts include the recent work in deriving non-isothermal CG models of
energy transport [29], which is an extension of the dissipative particle dynamics with
energy conservation (DPDE) model.

The rest of the paper is organized as follows: In Section 2, we discuss the math-
ematical derivation and examine the general properties of the generalized Langevin
equations derived from the Mori’s projection. We introduce the Markovian embedding
technique for the approximation of the memory term. Then in Section 3, we present
the approximation of the random noise using a one-dimensional system as an example.

2. The derivation and numerical approximations

2.1. The general projection formalism. Our starting point is an all-atom
description, which embodies the detailed interactions among all the atoms in the system.
More specifically, let x and v be position and velocity of the atoms respectively; x,v∈
RdN with d being the space dimension and N being the total number of atoms. The
dynamics follows Newton’s second law,

ẋ=v, x(0) =x0,

mv̇=f(x) =−∂V (x)

∂x
, v(0) =v0,

(2.1)

where V (x) is the potential energy of the system.
It is important for our derivation to include the dependence on the initial configu-

ration. Let y0 = (x0,v0) be the initial state, we write solutions of (2.1) as x(y0,t) and
v(y0,t) to explicitly indicate the dependence on y0. The initial condition will be selected
based on a probability measure µ0, assumed to have a probability density function given
by ρ0(y0).

Next, we consider a quantity of interest (QOI) a, defined by an n-dimensional
function ψ(x,v),

a(y0,t) =ψ(x(y0,t),v(y0,t)). (2.2)

In statistical mechanics, a(y0,t) is often referred to as CG variable. For a short notation,
we denote a without parenthesis as the initial value, i.e., a=a(y0,0).

Further, we assume that the CG variables belong to a Hilbert space L2(·,dµ0), the
L2 inner-product space weighted by the density ρ0. We define the average 〈·〉 and the
correlation matrix 〈·,·〉 on L2(·,dµ0) component-wisely, as follows

〈a〉i(t) : =

∫
Ψ

ai(y0,t)ρ0(y0)dy0, 1≤ i≤n,

〈a,b〉ij(t) : =

∫
Ψ

ai(y0,t)bj(y0,t)ρ0(y0)dy0, 1≤ i,j≤n,
(2.3)

where Ψ =RdN is the phase space. Here ρ0 is the initial configuration density function
of (2.1). The most popular choice is the canonical ensemble, for example, by Mori [70].
But in principal, ρ0 can be more general, and even out-of-equilibrium. Several choices
have been suggested by Zwanzig [110].

The goal is to derive a reduced equation for the CG variables a(y0,t). In this paper,
we follow the MZ procedure [19–21,71,109], and define the propagating operator L as,

L :=v0 ·
∂

∂x0
+
f(x0)

m
· ∂
∂v0

. (2.4)
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For the CG variables a∈L2(·,dµ0)n, one has the formal relation

a(·,t) =etLa(·,0),

ȧ(·,t) :=
∂a(·,t)
∂t

=LetLa(·,0),
(2.5)

where etL is the Koopman operator [52] that propagates an observable.
A key step in the MZ formulation is a projection operator P that maps functions

to the space spanned by a. We adopt the orthogonal projection suggested by Mori [71].
For each function b∈L2(·,dµ0)n, Mori’s projection P is defined as follows,

Pb : =〈b,a〉M−1a, (2.6)

where M−1 is the inverse of matrix M = 〈a,a〉. We also define Q as the complementary
operator of P, i.e., Q=I−P.

Remark 2.1. Note that the covariance matrix M only involves the one-point statistics
of a and can be guaranteed to be nonsingular by carefully selecting the CG variables.
In practice, this corresponds to the appropriate choice of ψ so that the CG variables
are not redundant. Even in the case when the CG variables are redundant, e.g., when
energy is conservative and the matrix M becomes singular, the projection can still be
well defined by interpreting M−1 as the pseudo-inverse.

Once the projection operator is in place, the Mori-Zwanzig formalism can be in-
voked, and the following generalized Langevin equation (GLE) can be derived [71],

ȧ(·,t) = Ωa(·,t)−
∫ t

0

θ(t−s)a(·,s)ds+F (·,t), (2.7)

where

Ω = 〈La,a〉M−1, F (·,t) =etQLQLa, and θ(t) =−〈LF (t),a〉M−1. (2.8)

Here, etQL will also be interpreted as a Koopman operator associated with the generator
QL. Since QL=L−PL, it can be written as an integro-differential operator.

A very important issue is the choice of ρ0. A natural choice is an equilibrium prob-
ability density: ρ0 =ρeq, where ρeq satisfies L∗ρeq = 0. The most common choice is the
canonical ensemble for ρeq ( e.g., by Mori [70]),

ρeq =
1

Z
e−βH . (2.9)

In this case, a(·,t) is simply a stationary random process with zero average. The GLE
(2.7) is still useful since it describes the fluctuation of the CG variable. When the
system is near equilibrium, this serves as the first approximation. Further corrections
can be made using the linear response approach [95]. In general, the initial density ρ0

can be constructed using the maximum entropy principle, as discussed in the mono-
graph [110]. For example, given the averages of the local energy, this approach yields a
probability density that is similar to the canonical ensemble (2.9) but with non-uniform
temperature.

Several properties can be deduced from the derivation. Some of them have been
discussed in the original work of Mori [71]. They are summarized as follows.
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Proposition 2.1. Assuming that 〈a〉= 0, then the following properties hold,

〈F (·,t)〉= 0, ∀ t≥0,

〈F (·,t),a〉= 0, ∀ t≥0.

