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AN EQUATION-FREE APPROACH FOR
SECOND ORDER MULTISCALE HYPERBOLIC PROBLEMS IN

NON-DIVERGENCE FORM∗

DOGHONAY ARJMAND† AND GUNILLA KREISS‡

Abstract. The present study concerns the numerical homogenization of second order hyperbolic
equations in non-divergence form, where the model problem includes a rapidly oscillating coefficient
function. These small scales influence the large scale behavior, hence their effects should be accurately
modelled in a numerical simulation. A direct numerical simulation is prohibitively expensive since a
minimum of two points per wavelength are needed to resolve the small scales. A multiscale method,
under the equation-free methodology, is proposed to approximate the coarse scale behaviour of the
exact solution at a cost independent of the small scales in the problem. We prove convergence rates for
the upscaled quantities in one as well as in multi-dimensional periodic settings. Moreover, numerical
results in one and two dimensions are provided to support the theory.
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1. Introduction
Various engineering applications e.g., from seismology, medical imaging, or material

science require simulations of the wave equation in heterogeneous media. In general,
the model problems may be in divergence or non-divergence form having different ho-
mogenized limits (as the wavelength of the heterogeneities tends to zero), and hence
multiscale methods need to be developed depending on the structure of the problem.
Multiscale methods for the second order wave equation in divergence form have been
developed and analyzed in the past, see e.g., [3,8,9,16]. In the present work, we consider
a second-order scalar wave equation in non-divergence form

∂ttu
ε(t,x) =

d∑
i,j=1

Aεij(x)∂xixju
ε(t,x)+f(t,x), in (0,T ]×Ω

uε(0,x) =g(x), ∂tu
ε(0,x) =h(x), on {t= 0}×Ω,

uε(t,x) = 0, on ∂Ω,

(1.1)

where Ω is a bounded open subset in Rd with |Ω|=O(1), and Aε is a bounded symmetric
positive-definite matrix function in Rd×d such that for every ζ ∈Rd

c1|ζ|2≤ sup
x∈Ω

ζTAε(x)ζ≤ c2 |ζ|2 , and Aεij =Aεji. (1.2)

The homogeneous Dirichlet boundary condition in (1.1) is assumed only for simplicity
and other well-posed boundary conditions can be treated similarly. The parameter ε�1
represents the wavelength of the small scale variations in the media, and T =O(1) is a
constant independent of ε.
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When ε�1, a direct numerical approximation of (1.1) is very expensive since the
rapid variations in Aε must be represented over a much larger computational domain.
In such a case, the tendency is to instead look for an effective or a homogenized solution
u0 which does not depend on the small scale parameter ε. Analytically, this is related
to the theory of homogenization, see e.g., [12, 13, 26], where the goal is to replace the
oscillatory coefficient Aε by a slowly varying coefficient A0 and solve for the correspond-
ing homogenized solution u0 at a cost independent of ε. Mathematically speaking, the
homogenized solution u0 is obtained in the limit u0 = limε→0u

ε (this convergence is
understood as weakly-* in L∞(0,T ;L2(Ω))), see e.g., [12, 13]. For example, when the
medium is periodic such that Aε(x) =A(x/ε) where A is a Y := [0,1]d-periodic function,
uε converges to a limit solution u0 (as ε→0) which solves∂ttu

0(t,x) =

d∑
i,j=1

A0
ij∂xixju

0(t,x)+f(t,x), in (0,T ]×Ω

u0(0,x) =g(x), ∂tu
0(0,x) =h(x), on {t= 0}×Ω.

(1.3)

Here the homogenized coefficient A0 is a constant matrix given by

A0 =

∫
Y

A(y)ρ(y)dy, (1.4)

and ρ solves the equation−
d∑

i,j=1

∂yiyj (Aij(y)ρ(y)) = 0, in Y = [0,1]d,∫
Y
ρ(y)dy = 1, ρ is Y -periodic.

(1.5)

Remark 1.1. When the main problem (1.1) is in divergence form, i.e.,{
∂ttv

ε(t,x) =∇·(Aε(x)∇vε(t,x))+f(t,x), in (0,T ]×Ω
vε(0,x) =g(x), ∂tv

ε(0,x) =h(x), on {t= 0}×Ω,
(1.6)

the corresponding homogenized equation reads as{
∂ttv

0(t,x) =∇·
(
A0
div(x)∇v0(t,x)

)
+f(t,x), in (0,T ]×Ω

v0(0,x) =g(x), ∂tv
0(0,x) =h(x), on {t= 0}×Ω.

(1.7)

If the medium is additionally periodic such that Aε(x) =A(x/ε) for a Y -periodic matrix
function A, the homogenized coefficient A0

div is a constant matrix given by

[A0
div]ij =

∫
Y

(
Aij(y)+

d∑
k=1

Aik∂ykχj(y)

)
dy, (1.8)

and {χj}dj=1 are Y -periodic solutions of the following set of cell problems

∇y ·(A(y)∇yχj(y)+A(y)ej) = 0,

∫
Y

χj(y)dy = 0,

where {ej}dj=1 are canonical basis vectors in Rd.
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The main drawback of analytical homogenization is that explicit formulas for the
homogenized matrix A0 are available only in a few academic cases of interest such as
the periodic case (1.4). To treat more realistic scenarios, e.g., where slow and fast
variations (not particularly periodic) are allowed at the same time, several general
purpose multiscale approaches were proposed over the last two decades. Variational
multiscale methods (VMM) due to Hughes et al. [25], multiscale finite element methods
(MsFEM) due to T. Hou et al. [24], heteregeneous multiscale methods (HMM) due to
E and Engquist [14], and the equation-free approach due to Kevrikidis et al. [27] are
among such successful examples. The overall goal behind such strategies is to approx-
imate the solution uε (or u0) with no a priori knowledge about the structure of Aε or
the homogenized coefficient A0. Several multiscale methods have been designed and
analysed under the above-mentioned frameworks. Without being exhaustive, we refer
to [1,7,11,15,21,23,24] for applications to elliptic problems, see [5,9,32] for applications
to parabolic problems, and [3,4,6,8,16] for applications to second order wave equations.
Other alternative approaches are wavelet-based numerical homogenization due to En-
gquist and Runborg [17], and the harmonic coordinate transformations due to Owhadi
et al. [29, 30].

In general, the homogenized limits for the wave equation in non-divergence and
divergence forms are different from each other, cf. (1.3) and (1.7). Multiscale methods
are typically designed based on some assumptions about the form of the homogenized
equation (although homogenized parameters may not be known explicitly). This makes
the multiscale modelling of the the wave equation in divergence and non-divergence form
differ from each other. Moreover, the analysis for the multiscale methods for the wave
equation in divergence form typically exploits the symmetry properties of the operator
−∇·(Aε∇), which is missing for problems in non-divergence form.

In the present article, we develop and analyse an equation-free type multiscale
approach for a numerical approximation of the wave Equation (1.1). The general idea
behind the equation-free approach (EFA) is to assume a coarse scale model of the form
∂ttU =F (U,∇U,∇2U,...), and compute (upscale) F locally by simulating the original
multiscale problem in small domains with a size comparable to the size of the smallest
scale in the PDE. While doing this, the microscopic problems are also provided with the
coarse scale data, i.e.,U,∇U,∇2U,.... Therefore, the coupling between the microscale
and the macroscale model should be understood as a two-way coupling. The efficiency
of the method comes from the fact that, multiscale problems of the form (1.1) are
solved only in small temporal and spatial domains, while the method still retains a
good approximation of the overall macroscopic behavior. The main requirement for
the EFA is the assumption of scale separation; namely that the wavelength, ε�1, of
the microscopic variations is much smaller than the size of the computational geometry
(which is assumed to be O(1) in this paper). Moreover, the generality of the method
is due to the fact that no knowledge (other than the assumption of scale separation)
about the properties of the media, or the precise value of the small scale parameter ε
are assumed.

