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M-EIGENVALUES OF THE RIEMANN CURVATURE TENSOR∗

HUA XIANG† , LIQUN QI‡ , AND YIMIN WEI§

Abstract. The Riemann curvature tensor is a central mathematical tool in Einstein’s theory of
general relativity. Its related eigenproblem plays an important role in mathematics and physics. We
extend M-eigenvalues for the elasticity tensor to the Riemann curvature tensor. The definition of M-
eigenproblem of the Riemann curvature tensor is introduced from the minimization of an associated
function. The M-eigenvalues of the Riemann curvature tensor always exist and are real. They are
invariants of the Riemann curvature tensor. The associated function of the Riemann curvature tensor
is always positive at a point if and only if the M-eigenvalues of the Riemann curvature tensor are all
positive at that point. We investigate the M-eigenvalues for the simple cases, such as the 2D case, the
3D case, the constant curvature and the Schwarzschild solution, and all the calculated M-eigenvalues
are related to the curvature invariants.
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1. Introduction
The eigenproblem of tensor is an very important topic theoretically and practically.

In [10,11,19,24], the elasticity tensor is investigated, including the strong ellipticity, the
positive definiteness, the M-eigenvalues, etc. It is well known that the elasticity tensor
is a very important concept in solid mechanics. In this paper, we will consider another
counterpart, the Riemannian curvature tensor, which is a basic concept to describe
the curved space, and a central mathematical tool in Einstein’s general relativity. In
the following, we first review two kinds of eigenproblems associated with the elasticity
tensor, and then consider their counterparts corresponding to the Riemannian curvature
tensor.

The elasticity tensor E is a fourth-rank tensor. The classical eigenproblem of elas-
ticity tensor reads

Eijklz
kl= ζ zij , (1.1)

where the eigentensor zij is symmetric. For simplicity, when discussing the elasticity
tensor, we use the metric in the Kronecker delta, and temporarily omit the difference
between the subscripts and the superscripts.

There exists the minor symmetry Eijkl=Ejikl and Eijkl=Eijlk, and the major
symmetry Eijkl=Eklij . The requirement of the symmetry reduces the number of in-
dependent elements to 21. The eigenproblem (1.1) is closely related to the positive
definiteness of E, which had been considered by Lord Kelvin more than 150 years ago,
which also guarantees the uniqueness of solutions in problems of elasticity. The elas-
ticity stiffness tensor E must be positive definite, which means that the strain energy
density or elastic potential satisfies

Eijklε
ijεkl>0,
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where εij is any symmetric strain tensor. It physically means that energy is needed to
deform an elastic body from its unloaded equilibrium position. The positive definiteness
of E requires that all ζ’s are positive.

Qi, Dai and Han [19] in 2009 introduced M-eigenvalues for the elasticity tensor.
The M-eigenvalues θ of the fourth-order tensor are defined as follows.

Eijkly
jxkyl=θxi, Eijklx

iyjxk =θyl, (1.2)

under the constraints 〈x,x〉= 〈y,y〉= 1, i.e., x and y are normalized. Here, x and y
are real vectors. The M-eigenvalues always exist and are real. Furthermore, they
are isotropic invariants of the elasticity tensor. For the elasticity tensor E, since
Eijklx

iyjxk =Ekjilx
iyjxk, and Ekjil=Elijk, the second equality is equivalent to

Eijklx
jykxl=θyi.

For the fourth-order elasticity E, the strong ellipticity is defined by the following
function to be positive.

f(x,y) =Eijklx
iyjxkyl>0, ∀x,y∈R3.

Such strong ellipticity condition ensures that the governing differential equations for
elastostatics problems will be completely elliptic. It is an important property in the
elasticity theory associated with uniqueness, instability, wave propagation etc., and has
been studied extensively. It was shown that the strong ellipticity condition holds if and
only if all the M-eigenvalues are positive.

These two kinds of eigenproblems relate to the positive definiteness and the strong
ellipticity of the material respectively. The positive definiteness is a less general hy-
pothesis than the strong ellipticity. The positive definiteness implies strong elliptic-
ity, while the converse statement is not true. Motivated by the work on the elastic-
ity [10, 11,18, 19, 24], in this paper we consider the corresponding tensor eigenproblems
for the Riemann tensor.

Let (M,g) be an n-dimensional Riemannian manifold. That is, M is the Riemannian
manifold equipped with the Riemannian metric g. We consider the curvature tensor of
the Levi-Civita connection ∇ of the Riemannian metric g. The curvature tensor for
the Levi-Civita connection will be called later the Riemann curvature tensor, or the
Riemann tensor.

The curvature R of a Riemannian manifold M corresponds to a mapping R(X,Y )
associated with the pair (X,Y ) by

R(X,Y ) := [∇X ,∇Y ]−∇[X,Y ].

Let TpM be the tangent space of M at the point p. The (0,4)-type Riemannian
curvature tensor is a quadrilinear mapping:

R : TpM×TpM×TpM×TpM→R.