θ(t1− t2) = 〈F (·,t1),F (·,t2)〉M−1, ∀ t1,t2≥0 and t1≥ t2,
(2.10)

Proof. Note that with the inner product defined above, the adjoint operator of L
is −L, and P and Q are self-adjoint, i.e., 〈Lb,c〉=−〈b,Lc〉 and 〈Pb,c〉= 〈b,Pc〉 for any
b,c∈H.

Now for the first property, we proceed as follows,

〈F (·,t)〉= 〈QLetQLa〉= 〈LetQLa〉−〈PLetQLa〉
=−〈etQLaL1〉−〈LetQLa,a〉M−1〈a〉= 0.

(2.11)

For the second property, since Pa=a and QF (·,t) =F (·,t), one can easily verify
that,

〈F (·,t),a〉= 〈QF (·,t),Pa〉= 〈F (·,t),QPa〉= 0. (2.12)

Finally, we start with the second equation in (2.8) and we get,

θ(t1− t2) =−〈LF (·,t1− t2),a〉M−1 = 〈e(t1−t2)QLQLa,La〉M−1

= 〈QF (·,t1),et2LQLa〉M−1 = 〈F (·,t1),Qet2LQLa〉M−1

= 〈F (·,t1),F (·,t2)〉M−1. (2.13)

The first and the third equations imply that the random process, F (·,t), is a sta-
tionary random process in the wide sense [18], and the relation (2.13) between the
random noise and the memory kernel is known as the second fluctuation-dissipation
theorem (FDT). It is a necessary condition for the solution to have the correct vari-
ance [54]. The second condition suggests that the random force and the initial value of
a are uncorrelated. The last two properties have also been discussed in Mori’s original
paper [70].

Using the first property, one can take an average of the GLE (2.7), and arrive at a
deterministic system,

d

dt
〈a〉(t) = Ω〈a〉(t)−

∫ t

0

θ(t−s)〈a〉(s)ds, (2.14)

which is a set of integral-differential equations describing the time evolution of the
average of a(·,t) [20]. This is often seen as a particular advantage of Mori’s projection.
However, in this paper, we will be more concerned with the quantities with fluctuations.

2.2. Approximations of kernel functions with Markovian embedding. A
well known practical issue associated with the solution of the GLE is the computation
of the memory term. Clearly, a direct evaluation of the integral requires the storage
of the solutions from all previous steps, and such evaluations have to be carried out at
every time step. A more delicate issue is that the kernel function θ(t),

θ(t) =−〈LetQLQLa,a〉M−1, (2.15)
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is determined by the orthogonal dynamics etQL for t>0. Except for very special cases,
e.g., linear dynamics, there is no explicit formula to compute θ(t) directly. Simulating
the orthogonal dynamics is clearly not practical, either. To alleviate such effort, and
more importantly, to make connections to existing generalized heat conduction models,
we will use the Markovian embedded technique and approximate the memory term via
an extended system of equations [56]. The idea is to incorporate the aforementioned
values of the kernel function into the Laplace transform of θ. More specifically, we define

Θ(λ) =

∫ +∞

0

θ(t)e−t/λdt. (2.16)

As λ→0+, using integration by parts repeatedly, we find that

Θ(λ) =λθ(0)+λ2θ′(0)+λ3θ′′(0)+λ4θ′′′(0)+ ·· · , (2.17)

where derivatives of θ(0) are available as shown in the following. Recall that θ(t) =
−〈LetQLQLa,a〉M−1. Direct computation yields,

θ(0) =−〈LQLa,a〉M−1,

θ′(0) =−〈L(QL)
2
a,a〉M−1,

θ′′(0) =−〈L(QL)
3
a,a〉M−1,

·· ··· ·

(2.18)

Let Mj be the normalized moments associated with the statistics of a, i.e.,

Mj : =〈Lja,a〉M−1. (2.19)

Using the notation of Mj , we are able to further simplify the above derivatives. The
first few terms are listed as follows,

θ(0) =−M2 +M2
1 ,

θ′(0) =−M3 +M2M1 +M1M2−M3
1 ,

θ′′(0) =−M4 +M3M1 +M2
2 +M1M3−M2M

2
1 −M1M2M1−M2

1M2 +M4
1 ,

·· ··· ·

(2.20)

Given statistics of initial states, the above quantities can be accurately calculated.
We now turn to the limit as λ→+∞, which embodies long-time behavior of the

kernel function. For this calculation, we start with the GLE (2.7), multiplying both
sides by aᵀ and taking the average. Let M(t) = 〈a(y0,t),a〉, which represents two-point
statistics, then we have,

Ṁ(t) = ΩM(t)−
∫ t

0

θ(t−s)M(s)ds. (2.21)

Let M̃(λ) be the Laplace transform of M(t). Taking the Laplace transform of
(2.21), we find,

1

λ
M̃(λ)−M(0) = ΩM̃(λ)−Θ(λ)M̃(λ), (2.22)
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which yields,

Θ(+∞) = Ω+MC−1, M =M(0), C := lim
λ→+∞

∫ +∞

0

e−t/λM(t)dt. (2.23)

In practice, we keep the exponential penalty from the Laplace transform to ensure the
integral is finite. It is well known that [77] a necessary condition for the integral to be
convergent is that the process a(·,t) is ergodic, but it is not sufficient. Finally, for a
scalar CG variable, the second term can be identified as the the correlation length.

