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SMOOTHING EFFECTS AND DECAY ESTIMATE OF THE SOLUTION
OF THE LINEARIZED TWO SPECIES LANDAU EQUATION*

YU-CHU LINT, HAITAO WANG!, AND KUNG-CHIEN WU$

Abstract. We study the Landau equation for a mixture of two species in the whole space, with
initial condition of one species near a vacuum and the other near a Maxwellian equilibrium state. For
the linearized level, without any smoothness assumption on the initial data, it is shown that the solution
becomes smooth instantaneously in both the space and momentum variables. Moreover, the large-time
behavior of the solution is also obtained.
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1. Introduction

1.1. The model. This paper is concerned with the Cauchy problem for a system
of Landau equations describing collisions in an ideal plasma mixture. The mixture is
constituted by two species with mass (ma,mp) and is described by density functions
(Fa(t,x,p), Fp(t,x,p)) defined in the phase-space of position and momentum. It takes
the form of the following system:

1
8tFA+m7p'vaA =Q*(F4,Fa)+Q*P(Fa,Fp),

1“ (1.1)
O Fp+ mep'VxFB =QPB(Fp,Fp)+QP*(Fp,Fa).

The right-hand side consists of the usual collision terms which for X,Y € {A,B} are
given by:

Q™Y (Fx,Fy)
_ . Xy (_ P _ P« _
<9y { [ 0% (L= L) [Bep) V)~ Fx (). i ). |
here
XY, \_ Mxmy ¥z
Y (2)= X 22 o),

the potential o(|z|) =|z|7T2. We assume throughout this paper that & [—2,1].
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2262 TWO SPECIES LANDAU EQUATION

We can find the following invariant properties of the collision operator (see [11]):
/R3 {1,p, |p|2}QXX(FX,FX)dp:O for X e{A, B},
|, Qs Foyip= | Q"(Fo.Fayip=0,

(1.2)
/R p[QP(Fa,Fp)+QP*(Fg,Fa)]dp=0,

2

2
/Rs p {m QP (FaFa)+ - Q"A(Fa.F) | dp=0.

This means that the system (1.1) conserves mass, total momentum and total energy:

d
dt
d
% R3 xR3
d Ip? {

dt R3 xR3 2 ma

/ Fxdpdr=0 for Xe{A,B},
R3 xXR3

plFa+ Fgldpdx=0, (1.3)

1
Fa —l—FB] dpdz =0.

1.2. The linearized problem. Based on the idea introduced by [18], we
consider the following perturbation:

Fa=+/Mafa,
Fp=Mgp+\/Mgfs,
with the initial conditions of F4 and Fp satisfying
Fa(0,2,p) =/ Magin(z,p),

FB(O,ZCJ)) :MB+ V MBhin(xap)a

where M4 and Mp are the Maxwellian states. Here, we fix the Maxwellian state of
species B as the standard Gaussian, i.e.,

(271'1)3/2 EXP(_|§‘2)7

and then M4, the Maxwellian state of species A, is chosen uniquely as

Mp(p)=

Ma(p)= : (—mA W),

(2mma/mp)3/? mp 2
for which the condition
QP (Ma,Mp)=Q"*(Mp,MA)=0
is valid. Therefore, under this choice, the two Maxwellian states satisfy

QM (Ma,M4)=0, QPFB(Mp,Mp)=0,
(1.4)

QB (M4, Mp)=0, QP4 (Mp,Ms)=0.
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It is easy to check that the system for (fa,f5) satisfies

Ocfa+ mLAP'Vx A=Lapfa+T2(fa, fa)+T2P(fa, fB),
8th+min'szB =Lppfe+TP8(f5,f5)+Leafa+TP4(f5, fa),

where

Lapfa= \/LM—AQAB(J(A\/ My, Mg),

Lpafa= ﬁQBA(MB7fA vVMa),
(QBB(MBafB\/ Mp)+QP"(fpv MB,MB)>,

1
VMg
FXY(fX7fY)=¢%QXY(fXV Mx, fy/ My).

If we assume the total mass of species A and the perturbations in species B are
sufficiently small, in general, the basic time asymptotic behavior of the nonlinear solution
is governed primarily by the linearized equation (up to a large time scale), since the
nonlinear term is quadratic. In this regard, we will consider the linearized problem as
follows:

Lppf=

1
Org+ b V.9=LaBg,
1A (1.5)
Oth+—p-Voh=Lpph+Lpag.
mp

In this paper, we shall study the regularization effect and large-time behavior of the
system (1.5).

1.3. Review of previous works. The studies of gas mixtures in terms of the
Boltzmann equations were firstly introduced by [21]. Many interesting physical problems
such as “ghost effects” and “Knudsen layer” for gas mixtures have been investigated
in [3,17]. From a mathematical point of view, if we assume that all species are close to
equilibrium, the explicit spectral gap estimate and the hypocoercivity for a linearized
multi-species Boltzmann system in the torus can be found in [8], and exponential decay
towards equilibrium in general function spaces was done by Briant [4] and Briant and
Daus [5]. Moreover, the global existence and stability of mild solutions to the Boltzmann
system were completed by Ha, Noh and Yun in [13]. This research is also interested
in phenomena related to vapor-vapor mixtures. This corresponds to the mathematical
formulation that one species is near a vacuum and the other is near a Maxwellian
equilibrium state. A qualitative-quantitative mathematical analysis in the whole space
case was introduced by Sotirov and Yu [18], and the torus case can be found in [22].

For the mono-species Landau equation, we refer to Alexandre and Villani [2] for
existence of renormalized solutions, to Desvillette and Villani [10] for conditional almost
exponential convergence towards equilibrium and to a recent work by Carrapatoso,
Tristani and Wu [6] for exponential decay towards equilibrium when initial data are
close enough to equilibrium. Moreover, Guo [12] and Strain and Guo [19,20] developed
an existence and convergence towards equilibrium theory based on energy methods for
initial data close to the equilibrium state in some Sobolev norms. Recently the set
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of initial data for which this theory is valid has been enlarged by Carrapatoso and
Mischler [7] via a linearization method.

For the multi-species Landau equation, we refer to Chapter 4 in [14] for a physical
derivation and discussion. However, on the mathematical side, there are very few results.
One can only find the work done by Gualdani and Zamponi [11], in which all species
are assumed to be close to equilibrium; the explicit spectral gap estimate and the
hypocoercivity for a linearized multi-species Landau system in the torus were obtained.

In this paper, we are concerned with the Landau equation in the whole space, with
initial condition of one species near a vacuum and the other near a Maxwellian equilib-
rium state, and study the regularization effect and large-time behavior of solutions of
this Cauchy problem.

1.4. Main theorem. Before the presentation of the main theorem, let us define
some notation in this paper. We denote (p)° = (14 |p|?)*/?, s€R. For the microscopic

variable p, we denote
1/2
2
= d
iz = ([ 1Pan) "

and the weighted norms |f|Lg(m) and \f|Lg respectively by

lagn = ([ 10Pmap) ", 1515 =( [ 15200 an) "

where m=m/(p) is a weight function. The Lf) inner product in R?® will be denoted by
<-,->p. For the space variable z, we have similar notation. In fact, L2 is the classical

flaz=( [ 1rPas) "

Hilbert space with norm

We denote the sup norm as

/L = sup [f(2)].

z€R3

The standard inner product in R? will be denoted by (-,-). For any vector function
ue Lf), P(p)u denotes the orthogonal projection to the direction of vector p, i.e.,

uU-p
P(p)u=-—5p.
|p|?

For the Landau equation, the natural norm in p is || H1, which is defined by

B =10) flEa +10)F POIVof (e +](0) ™ L=P@)]V,of [},

and the weighted norms are defined as

a+ a2 2
2 2

Fi2 xt2 2
|f\§1;(m) = |ml/2 (p) 2 f|2Lg + |ml/2 (p) P(p)Vpﬂ%% + |ml/2 (p) [I3 *P(p)]vpﬂ%,
and

at2 o yt2 2
L, =10l + 1) @Vl + (0) " [ =P@)] Voo .
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Moreover, we define
918 = [ 1gdo. 151 = [ sz, 17183= [ 17Egde,
R3 R3 R3

190 = [ fBsdn, Wl = [ fBrymdos 11, = [ 178 do
R3 R3 s R3 I

and
sz = s o 1llszs = | fluzda.

Finally, we define the high order Sobolev norm: Let k be a non-negative integer and
k1,ko be multi-indexes,

ey = Do 1002 F | o

|k1 |+ k2| <K

The domain decomposition plays an important role for the coercivity of the collision
operators, hence we define a cut-off function y : R — R, which is a smooth non-increasing
function, x(s) =1 for s <1, x(s) =0 for s >2 and 0 < x <1. Moreover, we define xr(s) =
X(s/R).

For simplicity of notation, hereafter, we abbreviate “ <C ” to “ <7, where C is a
positive constant depending only on fixed numbers.

In the following, we state our main result.

THEOREM 1.1. Let k and £ be non-negative integers, and assume that the initial
conditions (gin,hin) € LLL2NL*(wiqe42). Then the solutions of (1.5) have the following
estimates for t > 1:

IV595gle2 S (4072 (llginll s s + lgimll 2y ) )
and
IVEVER|| 2 S (148)” BT/ (||(gm,hm)\|L;Lg + H(ginahin)||L2(wk+g+2)> .
Here

w. = 1, v€[0,1],
" <p>|’y|n, ’76[_270)'

Let us remark that this theorem is a simplified version, and it is covered in more
detail in Theorems 3.1 and 4.1.