Although the equation-free approach has been developed in the context of numerical
homogenization for parabolic problems and hyperbolic conservation laws, see e.g. [31–
33], not much of attention has been given to applications to the second order wave
equation. Conceptually, the method developed in the present work is similar to the
HMM-based multiscale numerical methods [3, 8, 16], for problems in divergence form,
but with a few changes in the way the micro- and the macromodels are coupled, the
form of the macroscopic and microscopic equations, and the upscaling procedure, see
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Section 2. From an analysis point of view, the previous theoretical results rely on the
symmetry property of the operator −∇·Aε∇ and hence the previous theories can not
be directly used for the wave Equation (1.1) due to the breakdown of the symmetry of
the operator. This paper aims at generalizing the previous analysis, which is valid only
for symmetric operators, to non-symmetric operators of type (1.1). For the analysis,
we consider a periodic setting, where Aεij(x) = δija

ε and aε(x) =a(x/ε), where a is a
smooth Y -periodic function. An analysis in one and higher (d= 2,3) dimensions is
presented. As the one dimensional theory is much simpler than the one for higher
dimensions, the former is presented first. The ideas are then extrapolated and extended
to higher dimensions. The periodicity assumption is used only to simplify the theory
but the method itself is numerically shown to perform equally well for more complicated
coefficients (e.g. almost periodic functions, and locally-periodic functions).

This paper is structured as follows. In Section 2, the multiscale method is presented.
In Section 3, a few utility results are introduced. Section 4 includes the main result
of this article, which is an analysis for the upscaling error. In a subsequent section,
an error estimate for the difference between the fully-discrete numerical solution, see
Remark 2.4, and the exact homogenised solution is given. The last section of this article
contains numerical results for one and two dimensional problems.

2. The multiscale method
The main components of the multiscale strategy proposed here are a macro- and

a micromodel. The macromodel describes the coarse scale part of the solution uε to
problem (1.1). The macromodel reads as

Macromodel:

∂ttU(t,x)−F (x,∇2U) =f(x), in (0,T ]×Ω
U(0,x) =g(x), ∂tU(0,x) =h(x), on {t= 0}×Ω
U(t,x) = 0 on [0,T ]×∂Ω.

(2.1)

Here U is the macroscopic solution, F is the missing quantity in the macromodel, and
∇2U represents all the mixed second-derivatives in d-dimensions. For simplicity, it is
assumed that Ω = [0,L]d. A finite difference discretization of the macro problem (2.1)
gives

Un+1
I = 2UnI −U

n−1
I +∆t2 (FnI +fnI ) . (2.2)

Here I= (i1,i2,. ..,id) is a multi-index, and UnI represents the macroscopic solution at
the point (x=xI ,t= tn), where {xI = I4x}, with 0≤ ij≤Nx, Nx4x=L, and tn=n4t,
with Nt4t=T . Moreover, U0

I =gI , and U1
I is given by

U1
I ≈U(4t,xI)≈U(0,xI)+4t∂tU(0,xI)+

4t2

2
∂ttU(0,xI)

≈gI +4thI +
4t2

2

(
F 0
I (xI ,∇2gI)+fI

)
,

where U(0,x),∂tU(0,x) are directly replaced by the initial data in (2.1), and the term
∂ttU(0,x) is rewritten using the Equation (2.1), which also requires computing F at
time t= 0. To compute the missing quantity FnI in the macro solver (2.2), we solve
the multiscale problem (1.1) over a microscopic box Iτ ×ΩxI ,η, where Iτ = (0,τ/2] and
τ/2 is the final time for the microscopic simulations, and ΩxI ,η :=xI +[−`η,`η]d where

`η≥ η
2 + τ

2

√
|A|∞1, and in practice τ =η=O(ε); see also Remarks 2.1 and 2.3. In other

1The condition `η≥ η
2

+ τ
2

√
|A|∞ is to ensure that the boundary conditions of the micromodel (2.3)

do not have any influence on the interior solution.
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words, we solve

Micromodel:


∂ttu

ε,η(t,x)−
d∑

i,j=1

Aεij(x)∂xixju
ε,η(t,x) = 0, in Iτ ×ΩxI ,η

uε,η(0,x) = û(x), ∂tu
ε,η(0,x) = 0, on {t= 0}×ΩxI ,η,

uε,η− û is periodic on ΩxI ,η,

(2.3)

where û(x) is a quadratic polynomial approximating the coarse scale data UnI , in the
least square sense, at the point xI . The choice of quadratic polynomials for û is to
ensure the consistency, see Definition 2.1, of the microscopic simulations with the current
macroscale data. From a modeling point of view, the issue of consistency is known to
be one of the necessary conditions for the EFA-type algorithms to perform well, see
e.g. [14, 31–33].

Remark 2.1. Note that if τ =η=O(ε), the computational cost of solving the micro
problem (2.3) becomes independent of ε since the solution will contain only few oscilla-
tions, in time and space, within the microscopic domain. Moreover, typical multiscale
numerical methods result in errors of the form (ε/η)e for some e≥1, see e.g. [7, 16],
which motivates the need for the additional constraint η= τ >ε, as otherwise we would
get O(1) errors. For the local averaging we introduce the space Kp,q which consists
of functions K ∈Cq(R) compactly supported in [−1,1], and K(q+1)∈BV (R), where the
derivative is understood in the weak sense andBV is the space of functions with bounded
variations on R, see e.g. [6, 7, 18] for details. Moreover, the parameter p represents the
number of vanishing moments ∫

R
K(t)trdt=

{
1 r= 0,

0 r≤p.

As local averaging takes place in a domain of size η, we consider the scaled kernel

Kη(x) =
1

η
K(x/η).

Finally, the flux FnI is computed by2

FnI :=F (xI ,∇2U(tn)) =

Kτ,η ∗∑
i,j

Aεij∂xixju
ε,η(·,·)

(0,xI), (2.4)

where

(Kτ,η ∗f)(t,x) :=

∫ t+τ/2

t−τ/2

∫
Ωx,η

Kη(x̃−x)Kτ (t̃− t)f(t̃,x̃)dx̃dt̃,

and where in d-dimension, Kη(x) is understood as

Kη(x) =Kη(x1)Kη(x2)·· ·Kη(xd).

This completes all the steps for the EFA solution UnI , solving (2.2), to approximate the
solution u0 of the homogenised Equation (1.3). Moreover, comparing the homogenized

2The dependency of FnI on the second derivative ∇2U comes from the fact that the micro solution
uε,η depends on ∇2U through the initial data.
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Equation (1.3) with the macromodel (2.1), one can see that the numerical solution U
will stay close to the homogenized solution u0 if the upscaled data F , given in (2.4), is
close to the homogenized quantity:

F̂ (x,∇2U) =

d∑
i=1

A0
ij∂xixjU(x). (2.5)

Therefore, the main part of the analysis is to give a bound for the difference |F − F̂ |.
When compared to HMM-type algorithms for the wave equation, cf. [16], the mul-

tiscale algorithm described here has three main differences: 1) the macromodel (2.1)
is of the form ∂tU−F =f , while the macromodel in [16] has the form ∂tU−∇·F =f ,
2) the initial data of the micromodel (2.3) is a second order polynomial while in [16] a
linear polynomial is used as initial data, 3) the upscaling step (2.4) contains a second
derivative of the microscopic solution, while in [16] the first derivative of the micro-
scopic solution is used in the upscaling step. These differences are mainly due to the
fact that the homogenized equation corresponding to multiscale wave equations in non-
divergence form is different from that in divergence form. Moreover, the choice of the
periodic boundary conditions in the micromodel (2.3) is not unique and one may also use
Dirichlet boundary conditions, e.g. uε,η = û, similar to the standard HMM algorithms.

