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CONCENTRATING SOLUTIONS OF THE RELATIVISTIC
VLASOV-MAXWELL SYSTEM∗

JONATHAN BEN-ARTZI† , SIMONE CALOGERO‡ , AND STEPHEN PANKAVICH§

Abstract. We study smooth, global-in-time, spherically-symmetric solutions of the relativistic
Vlasov-Poisson system that possess arbitrarily large charge densities and electric fields. In particular,
we construct solutions that describe a thin shell of equally charged particles concentrating arbitrarily
close to the origin and which give rise to charge densities and electric fields as large as one desires at
some finite time. We show that these solutions exist even for arbitrarily small initial data or any desired
mass. In the latter case, the time at which solutions concentrate can also be made arbitrarily large. As
the constructed solutions are spherically-symmetric, they also satisfy the relativistic Vlasov-Maxwell
system and thus our results apply to the latter system as well.
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1. Introduction
Let f(t,x,p)≥0 denote the one particle distribution in phase space of a monocharged

plasma. Taking relativistic effects into account, but neglecting collisions among the
particles, f satisfies the relativistic Vlasov-Maxwell system:

∂tf+ p̂ ·∇xf+(E+ p̂∧B) ·∇pf = 0

∂tE=∇∧B−4πj, ∇·E= 4πρ,

∂tB=−∇∧E, ∇·B= 0.

 (RVM)

where

ρ(t,x) =

∫
R3

f(t,x,p)dp, j(t,x) =

∫
R3

p̂f(t,x,p)dp (1.1)

are the charge and current density of the plasma, while

p̂=
p√

1+ |p|2
(1.2)

is the relativistic velocity. Additionally, E(t,x) and B(t,x) are the self-consistent electric
and magnetic fields generated by the charged particles, and we have chosen units such
that the mass and charge of each particle, as well as the speed of light, are normalized
to one.

Under the assumption of spherically-symmetric initial data, it is well-known [9,10]
that solutions of (RVM) exist and remain spherically-symmetric for all time. Addition-
ally, the corresponding magnetic field is constant (and equal to zero for finite energy
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solutions), and therefore (RVM) reduces to the relativistic Vlasov-Poisson system:

∂tf+ p̂ ·∇xf+E ·∇pf = 0

E(t,x) =

∫
R3

x−y
|x−y|3

ρ(t,y) dy.

 (RVP)

It should be noted that global existence of solutions to (RVM) without spherically-
symmetric initial data remains an extremely challenging, unsolved question - see [4]
for background on the Cauchy problem for (RVM). Here, we also consider the Cauchy
problem and therefore require given initial data

f(0,x,p) =f0(x,p)≥0

that is spherically-symmetric. Because of this symmetry, no initial field values are
needed to complete the description of the system.

In the present paper, we prove the existence of spherically-symmetric solutions of
(RVP) (or, equivalently, of (RVM)) which give rise to charge densities and electric fields
that become arbitrarily large at some finite time, even if initially they are chosen to
be arbitrarily small. We prove two versions of this result. More specifically, our first
theorem shows that one may construct solutions whose density and field are initially as
small as desired, but which become as large as desired at some later time.

Theorem 1.1. For any constants C1,C2>0 there exists a smooth, spherically-
symmetric solution of (RVP) and (RVM) such that

‖ρ(0)‖∞, ‖E(0)‖∞≤C1

but for some time T >0,

‖ρ(T )‖∞, ‖E(T )‖∞≥C2.

The next main theorem shows that one may construct solutions possessing any
desired mass, but whose density and field become arbitrarily large at any given time.

Theorem 1.2. For any constants C1,C2>0 and any T >0 there exists a smooth,
spherically-symmetric solution of (RVP) and (RVM) such that

M =

∫∫
R6

f0(x,p) dpdx=C1

and

‖ρ(T )‖∞, ‖E(T )‖∞≥C2.