1.5. Method of proof and plan of the paper. The basic principles used to
develop the theory are the “separation of scales” and “regularization estimate”. The
separation of scales is a concept created in [15] for a 1D Boltzmann equation with hard
sphere in the whole space. The regularization estimate for the Landau equation was
constructed in [6] initially.

In this paper, a long wave-short wave decomposition is introduced. Under this
decomposition, one can follow the spectrum analysis of the Landau collision operator
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in [23] to decompose the solution to the linearized Landau equation as the long wave-
fluid part, the long wave-nonfluid part and the short wave part, which separate the
scales, and hence get different decay rates for each part.

On the other hand, the regularization estimate plays an important role in this
paper, which leads us to remove the regularity assumption on the initial condition.
Based on the basic regularization estimate established in [6], we are able to construct
new functionals for high order derivatives, and then by using a bootstrap process to get
the smoothing estimates in both the space variable x and momentum variable p.

The separation of scales helps us get different decay rates in each part, but this idea
cannot improve regularity. Contrarily, the regularization estimate helps us improve
regularity, but this cannot give time decay estimates. Fortunately, putting these two
ideas together, by interpolation argument, one can get the smoothing effect and time
decay simultaneously. To the best of our knowledge, this thinking is itself new for
Landau kinetic equations.

In the following we point out some significant points of our method:

e The problem we consider here is the whole space case, and hence we expect the

algebraic decay estimate of the solutions rather than the exponential decay in
the torus case [4-6,8,11,19,20]. Under our linearization (one species near a vac-
uum and the other near equilibrium), the system is decoupled, so that one can
estimate each equation (g,h) separately. For solution g, as we mentioned above,
one can get smoothing effect and time decay simultaneously by interpolation
argument.
For solution h, we solve it by using the Duhamel principle and treating g as a
source term. This method usually results in that the decay rate of h is slower
than that of g. Indeed, the characteristics for the macroscopic equations for
h coincide with the direction of mass diffusion for g. Thus, there is a possible
wave resonance, which leads to the slower decay of solution h. On the micro-
scopic level, the resonance is from the small divisor caused by the closeness
between different wave frequencies (i.e., A(7) in Lemma 2.5 and o,(n), j=2,3,4
in Lemma 2.6). It was shown in [18] that for a 1D Boltzmann gas mixture
there is only one characteristic for h coinciding with g, which is the diffusion
sound wave carrying mass and energy. The resonance problem was resolved
by considering a microscopic cancellation representing the conservation of mass
and total energy. For our 3D case, there are other two characteristics for h
having the same direction as mass diffusion for g in addition to the diffusion
sound wave. Their resonances are resolved by other microscopic cancellations
from the conservation of total momentum and orthogonality between propa-
gating directions (see the proof of Proposition 4.1 for details). These crucial
cancellation properties lead h to have the same decay rate as g. It would also
be interesting to understand the detailed wave propagation of (g,h), and they
are postponed to our future studies.

e The method to prove high order regularization estimates in this paper is inter-
esting and itself new. In the paper [6], a first order regularization estimate for
the semigroup e**42 in both the x and p variables is obtained (see Lemma 3.1),
where L 4p contains the transport part p-V, and the ellipticity part Aap, and
the regularization mechanism is their combined effect. In order to improve the
high order x and p regularities based on this result, we employ different argu-
ments respectively. For the space variable x, we design a Picard-type iteration,
which treats Lap as an anstaz and the operator K4p as a source term. The
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first several terms in the iteration contain the most singular part of the solution.
Thereupon, after finite iterations (depending on the differentiation order), we
can extract the singular waves and then the remainder part will become smooth
in z variable for all time (see Lemma 3.2). For the momentum p, we construct
a new functional including high order p derivatives and all lower order x, p and
mixed derivatives, where the lower order derivatives are used to take care of
the nonzero commutator [p-V,,V,]. By making use of x regularity obtained
previously, and choosing suitable combinations of derivatives, one can get high
order regularization estimates in p variable for the semigroup e?*4%. Then the
smoothing effect of the solution in the p variable will be obtained inductively
(see Subsection 3.2.1).

The paper is organized as follows: we list some properties of the linearized collision

operator in section 2; then we prove the estimates of g and h in Sections 3 and 4
respectively.

2. Preliminaries

The basic structures of the linearized Landau collision operator are well known [9)].
Here we take a closer look at these structures with more modifications (see Lemma
2.1-Lemma 2.3). After that, Lemma 2.4 is done by Guo [12], which would be of great
help to us regarding the regularization estimate. On the other hand, the separation of
scales relies on the spectrum analysis of the operator L' = —ig—')f + Lxy in the classical
Hilbert space L2, where (X,Y)=(A,B) or (B,B); this is why our argument cannot
include the case of very soft potentials and Coulomb potential. Following the systematic
procedure established by Yang and Yu [23], we can easily derive the spectrum of the
operator L%,.. Moreover, we demonstrate that when |n| is small, the corresponding
eigenfunctions are not only smooth but also decay faster than any polynomial in p.

LEMMA 2.1 (The null spaces of Lgg and Lag). The null space of Lgp is a five-
dimensional vector space with an orthonormal basis {x;}}_,, where

{x0.x;,xa}={VMp.pjvVM \f (IpI>=3)v/Mp}, j=1,2,3.

On the other hand, the null space of L sp is a one-dimensional vector space { Ep}, where
Ep=M}".

LEMMA 2.2 (Decomposition). Let (X,Y)=(B,B) or (A,B). Then
(i) the collision operator Lxy consists of an elliptic-type operator AXY and an integral
operator KXY :

Lxyf=-AYf+ KXYV §,

where
~ 1m 1m
XY r_ o . [-XY Y (XY ANy o 1 XY
B =V O]+ (12 ) 50, 1) .
1/2 —1/2 XY
I?ny fR3 MB (p*)vivvp* Z (pap*)f(p*)dp*a (X7Y):(B7B)7

0, (X,)Y)

(AaB)a
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with

oXY(m:/ XY (p— P )My(pndp*,
]R3

mx My

ZXY (pvp*):MX (p)MY (p*)(I)X7Y (p _ D+ > .
mx My

(ii) The spectrum of oXY (p) consists of a simple eigenvalue A1 (p) associated with
the eigenvector p, and a double eigenvalue Xy (p) associated with the eigenspace p=.
Furthermore

2
mxmy 1 p P my 2
)\f(Y(P)=7W/ 1- (*> My (p—p*> <" dp.,
mx +my my = Jrs bl [P mx

2
mxm 1 « m
Y (p)=— 7+2/ 1+(p e > My <Ypp*>lp*|7+2dp*,
mx +my my+? Jps p| " ] mx

with

qgﬁi%ﬂ{( Y (p)>0, 1'%1‘1_133)%( Y (p)>0,

and as |p| — oo,
2 m K mxm 1 m T+
\XY () o, XY my AXY () o XY Y .
1 (p) mx tmy mF? \mx Ipl | 5 (p) mx +my mFE \m Ip|
Immediately, we have
v, .o XY 77@ XYy 7imi%>\xy XY XY 2
p 0 (P)=——5 0" (Pp=——75A"" ), (p,o” " (p)p)=AT" (P)lpl”
mx mx
2
(u,0™Y (p)u) =AY (p)|P(p)ul® + 257 (p)| [Is —P(p) ] ul
> co{ (p)" IP)ul® + ()2 (15— P(p)]uf }

(iii) For any k€N, we have

IVEXY ()| S ()20, IVE@ Y ()p)| S )T,

and as |p| — oo,

IVEXY ) <07, [VEASY ()| S (o) R

(iv) (Coercivity) Rewrite
2

AXY o [,XY Imy  xy _1@ XY XYy
AT ==V, [0 fo}+<4m%((a p,p) QmX((Vpa ,p)+TTa ))f

1 my | my [ my 2
_ O [.XY 1y xy my. 1y xy
—-V,-[o vpfh{ P 0 (22l ) 45 ) 2 (2 )

my \ xy Imy  xy
)\ ——— .
mx > (p) 2 mx 1 (p) } f
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Let
AN f =AY f—wxnf, KX f =KX frwxaf,
where w, R are positive constants large enough. Then
(AXYF,£), > ol FlT
for some ¢y >0, and
(KXY 1. f), <CIfl7s -

The behavior of the operator Ly, is different from Lgg and L4pg, but similar to
KBB,

LEMMA 2.3.  The operator Lpa is a bounded integral operator:

LBAfz/RS M) ML (p2) V- V. - 254 (p,p.) f () dp.,

where

Z54(p,p,) = My (p) Ma (p.) D54 (P iy ) _
mp maA

LEMMA 2.4 (Lemma 6, [12]). Let (X,Y)=(B,B) or (4,B), assume |a| >0, for small
6 >0, we have

(o) 0 (KXY 1), 05 Fhp 2 ol fl3s =0 > 105 f 13— CalxnfI3
[@|<|af
and
\<<p>29ag (chYfl),aﬁmlgwgfgm;e & Y 105 film , +Cslxmfilez
[@|<|a

In particular,

<<p>2983(LXYf)783?>1)§_CO|8;?J£|%I;)9+6 Y 05 I, +Celxrfll  (21)

[al<|al

Taking the Fourier transform in the space variable x, we consider the operator
L%y ==+ Lxy , where (X,Y)=(A,B) or (B,B). Then the corresponding spec-
trums Specyy (1) in the classical Hilbert space Lz are derived as follows.