Definition 2.1. The coarse scale data û(x) is called a consistent initial data (up to
O(δ)) for the micro problem (2.3) if

(Kτ,η ∗uε,η)(0,x) = û(x)+O(δ), for all x∈ Iτ ×ωη,

where uε,η solves the micro problem (2.3), and ωη =xI +[−η/2,η/2]d is the interior
region of the microscopic domain ΩxI ,η.

Remark 2.2. Note that in the upscaling step (2.4), we need the values of the
solution for the micro problem (2.3) in the time interval [−τ/2,0). This requires no
additional cost since the symmetry property uε,η(t,x) =uε,η(−t,x) easily follows due to
the condition ∂tu

ε,η(0,x) = 0.

Remark 2.3. Observe that (because of the compact support of the kernel Kη(x−xI)
in xI +[−η/2,η/2]d) the local averaging in the upscaling step (2.4) takes place in an
interior region of ΩxI ,η; namely the region Iτ ×ωη, where ωη =xI +[−η/2,η/2]d. When

`η≥ η
2 + τ

2

√
|A|∞, the solution uε,η to the micro problem (2.3) in the region Iτ ×ωη, is

not affected by the periodic boundary conditions of the micromodel (2.3). This is due
to the finite speed of propagation of waves, see e.g. [19]; i.e., the near boundary waves
do not have enough time to reach the region ωη over the time interval Iτ .

Remark 2.4. In practice, to compute a fully discrete counterpart of the EFA solution
UnI , one needs to discretise the micromodel (2.3), and the integral (2.4). Later in the
analysis, we denote this fully discrete solution by ŨnI . We assume that the micromodel
is solved by a Leapfrog scheme, see Section 5. Moreover, for the analysis (as it is the case
also for the numerical examples in this paper), we assume that a standard trapezoidal
rule is used for the integration in (2.4).

3. Preliminaries
The numerical method developed in the previous section is designed for treating

coefficients satisfying the general conditions (1.2). However, the analysis will be given
only for isotropic material modelled by coefficients of the form Aε(x) =a(x/ε)I, where
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a∈C∞Per(Y ) is a Y -periodic scalar function. In this case, the homogenized coefficient,
from (1.4), is a constant matrix and given by, see e.g. [20],

A0 =a0I, where a0 =

(∫
Y

1

a(y)
dy

)−1

. (3.1)

In general, the homogenised coefficient A0 for non-divergence structures, given by (1.4),
is different than the homogenised coefficient A0

div, computed by (1.8), for divergence
structures. However, under a special theoretical setting, they are equal to each other,
see Remark 3.1. This fact, together with the Theorem 3.1, given below, for divergence
structures will be used in a part of the analysis in one-dimension.

Remark 3.1. In one-dimensional periodic media, the homogenized coefficient A0
div is

the same as the homogenized coefficient A0, given by the harmonic mean (3.1).

Theorem 3.1. Let v̂, with |∇v̂|∞<∞, be a linear polynomial, and Aε(x) :=A(x/ε)
where A∈ (C∞Per(Y ))d×d is a Y -periodic uniformly elliptic and bounded matrix function,
and assume that vε,η solves the micro problem

Micro problem:

∂ttv
ε,η(t,x)−∇·(Aε(x)∇vε,η(t,x)) = 0, in Iτ ×Ωx0,η

vε,η(0,x) = v̂(x), ∂tv
ε,η(0,x) = 0, on {t= 0}×Ωx0,η,

vε,η(t,x)− v̂(x) is Ωx0,η-periodic.
(3.2)

Moreover, let

Fdiv = (Kτ,η ∗Aε(x)∇xv
ε,η(·, ·))(0,x0), x0∈Ωx0,η,

and F̂div =A0
div∇v̂(x0), where A0

div is given by (1.8). Then we have∣∣∣Fdiv− F̂div∣∣∣≤C( ε
η

)q+2

|∇v̂|∞ ,

where C is a constant independent of ε and η but may depend on K,p,q or A.

Proof. A proof of this statement can be found e.g. in the proof of the main
Theorem in [8].

We finish the section by presenting an averaging lemma, which will also be used
later in the analysis.

Lemma 3.1 (Lemma 1 in [7]). Let f be a 1-periodic bounded function such that

f ∈L∞(Y ) and let K ∈Kp,q. Then with f̄ :=
∫ 1

0
f(y)dy, and ε≤η, we have∣∣∣∣∣

∫ η/2

−η/2
Kη(x)f(x/ε)dx− f̄

∣∣∣∣∣≤C
(
ε

η

)q+2

|f |∞ ,

where C does not depend on ε,η or f , but may depend on K,p,q.

4. Analysis
When the medium is isotropic and microscopically periodic, the micro problem (2.3)

is simplified as

∂ttu
ε,η(t,x) =aε(x)4uε,η(t,x), in Iτ ×Ωx0,η

uε,η(0,x) = û(x), ∂tu
ε,η(0,x) = 0, on {t= 0}×Ωx0,η (4.1)
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uε,η(t,x)− û(x) is periodic in Ωx0,η.

Here aε(x) =a(x/ε), where a is a Y -periodic coefficient, û(x) is a quadratic polynomial
in d-dimensions, and 4 is the usual Laplace operator in d-dimensions. The main aim is
to prove that the upscaled quantity given by (2.4) approximates the quantity F̂ given
by

F̂ =a04û,

where a0 is the harmonic mean in (3.1). The precise statement of the main Theorem is
as follows:

Theorem 4.1. Let û be a quadratic polynomial, and assume that Aε(x) :=a(x/ε)I
where a∈C∞(Y ) is a Y -periodic, positive, and bounded coefficient, and that uε,η solves
the micro problem (2.3) in dimensions d= 1,2 or d= 3. Then3

sup
x0∈Ω

∣∣∣F (x0,4û)− F̂ (x0,4û)
∣∣∣≤C( ε

η

)q+2

|4û|∞ , (4.2)

where F and F̂ are given by (2.4) and (2.5), respectively, η>ε, and C is independent
of ε and η but may depend on K,p,q or A.

Note that, in Equation 4.2, the choice of η>ε is crucial in order to make the error
small (by taking larger values for q).

The proof of this theorem in one-dimension is fairly short, while the proof in higher
dimensions (d= 2 or d= 3) requires some additional work. Therefore, we separate the
analysis, and start with proving the Theorem in one-dimension.

Proof. (Proof of the Theorem 4.1 in one-dimension.) The micro problem (2.3),
with û(x) =s0 +s1x+s2x

2, becomes∂ttu
ε,η(t,x)−a(x/ε)∂xxu

ε,η(t,x) = 0,
uε,η(0,x) =s0 +s1x+s2x

2, ∂tu
ε,η(0,x) = 0,

uε,η− û is periodic in Ωx0,η.

Now let us define vε,η(t,x) :=∂xu
ε,η(t,x), and rewrite F as

F = (Kτ,η ∗a(·/ε)∂xxuε,η(·, ·))(0,x0)

= (Kτ,η ∗a(·/ε)∂xvε,η(·, ·))(0,x0).

Next, take the derivative of the micro model with respect to x to see that, with v̂(x) :=
∂xû(x) =s1 + s2

2 x, ∂ttv
ε,η(t,x)−∂x (a(x/ε)∂xv

ε,η) = 0,
vε,η(0,x) = v̂(x), ∂tv

ε,η(0,x) = 0,
vε,η− v̂ is periodic in Ωx0,η.

The last equation is a wave equation in divergence form, and the Theorem 3.1 is ap-
plicable. In one-dimensional periodic media, the homogenised coefficients for the diver-
gence and the nondivergence structures are the same, see Remark 3.1, and are given by

3Note that, when the periodic coefficient Aε(x) is isotropic, i.e., Aε(x) =a(x/ε)I, then not all the
mixed second derivatives are present in the homogenised Equation (1.3); hence the operator ∇2û in
(2.4) and (2.5) is reduced to ∆û.
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a0 =
(∫ 1

0
1

a(y) dy
)−1

. Hence by the definition of v̂, and an application of the Theorem

3.1, it follows that

∣∣F −a0∂xxû
∣∣= ∣∣F −a0∂xv̂

∣∣≤C( ε
η

)q+2

|∂xxû|.