These results are somewhat surprising as the arbitrarily large density and field
values that can arise at any prescribed time seem to contradict the general intuition
that spherically-symmetric solutions are among the most well-behaved of any solu-
tions launched by the system. In particular, Theorem 1.2 complements a previously-
established decay theorem [10], which states that the density and field generated by any
spherically-symmetric solution of (RVP) must obey sharp asymptotic decay estimates
for t suitably large. Namely, Horst proves that there is C>0 and T >0 sufficiently large
such that

‖ρ(t)‖∞≤Ct−2, ‖E(t)‖∞≤Ct−3
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for all t≥T . Our second theorem, on the other hand, demonstrates that the time
needed for solutions to transition from their intermediate asymptotic behavior, during
which they may attain large values, to their final asymptotic behavior can be made
as large as one desires, even if the total mass is taken to be small. In addition to
Horst, other authors have studied the time asymptotic behavior of (RVP), (RVM),
and related kinetic models of plasma dynamics. In this direction, we mention the
papers [1, 2, 5–8,11,12,14–16].

Originally inspired by [13], we previously proved [3] analogous versions of these
theorems for the classical limit (i.e., as the speed of light c→∞) of (RVM), namely
the well-known (non-relativistic) Vlasov-Poisson system. With the introduction of rel-
ativistic velocities - and hence a uniform velocity bound - the physical nature of the
problem is fundamentally different, and particle velocities can no longer be taken arbi-
trarily large. However, we develop new energy estimates along characteristics (Lemma
2.1) that express the particle trajectories in terms of their relativistic free-streaming
counterparts, and thus utilize a novel argument within the proof of Theorems 1.1 and
1.2.

We conclude this introduction by rewriting the spherically-symmetric, relativistic
Vlasov-Maxwell system in spherical coordinates. Defining the spatial radius, radial
velocity, and square of the angular momentum by

r= |x|, w=
x ·p
r
, `= |x×p|2, (1.3)

the particle distribution may be written as f =f(t,r,w,`) and satisfies the reduced
Vlasov equation

∂tf+
w√

1+w2 +`r−2
∂rf+

(
`

r3
√

1+w2 +`r−2
+
m(t,r)

r2

)
∂wf = 0 (1.4)

where

m(t,r) = 4π

∫ r

0

s2ρ(t,s) ds (1.5)

and

ρ(t,r) =
π

r2

∫ ∞
0

∫ ∞
−∞

f(t,r,w,`) dw d`. (1.6)

The electric field is given by the expression

E(t,x) =
m(t,r)

r2
x

r
. (1.7)

As previously mentioned, the magnetic field can be taken to be identically zero, and the
current is not required to describe the system. Finally, the total mass can be expressed
as

M = 4π2

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

f0(r,w,`) d`dwdr.

Whenever necessary, we will abuse notation so as to use both Cartesian and angular
coordinates to refer to functions; for instance the particle density f will be written both
as f(t,x,p) and f(t,r,w,`) when needed.
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The forward characteristics of the Vlasov equation (1.4) are the solutions of

Ṙ(s) =
W(s)√

1+W(s)2 +L(s)R(s)−2
,

Ẇ(s) =
L(s)

R(s)3
√

1+W(s)2 +L(s)R(s)−2
+
m(s,R(s))

R(s)2
,

L̇(s) = 0.


(1.8)

for s≥0, subject to the initial conditions

R(0) = r, W(0) =w, L(0) = `. (1.9)

In particular, because the angular momentum of particles is conserved in time on the
support of f(t), we have L(s) = ` for every s≥0. Throughout, we will estimate particle
behavior on the support of f , and thus for convenience we define for all t≥0

S(t) ={(r,w,`) :f(t,r,w,`)>0}

so that, in particular

S(0) ={(r,w,`) :f0(r,w,`)>0}.

The remainder of the paper is structured as follows. The proofs of Theorems 1.1 and
1.2 are contained within Section 3, while Section 2 is devoted to an important lemma
that is crucial to understanding the behavior of the particle characteristics. Additionally,
we remark that a theorem similar to these, but utilizing initial data for (RVM) that are
not spherically-symmetric, can also be established using our methods. In particular, if
one chooses the same spherically-symmetric initial data that we construct in the proofs
of the aforementioned theorems, but does so only within a ball B around the origin,
the corresponding solution of (RVM) will remain spherically-symmetric in the region of
influence Λ(B) of the ball. Provided the radius of B is sufficiently large, our arguments
can be applied to show that the solution concentrates before the particles originating in
B leave the region Λ(B) or interact with particles originating outside of B. Hence, our
conclusions remain valid for these non-symmetric data as well. Throughout the paper
C will represent a constant that may change from line to line, but when necessary to
denote a certain constant, we will distinguish this value with a subscript, e.g. C0.