LEMMA 2.5 (Spectrum of L' 5 [23]).  Given 6 >0
(i) there exists To=72(8) >0 such that if |n| >0,

Spec(L 5) C{z€C:Re(z) < —72}. (2.2)

(i) Ifn=|nlw and |n| <4, the spectrum within the region {z € C: Re(z) > —Ta2} is con-
sisting of exactly one eigenvalue {\(n)},

Spec(Ly 5)N{z€C:Re(z) > -2} ={A(n)}, (2.3)
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associated with its eigenfunction {ep(n)}. They have the expansions

A(n) =—az|n>+0(In*),
(2.4)
en(n)=Ep+iEp.1|n|+0(|n[?),

with az =— (L 5(p-w/ma)Ep, (p- w/mA)ED> >0 and Ep 1 =L 5(p-w/ma)Ep. Here
{ep(n)} can be normalized by (ep(— > =1.

More precisely, the semigroup e( - ”“‘L“B)t can be decomposed as
6(*7;77-p+LAB)tf:6(*’L—TI-P+LAB)tH7?J_f+X{‘n‘<6}6)\(n)t<eD(7n)7f>p6D(77)7 (2.5)

and there exist a(t2) >0, ag >0 such that |e(7“7'p+LAB)tH,7Dl\Lg Sedm)t gnd [eMME| <
e—aznl?t

Moreover, the eigenfunction ep(p,n) is smooth and decays faster than any polyno-
mial in p, i.e., for any >0, |a] >0, \(p)eagep(p,n)\% §097a|ep(p,n)|L§.

Proof. The spectrum analysis can be found in [23]. Here it is sufficient to show that
ep(p,m) as a function of p is in Schwartz space. Note that

(LAB - “”’) en(p.n) = Amen(pm).
ma

Let a be a multi-index with [a|>0. Taking 9y, we get

A en (1) =0 (Laren (p.1) — L0 en (p.n) - > c ﬁ(”? p)aﬁeD@, )
\5\ \al 1

here C” = a= ﬁ), A1 Take the inner product to yield
()03 (Laen(pn), 05 en(p,~n) )
m-
= <<p>29 Ma;’en(p,n),aﬁep(p, —n)> +A(n) (<p>26 dyen(p,n)
2 (o (B2) ogenpa ogentv. ).

B<a,|Bl=|al-1

‘ 2

and

()05 (Lasen(p,~m)) 05 en(pm))

= <<p>29 7;;7;)33@(29, n)yaj?eD(p,n)> +A(=n) ‘<p>26 dyen (pm)’

vy a(oa (S et entn ).

m
B<a,|fl=lal-1 A

2

Adding the above two equations, and in view of (2.1), we have

coldyen(p.n)li 5(|A< |+ N=m)p) Ogen(p.n)liz

+(w+Clnl) = 105enpmls , +Culxren(pn)s.

[al<lel
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Taking summation over |a| <k, for |n| small and choosing « sufficiently small, we have

> 9gen(pmlin , < Clxren(pm)liz.
lal<k '

Since this holds for any k and 6, the proof is complete. 0

LEMMA 2.6 (Spectrum of L} 5 [23]).  Given § >0,
(i) there exists 71 =71(0) >0 such that if |n| >0,

Spec(L} ;) C{z€C:Re(z) < —71}. (2.6)

(i1) Ifn=|njw and|n| <4, the spectrum within the region {z € C: Re(z) > —11} consists
of exactly five eigenvalues {o; (7])}?:0,

Spec(L%B)ﬁ{zG(C:Re(z)>—7'1}:{aj(77)}?:0, (2.7)

associated with the corresponding eigenfunctions {ej(n)};*zo. They have the expansions

oj(n) =iaj1|nl—aj2lnl*+O(nl*),

(2.8)
ej(n)=E;+0(nl),

with ajo=(LyP1(p-w/mp)E;,Py (p-w/mB)Ej>p >0 and

aOl:ﬁ\/%a an:—m%g\/%, az1 =ag1 = a4 =0,

Ey= %XOJF\/EWWIJJF\/EX%

B = %XO—\/gw-\I/-I—\/%X@ (2.9)
E2=—\/§Xo+\/§>(4»

E3 :wll -\I/,

E4:w2l'\I/

)

where W= (x1,x2,x3), {w,wi,ws'} is an orthonormal basis of R, {e;(n)}]_y can be
normalized by <ej(—77),el(77)>p: i1, 0<4,1<4.

More precisely, the semigroup e~"PTLBB) con be decomposed as

e(—in~p+LBB)tf — e(_in‘P"I‘LBB)tH"J{f

3
+Xni<sy p_ €7 es (=), f) €5 (n), (2.10)
j=1
and there exist a(t1) >0, a; >0 such that |e(_i’7'p+LBB)tH7J;|L§ Sem )t gnd |e% (M| <
e~ @It for qll 0< j < 4.
Moreover, the eigenfunctions ej(p,n), 0<j <4 are smooth and decay faster than
any polynomial in p, i.e., for any 6 >0, |a| >0, |(p>08§‘ej (p.m)rz < Co,alej(p,n)|rz-
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3. The result for g
In accordance with the theory of the semi-groups, the solution of the linearized
Landau equation

1
8tg+ p'vzg:LABg7 9(07937p):9in($7p)7
ma

can be represented by

e e L

where Gyp' is the solution operator and § means the Fourier transform in the space
variable x. Furthermore, we introduce a long wave-short wave decomposition for the
solution ¢:

g=4grL+gs,

where

gL_/l | seinlu(ﬁp'n/m“%”)tgin (n,p)dn,
ni<

gs:/ 5em.w_ipn/m“L’*B)tgin(n,p)dn-
nl=

In order to study the long wave part gz, we need further to decompose it into the fluid
part and non-fluid part, i.e., gr =gr,0+9r,1, where

gL,o=/ A (ep(=n),gin) e (n)dn,
[n|<é

gr.L :/ ‘ 6ein‘x—&-(—ipn/mA+LAB)tHnDLgZ¢n (n,p) d77
n|<

The main result for the solution g is stated as below.

THEOREM 3.1. Let k and ¢ be non-negative integers. Then for t>1,
va)VI;QL,OHL:OL% S(141)~ BRI ginllL1 L2
V59801113 5 (Mo Dl ).
and
HVf,V’gﬁgsHLgOL% Se ¢ ||9mHL2(wk+g+2),

the constant C >0 depending only upon k and ¢. Here

" :{L yelo,1],
T vel-2,0).

In what follows, we prove this theorem in several stages. To begin with, we establish
the z-regularity of ¢ in Subsection 3.1. After that, we take advantage of it to improve
the p-regularity via certain energy functionals and Duhamel’s principle in the next
subsection. On the basis of these regularization estimates, we finally obtain the decay
rate by invoking Sobolev’s inequality and interpolation inequality.
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3.1. Improvement of the z-regularity. It immediately follows from the
Fourier transform in z and the p-regularity of the eigenfunction ep(n) that

[V Vhgr.o HL;@Lg S(1+t)~GTR/2 1ginll L1 z2 -
On the other hand, from the spectral gap it follows that
’|v:9L,J_ HL%"L;% S e ¢t HginHL,}rLg )
and

lgsllz2 S e llginll 2

Noticing that gs =g — g1, we need the regularization estimate of g in « further. To that
end, we introduce a new operator £ pg:

1
Lap=——p-Vy—AE.
ma

Let n be a non-negative integer and let § > 0. Hereafter, we define mg=my= <p>9 and

me, Y € [Ou 1} )
m =
" me, ve[-2,0).
Recall the energy estimate and the regularization property of the operator e**4 in [6]:

LEMMA 3.1. Ifu solves the equation

atil,:[,ABu,
(3.1)
U(O,x,p) :Uo(x,p),

then there exists C' >0 such that

||€t£ABu0HL2(m9) < e ¢t ||U0||L2(me) ’

Moreover, for 0<t<1, we have
19t o Pmadedp=0() | uo*midads.
and

/|VxetcABuo|2m9dmdp:O(tig)/|u0|2m1dxdp.

Utilizing this lemma, we establish the regularity in x as below. Worthy to be
mentioned here, the proof for the case k=1 is crucial. For the z-derivatives, from
Lemma 3.1, t~3/2 is not integrable as ¢ is small. It appears to be harmful whenever
we use the Duhamel principle. In fact, one can see that the erch; (mg) norms of the
integrands in (3.8) and (3.10) are integrable in ¢ if we appropriately couple the operator
tV, with etfas,



2274 TWO SPECIES LANDAU EQUATION
LEMMA 3.2. Let f be a solution of the linearized Landau equation
Oif+ zp-Vof=Lanf,

f (O,x,p) = fln (xap) .