One can see that Θ(+∞) is again related to the statistics of a(·,t), which can be
obtained either from the full model or from experimental observations. We now in-
corporate the values of Θ from both regimes: λ→0+ and λ→+∞. Such two-sided
approximations, which are similar to the Hermite interpolation problems, have demon-
strated promising accuracy over both short and long-time scales [56].

The idea of the Markovian embedding is to approximate the memory term by ratio-
nal functions in terms of the Laplace transform. In general, we can consider a rational
function in the following form,

Rk,k =
[
I−λB1−···−λkBk

]−1[
A0 +λA1 +λ2A2 + ·· ·+λkAk

]
. (2.24)

The coefficients in the rational function can be determined based on the values of the
kernel functions, e.g., those presented in the previous section.

When k= 0, we are led to a constant function, R0,0 = Γ, which, we choose to be
given by (2.23):

Γ = Θ(+∞). (2.25)

In the time domain, this amounts to approximating the kernel function by a delta
function: ∫ t

0

θ(t−s)a(·,s)ds≈Γa(·,t). (2.26)

This is often referred to as the Markovian approximation [43,50].
When k= 1, we have,

R1,1(λ) =
[
I−λB1]−1

[
A0 +λA1]. (2.27)

To determine the coefficients, we match the following values,

R1,1(0+) = Θ(0+), R′1,1(0+) = Θ′(0+) and R1,1(+∞) = Θ(+∞), (2.28)

which yield,

A0 = 0, A1 =θ(0) and B1 =−A1Θ(+∞)−1. (2.29)

In the time-domain, this corresponds to an approximation of the kernel function by an
matrix exponential eB1tA1. At this point, if we define the memory term as z(·,t),

z(·,t) =

∫ t

0

θ(t−s)a(·,s)ds, (2.30)

we can write down an auxiliary equation,

ż(·,t) =A1a(·,t)+B1z(·,t). (2.31)
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This way, the memory term is embedded in an extended dynamical system without
memory.

Remark 2.2. One may notice that the stochastic equations derived from this scheme
form a closed system, without any explicit dependence on the initial condition y0. There-
fore, we will simply write a(y0,t) as a(t) in all the following reduced models.

As the order of the approximation k increases, we obtain a hierarchy of approx-
imations for the memory term, which can be written as a larger extended system of
equations [56,66]. We will not discuss the higher order approximations in this paper.

Remark 2.3. The idea of introducing auxiliary variables and extended dynamics has
been implemented in various previous works, e.g., [6, 12,24,34,63,64]. As alluded to in
(2.15), we notice again that in general, the memory kernel function in the time-domain
is not accessible. Therefore, a direct interpolation by a sum of exponential functions,
e.g., [6,34], is not feasible. Our formulation rests upon a rational interpolation, in which
the required function values are statistics of the coarse-grain variables.

It remains to approximate the random noise term. This will be discussed in the
next section, along with a specific example of the MD model.

3. Application to energy transport
We now turn to the modeling of energy transport problem, especially the heat

conduction process. We will explain how the CG variables are defined using a one-
dimensional example, and then present the resulting reduced models. Our emphasis
will be placed on the modeling of the random noise.

3.1. A one-dimensional example. Let’s consider a one-dimensional isolated
chain model of N atoms and they are evenly divided into n blocks, each of which contains
` atoms, as shown in Figure 3.1; N =n`. The spacing of two atoms is ε0 at equilibrium.
We will focus on the study of energy transport between these blocks.

E1 · · · · · · En

←−−− ` atoms −−−→ ←−−− ` atoms −−−→

Fig. 3.1. 1-D chain of atoms. Every ` atoms are grouped into one block.

Let x and v be the displacements and velocities respectively, satisfying (2.1). Let
SI be the index set of I-th block, labeled as, SI ={`(I−1)+1,·· · ,`I}. Let φ(xi−xj) be
the pairwise potential coming from interactions between the ith and jth atoms. Here,
we use the Fermi-Pasta-Ulam (FPU) potential in the form of,

φ(r) =
r2

2
+c0

r3

3
+c1

r4

4
, (3.1)

where c0,c1 are parameters in the potential. We assume c1>0. If we only consider the
nearest neighbor interactions, the potential energy of this 1-d chain is given by,

V (x) =

N∑
i=1

φ(xi−xi−1), (3.2)

where the periodic boundary condition is imposed, i.e., x0 =xN and xN+1 =x1.
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We define the locally averaged energy associated with the I-th block as follows,

EI =
1

`ε0

∑
i∈SI

1

2
mv2

i +
1

2
φ(xi−xi−1)+

1

2
φ(xi+1−xi). (3.3)

The rate of change of the local energy can be attributed to the energy flux J ,

ĖI =− 1

`ε0

(
JI+ 1

2
−JI− 1

2

)
, (3.4)

where JI+ 1
2

is the energy flux between the Ith and (I+1)th blocks. Direct calculation
yields,

JI+ 1
2

=−1

2
φ′(x`I+1−x`I)(v`I+1 +v`I). (3.5)

Notice that the energy flux only depends on the atoms next to the interfaces between
two adjacent blocks. This expression has also been used in many numerical studies,
e.g., in [55,100,105].

Remark 3.1. The energy balance, in principle, is exact, but the equation is not
closed. The Mori-Zwanzig formalism provides a closure model with noise that takes
into account the under-resolved dynamics.