2. Behavior of the characteristics
We first study the behavior of the characteristic system (1.8) and relate the solutions

to their initial positions and momenta. In particular, we use the convex nature of particle
characteristics to estimate both their minimal value and the corresponding time at which
it is achieved.

Lemma 2.1. Let r,`>0 and w<0 be given, let (R(t),W(t),`) satisfy (1.8) and (1.9)
for all t≥0, and define

D= `+Mr
√

1+w2 +`r−2.

Then, we have the following:
(1) There exists a unique T0>0 such that

W(t)<0 for t∈ [0,T0),

W(T0) = 0, and

W(t)>0 for t∈ (T0,∞).
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(2) Further, T0 satisfies the bounds

r

(
1−
√

D

r2w2 +D

)
≤T0≤

−wr3
√

1+w2 +`r−2

`
.

(3) Define

R−= r

√
`

r2w2 +`
(2.1)

and

R+ = r

√
D

r2w2 +D
. (2.2)

Then,

R−≤R(T0)≤R+.

(4) For all t∈ [0,T0], we have

W(t)2 +`R(t)−2≤w2 +`r−2 (2.3)

(5) For all t∈ [0,T0], we have

R(t)2≤
(
r− |w|√

1+w2 +`r−2
t

)2

+
D

r2(1+w2 +`r−2)
t2. (2.4)

Proof. To begin, define

T0 = sup{t≥0 :W(t)≤0}

and note that w<0 implies T0>0. In addition, because

Ṙ(t) =
W(t)√

1+W(t)2 +`R(t)−2
≤0

on [0,T0], we have

R(t)≤ r for all t∈ [0,T0]. (2.5)

We first establish energy estimates on [0,T0]. Taking the derivative of the particle
kinetic energy along characteristics, a brief calculation yields

d

dt

√
1+W(t)2 +`R(t)−2 =m(t,R(t))R(t)−2

W(t)√
1+W(t)2 +`R(t)−2

.

Since 0≤m(t,R(t))≤M and W(t)≤0, we find for t∈ [0,T0] both

d

dt

√
1+W(t)2 +`R(t)−2≤0 (2.6)

and

d

dt

√
1+W(t)2 +`R(t)−2≥MR(t)−2Ṙ(t). (2.7)
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From (2.6), the particle kinetic energy is decreasing on this interval and hence√
1+W(t)2 +`R(t)−2≤

√
1+w2 +`r−2

for all t∈ [0,T0], which establishes (2.3). Additionally, evaluating (2.3) at t=T0 and
using W(T0) = 0 produces R(T0)≥R− with R− given by (2.1).

Returning to (2.7), this can be rewritten as

d

dt

(√
1+W(t)2 +`R(t)−2 +MR(t)−1

)
≥0

and upon integrating over [0,t], yields√
1+W(t)2 +`R(t)−2−

√
1+w2 +`r−2≥−M

(
R(t)−1−r−1

)
.

Multiplying both sides of the inequality by the conjugate and using (2.3), we arrive at

W(t)2−w2 +`(R(t)−2−r−2)≥−2M
√

1+w2 +`r−2
(
R(t)−1−r−1

)
.

By (2.5) it follows that R(t)−1 +r−1≥2r−1, and thus we find

W(t)2≥w2−`
(
R(t)−2−r−2

)
−2M

√
1+w2 +`r−2

(
R(t)−1−r−1

)
=w2−

(
`+

2M
√

1+w2 +`r−2

R(t)−1 +r−1

)(
R(t)−2−r−2

)
≥w2−(`+Mr

√
1+w2 +`r−2)

(
R(t)−2−r−2

)
=w2−D

(
R(t)−2−r−2

)
for all t∈ [0,T0]. Evaluating this inequality at t=T0 and rearranging yields R(T0)≤R+

with R+ given by (2.2).
Returning to the lower bound for W(t)2 and using (2.3) within (1.8), we find for

t∈ [0,T0]

|Ṙ(t)|2 =
W(t)2

1+W(t)2 +`R(t)−2

≥
w2−D

(
R(t)−2−r−2

)
1+w2 +`r−2

.