(3.2)

Let ke NU{0}. Then
(i) for0<t<1

IVEL N Loy S 2 1 finll 12(m) -
(ii) Fort>1,
HviZpr(me) < ||fin||L2(mk.)~

Proof.  For k=0, from Lemma 2.4 and the fact that ||f||;> <| finl/;2, it follows
that

d 2 2 2 2 2
NIV ey S =1 B gy + €11 S =1 W+ el il
which implies that there exists a universal constant C' >0 such that

172y < Cllfinll 2oy (3.3)

Moreover, since the operator 0% is commutative with the Equation (3.2),

105 f (2l L2 (mg) SCNOZF (81) | L2 (mgy s 0 <51 <52, (3.4)

as well.
To prove this lemma for k> 1, we design a Picard-type iteration, treating K47 as
a source term, as below: The zeroth order approximation f(©) is defined by

OO =Lapf O,
(3.5)
f(o) (0,1’,[)) = fzn(xap)a

and thus the difference f— f(©) satisfies

0c(f = F ) =Lap(f = FO)+ KAP(f = fO)+ KAPfO),

(f = fO)(0,2,p)=0.
Therefore, we define the first order approximation f() by

8tf(1) :gABf(l) +KABf(0)7
(3.6)
f3(0,2,p)=0.

Inductively, we can define the j** order approximation f(), j>1, as

Of D =LagfO) 4 KAB fG-1),
(3.7
£9(0,2,p)=0.
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Now, rewrite f as
f:f(o) _|_f(1) _|_f(2) _|_+f(2k) +R(k)’
here the remainder R(*) solves the equation
O R&K) 4+ m%‘p. VoRE) =L, gRK) 4 KAB f(2k)
R (0,2,p) =0.

Under this decomposition, we shall tackle the z-regularity for each component in the
cases of k=1 and k=2. The case of k> 3 follows the same argument as k=2.

Case 1: k=1, f:Z?ZOf(J') + R,
Step 1: The first x-derivative in small time. We claim that for 0<¢<1 and 0<j <2,

. s
Ve f PN 2(mey ST 1 fin 22 (ma)

and

||VIR(1) ||L2(m9) 5 ”meL?(Wu)'

The estimate of f(°) is obvious from Lemma 3.1. Notice that

t
f(l):/ €(t_s)LABKAB€s£ABfindS.
0

Hence,
P(t—s)+s
va(l) :/ fvme(tis)ﬁAB KABesEAB fznds
0
!
= f(t—S)Vze(t_s)LABKABeSLABfmds
0 t
t
1
+ / Ze“*S)‘:AB KAB (sV 65447 f,,) ds. (3.8)
0
By Lemma 3.1,
t
[0t & [ -2
§t71/2||fm\|L2(m1)~ (3.9)
Likewise,
t s
f(2) :/ / ! e(tfsl)ﬁABKABe(sl752)EABKA3632£A5 find52d517
0 Jo
and

t S1 o
Vo @ :/ / = Z?)JrSQ’Vze(FSl)E“BKABe(Sﬁ”)ﬁABKABSS2EABfind52d51
0 Jo

t S1 1
:/ / ;e(t_sl)LAB KAB (51— Sz)vze(sl—32)LABKAB632LAB fin| dsodst,
0 JO 1
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t S1 1
+/ / —elt=s1)Lan [ AB (s1-52)Lap [ AB [szvz652ﬁf‘3fin] dsadsy. (3.10)
oJo 51
By Lemma 3.1 again,

e

t S1
5 S/ / 81_1 [(51—82)_1/2+S;1/2:| dSQdSlein||L2(m1)
L2(me) 0o Jo
S finll 2 ma)- (3.11)

Here we remark that V, £ is regular when ¢ is close to 0.
For the remainder R(Y, since

t
V,RWY = / Gup' " KABV, P (s)ds,
0
we deduce

[v-=)

¢

< HVI @ (s H ds S22 || fim ,
IS N 2 O] S e T Py
by (3.3) and (3.11). In conclusion, for 0<t<1,

IV Fll L2 (mg) S22 1 fin | 2 oy - (3.12)

Step 2: The first z-derivative in large time. It readily follows from (3.4) and (3.12) that
for t>1,

IVaf @) L2me) S NVaf (D) 220me) S 1 finll 2 (m,) -
Case 2: k=2, f:Z?ZOf(j)—i—R(Q).
Step 1: The second z-derivative in small time. Let 0 <t <1. We shall show that
||vif(j)HL2(mg)St_3+j||fin”L2(m2)7 0<5<4, (3.13)
and
IV2ZR|| L2 (mg) S finll 22(mn)-

For the first term, we only give the estimates of f(°) and f() and the others are similar.
Let 0<to<1 and tg/2<t<tg. Since

va(O)(t) —e(t=to/2)Lan Vg;f(o) (to/2),
we have

S(t—10/2)"2(t0/2) 2| finll L2(ma)

L2(mg) "~

[v2roa)|

by Lemma 3.1. Taking t=tq gives

St finll L2 (ma)- (3.14)

V2O ’
H =7 (to) L2(me)
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Since tg € (0,1] is arbitrary, this completes the proof of f(°). Similarly, we have

t
fo(l)(t) — e(t*t0/2)£AB vxf(l)(t()/?) +/ / 6(t78)£AB KABvxf(O)(S)dS7
to/2

and thus it follows from Lemma 3.1, (3.9) and (3.14) that

t
Hvif(l)(t)H g(t—to/z)—s/z(t0/2)—1/2fm||L2(m2)+/t/23—3||fm||L2(m2)ds.
0

L2(myg)

Plugging t =t into the above inequality yields

[V2r®)|| L Sta®finllzzma: (3.15)

L2(my)

as desired.
For the remainder R(?, since

t
VZR® = / Gap' T KAPV2 f W (5)ds,
0
we deduce

|ve=®]

t
< 2 £(4)
Lz(me)N/o Hfo (s)

by (3.3) and (3.13). Consequently, for 0 <t <1,

HvifHLz(me) ’St—s ||fin||L2(m2) ’

2
L2(me)d85t ||meL2(m2)’

Step 2: The second x-derivative in large time. For ¢ > 1, we have

IVEF L2 moy SNVEF ) L2(me) S I finll L2 (ma),
due to (3.4). d

We now return to the z-regularity problem for gs. By Lemma 3.2 (i) with initial
condition fi,(x,p) = gin(z,p) and taking my=1,

V59l 2 S N9inll 20y & ENU{O},
for t > 1. Therefore,
HVI;gSHLz < ||v§gHL2 + HVI;QLHL2 S ||gin||L2(wk)’

for each k€ NU{0}. On the other hand, the interpolation inequality says that

[Vhgs]l o SIVEgs]| 5[ VE s ]2 ke,
Hence,
lgs 1342 (| V2gs )35 k=1

- k ) —(k—j+2)
lgslZ" | TTIVigsZe | IVE+tgs|[t2, k=2
j=2
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S HgSHL2 ngn”[ﬂ(wk+1)
56_2 '||gin||L2(wk+1)' (3.16)

Combining this with the Sobolev inequality [1, Theorem 5.8], yields

3/4

1/4
V25| o pz <1V295 12 S Vel [ Vaos ] 2

o /4 3/4
5 (e 2o ||gin||L2(wk+1)) HgmHLé(wk”)
—k—2

Se? 1ginll L2 (wy 1) -

Summing up, we conclude the following proposition.

PROPOSITION 3.1.  Let k, L€ NU{0}. Then for t>1,
IVEVEgL oll e S QD2 gin 1 1
HV:IEQLJ-HL;CL% Se_Ct ||gin||L;L§ )
and

HVI;gS HLgoLf7 < et ||gi”HL2(wk+2) ’

w. = 1, '76[071],
Tt yel-2,0).

3.2. Improvement of the p-regularity (general discussion). In this sub-
section, we will study the p-regularity of the linearized Landau equation

where C'>0, Cy >0. Here

0f+—pVaf=Lanf.
f(vaap) = fln (l’,p) .

3.2.1. Improvement of the p-regularity in finite time. Assume that
0<t<1. In order to improve the p-regularity of f in finite time, we first establish
the p-regularity of the operator e?*42. Specifically, let u be a solution of the equation
Ou=Lapgu, u(0,x,p) =ug(z,p), and then we prove that for each £€N, there exists a
functional F; such that

(3.17)

1t|yv‘fu||L2(m JSFe(0,u), 0<t<1,
where Fy(0,u) involves only the other derivatives of the initial data ug with differentia-
tion order less than or equal to £. With the aid of the operator e!“45 and the Duhamel
principle, we use a bootstrap process to get the regularization estimate of f in both the
space variable x and momentum variable p simultaneously.

Before proceeding, we derive some useful inequalities to simplify tedious computa-
tions regarding the evolutions we will consider later on. Besides, these inequalities clue

us in on the form of the desired functional F.
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LEMMA 3.3.  Let u be a solution to the equation yu= L apu. Then for k,£eNU{0},
there exist co >0 independent of k and ¢, and C >0 such that

“Himmg)’ (3.18)

d
KR

d 2
%HvﬁuHLQ(me)— CovauHHé(mg)

-1 £—1

+C ZHWHHMMZHWV ey F 2 |, (3.19)
7=0

and

d
@HVf;VIaf“HLz(m )= COHVZVIC“HH;W)
-1 -1

. 2 . 2
+C | 2 MVaVaullygs gy + 2 V5Vl
7=0

+(me)
j=0

+ [Vl

(me)

(3.20)

Proof. Let a and 8 be any multi-indexes. Direct computation shows

o 1 P aa, 2
th HB ||Lz i/vz <—mA81u| )mgdxdp

—|—/ (3§uvp. [UABVI,BQ‘U} —<p(p)|8§‘u|2) medxdp
:7/(JABVP3§‘U,VP8§U) megdxdp
[ o, |2 1 AB , |2
— [ [¢(P)[07ul m0+§(a V, 05| ,meg) dxdp

:_/(aAvaagu,vpagu) megdxdp

3

1
—/ go(p)—rme (8j0;336im9+0338?jm9) |8§‘u|2m9dxdp,
1,j=1

where 0;=0,,, 0% *82

)

_1@ A, y_1meo o ap
w(p)—4mi (e p.p) ZmAVp (c*Pp) + @wxk-

By Lemma 2.2 (ii) and (iii),
38
Y 8 az < K ’
29me z:: m0+0 ]m0) 7C<p>

which implies that

3

1
¢(p)— ng”z:l (9505 Ba mo—i—a &Jme)
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2 2
1 mp 1 mp [ Mmp
>7)\AB e *AAB e (B
2 M (p)<mA |p|> +3M (p)mA p— Ipl
m

1m
—LNE (p) — %Tj)\{“g (p) +wxr—c(p)?