R(W,Z,X,Y ) := 〈W,R(X,Y )Z〉, ∀ W,X,Y,Z ∈TpM.

By the way, the (1,3) type is given by (ω,Z,X,Y ) 7→ω(R(X,Y )Z), ∀ vector fields X,Y,Z
and 1-form ω. Here R(X,Y )Z or R(W,Z,X,Y ) is called the curvature tensor of the Levi-
Civita connection. The notation here is somewhat abused. The two mappings R(X,Y )
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(also denoted by RXY in some references) and R(W,Z,X,Y ) use the same letter “R”.
As such a usage can be found in the literature [1–3,6, 12] and will not cause confusion,
we keep such a usage.

To work with components, one needs a local coordinate {xi}, a set of corresponding
basis vector {∂i} and the dual set of basis 1-forms {dxi}. Suppose that gij :=g(∂i,∂j)
and define Christoffel symbols of the Levi-Civita connection by the formula

Γijk =
1

2
gih
(
∂ghj
∂xk

+
∂ghk
∂xj

− ∂gjk
∂xh

)
.

Using [∂i,∂j ] = 0 and ∇∂i∂k = Γlik∂l, we can calculate [23, P.25]

R(∂i,∂j)∂k = ([∇∂i ,∇∂j ]−∇[∂i,∂j ])∂k =∇∂i∇∂j∂k−∇∂j∇∂i∂k
= (∂iΓ

l
jk−∂jΓlik+ΓhjkΓlih−ΓhikΓljh)∂l≡Rlkij∂l.

That is, Rlkij =dxl(R(∂i,∂j)∂k). For convenience, one can consider the full covariant
Riemann curvature tensor Rijkl.

R(∂i,∂j ,∂k,∂l) = 〈∂i,R(∂k,∂l)∂j〉=gihR
h
jkl≡Rijkl.

In terms of the Riemann metric and the coefficients Γkij of the Riemannian connection,
we have

Rijkl=
1

2
(gil,jk−gik,jl+gjk,il−gjl,ik)+ghm(ΓhilΓ

m
jk−ΓhikΓmjl ).

Let W =wi∂i, Z=zj∂j , X=xk∂k, Y =yl∂l. We can verify that

R(X,Y )Z=R(xk∂k,y
l∂l)(z

j∂j) =zjxkylR(∂k,∂l)∂j =zjxkylRhjkl∂h,

and

R(W,Z,X,Y ) =wizjxkylRijkl.

The curvature tensor has the following symmetry properties [2, 6, 12]:

Rijkl=−Rjikl=−Rijlk =Rklij , Rijkl+Riljk+Riklj = 0.

The second identity is called the first (or algebraic) Bianchi identity. For the 4D case,
there are 256 components, but only twenty are independent because of these symmetries
[1, 5, 13].

The contraction yields the Ricci tensor Rik and the Ricci scalar R as follows.

Rik =ghjRhijk =Rmimk =∂lΓ
l
ik−∂kΓlil+ΓlikΓhlh−ΓhilΓ

l
hk,

R=Rkk =gikRik =gikRmimk =gikghjRhijk.

In the following part of the paper, we present two kinds of eigenproblems in Section
2, just as the eigenproblems for the elasticity tensor. In Section 3, we study four typical
cases, calculate the M-eigenvalues and examine their relationship with some well-known
invariants.



2304 M-EIGENVALUES OF THE RIEMANN CURVATURE TENSOR

2. Eigenproblems of the Riemann tensor
We consider two kinds of eigenproblems associated with the Riemann tensor. The

first one is well-studied. For the invariant characterizations of a gravitational field, to
investigate the algebraic structure of the tensor we consider the eigenproblem [20]

Rijklx
kl= ζ xij = ζ gimgjnx

mn, (2.1)

where the eigentensor xij is anti-symmetric.
To express it in a compact matrix form, we identify a pair of indices {ij} of 4D

indices with a multi-index that has the range from 1 to 6: 10 → 1, 20 → 2, 30 → 3,
23 → 4, 31 → 5, 12 → 6. Denoting the basis indices by capital letters and using the
symmetries, we can rewrite the above eigenproblem (2.1) as follows [16].

RABx
B =

1

2
ζ GABx

B , (2.2)

where both (RAB) and (GAB) are 6-by-6 matrices, and (RAB) can be further expressed
by two symmetric 3-by-3 matrices according to the Einstein field equation in vacuum (see
Appendix). For this vacuum case, the Riemann tensor is equivalent to the Weyl tensor.
And the well-known Petrov classification reduces to investigate the eigenvalues and the
independent eigenvectors and results in Petrov Types I (D), II (N) and III [14, P.235].

Next, we introduce the M-eigenproblem of the Riemann curvature tensor. Let us
consider the associated function

Q(u,v)≡〈u,R(u,v)v〉=R(u,v,u,v) =Rijklu
ivjukvl.

The Riemann curvature tensor is a real tensor. Vectors u and v are real vectors.
Thus, Q(u,v) is a real continuous function, and we may consider the following optimiza-
tion problem

min
u,v∈TpM

Q(u,v) s.t. 〈u,u〉= 〈v,v〉= 1.