Let

A=
w2 +Dr−2

1+w2 +`r−2
and B=

D

1+w2 +`r−2

then multiply this inequality by R(t)2 to find∣∣∣∣12 d

dt

(
R(t)2

)∣∣∣∣2≥AR(t)2−B. (2.8)

If

R(t)>

√
B

A
=

√
D

w2 +Dr−2
=R+ (2.9)
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then the right side of (2.8) is positive, and because Ṙ(t)≤0 this yields

− 1
2
d
dt |R(t)|2√

AR(t)2−B
≥1

and thus

d

dt

√
AR(t)2−B≤−A

for t∈ [0,T0]. Integrating over [0,t] and rearranging terms, we find

R(t)2≤ r2−2t
√
Ar2−B+At2 =

(
r−
√
A−Br−2t

)2
+Br−2t2,

which becomes (2.4) upon inserting the formulas for A and B. Thus, combining this
estimate with (2.9) we find

R(t)2≤max

{
R2

+,

(
r− |w|√

1+w2 +`r−2
t

)2

+
D

r2(1+w2 +`r−2)
t2

}

for all t∈ [0,T0]. Finally, the upper bound in this estimate arising from condition (2.9)
can be removed by noting that R2

+ = D
w2+Dr−2 is, in fact, the minimum of the parabola

in t, which occurs at the time

tmin=
r|w|

w2 +Dr−2

√
1+w2 +`r−2.

This implies

R2
+≤

(
r− |w|√

1+w2 +`r−2
t

)2

+
D

r2(1+w2 +`r−2)
t2

for all t∈ [0,T0] and (2.4) follows.
Next, we establish the lower bound on T0. A brief calculation shows that R̈(t)≥0,

which implies

Ṙ(t)≥Ṙ(0) =
w√

1+w2 +`r−2

for t∈ [0,T0]. Integrating over [0,T0] produces R(T0)−r≥ w√
1+w2+`r−2

T0 and since w<0

we find

T0≥
√

1+w2 +`r−2

w
(R(T0)−r)

≥
√

1+w2 +`r−2

w
(R+−r)

= r

√
1+w2 +`r−2

|w|

(
1−
√

D

r2w2 +D

)

>r

(
1−
√

D

r2w2 +D

)
.
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Of course, since the right side is nonnegative, this bound further implies T0>0.
Finally, we show that T0<∞. For the sake of contradiction, assume T0 =∞. Then,

by (2.5) we have R(t)≤ r for all t≥0. Using m(t,R(t))≥0 and (2.3), we find

Ẇ(t)≥ `

R(t)3
√

1+W(t)2 +`R(t)−2
≥ `

r3
√

1+w2 +`r−2

and hence for all t≥0

W(t)≥ `

r3
√

1+w2 +`r−2
t+w.

Taking t> −wr
3
√
1+w2+`r−2

` >0 impliesW(t)>0, thus contradicting the assumption that
T0 =∞, and we conclude that T0 must be finite. In particular, the upper bound

T0≤
−wr3

√
1+w2 +`r−2

`

follows from this argument. The positivity of Ẇ(t) for all t>0 further implies the
uniqueness of T0 and the proof is complete.

With the characteristics well-understood, our other lemma provides lower bounds
on the charge density and electric field in terms of the total mass and the position of
the particle on the support of f0 that is furthest from the origin. The proof is identical
to that of the non-relativistic system and can be found in [3].