This completes the proof of the theorem in one-dimension.

The idea behind the proof in one-dimension is that a differentiation of the wave
equation in non-divergence form brings the equation into the divergence form and hence
earlier results relying on the symmetry of the divergence structure can be used to com-
plete the proof. In higher dimensions a symmetric operator can be obtained by writing
a system of equations for the spatial derivatives of the microscopic solutions, and a
generalisation of the earlier results for the scalar equations will be needed to complete
the proof. We start with an outline of the proof for the multidimensional setting.

Outline of the proof in multi-dimensions:

Step 1. We pose the micro-problem (4.1) over the entire Rd. This does not cause
any change in computational results and is only to simplify the analysis. The boundary
conditions of the micro problem do not have any effect on the interior solution due to
the finite speed of propagation of waves, see Remark 2.3. Therefore, the replacement
of the micro problem (4.1) with an infinite domain counterpart, i.e., Equation (4.3), is
safely allowed.

Step 2. We introduce new variables {vε,ηi (t,x) :=∂xiu
ε,η(t,x)}di=1, and write down

explicit equations for vε,ηi .

Step 3. We do the rescaling εṽi(t/ε,x/ε) :=vε,ηi (t,x), and write down a system
of coupled PDEs for U(t,y) = [ṽ1(t,y), ṽ2(t,y),. .., ṽd(t,y)]. Moreover, we present the
relevant function spaces, and study the regularity of a related system, which will then
be used in Step 4.

Step 4. We introduce the local time averages dṽi(y) := (Kτ ∗ ṽi)(0,y), and write
down explicit equations for all dṽi .

Step 5. We express the upscaled quantity; i.e., F given by (2.4), in terms of the
local averages dṽi , and give the final estimate.

Proof. (Proof of the Theorem 4.1 in higher dimensions.)

Step 1. We start by posing the micro problem (4.1) over the entire space Rd. The
infinite domain problem reads as{

∂ttu
ε,η(t,x) =aε(x)4uε,η(t,x), in Iτ ×Rd

uε,η(0,x) =x2
1, ∂tu

ε,η(0,x) = 0, on {t= 0}×Rd, (4.3)

where we have assumed, without loss of generality, that û(x) =x2
1. This is justified by

the facts that i) uε,η = 0 if the initial data is of the form
∑d
i=1

∑
j 6=iαi,jx

k
i x

l
j for all

k,l∈{0,1} such that k+ l≤1, ii) the problem is linear with respect to the initial data,
iii) the upscaled quantity is symmetric with respect to the spatial coordinates x1,x2,
.. .,xd.

Step 2. Let vε,η1 (t,x) =∂x1

(
uε,η(t,x)−x2

1

)
, and {vε,ηi (t,x) =∂xiu

ε,η(t,x)}i=2,3. Let

Lεij [ϕ](x) :=∂xi
(
aε∂xjϕ

)
(x), i,j= 1,. ..,d.
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Then taking the derivative of (4.3) with respect to x1, and using the relation vε,η1 +2x1 =
∂x1u

ε,η, we obtain

∂ttv
ε,η
1 (t,x)−Lε11[vε,η1 ](t,x) =Lε12[vε,η2 ](t,x)+Lε13[vε,η3 ](t,x)+2∂x1

aε(x), (4.4)

vε,η1 (0,x) = 0, ∂tv
ε,η
1 (0,x) = 0.

Similarly the derivative with respect to x2, and x3 results in

∂ttv
ε,η
2 (t,x)−Lε22[vε,η2 ](t,x) =Lε21[vε,η1 ](t,x)+Lε23[vε,η3 ](t,x)+2∂x2

aε(x), (4.5)

vε,η2 (0,x) = 0, ∂tv
ε,η
2 (0,x) = 0,

and

∂ttv
ε,η
3 (t,x)−Lε33[vε,η3 ](t,x) =Lε31[vε,η1 ](t,x)+Lε32[vε,η2 ](t,x)+2∂x3a

ε(x), (4.6)

vε,η3 (0,x) = 0, ∂tv
ε,η
3 (0,x) = 0.

Step 3. We now introduce

{εṽi(t/ε,x/ε) :=vε,ηi (t,x)}i=1,2,3.

Moreover, letting

U :=

ṽ1

ṽ2

ṽ3

 , L :=−

∂x1
(a∂x1

) ∂x1
(a∂x2

) ∂x1
(a∂x3

)
∂x2 (a∂x1) ∂x2 (a∂x2) ∂x2 (a∂x3)
∂x3 (a∂x1) ∂x3 (a∂x2) ∂x3 (a∂x3)

 ,
and writing Equations (4.4) and (4.5) in terms of the rescaled variables U , we arrive at4

∂ttU(t,y)+L[U ] = 2∇a(y),
U(0,y) =0, ∂tU(0,y) =0.

(4.7)

A few useful properties can be immediately observed from (4.7). First, as the coefficient
a is Y := [0,1]d-periodic, it follows that the solution U(t,·) is also Y -periodic. Moreover,
integrating the equation in the unit cell Y , we obtain

∂tt

∫
Y

U(t,y)dy+

∫
Y

L[U ](t,y)dy = 2

∫
Y

∇a(y)dy.

The right-hand side is equal to zero as the function a is Y -periodic. Moreover, the
second term in the left-hand side is zero since L[U ] :=−∇(a∇·U), and a and U are
periodic in Y . We are then left with

∂tt

∫
Y

U(t,y)dy = 0.

This equality, together with the zero initial data in (4.7), implies that∫
Y

U(t,y)dy = 0, for all t>0.

4Note that, the number 2 in the right-hand side of the Equation (4.7) can be replaced by 4û, since
4û= 2. See Steps 1 and 2 to verify this.
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Let us also define the space

Hdiv(Y ) :={U ∈
(
L2
per(Y )

)d
, ∇·U ∈L2

per(Y )}. (4.8)

The following Lemma gives the coercivity of the operator L in (4.7) in an appropriate
function space.

Lemma 4.1. Let

V={f :f ∈Hdiv(Y ),

∫
Y

f(y)dy =0, and ∇×f =0}. (4.9)

Then the symmetric bilinear form B :V×V −→R, given by

B[U,V ] =

∫
Y

a(∇·U)(∇·V )dy

is continuous and coercive with respect to the norm defined by

〈U,V 〉=
∫
Y

U(y) ·V (y)dy+

∫
Y

(∇·U)(∇·V )dy, ‖U‖=
√
〈U,U〉, U,V ∈V.

Proof. The continuity B[U,V ]≤‖U‖‖V ‖ is clear. The coercivity follows from

B[U,U ] =

∫
Y

a(∇·U)(∇·U) dy≥C‖U‖2.

Note that in the last step, we used the inequality ‖U‖L2(Y )≤C‖∇·U‖L2(Y ); which holds
since U is a curl-free field. In other words, since ∇×U = 0, it follows that U =∇Φ+c,
where Φ is a Y -periodic function, and c is a constant vector. Furthermore, since U has
zero average, it follows that c=0. Finally, taking the divergence of ∇Φ, and applying
elliptic regularity, we obtain ‖∇Φ‖L2(Y )≤‖∇·U‖L2(Y ).

We end this step by giving a regularity result for time-independent equations in-
volving high order powers of the operator L in Equation (4.7). This result, summarised
in Lemma 4.2, together with Lemma 4.1 will be used later in Step 4.

Lemma 4.2. Suppose that U,f ∈C∞per(Y )∩V, where the space V is defined in (4.9),
and assume that

Ln[U ](y) =f(y), in Y,

where n≥1 is a positive integer. Then, the following regularity result holds

‖U‖Hdiv(Y )≤C‖f‖L2(Y ),

where C is independent of f but may depend on n.