>cq (p)? "

)

provided w and R are sufficiently large. Owing to Lemma 2.2 (i), there exists co >0
independent of « such that

d

allai‘UIle < —e2 |05 ull

(me) = (mg)>

as required.
For |a|>1, compute the evolution
L2 opl,,

:/8Su6;‘ (—mA ~V$u—/~\ABu—wXRu) megdxdp

1
zi/vw. (_T:A |8§u’2> modzdp

—/ Z C’Bﬁa ﬁ( ) -V 85 Oy umgdzdp
ma

B<a, |Bl=lal-1
—/(8;‘ (KABU>)8§um9dxdp—w/3gu3§ (xru)mydxdp

:—/ Z Cﬁaa B< ) -V 85 O umgdxdp
ma

B<a, |Bl=]al-1

f/ (30‘ </~\A3u)) 0y umgdxdp

—w/XR|8au| megdxdp — w/zcgﬁguag*ﬁxlgafumgd:cdp‘

B<a

(me)

By choosing 0 <§ < 1 and the Cauchy inequality,

/ Z Cﬁaa B( > -V 5‘Bu Oy umgdzdp
ma

B<a,
18|=lal~1

« @, (|2
§5||apu|\2wm9) +Cs Z Hvxapu’|L2(m9)7

el <|ex]

and

w/chaguag*ﬁXRagumgdzdp §5||agu||;(m8)+05 > ||3§u||iz(m8).

B<a [el<le]



Y.-C. LIN, H.T. WANG, AND K.-C. WU 2281

From Lemma 2.4,

— / (3;‘ ([N\ABU)) 0y umgdxdp

s-a HaguHi[g,(mg) +0 Z HaguHi;},(mg) +Cs el

[ <]ex|
Together with H(‘?;‘uH;(mS) < |\agu||ip(m9), we therefore have
d 2 c 2
i HviuHLz(mg) S_El HaﬁuHHg(mg)
-1 ) -1 )
j j 2
+C ZHV%“HH;(W)+ZHV;’VIUHL2(W)+Hu||L2 ’
Jj=0 j=0
for £eN. Since 92 is commutative with £4p, (3.20) is a consequence of (3.19). 0

REMARK 3.1. The simplified case that there is no weight function and no p-derivatives
has been considered by Mouhot and Neumann in [16].

Now, we embark on the p-regularity estimate for e!“45 and f in turn. For clarifi-
cation, we first elaborate our procedure in the cases of /=1 and £ =2. For general ¢, we
provide the explicit form of the desired functional F; and complete the proof inductively
on /.

Step 1: The estimate of V, VX f (i.e., £=1). Define the functional

fl(t,u)E/uzmldazder/\V1u|2m9da:dp+/£t/|Vpu|2mgd:£dp.
In view of Lemma 3.3,

d 2 2 d 2 2
alt mldﬂﬁdpS—HUHHg(ml)a %/|V$u| medmdpfg—nku”f]g(mg)a

G 190 madady S =19 0l gy + € (1921003 + Ny )
Collecting terms gives
d 9 2
%fl(t,u)SJHuHH;(ml)(—1+C/<;t)+C/i/|Vpu| medxdp
HIVatull s (m) (—1+Crt) + IV pull3 ) (A1)

Let k=¢c2. Choosing ¢ >0 sufficiently small, and noting that the second term can be
dominated by the first one from the definition of H'(m;), we thereby obtain

d
ﬁfl(t’u) <0 for O<t<]1.

It implies that for 0<t <1,

IVt (8)1172 gy S F1 (0,0) = [ (0) ] 72y y + I Vo OV 72 gy - (3.21)
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Next, we return to the estimate for f. Let 0<ty<1 be given. By Duhamel’s
principle,

t
F&)=elt—to/DEas £(3/9) 4 / elt=9)Lan AB £ (5)ds,
t0/2
for 0<tp/2<t<1. Hence, we have
_1
VoS (Ol p2(myy SC(E=10/2)"2 (ILf (t0/2) || L2(myy T Ve S (E0/2) | L2 (my)
(me)

t
+C [ (=97 (1)) + 12 )l 2oy ) ds

to/2
1.8
<C(t—to/2) * to ||fin||L2(m1)7 (3.22)
due to Lemma 3.2 (i), (3.3) and (3.21). Consequently,

3
2

IV f (Ol g2 gy S finll 2y O<E<L.

On the other hand, since ¢ commutes with the Equation (3.17), we can improve the
mixed regularity simultaneously. Precisely, replacing f by 0% f in (3.22) gives

VoL E O 2y <C (¢ =t0/2) 7% (V5 (/2| oy + IV £ E0/2) | 2, )
+c/t0/2<t_s>—é (17 O gy 17 ) 5
By Lemma 3.2 (i),

_1_3
VoVt Ol 2y S22V finll 2y - (3.23)

Step 2: The estimate of VZVEf (i.e., £=2). Define the functional
Faltn) = [ @+ [Vl 9l sy
2,12 2
+/(|Vzu| + k2 |V Vau|")medadp
—l—l@'gt/‘V?)u’ngda@dp.
By Lemma 3.3,

d

- )~ IVaullty

(ma (m1)»

d
G |17l madodp S =19l iy + € (19000t gy + Nl )

(mg)°

d 2
%/Wfﬂ modwdp S —||Vaullz

d 2
%/|vax“| medxdpi—||VpVxUH%r},(m9)+C(||V92¢U||?J},(m9)+HV:cUH%r;(m9)>v
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d 9 12
%/}Vpu’ megdxdp
S—IVoull +O(IIVpVaul? +[[Voull7 +IVpull? +ul? :
~ p I HL (mo) p Y@ UlHL (mg) W H (mo) PHIHZ (mo) HJ (mo)

Hence,

d

%}"Q(t,u) §||u\|§,;(ml) (—1+Cky+Crst) + \lvzu\@;(ml) (—1+Ck1+Cka+Crst)
+ vaUH%},(ml) (—r1+Crat) + Crs||Vaul 72y
+ HViUH%{;(mg) (=1+Cr2)+ HVszUII?Jg(me) (—r2+Chst)
A —

Set k; =¢*. Choosing € >0 sufficiently small, we find

d
—Fo(t,u) <0, for 0<t<1,

dt
so that
2 2
V230 ) S F(0,0) = [4O) 21y + [ V2O0) 22y + [TVt 02
(3.24)
for 0<t<1.

Let 0 <ty <1. By Duhamel’s principle,
t

f(t) :e(t7t0/2)LAB f(t0/2) +/ e(tfs)EAB KABf(S) ds,

t0/2
for 0<tp/2<t<1. Using Lemma 3.2, (3.3),(3.23) and (3.24), we obtain

<C(t=t0/2)7F (11t sy + V2 0/l 2 oy + IV 02 2 )

(t=)" 2 (111 ) + V2 F O 2y + 1907 | 2 ) b

t0/2
_1 1.3
<C(t—10/2) 215> > finll 12y - (3.25)

+C

Namely,

_2_3
||v?’f(t)HL2(m9)§t ’ 2X2||meLz(m2)’ O<t<l.

Again, since 0% is commutative with the Equation (3.17), replacing f by 9% f in (3.25)
gives

||V12’V;€f (t) ||L2(mg)

<C(t—to/2) % (\!Vﬁf(to/Q)HHl(ml>

+Hvz“f(to/zwwmg)+vavz“f(to/m\\wmg))
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t
w0 [ (95O iy HIT Oy 1957 1 )
0
<C(t—to/2) 2ty 1Y)

That is,

fi”||L2(mk+2) :

2_3

2wk —2—s(k+2
|’vawf(t)HL2(me)§Ct o )Hfi"||L2(mk+2)'

Step 3: The estimate of VﬁV’; f. For general £ €N, consider the functional

Feltu / Z|Vﬂu| +ZZEq|VqV] Gul” | mydadp

j=1lq=1
2 - 2
+/ ’V£u| +Z€j+1|V2V£_ju| medzdp
j=1

+ 6£+1t/ |Vﬁu|2 modxdp,

for £ >0 sufficiently small. Applying the above argument inductively on ¢, we obtain
high order p-regularity in small time and conclude our result as below.

PROPOSITION 3.2. Let k, e NU{0}. Then for 0<t<1,

IVEVES O 2y < CE 5 E O N finll 2oy

3.2.2. Improvement of the p regularity in large time. In what follows, we
establish the p-regularity in large time through the Gronwall-type inequalities.