Lemma 2.2. Let f(t,r,w,`) be a spherically-symmetric solution of
(RVM) with associated charge density ρ(t,r) and electric field E(t,x), and let
(R(t,0,r,w,`),W(t,0,r,w,`),L(t,0,r,w,`)) be a characteristic solution of (1.8). If at
some T ≥0 we have

sup
(r,w,l)∈S(0)

R(T,0,r,w,`)≤B,

then

‖ρ(T )‖∞≥
3‖f‖1
4πB3

and

‖E(T )‖∞≥
‖f‖1
B2

.

3. Proofs of the main results

3.1. Initial data. We will use differing initial datum, but with similar structure,
to prove each of the main results. Let H : [0,∞)→ [0,∞) be any function satisfying∫

R3

H(|u|2) du=
3

4π

with supp(H)⊂ [0,1]. We rescale this function for any ε∈ (0,1) by defining

Hε(|u|2) =
1

ε3
H

(
|u|2

ε2

)
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so that ∫
R3

Hε(|u|2) du=
3

4π

and supp(Hε)⊂ [0,ε2]. Further, for every ε>0, x,p∈R3, and a0>0 define

hε(x,p) =Hε

(∣∣∣ x
ε2

+a0p
∣∣∣2) .

It follows that ∫
R3

hε(x,p) dp=
3

4πa30

for every x∈R3. We also choose a cut-off function φ∈C∞ ((0,∞);[0,1]) satisfying

φ(r) = 0 for r 6∈ [a0−ε3,a0 +ε3],
φ(r) = 1 for r∈ (a0− 1

2ε
3,a0 + 1

2ε
3).

}
With this, we may define the class of initial data within the proofs of Theorems 1.1 and
1.2. For any a0>0, ε>0, and M>0, we let

f̊1(x,p) =hε(x,p)φ(|x|) (3.1)

and

f̊2(x,p) =M
f̊1(x,p)

‖f̊1‖1
. (3.2)

Finally, we take f0 = f̊1 in the proof of Theorem 1.1, and f0 = f̊2 in the proof of Theorem
1.2. Further, we note that the total mass will be chosen in the proof of Theorem 1.1 via
the initial data, while this quantity is given within Theorem 1.2.

Though we will define the parameters a0, ε, and M differently within each proof,
the data will share some common features. From the upper bound on the support of
Hε, we have on the support of f0(x,p) the inequality∣∣∣ x

ε2
+a0p

∣∣∣2<ε2.
Using the angular coordinates of (1.3) and the identity |p|2 =w2 +`r−2 this becomes( r

ε2
+a0w

)2
+`
(a0
r

)2
<ε2 (3.3)

for every (r,w,`)∈S(0). Additionally, we have

a0−ε3<r<a0 +ε3 (3.4)

on the support of f0. Upon performing a translation, we find∫
R3

f0(x,p) dp=

(∫
R3

hε(x,p) dp

)
φ(|x|) =

3

4πa30
φ(|x|),
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and it follows that the initial charge density ρ0 =
∫
f0dp satisfies

ρ0(r)≤ 3

4πa30
, ∀r>0 (3.5)

and

ρ0(r) =
3

4πa30
, for r∈

[
a0−

1

2
ε3,a0 +

1

2
ε3
]
. (3.6)

Notice that (3.3) also implies

`<

(
r

a0

)2

ε2 (3.7)

on S(0). Additionally, the support condition (3.3) further yields
∣∣r+ε2a0w

∣∣<ε3 and
thus (3.4) implies

− 1

ε2
− 2ε

a0
<w<− 1

ε2
+

2ε

a0

on S(0). Hence, all particles possess an initial radial velocity belonging to this interval.

Finally, we remark that since these initial data, f̊1 and f̊2 are spherically-symmetric,
they must give rise to global-in-time, spherically-symmetric solutions of (RVM).

3.2. Proof of Theorem 1.1. To prove the first result, the parameter a0 will be
fixed and we may choose T =O(a0) and ε sufficiently small so that particles are quickly
concentrated near the origin and obtain radial positions as small as one desires, thereby
causing the density and field to become arbitrarily large at time T >0.

Proof. Let C1,C2>0 be given, define the constant

a0 =

(
32

C1

)1/3

and set

T =a0−9ε2.