As an application of the Mori’s projection method, we define the CG variables as
the centered averaged energy of blocks,

aI(·,t) : =EI(·,t)−〈EI(·,0)〉. (3.6)

The subtraction of the average is to ensure that 〈a〉= 0.
For the initial configuration, we assume that the local energy is given, denoted

here by Ē. One approach to set up the initial density ρ0 is to maximize the entropy
−
∫
ρ logρdy0, subject to the constraints, 〈EI〉= ĒI . This approach yields the following

density function [62],

ρ0∝ exp−
∑
I

βIEI , (3.7)

with βI being the Lagrange multiplier. It plays the role of local inverse temperature,
and it can be determined based on the constraints 〈EI〉= ĒI .

With this choice of ρ0, one can show that in the GLE (2.7) Ω≡0. So it is enough
to approximate the memory term. In the approximation of the memory term, we will
approximate the density ρ0≈ 1

Z exp−βH, with β being a reference temperature. The
approximation considerably simplifies the calculations. Let us denote Ē : =〈E(·,0)〉.
Direct computation yields, for j≥0,

M2j+1 = 〈L2j+1a,a〉M−1

= 〈L2j+1E(·,0),E(·,0)− Ē〉M−1−〈L2j+1Ē,E(·,0)− Ē〉M−1

= 〈L2j+1E(·,0),E(·,0)〉M−1. (3.8)

From simple algebraic observations, L2j+1E(y0,0) is odd w.r.t. v0 and E(y0,0) is even
w.r.t. v0. We integrate the product over the velocity domain weighted by a Gaussian
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distribution. Due to the symmetry, the integral is zero. This implies that the odd
moments of a vanish in (2.20), i.e.,

M2j+1 = 0, ∀ j≥0. (3.9)

With the above results, we are able to further simplify the formulas (2.20) for the
derivatives of θ at t= 0,

θ(0) =−M2,

θ′(0) = 0,

θ′′(0) =−M4 +M2
2 ,

θ′′′(0) = 0,

θ′′′′(0) =−M6 +M4M2 +M2M4 +M3
2 ,

·· ··· ·

(3.10)

These quantities will be used later as interpolation conditions to determine the
kernel function.

3.2. Deterministic models. Before we discuss the approximation of the random
noise term, let us first briefly discuss the deterministic GLE model (2.14). In particular,
we will examine the models obtained from various approximations of the kernel function
in the memory term.

For the zeroth order approximation (2.26), the memory effect is eliminated entirely,
with the kernel function approximated by,

θ(t)≈Γδ(t), (3.11)

where Γ is given by the formulas (2.25) and (2.23). In this case, the GLE (2.14) is
reduced to an ODE system,

d

dt
〈a〉(t) =−Γ〈a〉(t), 〈a〉(0) = Ē. (3.12)

For our energy transport problem (3.3), the matrix is given by,

Γ =MC−1, (3.13)

with M,C defined in (2.23). In light of the periodic boundary conditions and the fact
that the system is partitioned uniformly to define the local energy, it is reasonable
to assume that a is a stationary process in space, implying that M and C are both
circulant matrices [25]. They can be generated from just one row of the matrices. This
also implies that Γ is a circulant matrix as well.

We have observed from various numerical tests that −Γ is proportional to a discrete
Laplacian operator,

Γ∝−∇2
h, h= `ε0, (3.14)

as suggested in the left figure in Figure 3.2. With the approximation that Γ =−α∇2
h,

Equation (3.12) coincides with a direct discretization of the one-dimensional heat equa-
tion,

d

dt
〈a〉(t) =α∇2〈a〉(t). (3.15)
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Fig. 3.2. The left figure shows the elements of Γ, with x-axis being indices i−j and y-axis being
Γij . The right figure shows the true value of γ̂ and its linear and quadratic fitting of Laplace operator
in Fourier space.

The parameter α represents the diffusion coefficient of the energy. To obtain the
actual value of the parameter, we may expand Γ in terms of the finite-difference operator
∇2
h:

−Γ≈α∇2
h+ν∇4

h+ ·· · . (3.16)

A more transparent calculation, however, can be done using discrete Fourier trans-
forms, thanks to the circulant structures. More specifically, a discrete Fourier transform
can be applied to the generator of a circulant matrix [25]. It will diagonalize the matrix

and yield its eigenvalues. We let γ̂(k) and λ̂(k) be the corresponding Fourier transforms
of Γ and the discrete Laplacian operator, k∈ (−πh ,

π
h ]. The wave numbers are uniformly

distributed in the interval (−πh ,
π
h ], and they can be viewed as k-points. In particular,

λ̂(k) = 1
h2 [2−2cos(k)]. Similarly, we let m̂(k) and ĉ(k) be the Fourier transform of the

two matrices M and C, respectively; then the matrix multiplications are turned into
convolution, and we have,

γ̂(k) = m̂(k)/ĉ(k). (3.17)

The approximation in (3.16) corresponds to an expansion of −γ̂(k) around k= 0,

γ̂(k) =αλ̂(k)+νλ̂(k)2 +O
(
λ̂(k)4

)
, |k|�1, (3.18)

as shown in Figure 3.2. In particular, we can choose α as

α= lim
k→0

γ̂(k)

λ̂(k)
, (3.19)

where the limit simply indicates a selection of a small value of k, e.g., the k-point that
is closest to the origin. We can not, however, choose k= 0, since both terms are zero at
that point.