PROPOSITION 3.3.  Let f be a solution to Equation (3.17) and let k, £€ NU{0}. Then
fort>1,

||Vf;v];f(t)”[l2(m9) < C”finHL?(karg)’

the constant C' depending only upon k and £.
Proof. Let neN. Define

=;Hvi;f(t)H2Lz(me), H?[f](t)=j§_:0||V§;sz(t)H2LQ(ms)-
We first claim that
LH)(0) < —eH" 7))+ (H2 10+ 1501,

for some constants ¢ >0 small and C' >0 large. To confirm this, in view of Lemma 2.4,
we find
d tr ¢
VA5 ny S = N9 501

-1 -1

OISV s oy + S IVET a1y + 17122 |
j=0 J=0
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so that
d n i y 9 - . 2 n—1 J+1 ; )
2 1V oy S = IV s gy = 22 [ = O 4 ) V5 s ()
j=0 7=0
n—1 )
j 2
+nC z;)’|v§>vrf||m(m9)+||f||m
p=
n—1

—5”HVZfH2L2(m6) ZEJ [1—nCe] ijfHLQ(me)

+nC (H2 (/] <t>+||f<t>HLz),

whenever we choose 0 <e <1 with 1—nCe>1/2. Hence,

d n—1 j C
SHA](1) Hv"fHLZ(me)—;O VN sy o (T AO+IF @)

S—H[f)(0)+C" (HZ A0+ 1F)3).

as required. Now, for t > 1, we have

IO < )+C [ (BG4I ds

fcalzuwf W32y +C (1= 7))

+C/te_c(t_s)H;L_1 [f](s)ds
1

t
§||fm”i2(mn) +/1 e*C(tfs)}[;chl[f](s)d57

the last inequality being true due to Proposition 3.2.
Next, we shall claim that

HE OO finlBory 121,

for some constant C' >0 depending only upon n. When n=1, it is from Lemma 3.2 (i7).
When n > 2, consider the functional

N+1 N N+1—q
oA DTS I SR U B
j=1 =1 j=1

for € >0 sufficiently small. By Lemma 2.4 again, we have

d 2 2 2
IV 2y S = IVEF 2 gy T CNVEF 22

(meg)

and

d
R AT P LAY

(me) ™~

(me)
-1 ‘ ) -1 _ ) )
+C ZHV%VifHH;(mg)+ZOHV%V’§“fHLz<m9>+||V§fl|m

=0
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Hence, following the same argument as H™[f], we deduce

d Ry , 2
ZAN () S —eAy () +C D[ VEFO)] .

j=1
for some constants ¢ >0 small and C >0 large as well. Therefore, for ¢t >1

N+1

An(t.f) <D Ax (1,940 [ e PILC A

N+1

<Dy 1)+ [ e X V2]
N+1 )
i 2
j=1
due to Proposition 3.2. It implies that for t > 1,
H A0 S Anr (8.8) Sl finll T2,
As a consequence, we have
n 2 n 2
H" (1) S finllz2m,y,  HZ 1@ SN finllz2gm,) -
Therefore, for €N,
¢
vaf(t)HLz(ma)S”fin”L?(mg)’ t>1.

In fact, it holds that for any k, /€N

IVETEF @2 gy S Akre-1 (6 ) S im0y £ 1

3.3. Proof of Theorem 3.1. Recall that
gL,o:/ AL (e (<), gin) e (n)dn,
[nl<o

Its regularity has been done in Proposition 3.1. Therefore, it remains to demonstrate
that for any k, £€ NU{0},

_o9—(£+2)
2 Nginll 2 ) + Ninl 1.2

IVpVegr, ]l ey Se
and
V5505 e s S €™ Ninll 2o o)
whenever ¢>1. Here Cj >0 depends only upon k£ and ¢. Among them, the case in

which k€ NU{0} and £=0 is a consequence of Proposition 3.1 and thus we may assume
that ke NU{0} and £€N in the following discussion.
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Firstly, we prove that for t>1, the L?-norms of any derivatives of g7 and gg are

bounded above uniformly in ¢ by multiples of certain weighted L2-norms of the initial
data g;,. To see this, note that the long wave part gj, satisfies

1
6tgL+m7Ap'ngL:LABgLa (t7xap)€R+XR3XR35

(3.26)
gL(O,l‘,p) = (gL)ln(J;ap)a
and the short wave part gg satisfies
1 + 3 3
0:gs+—p-Vaegs=Lapgs, (t,z,p)eRT xR?>xR3,
ma (3.27)

gS(O,m,p) = (gS)in(zzp)v

respectively, where

(gL)m(w,p)=/ e gin (n,p) dn, (gs)m(x,p)=/ " gin (n,p) dn.
Inl<é In|>5

Hence, from Proposition 3.3 (with mg =1), it readily follows that
Ok Lk
vavwg[z(t) HL2 ) vavw‘gs(t) HLZ S ||gin||L2(wk+g) :
However,
[Vagr®)]| 2 Sl ginll L2

for all ke NU{0}. In the course of the proof of Propositions 3.2 and 3.3, we can improve
the regularity of gr, to obtain

V595 L) o Slginll 12y £ 1-

In sum, we summarize the L2-norm bounds for derivatives as the following:

PROPOSITION 3.4.  Let k,eNU{0}. Then fort>1
||Vf)v’;gL(t)||L2 S Hgin”L?(wz) )
and

va)vﬁgs(t) ||L2 g ||gi’n||L2(wk+[) :

Thereupon, write gz, | =gr, —gr,0 and then we find

IVeVigr.ill . <VeVigL] . + [V Vigroll .
SN ginll 22w, +(1+t)_(3+2k)/4||9in||L;Lg
Sginll L2y +11ginllL1ze (3.28)

for t>1, and k, £e NU{0}.
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Further, to obtain the decay rate, we employ the Sobolev inequality and the inter-
polation inequality to attain this end. Specifically, by the Sobolev inequality [1], we
find

[VVE0L 1y SIVEVE gL s [ V5V EgL )5

On the other hand, the interpolation inequality says that

|
—_

N7 oA 7 [ ¢

Hvivlﬂsz»J-HLQS —¢ ¢ —(£—3j+2)
IVegr |2 [ TTIVEVEgnc ) V5 Vhgn [}, €22
j=2

and
lge. 1219200, ]2 k=1

HV’;!JL,LHL2 < oy (hmi ) y

k
o5 | TTIV40n1]l2 V5 gn |5 k=2
=2

Se " Nginll e
for all ¢ >1. Accordingly, combining these with (3.28) yields

—2= () oy (

IV, Vigr.1 ||L36Lg Se 9inll L2 w1y + ||9m||L;Lg) :

for all ¢ >1. Meanwhile, with the same argument, we also obtain

3/4

[VEVEas | 1 S V5 VE0s s V5V E0S 2

_o—(k+e+2)
Se? CtHginHL2(wk+g+2)7

by (3.16) and Proposition 3.4. This completes the proof of Theorem 3.1.

4. The result for h
Recall the equation

1
Oth+—p-Voh=Lpph+Lpag, (t,x,p)cERT xR xR3,
mp (4.1)

h(07x7p) = hln(x7p)

In previous sections, the regularity of the solution g has been investigated well. Now,
regarding g as a source term, we shall devote to establish the regularization estimate
for the solution A in the rest of the article. Especially, we demonstrate that h has the
same decay rate as g (see Theorem 1.1).

Let Ggg' be the solution operator of

1
Oif+—p-Vof=Lppf,
mp

and then the homogeneous part of h is ?L:Gmgthm. Concerning estimates on the
homogeneous part, it is the same as those on gy and gg in previous sections and hence
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we only state the results without proofs. As before, we decompose 7L~int0 the long
wave-fluid part hy, o, long wave-nonfluid part h;, | and short wave part hg. Then they
respectively satisfy

(A RO R Rl L PV
z P

U7k, —Ct
[Vvsne]], ., S (Mhinllsue +lRinlisis)

and

ViVihs|  se m
[vivins],..,, se=

o ||L2(U}k+£+2) ’

with the constant C'>0 depending on k£ and ¢, and

W, = 1, '76[0,1],
Tl vel-2,0).

Thereupon, it remains to control the inhomogeneous part. Hereafter, we may assume
hin =0.

We now decompose the solution A into the long wave part h; and the short wave
part hg, which respectively satisfy

1
athL"i_mip'thL:LBBhL+LBAgL7 (t7x7p>€R+X]R3XRS7
B

(4.2)
hL (0737,]3) :07
and
1
athS"’7p'vth:LBBhS+LBA957 (t7$7p)€R+ XR?’XR37
mp (43)
hS(O,fIJ,p) =0.
It is easy to see that
t
hi(t,z,p) :/ / 6“7'306(*1'17'7]/“13+LBB)(t*S)LBAe(*ip'n/mA+LAB)ngdnds
n|<é
:hgo"‘h(i +hk O+hJ_J_a
where
4 t
hio=2_ / / e I e (o). Laep(n)){dinsep (=) s (),
j=0 <

Z/ / O o) L e AT ) (s,
<

hLO :/ / l 6ein'xe)‘(n)se(_ip'n/mB+LBB)(t_S)H#LBAeD (77)<eD(—’l7),gm>pdndS,
nl<

t
Ll:/ / ein.ze(_ip'n/mB+LBB)(t_S)H#LBAe(_ip'n/mA+LAB)SH,,?L Azndnds
|<d
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Here the eigenfunctions {e;(1)}j—o and ep(n) are defined as in (2.8) and (2.4) with
{ej(=n),e(n)),= ;1 and {ep(—n),ep(n)),=1. The main result for the solution h is
stated as below.