The feasible set of this optimization problem is compact. Hence, it always has global
optimal solutions. It has only equality constraints. By optimization theory, its optimal
Lagrangian multipliers λ and µ always exist and are real. The optimality condition
reads

R(v,u)v=λu,

R(u,v)u=µv,

〈u,u〉= 1,

〈v,v〉= 1.

This ensures the existence of such λ and µ, and they are real. It is easy to verify that
λ=−R(u,v,u,v) =µ. We may rewrite the M-eigenproblem as seeking the normalized
eigenvector pair (u,v) and the eigenvalue θ in a coordinate-free manner as follows.

R̃(u,v)≡ (R(u,v)v,R(v,u)u) =θ(u,v),

i.e.,

R(v,u)u=θv, R(u,v)v=θu, (2.3)
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〈u,u〉= 1, 〈v,v〉= 1. (2.4)

Thus, the M-eigenvalues always exist and are real. The corresponding component form
reads

Rlijku
ivjuk =θvl, Rlijkv

iujvk =θul,

or, equivalently,

Rhijku
ivjuk =θghlv

l=θvh, Rhijkv
iujvk =θghlu

l=θuh, (2.5)

where giju
iuj =gijv

ivj = 1.
Using 〈u,u〉= 〈v,v〉= 1, we have the M-eigenvalue

θ= 〈u,R(u,v)v〉=R(u,v,u,v) =Rijklu
ivjukvl. (2.6)

In some cases we further require that 〈u,v〉= 0. We add this constraint and present
the following modified M-eigenvalue problem.

R(v,u)u=θv, R(u,v)v=θu, (2.7)

〈u,u〉= 〈v,v〉= 1, 〈u,v〉= 0. (2.8)

Similarly, the modified M-eigenvalues always exist and are real.
Here the Equation (2.5) is a tensor equation. Hence, the M-eigenvalues are invari-

ants of the Riemann curvature tensor. This is also true for the modified M-eigenvalues.
Also, from the properties of the above optimization problem, the associated function
Q(u,v) is always positive at a point if and only if all the M-eigenvalues of the Riemann
curvature tensor at that point are all positive. We see that the M-eigenvalues of the Rie-
mann curvature tensor has all the good properties of the M-eigenvalues of the elasticity
tensor.

Remark 2.1. The optimization problem is just used to introduce the M-eigenvalue
problem on Riemannian manifold. The definition should not be limited on a Riemannian
manifold, and it can be extended to a pseudo-Riemannian manifold. But for the pseudo-
Riemannian manifold, there may be no maximum or minimum of the optimization
problem, since the constraint set is not compact any more. In the Lorentz manifold, if
v and u are space-like and time-like orthonormal vectors respectively, i.e., 〈v,v〉= 1 and
〈u,u〉=−1, then we have θ= 0, since the first formula in (2.7) yields θ= 〈v,R(v,u)u〉=
R(v,u,v,u), while the second formula in (2.7) gives θ=−〈u,R(u,v)v〉=−R(u,v,u,v),
where R(u,v,u,v) =R(v,u,v,u) due to the symmetry property.

Remark 2.2. Suppose that u=v. Then the M-eigenvalue problem reduces to
R(u,u)u=θu with 〈u,u〉= 1. In componentwise form, it can be written as Rijklu

jukul=
θui, which is a Z-eigenvalue problem [17]. Since Rijklu

jukul=−Rijlkujuluk≡0, we have
θ= 0.

Recall that we have two kinds of eigenproblems (1.1) and (1.2) for the elasticity
tensor. For the Riemann tensor, we have similar things, i.e., (2.1) and (2.5). In a
special case, the M-eigenvalue in (2.5) is related to the classical eigenvalue in (2.1) as
stated below.

Theorem 2.1. Suppose that (ζ,x) is the eigenpair of (2.1) with xij =uivj−viuj and
〈u,v〉= 0. Then (θ,u,v) is the eigentriple of modified M-eigenproblem (2.7)–(2.8) and
ζ= 2θ.
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Proof. Substituting xij =uivj−viuj , the eigenproblem (2.1) reads

Rijkl(u
kvl−vkul) = ζ(uivj−viuj).

It is easy to verify that

Rijklv
jukvl−Rijklvjvkul= ζ(uivjv

j−viujvj).

Using Rijklv
jvkul=Rikjlv

jvkul=−Rikljvkulvj =−Rijklvjukvl, we have

Rijklv
jukvl=

1

2
ζ(ui−vi〈u,v〉). (2.9)

Note that the eigenproblem (2.1) is equivalent to Rijklx
ij = ζgkmglnx

mn. Similarly, we
have

Rijklu
ivjuk =

1

2
ζ(vl−ul〈u,v〉). (2.10)

Using the orthogonality that 〈u,v〉= 0, then (2.9) and (2.10) reduce to

Rijklv
jukvl=

1

2
ζui, Rijklu

ivjuk =
1

2
ζvl.

