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EXPONENTIAL RELAXATION OF THE NOSÉ-HOOVER
THERMOSTAT UNDER BROWNIAN HEATING∗

DAVID P. HERZOG†

Abstract. We study a stochastic perturbation of the Nosé-Hoover equation (called the Nosé-
Hoover equation under Brownian heating) and show that the dynamics converges at a geometric rate
to the augmented Gibbs measure in a weighted total variation distance. The joint marginal distribution
of the position and momentum of the particles in turn converges exponentially fast in a similar sense
to the canonical Boltzmann-Gibbs distribution. The result applies to a general number of particles
interacting through a wide class of potential functions, including the usual polynomial type as well as
the singular Lennard-Jones variety.
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1. Introduction

Efficient sampling from the canonical Boltzmann-Gibbs distribution is a fundamen-
tal challenge in molecular dynamics simulation. The most well-known method used to
address this challenge is Markov chain Monte Carlo (MCMC) due to Metropolis, Rosen-
bluth and Rosenbluth [31]. The method is based on random walk proposals to generate
unbiased samples from a distribution whose density is known up to a normalization con-
stant. However, it can lead to high correlation. Moreover, even if one corrects for high
correlation via the Metropolis step in Hybrid Monte Carlo (HMC) [9,21], the correction
can be computationally expensive in high dimensions due to gradient evaluations.

The method of stochastic gradients has been successful in addressing the cost of
such evaluations [1,3,34,44]. The approach is often based on the design of a stochastic
differential equation (SDE) whose stationary distribution (or marginal stationary dis-
tribution) is the prescribed canonical measure, e.g. Langevin dynamics [3, 26]. In this
vein, one such SDE that has gained recent interest is the so-called Nosé-Hoover equa-
tion under Brownian heating (NHB) [6,23,27,38] (see also [37] for related systems). In
essence, (NHB) is the usual Langevin system, but it has been augmented by a fictitious
control variable.

Compared with the usual Langevin dynamics, the introduction of this auxiliary
variable serves a couple of important purposes. First, stochastic gradients can invite
noise into the system that is difficult to control [3]. The auxiliary variable is designed to
self-correct for this. Second, from a statistical mechanics perspective, existing methods
to sample from the canonical measure often fail to keep the system temperature (defined
as mean kinetic energy) near a desired value. The new control variable does just this
by effectively acting as a thermostat.

While the (NHB) system appears to lead to a desirable dynamical method for sam-
pling from the Gibbs measure in high dimensions, many of the statements made above
have only been numerically verified. As an example, it is rigorously known that (NHB)
is uniquely ergodic with an explicit stationary distribution whose marginal coincides
with canonical distribution [6]. This result holds true in spite of the degenerate nature
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of the equations. Nevertheless, how fast the dynamics approaches stationarity is a prac-
tical open problem which is made complicated by the introduction of the thermostat,
the very object that leads to the desirable properties above. Intuitively, the auxiliary
variable forces the system to large values, and thus how dissipation balances this effect
leading to a convergence rate is delicate. In this paper, we solve this open problem by
showing that the (NHB) system approaches the augmented Gibbs distribution expo-
nentially fast in an appropriate weighted total variation distance. By integrating out
the control variable, the joint position and momentum distribution in turn converges
exponentially fast to the canonical Boltzmann-Gibbs measure in a similar sense.

It is important to point out that the main convergence result holds for a wide class of
potential functions which we call normal below (see Definition 2.1). This class includes
the usual polynomial nonlinearities as well as the singular, Lennard-Jones interactions.
While the methods of hypocoercivity [4, 7, 8, 10, 12, 16, 33, 43] have proved useful in ex-
tracting convergence rates for such potentials in the Langevin dynamics case, we follow
the perturbation methods developed in [5, 19, 29] and construct an explicit Lyapunov
function. In essence, the type of Lyapunov function exhibited here ensures that return
times to large compact sets in space have exponential moments. Thus with the appropri-
ate support and regularity properties of the Markov transitions, geometric convergence
to stationarity follows.