Throughout, we will take ε∈ (0,1) sufficiently small, and in particular, choose ε< a0
9 to

guarantee T >0.
With this, (3.4) and (3.5) imply that the total mass obeys the following upper

bound for ε sufficiently small

M =

∫
R3

ρ0(x) dx= 4π

∫ a0+ε
3

a0−ε3
ρ0(r)r2dr

≤ 1

a30

[
(a0 +ε3)3−(a0−ε3)3

]
=

6ε3

a0
+

2ε9

a30

≤ 8ε3

a0
,
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while (3.6) implies that M has the following lower bound

M ≥4π

∫ a0+
1
2 ε

3

a0− 1
2 ε

3

ρ0(r)r2dr

≥ 1

a30

[
(a0 +

1

2
ε3)3−(a0−

1

2
ε3)3

]
=

3ε3

a0
+

ε9

4a30

≥ 3ε3

a0

for ε sufficiently small. Thus, we find

3a−10 ε3≤M ≤8a−10 ε3. (3.8)

On S(0), taking ε sufficiently small further implies

1

2
a0<a0−ε3<r<a0 +ε3<

3

2
a0

−3

2
ε−2<−ε−2− 2ε

a0
<w<−ε−2 +

2ε

a0
<−1

2
ε−2.

 (3.9)

Additionally, (3.9) combined with (3.7) implies a uniform upper bound on the angular
momentum on S(0), namely

`<

(
3

2

)2

ε2≤1 (3.10)

for ε sufficiently small.
To prove the conclusions of the theorem at time zero, we first notice that by (3.5)

‖ρ(0)‖∞≤
3

4πa30
≤C1.

Similarly, due to (1.7) and (3.4) the field satisfies |E(0,x)|= 0 for |x|<a0−ε3, while for
|x|>a0 +ε3

|E(0,x)|≤M
r2
≤M
a20
≤ 8ε3

a30
≤ 8

a30
.

Finally, for a0−ε3≤|x|≤a0 +ε3, we have

|E(0,x)|≤M
r2
≤ M(

1
2a0
)2 =

4M

a20
≤ 32ε3

a30
≤ 32

a30
.

Hence, we find

‖E(0)‖∞≤
32

a30
≤C1.

Therefore, we merely need to establish the contrasting inequalities at time T to complete
the proof.
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Since the trajectories of particle positions are convex, they must each attain a
minimum, and we use this construction to create a uniform lower bound over S(0) on
the time until particles attain their minima. In order to exclude those particles in S(0)
with vanishing angular momentum, we define

S+ ={(r,w,`)∈S(0) : `>0}.

Then, using Lemma 2.1, we find for each (r,w,`)∈S+ a time T0(r,w,`) such that

T0>r

(
1−
√

D

r2w2 +D

)
≥ r−

√
D

|w|

where

D= `+Mr
√

1+w2 +`r−2>0,

and

Ṙ(t)≤0 for t∈ [0,T0].

Using (3.8), (3.9), and (3.10) we find

D≤1+
8ε3

a0

(
3

2
a0

)√
1+

9

4
ε−4 +

4

a20
≤1+Cε≤4 (3.11)

for ε sufficiently small. Estimating on S+, we use (3.9) in order to arrive at

T0>r−
√
D

|w|
≥ (a0−ε3)−4ε2>a0−9ε2 =T

for ε sufficiently small.
Therefore, T ∈ [0,T0) for every (r,w,`)∈S+ and we apply Lemma 2.2 to find

R(T )2≤
(
r− |w|√

1+w2 +`r−2
T

)2

+
D

r2(1+w2 +`r−2)
T 2 =: I+II.