This is just the modified M-eigenproblem (2.7) with the M-eigenvalue θ= 1
2ζ.

Besides, using 〈u,u〉= 〈v,v〉= 1 and the formulas (2.9) and (2.10), we have

ζ

2
=
Rijklu

ivjukvl

1−〈u,v〉2
=
R(u,v,u,v)

1−〈u,v〉2
.

The orthogonality that 〈u,v〉= 0 and the formula (2.6) again yield that ζ= 2θ.
The sectional curvature is closely related to the M-eigenvalue. Let π⊂TpM be a 2D

subspace of the tangent space TpM and let u,v∈π be two linearly independent vectors
(not necessarily orthonormal). The sectional curvature of (M,g) at p with respect to
the 2D plane π= span{u,v}⊂TpM , independent of the choices of basis {u,v}, is defined
by

K(π) =
R(u,v,u,v)

|u∧v|2
, (2.11)

where |u∧v|2 := 〈u,u〉〈v,v〉−〈u,v〉2 =giju
iujgklv

kvl−(giju
ivj)2 denotes the square of

the area of the 2D parallelogram spanned by the pair of vectors u and v.

Theorem 2.2. Using the notation above, the eigenvalue of modified M-eigenproblem
(2.7)–(2.8) is the sectional curvature K(π).

Proof. Let (θ,u,v) be the eigentriple of modified M-eigenproblem (2.7)–(2.8).
Taking the inner product with the first equation of (2.7), we obtain 〈v,R(v,u)u〉=θ〈v,v〉.
Using 〈v,v〉= 1, we have θ=R(v,u,v,u). Similarly, from the second equation of (2.7),
we have θ= 〈u,R(u,v)v〉=R(u,v,u,v).

When (u,v) is chosen as an orthonormal basis for π, we have |u∧v|2 = 1, and (2.11)
reduces to K(π) =R(u,v,u,v) =Rijklu

ivjukvl, and hence θ=K(π).

The sectional curvature is essentially the restriction of the Riemann curvature tensor
to a special set of vectors. The knowledge of K(π), for all π, determines the curvature
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R completely [6, P.94]. Due to Theorem 2.2, it is not surprising to see that the M-
eigenvalues of the cases examined in the next section relate to the Riemann curvature
scalar R.

In the following we point out another related thing: the Jacobi equation, which
reads

∇u∇uv+R(v,u)u= 0, (2.12)

where u is the tangent vector and v is a vector field along the geodesic [3, P.310]. Each
Jacobi field tells us how some family of geodesics behaves [12]. In component notation,
it can be written as

D2vµ

dt2
+Rµνρσu

νvρuσ = 0,

where t represents an affine parameter along the geodesics.
Note that the second term of the Jacobi equation also appears in the M-

eigenproblem (2.3), where it reads

Rµνρσu
νvρuσ =θvµ. (2.13)

Using (2.13), we can express the Jacobi equation as

v̈µ+θvµ= 0,

where the dot denotes the ordinary derivative with respect to t. This is a linear system
of second-order ODEs for the functions vµ, and it can be solved by using the proper
initial conditions [6].

Let us deviate for a while, and switch to the case in the Lorentz manifold, where
we define u as the tangent vector to the geodesic and v the geodesic separation, the
displacement from fiducial geodesic to nearby geodesic with the same affine parameter.
Then (2.12) is also called as the equation of geodesic deviation [13, P.219]. This equation
gives the relative acceleration of free particles [15] and can serve as a definition of
the Riemann curvature tensor whose components can be determined by throwing up
clouds of test particles and measuring the relative accelerations between them [22].
The eigenproblem (2.13) associated with the second term of the equation of geodesic
deviation, which also appears in the M-eigenproblem, has explicit physical meaning. For
a rigid body in free fall, the nontrivial eigenvalues of (2.13) give the principal internal
stresses to keep all the parts of the body together in a rigid shape [14]. This may shed
some light on the physical meaning of the M-eigenvalues of the Riemann tensor.

3. Case study
In this section we calculate several simple concrete cases including the conformally

flat case and the Schwarzschild solution to examine what the M-eigenvalues are.

3.1. The 2D case. For a 2D case, the Riemann tensor can be expressed by
Rabcd=K(gacgbd−gadgbc), where K is called the Gaussian curvature [20, P.101], and
there is only one independent component R1212.

We can easily check that

R11 =Ri1i1 =R2
121 =g21R1121 +g22R2121 =g22R1212,

R22 =Ri2i2 =g11R1212, R12 =R21 =Ri1i2 =−g12R2121.
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Then the scalar curvature R can be expressed by

R=Rkjg
kj =g11R11 +2g12R12 +g22R22

= 2R1212(g11g22−g12g12) = 2R1212detg−1.

The Gaussian curvature, whose magnitude is defined by external observer, equals
to the scalar curvature, whose magnitude is defined in terms of internal observer. That
is,

K=
R1212

detg
=
R

2
.