Proof. The result with n= 1 follows from the proof of the Lemma 4.1. Assume
that the result is true for n−1, i.e., if Ln−1[U ] = Φ, then ‖U‖Hdiv(Y )≤C‖Φ‖L2(Y ). To
prove that the result holds also for Ln[U ] =f , we write

Ln[U ] =L[Φ] =f, where Φ =Ln−1[U ].

Then by the assumption from n−1, ‖U‖Hdiv(Y )≤C‖Φ‖L2(Y ). The final result is ob-
tained by observing that ‖Φ‖L2(Y )≤‖Φ‖Hdiv(Y )≤C‖f‖L2(Y ).
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Step 4. Here, we start by presenting a Lemma, which gives explicit equations for
the local time averages of the solution U of the Equation (4.7).

Lemma 4.3. Assume that a∈C∞per(Rd) is Y -periodic, positive and bounded. Fur-

thermore let f ∈
(
C∞per(Rd)

)d
be a Y -periodic function with f :=

∫
Y
f(y)dy = 0, K ∈Kp,q

with an even q, the operator L[U ] :=−∇(a(y)∇·U) (also given in (4.7)), and U ∈V the
solution of the problem{

∂ttU(t,y)+L[U ](t,y) =f(y), in {t>0}×Rd

U(0,y) =∂tU(0,y) = 0, on {t= 0}×Rd.
(4.10)

Let the local time average dU be defined as

dU (y) :=

∫
R
Kτ (t)U(

t

ε
,y)dt.

Then for 0<ε≤ τ , the local time average dU satisfies

L[dU ](y) =f(y)+
( ε
τ

)q+2

R(y), (4.11)

where R is Y -periodic with zero average, and

‖R‖Hdiv(Y )≤C‖f‖L2(Y ). (4.12)

Proof. The proof of this Lemma for scalar equations and when L=−∇·(a(y)∇)
is given in [9]. The main idea of the proof is to express the solution as an eigenfunction
expansion. The proof in our setting uses precisely the same idea, but an additional
regularity result is needed for time-independent systems of the form L[W ] =f , to be able
to follow the proof in [9]. To improve the readability and for the sake of completeness,
we provide the full proof here. Since the operator L is symmetric and positive, we can
write the solution U ∈V of the Equation (4.10) in the following manner

U(t,y) =

∞∑
j=1

uj(t)ϕj(y), where ϕj ∈
(
C∞per(Y )

)d
, and L[ϕj ] =λjϕj .

By the standard theory of self-adjoint positive operators [28], all the eigenvalues are
real and strictly positive, i.e.,

0<λ1≤λ2≤ .. .,

and {ϕj}∞j=0 forms an orthonormal basis for Y -periodic functions in (L2(Y ))d. Plug-

ging the expansion U(t,y) =
∑∞
j=1uj(t)ϕj(y) into the Equation (4.10) and using the

orthogonality of the eigenfunctions, we obtain

u′′j (t)−λ2
juj(t) =fj , where f(y) =

∞∑
j=1

fjϕj(y),

with homogeneous initial data uj(0) =u′j(0) = 0. The solution of the above ODE is given
explicitly as

uj(t) =
fj
λj

(
1−cos(

√
λjt)

)
.
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Let

cj :=
( ε
τ

)−q−2
∫
R
Kτ (t)cos(

√
λjt

ε
)dt.

Moreover, by Lemma 3.1 we get

|cj |≤
( ε
τ

)−q−2

C

(
ε

τ
√
λj

)q+2

=C
1

λq+2
j

. (4.13)

Then

dU (y) =

∞∑
j=1

fj
λj
ϕj(y)−

( ε
τ

)q+2 ∞∑
j=1

fj
λj
cjϕj(y).

Hence,

L[dU ](y) =

∞∑
j=1

fj
λj
L[ϕj ](y)−

( ε
τ

)q+2

L[

∞∑
j=1

fj
λj
cjϕj ](y)

=

∞∑
j=1

fjϕj+
( ε
τ

)q+2

R(y) =f(y)+
( ε
τ

)q+2

R(y).

Note that dU is periodic and that

R(y) =L[

∞∑
j=1

fj
λj
cjϕj ](y).

We now apply the operator Lq/2+1 to R and obtain

Lq/2+1[R] =

∞∑
j=1

fjcjλ
q/2+1
j ϕj(y).

Up to this point, the proof was precisely as in [9]. Now, we deviate from the scheme of
the proof in [9] and instead use the regularity result given in Lemma 4.2, and Parseval’s
identity, to obtain

‖R‖2Hdiv(Y )≤C‖
∞∑
j=1

fjcjλ
q/2+1
j ϕj‖2L2(Y ) =C

∣∣∣∣∣∣
∞∑
j=1

f2
j c

2
jλ
q+2
j

∣∣∣∣∣∣ .
By (4.13), it follows that

‖R‖2Hdiv(Y )≤C‖f‖
2
L2(Y ).

A direct application of the Lemma 4.3 to the Equation (4.7) yields

L[dU ](y) =−2∇a(y)+αq+2R(y),

where α :=ε/τ . From here, we can see that

−∂y1 (a(y)∂y1dṽ1(y)+a(y)∂y2dṽ2(y)+a(y)∂y3dṽ3(y)+2a(y)) =αq+2R1(y), (4.14)
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−∂y2 (a(y)∂y1dṽ1(y)+a(y)∂y2dṽ2(y)+a(y)∂y3dṽ3(y)+2a(y)) =αq+2R2(y), (4.15)

and

−∂y3 (a(y)∂y1dṽ1(y)+a(y)∂y2dṽ2(y)+a(y)∂y3dṽ3(y)+2a(y)) =αq+2R3(y). (4.16)

Remark 4.1. Note that by applying the Lemma 4.3 to (4.7), we can bound the
remainders Ri as

‖Ri‖L2(Y )≤‖R‖Hdiv(Y )≤C0‖ 2︸︷︷︸
4û

∇a‖L2(Y )≤C1 |4û|. (4.17)

Step 5. In this step, we first rewrite the upscaled quantity (F in (2.4)) in terms of
dṽi(y). Following the precise notations used in Steps 2,3, and 4, we write

F (x0) = (Kτ,η ∗aε(·)4uε,η(·, ·))(0,x0)

= (Kτ,η ∗a(·/ε)(∂x1
∂x1

uε,η(·, ·)+∂x2
∂x2

uε,η(·, ·)+∂x3
∂x3

uε,η(·, ·)))(0,x0)

= (Kτ,η ∗a(·/ε)(∂x1
vε,η1 (·, ·)+∂x2

vε,η2 (·, ·)+∂x3
vε,η3 (·, ·)+2))(0,x0)

= (Kτ,η ∗a(·/ε)(∂y1 ṽ
ε,η
1 (·/ε, ·/ε)+∂y2 ṽ

ε,η
2 (·/ε, ·/ε)+∂y3 ṽ

ε,η
3 (·/ε,·/ε)+2))(0,x0)

= (Kη ∗(a(·/ε)(∂y1dṽ1(·/ε)+∂y2dṽ2(·/ε)+∂y3dṽ3(·/ε)+2)))(x0)

=:

∫
Ωη,x0

Kη(x−x0)a(x/ε)(∂y1dṽ1(x/ε)+∂y2dṽ2(x/ε)+∂y3dṽ3(x/ε)+2) dx.

(4.18)

On the other hand, integrating (4.14) with respect to y1, the Equation (4.15) with
respect to y2, and (4.16) with respect to y3, we obtain

a(y)(∂y1dṽ1(y)+∂y2dṽ2(y)+∂y3dṽ3(y)+2) =C1(y2,y3)+αq+2

∫ y1

0

R1(z1,y2,y3)dz1

=C2(y1,y3)+αq+2

∫ y2

0

R2(y1,z2,y3)dz2

=C3(y1,y2)+αq+2

∫ y3

0

R3(y1,y2,z3)dz3.