Defining g(x) = 1−x
1+2x and noting that g′(0) =−3 and g′′(x)>0, we find

|w|√
1+w2 +`r−2

≥
1
ε2 −

2
a0
ε√

1+
(

1
ε2 + 2

a0
ε
)2

+
(
1
2a0
)−2

=
1− 2

a0
ε3√(

1+ 2
a0
ε3
)2

+Cε4

≥
1− 2

a0
ε3√

1+ 8
a0
ε3 + 16

a20
ε6

=
1− 2

a0
ε3

1+ 4
a0
ε3
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=g

(
2

a0
ε3
)

≥g(0)+g′(0)
2

a0
ε3

= 1− 6

a0
ε3

for ε sufficiently small. Because of this and T =a0−9ε2<a0−ε3≤ r, it follows that

I≤
(
r−
(

1− 6

a0
ε3
)
T

)2

≤
(
a0 +ε3− [a0−9ε2]+

6

a0
ε3[a0−9ε2]

)2

=

(
9ε2 +7ε3− 54

a0
ε5
)2

≤336ε4

for ε sufficiently small. Additionally, using (3.9), (3.11), and 0<T ≤a0 it follows that

II≤ D

r2w2
T 2≤ 4(

1
2a0
)2( 1

2ε
−2
)2 a20≤64ε4.

Combining these esimates yields

R(T )2≤400ε4.

Since this provides a uniform bound on R(T ) over the set S+, we take the supremum
over all such triples to find

sup
(r,w,`)∈S(0)

R(T,0,r,w,`) = sup
(r,w,`)∈S+

R(T,0,r,w,`)≤20ε2.

Finally, invoking Lemma 2.2, the upper bound on spatial characteristics implies a
lower bound on the charge density, and therefore using (3.8)

‖ρ(T )‖∞≥
3M

4π (20ε2)
3 =

C

a0ε3
≥C2

for ε sufficiently small. The same lemma also provides a lower bound on the field so
that

‖E(T )‖∞≥
M

(20ε2)2
=

C

a0ε
≥C2

for ε sufficiently small, and the proof is complete.

3.3. Proof of Theorem 1.2. Unlike the first result, T >0 will be given here
and we may choose a0 sufficiently large and ε sufficiently small so that particles are far
enough from the origin that the initial large momenta they experience will concentrate
them near r= 0 only at the given time T . As before, this behavior implies that the
density and field become arbitrarily large at this time.
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Proof. Let C1,C2>0 and T >0 be given, define the constant

C0 =
√
C1T ,

and set

M =C1 and a0 =T +16C0ε.

As before, we will take ε∈ (0,1) sufficiently small throughout the proof. Since a0>T ,
we find the useful inequalities

1

2
a0<a0−ε3<r<a0 +ε3<

3

2
a0

−3

2
ε−2<− 1

ε2
− 2

T
ε<w<− 1

ε2
+

2

T
ε<−1

2
ε−2

 (3.12)

on S(0) and for ε sufficiently small. Additionally, (3.12) combined with (3.7) implies a
uniform upper bound on the angular momentum on S(0) for ε sufficiently small, namely

`<

(
a0 +ε3

a0

)2

ε2≤1. (3.13)

As in the proof of Theorem 1.1, we must exclude those particles in S(0) with
vanishing angular momentum, and thus we again let

S+ ={(r,w,`)∈S(0) : `>0}

and estimate on S+. Because the enclosed mass satisfies 0≤m(t,r)≤M =C1 for all
t,r≥0, we use Lemma 2.1 to find for each (r,w,`)∈S+ a time T0(r,w,`) such that

T0>r

(
1−
√

D

r2w2 +D

)
≥ r−

√
D

|w|

where

D= `+C1r
√

1+w2 +`r−2>0,

and

Ṙ(t)≤0 for t∈ [0,T0].

Using (3.12) and (3.13) we find for ε sufficiently small

D≤1+C1

(
a0 +ε3

)√
1+

9

4
ε−4 +

(
1

2
a0

)−2
≤1+C1

(
a0 +ε3

)(
2ε−2

)
≤1+C1

(
T +16C0ε+ε3

)(
2ε−2

)
≤4C2

0ε
−2.

Next, we use (3.12) to produce a lower bound on T0 and this yields

T0>r−
√
D

|w|
≥a0−ε3−

2C0ε
−1

1
2ε
−2 =a0−ε3−4C0ε=T +12C0ε−ε3≥T
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for ε sufficiently small. Therefore, T ∈ [0,T0) for every (r,w,`)∈S+ and we apply Lemma
2.1 to find

R(T )2≤
(
r− |w|√

1+w2 +`r−2
T

)2

+
D

r2(1+w2 +`r−2)
T 2 =: I+II.