From the numerical observations, M is close to being proportional to an identity
matrix, and m̂(k) is a constant that does not depend on k. It suffices to check ĉ(k) for
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small k. Direct computation yields,

ĉ(k)λ̂(k) =
1

n

∫ ∞
0

〈
â(k,t), â(k,0)∗

〉
dt

(
eik−1

)(
e−ik−1

)
h2

=
1

n

∫ ∞
0

〈(eik−1
)
â(k,t)

h
,

(
e−ik−1

)
â(k,0)∗

h

〉
dt

=
1

n

∫ ∞
0

〈
∇̂ha(k,t),∇̂ha(k,0)∗

〉
dt.

, 0< |k|�1 (3.20)

Interestingly, the right-hand side corresponds to the Fourier transform of the gra-
dient of a. In fact, it is the Fourier transform of the covariance,

D :=

∫ +∞

0

〈∇ha(·,t),∇ha(·,0)〉dt. (3.21)

By combining (3.17), (3.19) and (3.20), we could determine the parameter α as

α= lim
k→0

m̂(k)

d̂(k)
, (3.22)

where d̂ is the Fourier transform of D (3.21). It is clearly possible to include the λ̂4

term in (3.17) and derive a higher order model. But that will not be pursued here.

By a linearization of the average energy with respect to the temperature, 〈a〉= cpT ,
with cp being the specific heat, one can substitute the averaged energy by cpT in (3.15)
and obtain

d

dt
〈a〉=αcp∇2T =−∇·(−αcp∇T ) . (3.23)

Combining the above equation with the conservation of energy, d
dt 〈a〉=−∇·〈j〉, one has

〈j〉=−αcp∇T, (3.24)

which implies that the thermal conductivity κCG =αcp. The heat capacity cp can be
determined from the statistics of the local energy [62]: cp=hvar(EI)/kBT

2, where h
appears due to the fact that EI is averaged over blocks (energy per unit volume). This
leads to a formula for the thermal conductivity,

κCG = lim
k→0

hvar(EI)m̂(k)/(d̂(k)kBT
2). (3.25)

The expression on the right-hand side corresponds to the Fourier transform of the
matrix

h

kBT 2
〈a,a〉2

[∫ +∞

0

〈∇ha(·,t),∇ha(·,0)〉dt
]−1

. (3.26)

Meanwhile, there are two conventional approaches to determine the heat conduc-
tivity. The first approach is based on the Green-Kubo formula, which is based on a
linear response theory. The coefficient can be determined from equilibrium molecular
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dynamics simulations, which has been widely implemented [8, 58, 59, 88]. The formula
is written in terms of the autocorrelation function of the heat current,

κGK =
1

kBT 2Nε0

∫ ∞
0

〈J(t)J(0)〉 dt, (3.27)

where J=ε0

∑n
I=1JI+ 1

2
.

The other traditional approach is based on non-equilibrium MD simulations with
two different temperatures maintained at the boundary. The thermal conductivity can
be estimated from the heat flux induced by a temperature gradient,

〈j〉=−κNEMD∇T. (3.28)

We conducted several numerical tests and calculated the heat conductivity based
on the three formulas. In our calculation, we consider 250 atoms, divided into 25 blocks
equally. The mass of each atom is set to unity m= 1, and the spacing of two atoms is
set to ε0 = 1. For equilibrium MD simulations, we prepare the system with two Nosé-
Hoover thermostats at temperature 1.5 to reach steady states and use periodic boundary
conditions afterwards. For non-equilibrium simulations, we impose the two Nosé-Hoover
thermostats at temperatures of 1.4 and 1.6, at the left and right boundaries, respectively.
The left- and right-most particles in the chain are fixed. For the integration in time,
the 6-th order symplectic method is employed [106]. Each MD simulation run consists
of 107 time steps with stepsize ∆t= 0.02. We sample the data every 5 steps. Motivated
by the studies in [92], we tested both the symmetric (c0 = 0,c1 = 1) and the asymmetric
(c0 = 1,c1 = 1) FPU potentials. The results are listed in Table 3.1. The results show
qualitative agreement.

In addition, the same MD system is used for all the subsequent numerical simula-
tions as in this section.

thermal conductivity CG models Green-Kubo NEMD
symmetric potential 31.82±1.41 30.18±1.34 29.16±0.97
asymmetric potential 35.78±1.40 34.39±1.47 35.17±0.89

Table 3.1. This table shows the numerical results of heat conductivity computed with three differ-
ent methods. In the Green-Kubo formula, to truncate the integral, we have multiplied the correlation
function with an exponential decay penalty e−t/λ with λ= 103 to eliminate the contribution from the
long-time correlation, which may be subject to large numerical and sampling error. For NEMD, we
run 5 copies and use the average to compute the thermal conductivity. For each method, we repeat the
experiments 10 times to obtain the error bar.

We now examine the model obtained from the first order approximation (2.31) and
compare it to existing continuum models. With the rational approximation and the
introduction of the auxiliary variable, we have,{

˙〈a〉(t) =−z(t),
ż(t) =B1z(t)+A1〈a〉(t),

(3.29)

where A1 and B1 are determined in (2.29). The noise has been averaged out. The
second interpolation condition in (2.29) yields A1 =−M2, which according to (3.4) and
(3.8), is proportional to a discrete Laplacian operator: A1∝∇2

h. Meanwhile, the third



CHU AND LI 553

interpolation condition in (2.29) leads us to B1 =−A1Γ−1. From the previous discussion,
Γ≈−α∇2

h. As a result, we have

A1 =−c2∇2
h, B1≈

c2

α
I. (3.30)

Altogether, this leads to a second order equation

¨〈a〉(t) =−c
2

α
˙〈a〉(t)+c2∇2

h〈a〉(t). (3.31)

Interestingly, this coincides with the Cattaneo and Vernotte (CV) model in heat
transport, explicitly demonstrated in [11, 98], where c can be interpreted as the second
sound speed and is determined from the relation. Higher order approximations will
correspond to higher order relaxation models, similar to the models by Tzou [96].