This is nothing but Theorema Egregium of Gauss.

Proposition 3.1. For the 2D case, the nonzero M-eigenvalue is ζ=K, where K is
the Gaussian curvature.

Proof. In components, the M-eigenvalue problem reads

R1212(y2x1y2−y2x2y1) = ζx1 = ζg1kx
k = ζ(g11x

1 +g12x
2),

R1212(y1x2y1−y1x1y2) = ζx2 = ζg2kx
k = ζ(g21x

1 +g22x
2),

R1212(x2y1x2−x2y2x1) = ζy1 = ζg1ky
k = ζ(g11y

1 +g12y
2),

R1212(x1y2x1−x1y1x2) = ζy2 = ζg2ky
k = ζ(g21y

1 +g22y
2),

with the constraints

〈x,x〉=gkax
axk =g11x

1x1 +2g12x
1x2 +g22x

2x2 = 1,

〈y,y〉=gkay
ayk =g11y

1y1 +2g12y
1y2 +g22y

2y2 = 1.

Solving this system of polynomial equations, we have ζ= 0 and

ζ=
R1212

g11g22−g212
=
R

2
=K.

For the modified M-eigenvalue problem, we add the constraint

〈x,y〉=gijx
iyj =g11x

1y1 +g12x
1y2 +g21x

2y1 +g22x
2y2 = 0.

We then have ζ=K without the zero eigenvalue.

3.2. The 3D case. For the 3D case, there are six independent components in
the Riemann tensor, and it can be expressed by the Ricci tensor as follows.

Rabcd=Racgbd−Radgbc+gacRbd−gadRbc−
R

2
(gacgbd−gadgbc). (3.1)

Suppose that (λ,x) and (µ,y) are the eigenpairs of the Ricci tensor (x 6=y), that
is, Racx

c=λxa and Rady
d=µya [8, 9]. The M-eigenvalues of the Riemann tensor are

related to the eigenvalues of the Ricci tensor as stated in the following proposition.

Proposition 3.2. For the 3D case, if λ and µ are the eigenvalues of the Ricci tensor
associated with eigenvectors x and y respectively, then (ζ,x,y) is the eigentriple of the
modified M-eigenproblem with the M-eigenvalue ζ=λ+µ− R

2 .
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Proof. For the M-eigenvalue problem, we need to calculate

Rabcdy
bxcyd= ζgakx

k, (a= 1,2,3). (3.2)

Substituting the expression of (3.1) into the left-hand side (LHS) of (3.2), we have

LHS of (3.2) =Racx
c−〈x,y〉Radyd+Rbdy

bydxa−Rbdybxdya−
R

2
(xa−〈x,y〉ya)

=Racx
c−〈x,y〉Radyd+ybRbd(x

cyd−xdyc)gca−
R

2
(xa−〈x,y〉ya) .

Since Racx
c=λxa, Rady

d=µya, and ybyb= 1, the 3rd term equals to

yb(µybx
c−λxbyc)gca=µxa−λ〈x,y〉ya.

Direct calculation yields that

LHS of (3.2) = (λ+µ)(xa−〈x,y〉ya)− R
2

(xa−〈x,y〉ya).

Since Rab is symmetric, if λ 6=µ, then 〈x,y〉= 0; if λ=µ, one can orthogonalize the
vectors such that 〈x,y〉= 0. Hence, LHS of (3.2) = (λ+µ− R

2 )xa.
The second equation of the M-eigenproblem reads

Rabcdx
bycxd= ζgaky

k, (a= 1,2,3). (3.3)

We can calculate that

LHS of (3.3) =Racy
c−〈x,y〉Radxd+Rbdx

bxdya−Rbdxbydxa−
R

2
(ya−〈x,y〉xa)

=Racy
c−〈x,y〉Radxd+xbRbd(y

cxd−ydxc)gca−
R

2
(ya−〈x,y〉xa) .

Similarly we have that LHS of (3.3) = (µ+λ− R
2 )ya.

Comparing with the right-hand side of (3.2) and (3.3), we have ζ=λ+µ− R
2 .

3.3. The constant curvature. The curvature tensor of a space of constant
curvature is expressed in terms of the curvature κ and the metric tensor gij by the
formula [21]

Rijkl=κ(gikgjl−gilgjk). (3.4)

For κ= 0, it is an Euclidean space; for κ>0, it is the sphere of radius 1/
√
κ; and for

κ<0, it is a Lobachevskii space.

Proposition 3.3. For the spaces of constant curvature (3.4), ζ=κ is the M-
eigenvalue.

Proof. Suppose that x,y are the M-eigenvectors. Direct calculation yields that

Rabcdy
bxcyd=κ(gacgbdy

bxcyd−gadgbcybxcyd) =κ(xa−〈x,y〉ya) = ζxa.

Similarly, we have Rabcdx
bycxd=κ(ya−〈x,y〉xa) = ζya.