The organization of the paper is as follows. In Section 2, we introduce the (NHB)
system, fix notation and terminology, and state the main results to be proved in this
paper. Section 3 provides heuristic ideas behind the construction of the Lyapunov
function. Section 4, Section 5 and the Appendix contain the proofs of the main results.

2. Notation, terminology, and main results

Throughout this paper, we study the following system of SDEs

dqi=
pi
mi

dt

dpi=−ξpidt−
γ

mi
pidt−∇qiU(q)dt+

√
2γkBT dBi

dξ=

N∑
i=1

|pi|2

ami
dt− kBTkN

a
dt. (NHB)

The relations above describe the motion of N ≥1 particles in Rk with position vec-
tor q= (qi)

N
i=1∈ (Rk)N , momentum vector p= (pi)

N
i=1∈ (Rk)N and mass vector m=

(mi)
N
i=1∈ (0,∞)N . Each of the particles is subject to friction (− γ

mi
pidt), thermal fluc-

tuations (
√

2γkBTdBi) and a control mechanism ξ∈R, called the thermostat, which
enacts a friction-like force on the system. The positive parameters kB ,γ,T,a are the
Boltzmann, friction, temperature and auxiliary constants, respectively, while the Bi,
i= 1,2,. ..,N , are mutually independent standard Rk-valued Brownian motions defined
on a probability space (Ω,F ,P,E). The function U : (Rk)N→ [0,+∞] is the potential,
and it encapsulates potential forces on the system as well as any potential interactions
between the particles. Throughout, we will assume that U is normal, as in the following
definition.

Definition 2.1. We call a function U : (Rk)N→ [0,+∞] normal if it satisfies the
following conditions:

(A1) The set O={q∈ (Rk)N : U(q)<∞} is non-empty, open and connected.
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(A2) For every n∈N, the set On={q∈ (Rk)N : U(q)<n} has compact closure in
(Rk)N .

(A3) U ∈C∞(O) and
∫
O exp(−βU(q))dq<∞ where β := 1/(kBT ).

(A4) There exists a constant ζ ∈ (1,2) such that for any sequence {zn}⊆ (Rk)N with
U(zn)→∞ as n→∞ we have

|∇U(zn)|→∞ and
|∇2U(zn)|
|∇U(zn)|ζ

→0

as n→∞ where ∇2 denotes the Hessian operator.

Remark 2.1. The concept of an admissible potential U was introduced in [19] to study
relaxation properties of Langevin dynamics under a wide class of potentials. Such a class
includes, for example, the Lennard-Jones singular variety. There is however very little
difference between the conditions satisfied by an admissible and normal potential; that
is, U : (Rk)N→ [0,+∞] is admissible if it satisfies conditions (A1)-(A3) and condition

(A4’) For any sequence {zn}⊆ (Rk)N with U(zn)→∞ as n→∞ we have

|∇U(zn)|→∞ and
|∇2U(zn)|
|∇U(zn)|2

→0

as n→∞.
Note that condition (A4’) is slightly weaker than (A4) in terms of the asymptotic growth
of the Hessian relative to the gradient at large potential energy. Nevertheless, the class
of normal potentials is still very wide and includes the usual, polynomial-type potentials
as well as the Lennard-Jones singular type. For further discussion as well as specific
examples of normal potentials, we refer the reader to Section 4 of [19]. For other works
where similar conditions on U were employed, refer to [4, 12,42].

Remark 2.2. Note that by setting mi=m>0 for all i, one can transform the
system (NHB) to the associated stochastic Nosé-Hoover systems considered in [6, 23]
by making the change of coordinates ξ̃(t) = ξ(t)+γ/m. Also, although throughout we
restrict ourselves to the case where ξ is real, it is important to point out that it can be
matrix-valued. See [6] for further discussion of this point.

For notational simplicity, throughout we let X =O×(Rk)N ×R and use x or (q,p,ξ)
to denote a generic point in X . Similarly, the process solving Equation (NHB) will often
be denoted more simply by either (q(t),p(t),ξ(t)) or x(t). We let B(X ) denote the Borel
σ-field of subsets of X .