Equating the equal powers in the last equality, we readily observe that C1(y2,y3) =
C2(y1,y3) =C3(y1,y2), which implies that C1 =C2 =C3 =C; a constant independent of
y. The constant C can be found by dividing the first equation with a(y) and integrating
the resulting equation over the unit cube Y . This yields∫

Y

∂y1dṽ1(y)+∂y2dṽ2(y)+∂y3dṽ3(y)+2dy

=C

∫
Y

1

a(y)
dy++αq+2

∫
Y

1

a(y)

∫ y1

0

R1(z1,y2,y3)dz1dy.

Multiplying both sides by a0 =
(∫

Y
1

a(y) dy
)−1

, we obtain

2a0 =C+αq+2a0

∫
Y

1

a(y)

∫ y1

0

R1(z1,y2,y3)dz1dy.
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Therefore,

a(y)(∂y1dṽ1(y)+∂y2dṽ2(y)+∂y3dṽ3(y)+2)

= 2a0 +αq+2

∫ y1

0

R1(z1,y2,y3)dz1−αq+2a0

∫
Y

1

a(y)

∫ y1

0

R1(z1,y2,y3)dz1dy.

Let g(y) :=a(y)(∂y1dṽ1(y)+∂y2dṽ2(y)+∂y3dṽ3(y)+2). Clearly g is Y -periodic, and its
average stays very close to 2a0, i.e.,

ḡ :=

∫
Y

g(y)dy

=2a0−αq+2a0

∫
Y

(
1

a(y)
− 1

a0

)∫ y1

0

R1(z1,y2,y3)dz1dy. (4.19)

Now, observe that the last integral in (4.18) can be written in terms of g as follows:

F (x0,∆û) =

∫
Ωη,x0

Kη(x−x0)g(x/ε)dx. (4.20)

By the Equations (4.19) and (4.20), and using the estimate (4.17), it follows that∣∣∣F (x0,∆û)− F̂ (x0,∆û)
∣∣∣ :=∣∣F (x0,∆û)−2a0

∣∣
=

∣∣∣∣F (x0,∆û)− ḡ+αq+2a0

∫
Y

(
1

a(y)
− 1

a0

)∫ y1

0

R1(z1,y2,y3)dz1dy

∣∣∣∣
≤|F (x0,∆û)− ḡ|+C0α

q+2

∫
Y

|R1(y)| dy

≤

∣∣∣∣∣
∫

Ωη,x0

Kη(x−x0)g(x/ε)dx− ḡ

∣∣∣∣∣︸ ︷︷ ︸
≤C1αq+2‖g‖L∞(Y ) by Lemma 3.1

+C0α
q+2 ‖R‖Hdiv(Y )︸ ︷︷ ︸
≤C|4û|, by (4.17)

≤C2α
q+2‖R‖Hdiv(Y )≤C2α

q+2|4û|.

This completes the proof of the Theorem 4.1.

5. Estimates for the full numerical solution
Simulations in this paper use a Leapfrog discretization for the micro- and the macro-

model. Therefore, we start this section by presenting standard results for the stability
estimates for the Leapfrog scheme, which will then be used in Subsection 5.2 to give a
bound for the error between the solution of the equation-free approach (EFA) and the
homogenised solution.

5.1. Difference schemes for the wave equation. Let VH be a finite dimen-
sional Hilbert space consisting of real-valued functions defined on a mesh ΩH , given
by,

ΩH :={xI = (i1H,i2H,...,idH),ij = 1,. ..,Nx−1,j= 1,. ..,d,and (Nx−1)H=L}.

The space VH is equipped with the inner product and norm

〈y,v〉=
Nx−1∑
i1=1

.. .

Nx−1∑
id=1

yi1,...,idvi1,...,idH
d, ‖y‖=

√
〈y,y〉, where y,v∈VH .
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For an operator B :VH→VH , with B=B∗, we define the weighted norm

‖y‖B :=
√
〈By,y〉.

Let {yn}n≥1 be a sequence of grid functions, with yn∈VH . We denote the standard
second order difference operator by

D2
t y
n :=

yn+1−2yn+yn−1

4t2
.

We first present a result from [34] to study the stability of the operator equation

EHD
2
t y
n+LHy

n=ϕn,
y0 =g, y1 =z,

(5.1)

where EH , and LH are two given finite-dimensional operators, and ϕn,g,z belong to
VH .

Theorem 5.1 (See [34]). Assume that

LH =L∗H , and EH =E∗H >
τ2

4
LH .

Let yn solve the difference Equation (5.1). Then

∥∥yn+1
∥∥
LH
≤M

(∥∥y0
∥∥
LH

+

∥∥∥∥y1−y0

δt

∥∥∥∥
EH

+

n∑
k=1

4t
∥∥ϕk∥∥

E−1
H

)
,

where M is a constant independent of ϕ, and t.

Now we apply the Theorem 5.1 for a finite-dimensional approximation of the wave
equation ∂ttu(t,x) =a(x)4u(t,x)+f(t,x), in (0,T ]×Ω,

u(0,x) =g(x), ∂tu(0,x) =h(x),
u(t,x) = 0 on ∂Ω,

(5.2)

where a is a bounded, positive wave speed, such that c1>a>c0>0, and Ω := [0,L]d.
The Equation (5.2) is discretised using the Leapfrog scheme

D2
t u
n
I =aI4HunI +fnI , in T4t×ΩH

u0
I =gI , u1

I =u0
I +4thI +

4t2

2

(
a4Hu0

I +f0
I

)
,

u0
I = 0, on xI ∈∂ΩH ,

(5.3)

where unI approximates u(tn,xI) (the solution of (5.2)), I= (i1,i2,. ..,id) is a multi-index,
and the operator 4H is defined as

4HunI :=

d∑
j=1

unI+ej −2unI +unI−ej
H2

,

where ej ∈Rd denotes the canonical basis vector in j-th direction. Moreover T4t is a
discretisation of the time interval, given by

T4t :={(tn=n4t),n= 0,. ..,Nt−1, and (Nt−1)4t=T}.
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Corollary 5.1. Suppose that un solves the difference scheme (5.3), and that the
assumption

4t< 2H

d
√
c2

holds, and let ϕ=f/a. Moreover, assume that LH :=−4H , and IH is the identity
operator. Then, the stability estimate

∥∥un+1
∥∥
LH
≤M

(∥∥u0
∥∥
LH

+

∥∥∥∥u1−u0

4t

∥∥∥∥
1
a IH

+

n∑
k=1

4t
∥∥ϕk∥∥

aIH

)

holds.

5.2. Convergence analysis. The aim of this section is to give an outline for the
error bound for the difference between the solution of the equation-free approach (EFA)
(2.2), and the solution of the homogenized PDE (1.3). For the analysis, we introduce

unI := An approximation to the homogenized solution u0(tn,xI),

UnI := Solution of the EFA (2.2) when the micro-problem is solved exactly,

ŨnI := Solution of the EFA (2.2) when the micro-problem is solved numerically.

The discrete homogenized solution satisfiesD2
t u
n
I = F̂nI (xI ,4HunI )+fnI ,

u0
I =gI , u1

I =gI +4thI +
4t2

2

(
F̂ 0
I (xI ,4Hu0

I)+f0
I

)
,

(5.4)

where F̂I(xI .4HunI ) =a04HunI :=a0

d∑
i=1

unI+ei−2unI +unI−ei
H2

. The semidiscrete EFA so-

lution UnI solvesD2
tU

n
I =FnI (xI ,4HUnI )+fnI ,

U0
I =gI , U1

I =gI +4thI +
4t2

2

(
F 0
I (xI ,4HU0

I )+f0
I

)
,

(5.5)

where FnI (xI ,4HUnI ) = F̂nI (xI ,4HUnI )+δnI (4HUnI ), and

δnI (4HUnI )≤C
(
ε

η

)q+2

|4HUnI |

is the upscaling error, which was estimated by the Theorem 4.1. The fully discrete EFA
solution ŨnI satisfiesD2

t Ũ
n
I = F̃nI (xI ,4H ŨnI )+fnI ,

Ũ0
I =gI , Ũ1

I =gI +4thI +
4t2

2

(
F̃ 0
I (xI ,4H Ũ0

I )+f0
I

)
.