Using 〈x,y〉= 0, then we have the M-eigenvalue ζ=κ.
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In the following we investigate this case in another way. For the Riemannian man-
ifold with constant sectional curvature κ, ∀ W,X,Y,Z ∈TpM we have [12, P.149]

R(W,X,Y,Z) = 〈W,R(X,Y )Z〉=κ(〈W,X〉〈Z,Y 〉−〈W,Y 〉〈Z,X〉),

equivalently,

R(X,Y )Z=κ(〈Z,Y 〉X−〈Z,X〉Y ).

Assume that X is the tangent vector of geodesic and 〈X,X〉= 1, and Y is a Jacobi field
along the geodesic, normal to X, and 〈Y,Y 〉= 1. Then setting Z=X, we have

R(X,Y )X=κ(〈X,Y 〉X−〈X,X〉Y ) =−κY, (3.5)

where we use the facts that 〈X,X〉= 1 and 〈X,Y 〉= 0. Similarly, we can calculate that

R(Y,X)Y =κ(〈Y,X〉Y −〈Y,Y 〉X) =−κX. (3.6)

Since R(X,Y ) =−R(Y,X), from these two Equations (3.5) and (3.6) we can clearly see
that κ is the M-eigenvalue.

3.4. The Schwarzschild solution. The Schwarzschild solution is the first exact
solution of Einstein’s field equation. According to Birkhoff’s theorem the Schwarzschild
solution is the most general spherically symmetric solution of the vacuum Einstein
equation. The exterior Schwarzschild metric is framed in a spherical coordinate system
with the body’s centre located at the origin, plus the time coordinate. In Schwarzschild
coordinates, with signature (−1,1,1,1), the line element for the Schwarzschild metric
has the form

ds2 =−
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1
dr2 +r2dθ2 +r2 sin2θdφ2.

Let rs= 2GM
c2 be the Schwarzschild radius, and define f(r) = 1− 2GM

c2r = 1− rs
r . The

nonzero components of the Riemann tensor Rijkl are given as follows.

R0
101 =

rs
r3f(r)

, R0
220 =R1

221 =
rs
2r
, R0

330 =R1
331 =

1

2
R2

323 =
rs
2r

sin2θ,

R1
001 =−g11g00R0

101 =
rs
r3
c2f(r), R2

020 =−g22g00R0
220 =

rs
2r3

c2f(r),

R3
030 =−g33g00R0

330 =
rs
2r3

c2f(r), R2
112 =g22g11R

1
221 =

rs
2r3f(r)

,

R3
113 =g33g11R

1
331 =

rs
2r3f(r)

, R3
232 =g33g22R

2
323 =

rs
r
,

R0
110 =−R0

101, R0
202 =−R0

220, R0
303 =−R0

330,

R1
010 =−R1

001, R1
212 =−R1

221, R1
313 =−R1

331,

R2
002 =−R2

020, R2
121 =−R2

112, R2
332 =−R2

323,

R3
003 =−R3

030, R3
131 =−R3

113, R3
223 =−R3

232.
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Proposition 3.4. For the Schwarzschild solution given above, ±
√

K1

48 are the M-

eigenvalues, where K1 =RabcdR
abcd= 12

(
rs
r3

)2
= 48G2M2

c4r6 is the Kretschman curvature
invariant.

Proof. Let t=x0,r=x1,θ=x2,φ=x3. For the Schwarzschild space, the M-
eigenproblem reads

R0
101y

1(x0y1−x1y0)+R0
202y

2(x0y2−x2y0)+R0
303y

3(x0y3−x3y0) = ζx0,

R1
001y

0(x0y1−x1y0)+R1
212y

2(x1y2−x2y1)+R1
313y

3(x1y3−x3y1) = ζx1,

R2
002y

0(x0y2−x2y0)+R2
112y

1(x1y2−x2y1)+R2
323y

3(x2y3−x3y2) = ζx2,

R3
003y

0(x0y3−x3y0)+R3
113y

1(x1y3−x3y1)+R3
223y

2(x2y3−x3y2) = ζx3,

R0
101x

1(y0x1−y1x0)+R0
202x

2(y0x2−y2x0)+R0
303x

3(y0x3−y3x0) = ζy0,

R1
001x

0(y0x1−y1x0)+R1
212x

2(y1x2−y2x1)+R1
313x

3(y1x3−y3x1) = ζy1,

R2
002x

0(y0x2−y2x0)+R2
112x

1(y1x2−y2x1)+R2
323x

3(y2x3−y3x2) = ζy2,

R3
003x

0(y0x3−y3x0)+R3
113x

1(y1x3−y3x1)+R3
223x

2(y2x3−y3x2) = ζy3,

g00x
0x0 +g11x

1x1 +g22x
2x2 +g33x

3x3 = 1,

g00y
0y0 +g11y

1y1 +g22y
2y2 +g33y

3y3 = 1.