Defining g(x) = 1−x
1+2x and noting that g′(0) =−3 and g′′(x)>0, we find

|w|√
1+w2 +`r−2

≥
1
ε2 −

2
T ε√

1+
(

1
ε2 + 2

T ε
)2

+
(
1
2a0
)−2

=
1− 2

T ε
3√(

1+ 2
T ε

3
)2

+Cε4

≥
1− 2

T ε
3√

1+ 8
T ε

3 + 16
T 2 ε6

=
1− 2

T ε
3

1+ 4
T ε

3

=g

(
2

T
ε3
)

≥g(0)+g′(0)
2

T
ε3

= 1− 6

T
ε3

for ε sufficiently small. Because of this and T =a0−16C0ε<a0−ε3<r, it follows that

I≤
(
r−
(

1− 6

T
ε3
)
T

)2

≤
(
a0 +ε3−T +6ε3

)2
=
(
16C0ε+7ε3

)2≤336C2
0ε

2

for ε sufficiently small. Additionally, using (3.9) and 0<T ≤a0 it follows that

II≤ D

r2w2
T 2≤ 4C2

0ε
−2(

1
2a0
)2( 1

2ε
−2
)2 a20≤64C2

0ε
2.

Combining these esimates yields

R(T )2≤400C2
0ε

2.

Since this provides a uniform bound on R(T ) over the set S+, we take the supremum
over all such triples to find

sup
(r,w,`)∈S(0)

R(T,0,r,w,`) = sup
(r,w,`)∈S+

R(T,0,r,w,`)≤20C0ε.

Finally, invoking Lemma 2.2, the upper bound on spatial characteristics implies a
lower bound on the charge density and therefore

‖ρ(T )‖∞≥
3C1

4π (20C0ε)
3 =

C

ε3
≥C2
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for ε sufficiently small. The same lemma also provides a lower bound on the field so
that

‖E(T )‖∞≥
C1

(20C0ε)2
=
C

ε2
≥C2

for ε sufficiently small, and the proof is complete.
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[2] J. Batt, M. Kunze, and G. Rein, On the asymptotic behavior of a one–dimensional, monocharged
plasma and a rescaling method, Adv. Differential Equ., 3:271–292, 1998. 1

[3] J. Ben-Artzi, S. Calogero, and S. Pankavich, Arbitrarily large solutions of the Vlasov–Poisson
system, SIAM J. Math. Anal., 50(4):4311–4326, 2018. 1, 2

[4] R. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, 1996. 1
[5] R. Glassey, S. Pankavich, and J. Schaeffer, Decay in time for a one–dimensional, two component

plasma, Math. Meth Appl. Sci., 31:2115–2132, 2008. 1
[6] R. Glassey, S. Pankavich, and J. Schaeffer, On long–time behavior of monocharged and neutral

plasmas in one and one–half dimensions, Kinet. Relat. Models, 2:465–488, 2009. 1
[7] R. Glassey, S. Pankavich, and J. Schaeffer, Large time behavior of the relativistic Vlasov–Maxwell

system in low space dimension, Differ. Integral Equ., 23:61–77, 2010. 1
[8] R. Glassey, S. Pankavich, and J. Schaeffer, Time decay for solutions to the one–dimensional

equations of plasma dynamics, Quart. Appl. Math., 68:135–141, 2010. 1
[9] R. Glassey, and J. Schaeffer, On symmetric solutions of the relativistic Vlasov–Poisson system,

Comm. Math. Phys., 101(4):459–473, 1985. 1
[10] E. Horst, Symmetric plasmas and their decay, Comm. Math. Phys., 126:613–633, 1990. 1, 1
[11] R. Illner and G. Rein, Time decay of the solutions of the Vlasov–Poisson system in the plasma

physical case, Math. Meth. Appl. Sci., 19:1409–1413, 1996. 1
[12] C. Mouhot and C. Villani, On Landau damping, Acta Math., 207(1):29–201, 2011. 1
[13] G. Rein and L. Taegert, Gravitational collapse and the Vlasov–Poisson system, Ann. Henri
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