(5.6)
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We assume that the Equations (5.4), (5.5), and (5.6) are equipped with homoge-
neous Dirichlet boundary conditions. We are now interested in estimating the differ-
ence between the fully discrete EFA solution ŨnI and the exact homogenized solution
u0(tn,xI). For this we write∥∥∥u0(tn, ·)− ŨnI

∥∥∥≤∥∥u0(tn, ·)−unI
∥∥︸ ︷︷ ︸

Emacro

+‖unI −UnI ‖︸ ︷︷ ︸
Eupscaling

+
∥∥∥UnI − ŨnI ∥∥∥︸ ︷︷ ︸

Emicro

.

The first term in the right-hand side is the discretization error in the macro level, the
middle term is the upscaling error due to the two way coupling between the micro- and
the macroscale quantities, and the last term is the discretization error in the microscopic
simulations. We will now proceed with presenting error estimates for the upscaling and
the discretization errors.

5.2.1. The upscaling error. Let us define enI :=UnI −unI . By definition, enI will
then satisfy

D2
t e
n
I = F̂nI (xI ,4HenI )+δnI (4HUnI )

e0
I = 0, e1

I =
4t2

2
δ0
I (4HU0

I ).
(5.7)

Now using the Theorem 5.1, with LH =−4H , we obtain

‖en+1
I ‖LH ≤M

(
4t
2
‖δ0
I (4HU0

I )‖a−1IH +

N∑
k=1

4t‖a−1δnI (4HU0
I )‖aIH

)
. (5.8)

Next since |δnI (∇HUnI )|≤CnI
(
ε
η

)q+2

|4HUnI |, an estimate for the norm ‖4HUnI ‖ is

needed. To do this, we first rewrite (5.5) (with LH :=−4H) asD2
tU

n
I + ã0

ILHU
n
I =fnI ,

U0
I =gI , U1

I =gI +4thI +
4t2

2

(
−ã0

ILHU
0
I +f0

I

)
,

(5.9)

where
∣∣a0− ã0

∣∣≤C( εη)q+2

. We define also the operator L̃H :=L
1/2
H ã0

IL
1/2
H , and apply

the operator L
1/2
H to (5.9). Let us denote Wn

I =L
1/2
H UnI , thenD2

tW
n
I + L̃HW

n
I =L

1/2
H fnI ,

W 0
I =L

1/2
H gI , W 1

I =L
1/2
H gI +4tL1/2

H hI +
4t2

2

(
−L̃HU0

I +L
1/2
H f0

I

)
,

(5.10)

By definition of Wn
I , the Corollary (5.1), and assuming that

(
ε
η

)q+2

is sufficiently

small, we obtain

‖LHUnI ‖≤C
√
〈ã0
ILHU

n
I ,LHU

n
I 〉=

√
〈L̃HL1/2

H UnI ,L
1/2
H UnI 〉=

√
〈L̃HWn

I ,W
n
I 〉

≤C

(∥∥∥L1/2
H gH

∥∥∥
L̃H

+

∥∥∥∥L1/2
H hI +

4t
2

(
L̃HgI +L

1/2
H f0

I

)∥∥∥∥
1
ã0
IH

+

n∑
k=1

4t
∥∥∥∥ 1

ã0
L

1/2
H fkI

∥∥∥∥
ã0IH

)
.

It follows that ‖LHUnI ‖≤ C̃, if g∈C2(Ω), and h,f ∈C1(Ω). Using this result in the
inequality (5.8), we obtain ∥∥en+1

I

∥∥≤CT ( ε
η

)q+2

.
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5.2.2. The macro and the micro errors. Let znI :=u0(tn,xI)−unI . Applying
the operators D2

t and 4H to znI , and using the fact that

∂ttu
0(tn,xI) =D2

t u
0(tn,xI)+Cn1,I4t2, and 4u0(tn,xI) =4Hu0(tn,xI)+Cn2,IH

2,

where |Cn1,I |≤ sup
t∈[0,T ],x∈Ω

∂tttu
0(t,x), and |Cn2,I |≤ sup

t∈[0,T ],x∈Ω

∂xixjxku
0(t,x), we obtain

D2
t z
n
I =a04HznI +CnI

(
4t2 +H2

)
,

z0
I = 0, z1

I =
4t2

2
C0
IH

2.
(5.11)

Here |CnI |≤max{|Cn1,I |, |Cn2,I |}. A direct application of the Corollary 5.1 gives

‖znI ‖ :=‖u0(tn,xI)−unI ‖≤C
(
4t2 +H2

)
.

For the micro error, we argue similarly and find that
∥∥∥UnI − ŨnI ∥∥∥≤C (δt2 +δx2

)
. Note

that the stability estimates in this section are established for the Leapfrog scheme; which
is an explicit method. For stability estimates for other types of numerical schemes, we
refer the reader to standard books on finite differences, such as [22, 34]. For stability
estimates for higher order implicit methods for the second order hyperbolic equations,
see also [10].

6. Numerical results
We subdivide this section into three parts. First, in Subsection 6.1, the upscaling

error from Theorem 4.1 is illustrated. We then, in Subsection 6.2, compare the solution
of the equation-free approach in one-dimensional periodic and almost-periodic media.
Finally, in Subsection 6.3, we compare our numerical solutions for a two-dimensional
periodic setting.

6.1. Upscaling error. Here, the upscaling error in Theorem 4.1 is tested for
periodic problems in one and two dimensions. In one-dimension, we consider the micro
problem (2.3), with an initial data û(x) =x2. The coefficient Aε(x) is taken to be

Aε(x) = 1.1+sin(2πx/ε).

In this case, the exact homogenized coefficient reads as

A0 =

(∫ 1

0

(1.1+sin(2πy))
−1
dy

)−1

=
√

1.12−1,

and therefore, the exact upscaled quantity becomes F̂ :=A0∂xxû= 2
√

1.12−1. The
left plot in the Figure 6.1 shows the upscaling error, i.e., |F − F̂ |, where F (see (2.4))
is the upscaled quantity in the equation-free approach. In this simulation, the size of
the averaging box is chosen to be η= τ = 0.1, and the upscaling error is plotted against
ε, for averaging kernels with different regularities. Higher values for q implies better
regularity properties for the kernel, and the figure shows the precise convergence rate
O((ε/η)q+2), which verifies the result of the Theorem 4.1. In the right plot of the Figure
6.1, we consider the micro-problem (2.3) with a two-dimensional material coefficient

Aε(x) =
(

1.1+cos(2πx1/ε)sin(2πx2/ε)+ecos(2πx1/ε)+sin(2πx2/ε)
)−1

I, (6.1)
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Fig. 6.1. Upscaling errors in one and two dimensional periodic media.
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Fig. 6.2. The solution of the equation-free approach (in a one-dimensional locally-periodic media)
is compared with that of the homogenized and the direct numerical simulation.

where I is the 2×2 identity matrix. The micro-problem (2.3) is equipped with the
initial data û(x) =x2

1. In this case, the exact homogenized coefficient is approximated
by 10 digits of accuracy as follows

A0 = 0.3699698702I.

Therefore, the exact upscaled quantity becomes F̂ =A0∂x1x1
û= 2A0. Moreover, we
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Fig. 6.3. The solution of the equation-free approach (in a one-dimensional almost-periodic media)
is compared with a direct numerical simulation.
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Fig. 6.4. The convergence (as ε→0) of the EFA to the homogenized solution for (left) the locally
periodic coefficient (6.2) and (right) the almost periodic coefficient (6.3).

have used τ =η= 0.1 in the simulations. Similar to the one-dimensional case, precise
convergence rates of the Theorem (4.1) are observed in the simulations.