The two cases presented here illustrate how the memory term can be approximated
using the rational approximation in terms of the Laplace transform. In particular, it
gives rise to deterministic (or drift) terms in the resulting approximate models. However,
in this paper, we will mainly focus on the fluctuating effects in energy transport models.
By introducing additive and multiplicative noises to the existing models, one obtains a
set of SDEs, and in the next section, we will examine the resulting statistics.

3.3. Approximations of the noise. Before we discuss the approximation of
the random noise, we first start with an equilibrium MD simulation, in which we observe
the trajectories of energy a(·,t) and noise term F (·,t) at the steady state. Since the
initial values do not play an explicit role in the behaviors at steady states, we denote
them as a(t) and F (t) for simplicity.

The same MD system as in Section 3.2 is used here and for all subsequent numerical
experiments. The histograms of one entry (the 15th block) of a and F at equilibrium
are shown in Figure 3.3, which can be regarded as the true stationary distributions.
(Here it is clear that a(t) is stationary. We will also assume that F (t) is stationary as
well.) We use F (0) =La to generate the histogram of F (t) due to the stationarity of the
process. Interestingly, both quantities exhibit non-Gaussian statistics. The PDF of a(t)
fits perfectly to a shifted Gamma distribution, and the PDF of the random noise follows
a Laplace distribution. Furthermore, we observe that the locally averaged energy obeys
the Gamma distribution when the potential is either harmonic or asymmetric, as shown
in Figure 3.4.

The emergence of the non-Gaussian statistics can be understood heuristically as
follows. In the harmonic case, where the interactions are modelled by springs, we have
the total energy given by,

E=
∑
i

σ

2
(xi+1−xi)2 +

v2
i

2
. (3.32)

The parameter σ is the spring constant. Therefore the relative displacement xi+1−xi
can be viewed as independent normal random variables with variance kBT/σ.

The local energy within each block can thus be written as,

EI =
1

4`ε0

[
d2
I`−d2

(I+1)`

]
+

1

2`ε0

∑
i∈SI

[
d2
i +v2

i

]
, di=

√
σ(xi+1−xi). (3.33)

For large `, the variable EI will be mostly determined by the summation which is a
Gamma distribution with parameters related to the block size.
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On the other hand, with the harmonic approximation the noise term becomes,

FI =La=− 1

h

(
JI+ 1

2
−JI− 1

2
), (3.34)

where

JI+ 1
2

=−σ
2

(x`I+1−x`I)(v`I+1 +v`I) (3.35)

from (3.5). Hence, it can be written as F = ξ1ξ2−ξ3ξ4 where ξ1, ξ2, ξ3, and ξ4 are i.i.d.
normal random variables, which according to the well known result [53], leads to the
Laplace distribution.

This explains heuristically that when the interactions are nearly harmonic, such
statistics are expected. However, the presence of anharmonic terms will affect the
statistics, and it leads to different Gamma or Laplace distributions, as shown in Figure
3.3.

In the following section, we will focus on the approximation of the noise term so
that the solution of the reduced models gives consistent statistics of the local energy.
Here, we will consider both additive and multiplicative noises.

3.3.1. Approximation by additive noise. A natural (and most widely used)
approximation is by a Gaussian white noise. For instance, for the first (Markovian)
approximation (2.23), we are led to a linear SDE,

ȧ(t) =−Γa(t)+σζ(t), (3.36)

where ζ(t) is the standard Gaussian-white noise,

〈ζi(t1),ζj(t2)〉= δijδ(t1− t2). (3.37)

In order for the solution a to have the correct covariance M = 〈a,a〉, the parameter
σ has to satisfy the Lyapunov equation [77,83],

Σ : =σσᵀ = ΓM+MΓᵀ. (3.38)
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Fig. 3.3. The left figure shows the histogram of a15 at equilibrium with symmetric poten-
tial (c0 = 0,c1 = 1) and asymmetric potential (c0 = 1,c1 = 1). The data fit well to shifted Gamma
distributions Γk,η(x)∼ (x+µ)k−1 exp(−η(x+µ)), x≥−µ, with parameters k= 10.3816, η= 7.7752 and
µ= 1.3352 and k= 10.2011, η= 6.4414 and µ= 1.5837, for symmetric and asymmetric potentials respec-
tively. The right figure shows the histogram of F15 at equilibrium with symmetric and asymmetric po-
tentials, and their fitting to Laplace-type distributions Lapγ(x)∼ exp(−γ|x|) with parameters γ= 3.8986
and γ= 3.0538.
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Fig. 3.4. These two figures show the histograms of a12 and F12 at equilibrium from MD simu-

lations, governed by different potential energies. The potentials are given by φ(r) = r2

2
+c0

r3

3
+c1

r4

4
,,

with harmonic label c0 = 0,c1 = 0, symmetric label c0 = 0,c1 = 1 and asymmetric c0 = 1,c1 = 1. The block
size and temperature are the same for three cases in MD simulations, which accounts for the similarity
of the parameters.

For the next order rational approximation (2.28) of the kernel function, we may
introduce noise via the second equation. Namely,{

ȧ(t) =−z(t),
ż(t) =B1z(t)+A1a(t)+σζ(t),

(3.39)

where A1 and B1 are determined in (2.29). As demonstrated in the previous section,
the deterministic part of the model coincides with the CV model. Here we discuss how
the noise can be introduced to guarantee the correct statistics.