Define A= GMf(r)
r3 = rs

2r3 c
2f(r), B= GM

c2r3f(r) = rs
2r3f(r) , C= GM

c2r = rs
2r , D= GM sin2 θ

c2r =
rs
2r sin2θ. The nonzero components are expressed by

R0
101 =−R0

110 = 2B, R0
220 =−R0

202 =C, R0
330 =−R0

303 =D,

R1
001 =−R1

010 = 2A, R1
221 =−R1

212 =C, R1
331 =−R1

313 =D,

R2
020 =−R2

002 =A, R2
112 =−R2

121 =B, R2
323 =−R2

332 = 2D,

R3
030 =−R3

003 =A, R3
113 =−R3

131 =B, R3
232 =−R3

223 = 2C.

We have the following system of polynomial equations with nine variables
(x0,x1,x2,x3,y0,y1,y2,y3,ζ).

2By1(x0y1−x1y0)−Cy2(x0y2−x2y0)−Dy3(x0y3−x3y0) = ζx0,

2Ay0(x0y1−x1y0)−Cy2(x1y2−x2y1)−Dy3(x1y3−x3y1) = ζx1,

−Ay0(x0y2−x2y0)+By1(x1y2−x2y1)+2Dy3(x2y3−x3y2) = ζx2,

−Ay0(x0y3−x3y0)+By1(x1y3−x3y1)−2Cy2(x2y3−x3y2) = ζx3,

−2Bx1(x0y1−x1y0)+Cx2(x0y2−x2y0)+Dx3(x0y3−x3y0) = ζy0,

−2Ax0(x0y1−x1y0)+Cx2(x1y2−x2y1)+Dx3(x1y3−x3y1) = ζy1,

Ax0(x0y2−x2y0)−Bx1(x1y2−x2y1)−2Dx3(x2y3−x3y2) = ζy2,

Ax0(x0y3−x3y0)−Bx1(x1y3−x3y1)+2Cx2(x2y3−x3y2) = ζy3.

Let Sij =xiyj−xjyi. From the first four equalities, we have
0 2S01 S20 S30

2S01 0 S21 S31

S20 S12 0 2S23

S30 S13 2S32 0



A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D



y0

y1

y2

y3

= ζ


x0

x1

x2

x3


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For simplicity, we denote it by

TΛy= ζx,

where Λ := diag(A,B,C,D) = rs
2r3 diag(c2f(r),f(r)−1,r2,r2 sin2θ), and T can be defined

correspondingly.
Similarly, from the last four equalities, we have

TΛx=−ζy.

Rewriting these two equations in a compact form, we have[
0 TΛ
−TΛ 0

](
x
y

)
= ζ

(
x
y

)
.

Note that

det

(
ζ −TΛ
TΛ ζ

)
= det

(
ζ2I+(TΛ)2

)
.

The nonzero solution requires that det(TΛ± iζI) = 0. Direct calculation yields that

det
(
T ± iζΛ−1

)
= det(T )+[ζ2 +AB(2S01)2 +AC(S20)2 +AD(S30)2

−CD(2S23)2−BD(S13)2−BC(S21)2]ζ2det(Λ−1).

A sufficient condition for the existence of nonzero solution is that the two terms in the
right-hand size of above formula are zeros.

For the first term, we can verify that

det(T ) =−(2S01 ·2S23 +S20S13 +S30S21)2.

Hence, det(T ) = 0 is equivalent to 4S01S23 +S20S13 +S30S21 = 0. We can denote this
by (2S01,S20,S30)⊥ (2S23,S13,S21) for an easy-to-remember form. Substituting the
expression for Sij , we have 3S01S23 = 0, i.e., x0y1 =x1y0 or x2y3 =x3y2. Meanwhile,
S20S31−S30S21 = 0.

The choice that x=y gives zero M-eigenvalue. We choose

x0 =y0, x1 =y1, x2 =−y2, x3 =−y3.

Under such settings, we have S01 = 0 =S23, S20 = 2x0x2, S30 = 2x0x3, S13 =−2x1x3,
and S21 = 2x1x2. For this special choice, the first four equations and the next four
equations are the same, and can be further reduced to two equations:

A(x0)2−B(x1)2 = ζ/2,

C(x2)2 +D(x3)2 =−ζ/2,

which can be obtained, for example, from the 2nd and the 3rd equations in the system
of polynomial equations. This indicates that

A(x0)2−B(x1)2 =−C(x2)2−D(x3)2.

By the way, we can check that the second term in det
(
T ± iζΛ−1

)
reduces to

{ζ2 +4[A(x0)2−B(x1)2][C(x2)2 +D(x3)2]}ζ2det(Λ−1),
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and it vanishes naturally.
Since the metric

(gij) = diag(−c2f(r),f(r)−1,r2,r2 sin2θ) =
2r3

rs
diag(−A,B,C,D),

and the constraint

〈x,x〉=gijx
ixj =

2r3

rs
[−A(x0)2 +B(x1)2 +C(x2)2 +D(x3)2] =±1,

we have

ζ= 2[A(x0)2−B(x1)2] =∓ rs
2r3

=∓GM
c2r3

=∓
√
K1

48
.

We find that the M-eigenvalue relates to the Kretschmann invariant, which is the
simplest invariant product involving the Riemann curvature tensor, and used most often
to identify essential singularities in a spacetime geometry.