THEOREM 4.1 (Main result of h).  Let k and ¢ be non-negative integers. Then for
t>1,

IVEVE (Rl ez < (14 CF/2 gl 1,

V75 S 07972 (il + il 3.
and
IVEVEht Ll e s S€llginll 2w
On the other hand,

Hvﬁvﬁhs ||L;CL?7 fs eict ||gmHL2(wk+e+2) ’

the constant C'>0 depending on k and €. Here

w. = 1, v€[0,1],
" <p>|7|n, ’76[_270)'

4.1. Improvement of the x-regularity. In this subsection, we deal with the
z-regularization estimate for the long wave part hy. Owing to the fact that the system
(1.5) is decoupled, we naturally use the Duhamel principle to solve h through treating
g as a source term. However, there are some possible wave resonances between g and h
as mentioned in the Introduction, and thus this method usually leads the solution h to
a lower decay rate than g. To remedy this, further physical properties of the collision
operators, namely the microscopic cancellations representing the conservation of mass,
total momentum and total energy, are employed in the following discussion.

PRrROPOSITION 4.1 (Long wave hp,, improvement of the x regularity). For k,£€NU{0}

Hvﬁvﬁ(hoLo +h(i)||L;oLg S(1 +t)7(3+k)/2|\gm||L;Lgy

IVER ol Loz S (148)" 4972 gi | 1 12, (4.4)
and

||V§hﬁl||LgoLg Steia(ﬂtHQinHL;L% (4.5)

Proof.  We first split hly=1Io+ I+ I>+ I3+ I, where each I; is the orthogonal
projection of hl, along ej, i.e.,

t
=/ eI () L acp(a), (e () )i
0 ni<



Y.-C. LIN, H.T. WANG, AND K.-C. WU 2291

Notice that A(n) —o;(n) #0 for j=0 and 1. It is natural to evaluate I; (j=0,1) by the
fundamental theorem of calculus, that is,

¢
1
oim@E=s)+AMsge— _ — | At _ o5t i—0.1 4.6
e 5 e e , j=0,1. .
/ oEol ] o)

On the other hand, we have such a “microscopic cancellation” Ly FEp=0 from
QBA(MB,MA):O that

1
<ej(_n)aLBAeD(77)>p ||ED—|-’LED 177+O(‘77| )” <6J 'LLBAED 177+O(|77‘ )>
Lz
=0 (|n]).
Therefore,
IVEL <C ™! At oMt 15 | b d
eljllLerz < e te |Gin|r2dn,

nl<s [A(m) =3 (n)]

for all ke NU{0}. Further, since

i 1 ,
= - =0(1 5 j:Oalv 4.7
R -0~ ez +azan+iaz +OQP] ) (1)
we deduce
HVZIOHLgoLga |VI;I1|L;°L§§C\/|| ‘77| ‘ +€UJ mt dn”ng”LirL%
n|<o

5 (1 +t)_(k+3)/2||gin||L;L?]~

In contrast with Iy and I, we lose (4.6) or (4.7) in the case of I;, j=1,2 and 3. To
maintain the decay rate of h, we come up with further microscopic cancellations as well
as LpaEp=0. In the light of the conservation of mass and total energy, the operator

LABJJr% LBAJ

mp /Ma

is orthogonal to the collision invariants /M4 and [p|>/M4. With this applied to
J=Ep1 :L;Ulg (p-w/ma)Ep (where we recall that Ep =+/M) it follows

ma /Mp
mp v/ Ma

for any linear combination ®; of 1 and |p|?, so that

/Rs(LAB[Lg}B(p-w/mA)ED] NoB Lpa Lk (p- w/mA)ED])CDN/ 2dp=0,

ma

—/ d1\/M LBA[ AB (p- w/mA)ED]d —/Re’cbl(pw/mA)MAdp.

mp

Choosing ®, = F»//Mp =/ 15 (—5+|p[*), we have

/ EsLpa|Lyp(p-w/ma)Ep] dp———/3\/ —5+1p|*) (p-w/ma) Madp=0,
R
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since the integrand is odd. It turns out that <62(—T]),LBA6D(77)>p =0(|n|?). Hence

t
IViblisz<c [ [
0 Jin|<s

t
kE 7 2
<o [ [ e s g1y
0 Jn|<é

e2 (M) (t=s)+A(n)

t

SCl/ (1th)*(Ska)/QdS”gm”LiL?7
0

<O (1+8)" T gl e,

here @=1/2min{as,az,2} >0 whenever 6 >0 is small.
Furthermore, owing to the conservation of momentum, the operator

VMp
——=1LpaJ

VM4

is orthogonal to all collision invariants p1v/Ma, pav/ M 4 and psv/ M 4. With this applied
to J=FEp; :L:“lg (p-w/ma) Ep, it follows

LapJ+

_ vVMp
/R3 (LAB [LAjl_%’ (p'w/mA)ED] \/M7L3A [LAB (p W/mA ED}) 2V Madp=0,
for any linear combination ®5 of p1, ps and ps, so that
/3<I>2\/MBLBA [Lip (p-w/mA)ED]dpz—/3<I>2(p-w/mA)MAdp.
R R
Choosing ®5 = E3/+/Mp =wji -p, we find

/ EgLBA [LZ}B (p-w/mA)ED]dp
R3

3

=—/R (p-wi) (p- w)i\%dp—— >

4,5=1

(/pszM dp) (wi),w; =0,

due to the fact that [pp;Madp=-1-6;; and wilw. It turns out that

ma 3mp

(es(— ),LBAeD(n)>p— (In|?). Likewise, <e4( ),Leaep(n > =0O(|n|?). Therefore,
IVE I3l Lo 2 IVE Lal Loz S (14 8) ™72 g1 g2

This completes the estimate of h,.
For hé |, direct computation gives

Hvkhoj_HLooLz <CZ/ / |n|ke—a(7—2)s e

In|<é

aj(n)(t—s)

|Gin|22dnds

t/2 ¢
=¢ </ 1) s [ e‘a(”)sd‘s> Iginllzszs.
0 t/2

S+ gl e
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From the last statements of Lemmas 2.5 and 2.6, one can improve p regularity freely;
that is, for any ¢, ke NU{0},

||VﬁV]; (hfo+h§)) lreerz S (1 1)~ FR)/2 ginllz1rz.

For A, we have
10s

t
IVERE ol sz S / / e
0 n|<d

t t/2
5 (/ e—a(Tl)(t—S) (1+8)7(k+4)/2d8+/ e—a(Tl)(t—S)ds> HgmHL}pLz
t/2 0 o

ek(n)s‘ |Gin|L2dnds

5 (1 +t)*(4+k)/2||gin”Lachg.

Finally,

t
k _—a(T —s)—a(T2):¢ —a(T
||V§hJL_Ll|Lg¢L§5/ /|| 5|77| e—a(m)(t—s)—a( Z)SdUdSHQmHL;LgSt@ a( )tHginHL;Lga
0 ni<

here a(7) =min{a(71),a(r2)}. This completes the proof of the proposition. O

4.2. Improvement of the = and p regularities (general discussion). Let
f be a solution of the linearized Landau equation

O f+m=p-Vuf=Lppf+Lpag,
f(Oax7p):fln (xvp)a

where g is known and satisfies the equation 9,9+ mLAmeg:L apg- In the following,
we first apply similar arguments as those in Section 3 to establish the regularization
estimates for f in short time and in large time. After that, based on these regularization
estimates, one can readily obtain the decay rate of hg through the interpolation trick
as before. Contrary to hg, the LZOL% norm of V,h’, decays only algebraically, rather
than exponentially. To maintain the decay rate of ngghf_o the same as that of the
homogeneous problem, we interpolate the LgoLfO norm of it from higher p-derivatives.
However, the method used before for improving p-regularity results in the weights im-
posed on initial data growing drastically (in fact, exponentially growing with respect
to £). We refine the p-regularization estimate by making use of Equation (4.15) and
the p-regularity of source term gr.9. In such a way, the p-regularity of hJL_0 has been
improved without imposing any weight on initial data.

Let the operator Lpp = —min-Vm —ABB. As shown in [6], the operator e!“22 has

(4.8)

the same energy estimate and regularization estimate as e/“42 in Lemma 3.1. Based
on this estimate, we deduce the x-regularity of f in small time as below.

LEMMA 4.1.  Let f be a solution of the linearized Landau Equation (4.8). Then for
keNu{0},

(i) there is Cy, >0 such that for 0<t<1
_3
(i) Fort>1,

HVI;fHL2(m8) g (”f’HIHLQ(mk) +t1/2 ”anHLZ(mk)) :
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Proof.  Firstly, similar to (3.3) and (3.4), there exists a universal constant C' >0
such that
||GIB]BtfinHL2 <C||finHL2(m9)v (49)

(mg) —

and

102G finllp2my) < C 102G finll 1 (4.10)

(me)?

for any 0< s; < s2. By the Duhamel principle,
t
f:GIB]Btfin+/ Gus' " *Lpag(s)ds.
0

Notice that Lz, is an integral operator like K25, Hence, for k=0, we find
t 1/2
2 s 2
1F 1l 2y < (HGBmtmeLz(me) +/ | Ges’ LBAQ(S)||L2(m9)d$>
0

t 1/2
2 2
< (llfmllp(m@ﬁ / ||g<s>|Lz<m9>ds)
<Nl sy 272 im0y (4.1)

from (3.3) and (4.9). In addition, since 9% is commutative with Equation (4.8), we as
well have

102 £ (52) | 2 gy SUOLF (1)1 2 gy + (52— 521029 (50 2y s (4:12)

for any 0<s1 < s9.
For k> 1, using a Picard-type iteration introduced in Lemma 3.2, we rewrite

F=FO 4 M4y @R L RK)
where f(©) satisfies
OO =Lppf,
FO0.2,p) = fin (x,p),
fU) 1< <2k, satisfies
O fV) =LppfU) 4+ KBBfG-1),
F9(0,2,p) =0,
and R(*) solves the equation
HRM =LppRM + KBB R 4 Lpag
R*F)(0,2,p) =0.