6.2. Solution in one dimension. The theoretical results, in this paper, are
valid only for periodic coefficients, but the numerical algorithm is developed to treat
more general coefficients. Here we give two one-dimensional examples where the wave
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speed is not periodic. In the Figure 6.2, we compare the solution of our multiscale
algorithm with a direct numerical simulation, as well as the homogenized solution. The
initial condition for the wave equation is a Gaussian centred at the point x= 1.5, with
a standard deviation σ= 0.08. The coefficient function is locally-periodic and chosen as

Aε(x) = (1.5+sin(2πx))(1.5+sin(2πx/ε)), where ε= 0.01. (6.2)

For a direct numerical simulation (DNS), the problem (1.1) is solved over the space-time
domain (0,T ]×Ω, where Ω = [0,3] and T = 1, with periodic boundary conditions. The
DNS uses 10 points per wavelength (meaning 3000 degrees of freedom in space), and the

time-step is obtained by the CFL condition

√
|Aε|∞δt
δx ≤1. The equation-free approach,

however, uses only 50 points in space (under-resolving the small scale variations) on the
macro level, and a macroscopic time step 4t= 0.01. The parameters in the simulation
of the equation-free approach are chosen as η= τ = 0.1, and a kernel K with p= 3, and
q= 5 is used in the simulation. The homogenized solution, shown in Figure 6.2, uses
the same discretization parameters as the macro solver in the equation-free approach.
The figure shows that the equation-free approach captures the coarse scale part of the
exact solution without resolving the ε-scale variations in the coefficient.

In Figure 6.3, we consider an example of yet another one-dimensional non-periodic
media (known as almost-periodic media in the literature), modelled by the coefficient

Aε(x) =
1

4
esin(2π

√
2x/ε)+sin(2πx/ε). (6.3)

The equation-free approach and the direct numerical simulations use precisely the same
numerical parameters as in Figure 6.2, and the multiscale approach is again observed
to accurately capture the coarse scale variations. In Figure 6.4, the convergence (as
ε→0) of the EFA to the homogenized solution for the locally periodic coefficient (6.2)
and the almost periodic coefficient (6.3) is studied. Different q,p pairings are used
in the simulations and η= 0.1 for both simulations. As predicted by the theory, the
convergence is of the order (ε/η)q+2 for the almost periodic case. For the locally periodic
case, which is not covered by the theory in this paper, the same convergence rate is
obtained by choosing higher values for the parameter p. Note that to be able to compute
reference homogenized solution for the almost periodic case, we have approximated the
irrational number

√
2 in the coefficient (6.3) by 1.41, which makes the coefficient 100-

periodic (when ε= 1). We then compute the corresponding homogenized coefficient
by (

1

100

∫ 100

0

A1(x)−1 dx

)−1

≈1.302004095265470.

6.3. Solution in two dimensions. To show the validity of the multiscale
method in higher dimensions, we consider here a two-dimensional medium, where the
coefficient function is non-periodic such that

Aε(x) =
1

3

(
3

2
+sin(2πx1/ε)

)(
3

2
+

1

2

(
cos(2π

√
2x1/ε)+cos(2πx2/ε)

))
D, (6.4)

where

D=

[
1 c
c 1

]
.



DOGHONAY ARJMAND, AND GUNILLA KREISS 2339

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0.23

0.24

0.25

0.26

0.27

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0.23

0.24

0.25

0.26

0.27

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

Fig. 6.5. Simulation of a non-periodic and isotropic material (when c= 0 in (6.4)). (Top row)
A direct numerical solution at times t= 0.25 and t= 0.5. (Middle row) Local average (Kuε)(t,x) at
times t= 0.25 and t= 0.5. (Bottom row) The solution of the equation-free approach at times t= 0.25
and t= 0.5. Note that the small scale oscillations for the solution of the DNS (top row) at t= 0.25 can
be identified on the picture, but the solution of the equation-free approach captures only the large scale
behaviour.

Two cases (with different values for the constant c) are considered. In Figures 6.5
and 6.6, we consider an isotropic and an anisotropic material, which are modelled by
c= 0 and c= 1/2 respectively. The solution of the equation-free approach is compared to
a direct numerical simulation uε, as well as a local average of uε defined by (Kuε)(t,x),
see the Section 2 for the definition of K. The wave equation is solved over a time-space
domain [0,T ]×Ω, with T = 0.5, and Ω = [0,1]2, and the small scale parameter is set to
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Fig. 6.6. Simulation of an anisotropic and non-periodic material. (Top row) A direct numerical
solution at times t= 0.25 and t= 0.5. (Middle row) Local average (Kuε)(t,x) at times t= 0.25 and
t= 0.5. (Bottom row) The solution of the equation-free approach at times t= 0.25 and t= 0.5.

ε= 0.025. Periodic boundary conditions are used (on a macroscopic scale), and the
initial data are assumed to be

uε(0,x) = sin(2πx1)cos(2πx2), ∂tu
ε(0,x) = 1. (6.5)

The equation-free approach uses 60×60 macroscopic points in space (under-
resolving the small scale variations). Moreover, the parameter values η= τ = 0.25, p= 5,
and q= 7 are used for the simulation of the microscopic problem as well as the local aver-
aging in the upscaling step. The DNS uses 10 points per wavelength (meaning 400×400
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Fig. 6.7. The convergence (as ε→0) of the EFA to the homogenized solution for the almost
periodic coefficient (6.4).

points in space). Moreover, for both of the solvers (the equation-free solver and the full
multiscale problem) the time step is set such that the CFL condition

√
|Aε|∞4t/4x≤1

holds with the largest possible time-step. The choice of the coefficient (6.4) is to test
our multiscale algorithm for cases, where the theoretical assumptions of this paper do
not hold. In other words, the theory in this work is based on the fact that the coefficient
function is diagonal and periodic, but the simulations in this section include both non-
periodic and non-diagonal examples. Moreover, the numerical simulations, depicted in
Figures 6.5 and 6.6, show that the equation-free approach captures the coarse features
of the full multiscale solution even when the theoretical assumptions are not totally
fulfilled.

In Figure 6.7, the convergence of the EFA approach to the homogenized solution for
the two dimensional material coefficient (6.4) with c= 0 is studied. Similar to the one
dimensional case, different (p,q) pairings are used and η= 0.1 is chosen in the simulation,
and higher convergence rates are observed by taking higher values for q. To be able to
compute the reference homogenized solution for the simulations in 6.7, the irrational
number

√
2 is approximated by 1.41, which makes the material coefficient periodic with

a period equal to 100 in the x1-variable (when ε= 1). The homogenized coefficient is
then computed by

A0 =

(
1

100

∫ 100

0

∫ 1

0

A1(x)−1 dx2dx1

)−1

≈0.485228277332784 I.

Note that under this setting, the micro problems are still non-periodic, although the
material coefficient is periodic on a large scale.

7. Conclusion
In this article, a numerical method for multiscale wave propagation problems in

non-divergence form is proposed and analysed. Multiscale methods based on the HMM
framework were previously developed and analysed for wave propagation problems in di-
vergence form, see e.g., [3,8,16]. Multiscale wave equations in non-divergence form have
homogenised limits, which are different from the limiting equations for wave equations in
divergence form. This motivates the need for developing new multiscale methods, which
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include additional modifications in comparison to the HMM-type methods. Moreover,
for the wave equations in divergence form, the analysis of the HMM-type algorithms
typically relies on the symmetry properties of the operator −∇·Aε∇, which is missing
in the theoretical setup of the current study. In this paper, an analysis for the error
between the homogenised limit and the solution of the EFA is given, and numerical
evidence corroborating the theoretical results is shown.We note that the extension of
the method for random media requires an additional Monte Carlo step to be included in
the algorithm. However, this extension is conceptually no different than existing works
on HMM for random media, see e.g., [2].
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