In (3.39), it is clear that the second equation can be solved explicitly and substi-
tuted into the first equation, which would yield a similar equation to the GLE (2.7).
By choosing the initial condition z(0) and Σ appropriately, the approximations to the
memory kernel and the random noise can be made consistent, in terms of the second
FDT (2.10).

Theorem 3.1. Assuming the covariance of z(0) is A1, and

B1A1 +A1B
ᵀ
1 +Σ = 0, (3.40)

then, the extended system is equivalent to approximating the kernel function by θ1(t) =
etB1A1, and the approximate noise, denoted by F1(t), to F (t) satisfies the second FDT
exactly. Namely,

θ1(t− t′) = 〈F1(t),F1(t′)〉M−1, ∀ t≥ t′≥0.

The proof of this theorem can be found in [66]. In light of (2.29) and the FDT, the
matrix A1 is semi-positive definite, and it can be used as a covariance matrix.

Remark 3.2. The model (3.39) is a Langevin dynamics (by changing z to −z), which
typically comes from the force (momentum) balance. It is therefore interesting that
such models also arise in the balance equations for the energy and energy flux.

The approximation by additive noises inevitably leads to a Gaussian distribution
for a(t) [83]. To check the validity of this assumption, we solve the reduced models
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(3.36) and (3.39) directly and compare the results with true statistics obtained from
MD simulations, including histograms of solutions at steady states and autocorrelation
functions.

From Figure 3.5, we observe that the autocorrelation of energy can be well captured
from models driven by additive Gaussian noise, while the PDFs deviate from the true
distributions. One obvious violation is that the solution of (3.36) is always Gaussian,
which does not have a lower bound for energy and also unable to recover a non-symmetric
PDF.
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Fig. 3.5. The left two figures show PDFs of a15 obtained from approximated models (3.36)
and (3.39). The right figures show the auto time correlations 〈a15(t)a15(0)〉. Numerical results are
compared with true statistics that come from direct MD simulations using a 6th order symplectic
method.

3.3.2. Approximation by Gaussian multiplicative noise. As alluded to in
the previous section, the approximate model driven by Gaussian additive white noise
may not capture the correct PDF. In this section, we consider the multiplicative noise,
with the objective of enforcing the correct equilibrium statistics for the solution of the
SDEs.

We start with a further observation that the energy of each block is almost in-
dependent to each other. Very interestingly, the same observations have been made
for biomolecules [32]. Clearly, it is difficult to prove the independence theoretically as
atoms in block boundaries share pair potentials with their neighbors in adjacent blocks
and precisely the small correlation between blocks generates energy transport. However,
when the block size is relatively large, the correlation is quite weak. Therefore, we keep
this as our main assumption, and postulate the stationary PDF (ρ(a)) of the energy as
a shifted multi-Gamma distribution with parameters k and η,

ρ(a) =
1

Z

n∏
i=1

(
ai+

ki
ηi

)ki−1

e−ηi(ai+ki/ηi), ai≥−
ki
ηi
, (3.41)
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where

Z=

n∏
i=1

Zi, Zi=

∫ ∞
− kiηi

(
ai+

ki
ηi

)ki−1

e−ηi(ai+ki/ηi) dai. (3.42)

Now we reconsider the zeroth order approximation, the Markovian approximation
by R0,0 = Θ(+∞) = Γ. With a multiplicative noise, we are solving the following SDE,

ȧ(t) =−Γa(t)+σ(a(t))ζ(t), (3.43)

where ζ(t) is again the standard Gaussian white noise. The SDE is interpreted in the
Itô sense.

To derive a simple formula, we seek σ in a diagonal form. We aim to construct
D : =2σσᵀ to ensure the desired PDF given by (3.41). By simplifying the Fokker-Planck
equation (FPE) that corresponds to (3.43), we obtain,

∂Diiρ

∂ai
=−ρ

Γiiai+

n∑
j=1,j 6=i

Γijaj

. (3.44)

By directly solving these differential equations, we obtained an explicit formula for
the matrix D.

Theorem 3.2. If Γ has only non-positive off-diagonal entries and Γ is semi-positive
definite, then there exists a diagonal matrix D for which the multivariate Gamma dis-
tribution (3.41) is a steady state solution of the Fokker-Planck equation. The diagonals
of D are given by a positive expression,

Dii=
Γii
ηi

(
ai+

ki
ηi

)
−

m∑
j=1,j 6=i

Γij

aj
∫ ai
− kiηi

ρi(x)dx+kj/ηj

ρi(ai)
, (3.45)

where ρi is the marginal PDF of ai, ρi=
1
Zi

(
ai+

ki
ηi

)ki−1

e−ηi(ai+ki/ηi).

Proof. Direct computation yields that the stationary PDF given in (3.41) satisfies
the FPE of the first order model in (3.43), which proves this theorem.

Let us turn to the model obtained by the first order approximation of the memory
term. With multiplicative Gaussian white noise, the first order model can be written
formally as follows, {

ȧ(t) =−z(t),
ż(t) =Aa(t)+Bz(t)+σ

(
a(t),z(t)

)
ζ(t),

(3.46)

where A=A1 and B=B1 are given in (2.29). This is a Langevin equation, where we
allow the diffusion coefficient to depend on both a and z.

Similar to the previous case, we are seeking an equilibrium distribution of a and z.
Notice that z(0) =F (0), which follows a Laplace distribution. We further assume that
a and z are independent. These assumptions lead to the following ansatz for the joint
PDF.