Under this decomposition, following the same procedure as in Lemma 3.2, we finish the
proof. ]
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PROPOSITION 4.2.  Let f be a solution to Equation (4.8) and let k, £€NU{0}. Then
for0<t<1

Ok — L3 (k+e
IVETE L O 2 mey SCE 3 ( finl oy +19i0 ] gmr) )-

Proof. Let u be a solution of equation

atu:LBBu,
(4.13)
U(O,LE,p)ZUO(I,p)-
Then for any /€N
HIVEullT2 gy S Fe(0,u), 0<t <1 (4.14)

where Fy (t,u) is defined as in the proof of Proposition 3.2.
Let 0 <ty <1. By Duhamel’s principle,

t t

e(t*S)EBBKBBf(S)der/ MmIEBE L s pg(s)ds,
to/2

f(t)=el=lo/DEss f(1,/2) 4 /

t(]/2

for 0<tp/2<t<1, so that
1908 (g <O —10/2) 7% (1 (00/2) L2y + IV oD 20

t
+C/W2(ts)z (f($)||L2(m1)+||me(s)|L2(m9)

g 22 (my) F 1V g ()] L2 (mg) ) ds

1 3
<Ct=10/2)"215* (Ilfinll agmy)  I9imll 2oy )
due to Lemma 4.1, (4.12) and (4.14). It follows that
_1_3

||fo(t)”L2(m8) St (||fin||L2(m1) + ||9in||L2(m1)) , 0<t<L

Since 0 commutes with the Equation (4.8), we also have
1.3
"val;:f(t)“llz(mg) St 22 (k+1) (Hfin||L2(mk+1) + ||gin||L2(mk+1)> ’ 0<t < L.
For general k, £, we apply the induction argument combined with (4.14) to conclude that
_t_3
||V£V§f(t)||L2(me)§t R (||fm||L2(mk+e) Hllginll L2 )

for 0<t<1. 0

PROPOSITION 4.3.  Let f be a solution to Equation (4.8) and let k, £eNU{0}. Then
fort>1,

Hvﬁvﬁf(t)uﬂ(me) <C (Hfi"”Lz(mkM) +t1/2||gi””L2(mk+l)) ’
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the constant C' depending only upon k and £.
Proof. Define

= Vi Ol 3anyy and HEA =D VIVat Oz,
j=0

Jj=0

In view of Lemmas 2.3 and 2.4,

—1 /—1
||vff|\L2<m9>N IV 131 oy +C | DNV gy + D MV F 112 g
7=0 7=0

+C | 1£1172 +X:HV 91172 (e

7=0

Hence, following a similar argument as in Proposition 3.3, we deduce

d

SH A < —cH"[f](6)+C | Hy ' 1O +F HwZHv D1 Z2(ma)

for some constants ¢ >0 small and C >0 large. It implies that for t>1
t
H"[f](t) <e” "D H"[f] (1)+C€_“t/1 e |11 (s) 1122 +Z V59 () [ 72my) | s

t
—&—C'e_ct/1 ecsHﬁ_l[f] (s)ds,

t
SJ(Hfin”%z(mn)+t||gin||%2(mn))+eict/1 ecngil[f](S)dS,

due to (4.11) and Proposition 4.2. Furthermore, applying a similar argument to the
same functional Ay (¢, f) defined in Proposition 3.3 gives

; N+1 4 ) N+1 ) 9
A (1,1) € —eAy (t7f)+C<Z V35O 12+ 22 1V29O 2oy
i=1 =1
N N+1—j
+Z Z ||VJVq |L2(me)>
Jj=1 g¢=1
so that
N () <em VAN (L)
N+1 , NAL 2
N / —elt— “(ZHW e+ D IVE9 O ()
j=1

N N+1—j
+>° Z V] Vg (t)][7 m9)>ds
Jj=1 gq=
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S (Wil ) U gin 02 )
It implies that for t>1
H 710 S Anr (6 S (Uil 2195013, )
As a result, we have
H (1)) S (Ifonl 2,y + 900320, )
and
H2A WS (1finl 220,00 + 902, ) -
Therefore, for /€N,
Hvﬁf(t)HLZ(mg) 5 <||fin||L2(mg) +t1/2”gin”L2(mg)) s t>1.
On the other hand, for any &, £€N we also have
va)vif(t)HLQ(me) 5 V Ak%%fl (t7f) rg (”finHLz(kar[) +t1/2Hgin”L2(mk+4)> ) t>1.

Together with Lemma 4.1 (i¢), the proof is completed. d

4.3. Proof of Theorem 4.1. Let k, £ NU{0}. It follows from Lemma 4.1,
Propositions 4.2 and 4.3 that for 0<t<1

IV Viahe ()] 2.

_£_3
|V£V’;h5 (t)HL? <tz 2 (k+0) Hgin”Lz(wkH) )

and for t>1
ok Lk
||vazhL (t)HLQ ) vavrhs (t)HLz rg ||gin||L2(wk+g) .
Owing to the fact that
||hSHL2 §€*Ctllgmllp,

it is easy to derive the regularity estimate on hg via the Sobolev inequality and the
interpolation inequality, i.e., for any k,£ € NU{0},

IVEVERs ]| gy < [VEVERS | 13 S IV VRS |y [ V5 V8RS
B ) 19— (k+£+2)
SJ||]7‘~‘;||2L2(]CMJr2 <||gin||L2(wk+£+2) )
< e ||gm||L2(UJk+z+2) )

for all t>1. We complete the estimate for hg.

Recall the regularization estimate of the homogeneous part of h. To maintain the
decay rate of hy, without imposing higher weights on the initial data, we further refine
the regularization estimate on h%, and h% | before employing the Sobolev inequality
and interpolation trick. Specifically, we prove that for any &,/ € NU{0},

IVEVERE ol 22 S /2 ginll 2
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and

IVEVERE L ()], < C2lginll 22 0o

for t>1. Now, let hZ;=h{,+h’, and then it satisfies the equation:

1
athio + — P vwhio = LBBhal;O +LBAgL,07 (trl:ap) S R+ X Rg X RBa

hf,0(0a$7p) = 0

Following the energy estimate in Proposition 4.3, together with mgy =1, gives

d N+1 ) 5 N+1 ) )
N[l (8) < —cAn[ho) (1) +C ( 2 NIVER Ol 2+ 2 V29200,

j=1
N N+1—j
£ S IVl >||2L2>,
j=1 q=1
which implies that

An (72 0) (1) SN (92.0) i T2 (1)
N+1 N N+1—j

/ O 2 floan ||L2+Z 2 IV Vignalis | s

Combined
|

(92.0)in ||i2(wn) < ||9m\|%2
with
IVERE || oo IVEVEgL ollze Sllginllze, t>1,
it follows that
ANl () Stlginll7e, =1,
which implies that
IV ollTe SH [hEo] () SHI(9L.0)in 172 (e Sthginll 72,
and
IVEVERL oIl L2 S \/Aerk—1[hL o] (£) SE2] ginl| L2,

for all £>1. Hence,

IV, ViR ollee <IVEVERL ol o2 + V5 Vihgoll e St7/2 [ ginll 2
By the Sobolev inequality, we obtain

4 0 3/4 A 1/4
IV ViRt oll Loz SNV VERT 32 1a IV VER 115" S8/ ginl 2.
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Consequently, employing the interpolation inequality in p (NOT in ) yields

IV o g SIVERE 12 1 V2 VERE 2
SIVsntolp s Y [Vakntoll 2
—q
<IIWERE || (L25H 2ewtnt |

Lg"Lf7
S+ T 02 (gl +lginlizyzs)
:(1+t)—%+2*q4(5+k_2‘1)_(HgmHLQ +||9m\|L;L§>
<@+ F - (lginl e +lginllzyrz) (4.16)

whenever ¢ > [log, (5+k)].
Finally, let hf = hOL L+ hJL_ | and then it satisfies the equation:

1
6thfL+—p-Vzh*7L :LBBhfj_ +LBAQL,L7 (t,x,p) €R+ XR?’ XRB,
T mp ’ (4.17)
hf,J_(O,m,p)zo.

Going through the proofs of Propositions 4.2 and 4.3 with the fact that
1V5¥EgL L (]| 2 < Cllginllzz . we find

Hvﬁvﬁhf,L(t)||Lz SCtl/QHQin”L?(wg)a t>1.
Since
Hvﬁvﬁh&(t)up <Clginl L2,
we improve

[VEVaRt L) SO llgimll 2wy, 21

Therefore,
[VVERE L a SIVETARE L[ [V R |12
—2
SIVpARE L[ (195 RE L

¢ ) 1/4
ok o—(£=i+2) y) L 1/2
[TIviverntLll,. IV Ve thl Ll s
j=2
5672—(z+2>a(r)t”gin”LQ(le)'
This completes the proof of Theorem 4.1.
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