The Schwarzschild metric (1915), the Reissner–Nordström metric (1916, 1918), the
Kerr metric (1963), and the Kerr–Newman metric (1965) are four related solutions. The
analysis above can be extended to the Reissner–Nordström solution, a static solution
corresponding to the gravitational field of a charged, non-rotating, spherically symmetric
body. Its line element reads

ds2 =−

(
1− rs

r
+
r2Q
r2

)
c2dt2 +

(
1− rs

r
+
r2Q
r2

)−1
dr2 +r2(dθ2 +sin2θdφ2),

where rQ is a characteristic length scale given by r2Q= GQ2

4πε0c4
with Q being the charge.

The Kerr solution is more interesting, and the corresponding M-eigenproblem is much
more difficult to solve. Using the Newman-Penrose null tetrads [4] can be helpful for
this case.

4. Conclusion
Starting from two kinds of eigenproblems of the elasticity tensor, we investigate

two corresponding eigenproblems of the Riemann curvature tensor. One is classical,
related to the Petrov classification. The other one is the M-eigenvalue problem, which
is the extension of the M-eigenvalue problem of the elasticity tensor. In a way similar
to the elasticity tensor case, from the optimization problem on the associated function,
we introduce the M-eigenproblem of the Riemann tensor. The M-eigenvalues of the
Riemann curvature tensor always exist and are real. They are invariants of the Riemann
curvature tensor. The associated function of the Riemann curvature tensor is always
positive at a point if and only if the M-eigenvalues of the Riemann curvature tensor are
all positive at that point. These show that the M-eigenvalues are some intrinsic scalars of
the Riemann curvature tensor. We further examine several typical cases such as the 2D
case, the 3D case, the constant curvature case and the Schwarzschild solution. But we
can just obtain a few of the M-eigenvalues, and cannot calculate all the M-eigenvalues
by solving a system of polynomial equations. Actually, the M-eigenvalues and their
corresponding eigenvectors are real solutions of a system of polynomial equations. Thus,
it is hard to know the number of M-eigenvalues [7, 17]. But we believe that the M-
eigenvalues are related to those important curvature invariants, and would show us
tremendous mathematical and physical information.
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Appendix. Using the symmetry of Riemann tensor Rijkl and the anti-symmetry
of eigentensor xij , we can rewrite the eigenproblem (2.1) as follows.

R1010 R1020 R1030 R1023 R1031 R1012

R2010 R2020 R2030 R2023 R2031 R2012

R3010 R3020 R3030 R3023 R3031 R3012

R2310 R2320 R2330 R2323 R2331 R2312

R3110 R3120 R3130 R3123 R3131 R3112

R1210 R1220 R1230 R1223 R1231 R1212




x10

x20

x30

x23

x31

x12

=
1

2
ζ

[
G11 G12

G21 G22

]

x10

x20

x30

x23

x31

x12

 .

We express it in a compact matrix form, compressing each pair of indices into one
index by the following standard mapping for tensor indices.

ij =
⇓
A =

10 20 30 23 31 12
⇓ ⇓ ⇓ ⇓ ⇓ ⇓
1 2 3 4 5 6

Denoting the basis indices by capital letters, we rewrite the above eigenproblem as
(2.2): RABx

B = 1
2ζGABx

B , where (GAB) is defined by the following matrix blocks of
size 3-by-3:

G11 =

g00g11−g201 g00g12−g02g10 g00g13−g03g10g00g22−g202 g00g23−g03g20
sym. g00g33−g203

,

G22 =

g22g33−g223 g23g31−g21g33 g21g32−g22g31g11g33−g213 g12g31−g11g32
sym. g11g22−g212

,

G12 =

g03g12−g02g13 g01g13−g03g11 g02g11−g01g12g03g22−g02g23 g01g23−g03g21 g02g21−g01g22
g03g32−g02g33 g01g33−g03g31 g02g31−g01g32

,
and G21 = (G12)T . For the case where (gij) = diag(−1,1,1,1), we have G=
diag(−1,−1,−1,1,1,1).

From the Einstein field equation in vacuum

Rij =κgij ,

and Rab=Rhahb=ghlRalbh, we have
∑
k skRikjk =κgij , where sk =±1.

Due to the symmetry, we suppose that (RAB) =

[
M N
NT W

]
, where M and W are

symmetric. According to the (0,1), (0,2) and (0,3) components of the equation, we can
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derive that N itself is symmetric. Using the Bianchi identity R0123 +R0312 +R0231 = 0,
we have tr(N) = 0. From the (1,2), (1,3) and (2,3) components, we obtain that M =−W
except the diagonals. Further more, using the (0,0), (1,1), (2,2) and (3,3) components,
we can verify that M =−W and tr(M) =−κ. In all, the 6-by-6 matrix (RAB) can be
expressed as

(RAB) =

[
M N
N −M

]
,

where tr(N) = 0, tr(M) =−κ, N and M are both symmetric [16].
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