ρ(a,z) =
1

Z
exp

[
−

n∑
i=1

(
Wi(ai)+γi|zi|

)]
. (3.47)
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In order to find a reasonable expression of σ, we force σ to be diagonal and work with
the steady state solution of the FPE, which writes as

n∑
i=1

∂

∂zi

 n∑
j=1

Aijajρ+

n∑
j=1

Bijzjρ

=

n∑
i=1

∂2Diiρ

∂z2
i

, (3.48)

where D= 2σ2. Furthermore, if it satisfies

∂Diiρ

∂zi
=

n∑
j=1

Aijajρ+

n∑
j=1

Bijzjρ, (3.49)

then ρ is a solution to the FPE in (3.48).

Theorem 3.3. Suppose diagonal entries of B are non-positive. ρ given in (3.47) is
an equilibrium density of the FPE of first order model (3.46) if σ is a diagonal matrix
and σii= (Dii/2)1/2 for i= 1,2, ·· · ,n, where

Dii=−
sgn(zi)

γi

 n∑
j=1

Aijaj+

n∑
j=1,j 6=i

Bijzj

−Bii( |zi|
γi

+
1

γ2
i

)
+Dieγ|zi|, (3.50)

and

Di=
1

γi

 n∑
j=1

|Aij ||aj |+
n∑

j=1,j 6=i

|Bij ||zj |

. (3.51)

Proof. Given ρ in (3.47), we could integrate (3.49) and have

Diiρ=−sgn(zi)

γi

 n∑
j=1

Aijaj+

n∑
j=1,j 6=i

Bijzj

ρ−Bii( |zi|
γi

+
1

γ2
i

)
ρ+Dii(0)ρ(zi= 0).

(3.52)

Here, Dii(0)ρ(zi= 0) could be any expression that doesn’t contain zi. We pick
Dii(0) deliberately to guarantee that Dii is non-negative. Since Bii≤0 from as-
sumption, it’s sufficient to control the first term in (3.52). By letting Dii(0) =Di :=
1
γi

(∑n
j=1 |Aij ||aj |+

∑n
j=1,j 6=i |Bij ||zj |

)
, we have the theorem proved.

We solved the SDEs (3.43) and (3.46) numerically and computed the statistics of
steady solutions as a verification of stochastic models. It is worthwhile to point out
that the SDEs (3.43) and (3.46) contain an unbounded diffusion coefficient σ, which
introduces a stiff problem for the numerical computations. The unboundedness reflects
a mechanism for the energy to stay above a lower bound.

To resolve this numerical issue, we applied the implicit Taylor method [94], with
time step size ∆t= 5×10−4. Due to the uniform partition of the system, we expect the
statistics to be the same for all the components of a. Here, we only exhibit the results
from the locally averaged energy of the first bulk.



CHU AND LI 559

-1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2
PDF of a 1

True
Zeroth
First

-1 0 1 2
0

0.5

1

1.5

2

2.5

PDF of z 1

True
Zeroth
First

0 10 20 30 40 50

0

0.05

0.1

0.15

0.2
Auto-correlation of a 1

True
Zeroth
First

Fig. 3.6. The figures show the approximate results of multiplicative model (3.43) and (3.46), in
terms of the steady PDF of a1, steady PDF of z1 and time auto correlation of a1.

The numerical results are displayed in Figure 3.6. One can see that the statistics
of both a and z are recovered by both models (3.43) and (3.46). In addition, compared
with models driven by additive Gaussian white noise, the multiplicative noise model
has improved accuracy for the auto-correlation of a as well.

Remark 3.3. The authors are not aware of any ergodicity result for these stochastic
dynamics, especially when the coefficients are singular. Therefore, the numerical results
here serve as a verification that the system will converge to the desired equilibrium
measure.

Remark 3.4. If it is just for the sake of obtaining the equilibrium density for a, one
can follow a nonlinear Langevin dynamics with additive noise, e.g.,

ä=−∇W (a)−γȧ+
√

2γζ(t). (3.53)

However, the corresponding solution ȧ is still Gaussian upon equilibrium. More impor-
tantly, such a Langevin equation cannot be derived from either the Mori’s or Zwanzig’s
projection. This is because the Mori’s projection leads to linear drift terms. For the
Zwanzig’s projection, the memory term is no longer a time convolution, and it is not
clear what systematic approximation would lead immediately to the linear damping
term.

4. Summary and discussions

This work is concerned with a coarse-grained energy model directly obtained from
the full molecular dynamics model. The goal is to find a more efficient model so that the
heat conduction process can be obtained from studying the statistics of local energy (and
flux if it’s of our interest), without conducting non-equilibrium molecular dynamics sim-
ulations. Our focus has been placed on the equilibrium statistics of such models, which
conceptually, is often a good starting point to develop a stochastic model. Motivated
by the observation that the coarse-grained energy (and flux!) follows non-Gaussian
statistics, we proposed to introduce multiplicative noise, within the Markovian embed-
ding framework for the memory term, to ensure that the solution of the coarse-grained
models has the correct equilibrium statistics.

The deterministic part of the coarse-grained models coincides with the models de-
rived from extended thermodynamics models [3, 48]. We have established a direct con-
nection between the coefficients in the generalized constitutive models and the statistics
of the underlying microscopic models.

Although we only considered a one-dimensional model as the example, the frame-
work is applicable to more general systems. In particular, none of the theorems assumed
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the space dimensionality. The applications to nano-mechanical systems is currently un-
derway.
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