Equation (NHB) has energy functional H :X → [0,∞) defined by

H(q,p,ξ) =
1

2
‖p‖2m+U(q)+

aξ2

2
(2.1)

where

1

2
‖p‖2m :=

1

2

∑
i

m−1
i |pi|

2 (2.2)

is the kinetic energy. Note that since U satisfies (A3), we may define a probability
measure µ on B(X ), called the augmented Gibbs measure, by

µ(dqdpdξ) =
1

Z
exp(−βH(q,p,ξ))drdpdξ. (2.3)
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In the above, β= 1/(kBT ) and Z>0 is the normalization constant making µ a proba-
bility measure.

We next observe the following lemma giving strong existence and uniqueness of
solutions of (NHB).

Lemma 2.1. For every initial condition x∈X , Equation (NHB) has unique strong
solution x(t) which is defined for all finite times t≥0 almost surely on the state space
X .

Lemma 2.1 is an immediate consequence of the main result of this paper (see Theo-
rem 2.2 below), but it can be established more easily by using the energy H :X → [0,∞)
defined in (2.1) as a Lyapunov function. Indeed, by the standard existence and unique-
ness theorem for stochastic differential equations, strong solutions of (NHB) are defined
and unique until the random time τx when the process started from x∈X exits every
set Xn, n∈N, defined by

Xn=On×Bn(0)×(−n,n) (2.4)

where Bn(0) denotes the open ball of radius n in (Rk)N centered at the origin. Letting

L =

N∑
i=1

pi
mi
·∇qi−

N∑
i=1

(
ξ+

γ

mi

)
pi ·∇pi−∇U ·∇p

+a−1(‖p‖2m−kN/β)∂ξ+
γ

β
∆p

denote the generator of the Markov process (NHB), one can then conclude that
P{τx = ∞}= 1 for all x∈X after noting that on X

LH(q,p,ξ) =−ξkBTkN−γ
N∑
i=1

|pi|2

m2
i

+

N∑
i=1

γkBT

mi

≤αH(q,p,ξ)+K (2.5)

for some constants α,K>0. That is, the conclusion that P{τx=∞}= 1 for all x∈
X then follows by a standard Gronwall comparison argument, for it implies that t 7→
ExH(x(t)) grows no faster than an exponential. See, for example, [17, 25,32,35].

Remark 2.3. For our purposes, the issue with the equality (2.5) is that it does
not predict a convergence rate to the presumed equilibrium measure µ. This is because
LH(q,p,ξ) is positive and large when (q,p,ξ)∈X is such that ξ�−1 and |p| is bounded.
Intuitively, this means that dissipation in the system is not due to pointwise contraction
of the H at large energies. Rather, if one expects relaxation to equilibrium, it must be
due to averaging effects in the system not captured by the (pointwise) equality (2.5).

By Lemma 2.1, Equation (NHB) induces a Markov semigroup (Pt)t≥0 acting on
bounded, B(X )-measurable functions ϕ :X →R via

Ptϕ(x) =Exϕ(x(t))

for all t≥0 and dually on probability measures ν on B(X ) by

(νPt)(A) =

∫
X
ν(dx)Pt1A(x)
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for t≥0 and A∈B(X ). In the above, 1A denotes the indicator function on the set A.
We shall use the notation

Pt(x,A) =Pt1A(x)

for t≥0 and A∈B(X ) to denote the transition probabilities of the Markov process x(t).
We call a probability measure ν on B(X ) an invariant probability measure for

the Markov process x(t) if νPt=ν for all t≥0. Later, we will see that the augmented
Gibbs measure µ in (2.3) is the unique invariant probability measure for x(t). To
measure convergence to µ, for W :X → (0,∞) measurable we let MW denote the set of
probability measures ν on B(X ) such that W ∈L1(ν). We equip the set MW with a
metric ρW :MW ×MW→ [0,∞) given by

ρW (ν1,ν2) = sup
‖ϕ‖W≤1

∫
X
ϕ(x)(ν1(dx)−ν2(dx))

where the weighted supremum norm ‖ϕ‖W is defined for measurable ϕ :X →R by

‖ϕ‖W = sup
x∈X

|ϕ(x)|
1+W (x)

We now state the main result of the paper.

Theorem 2.1. We have the following:

(a) The augmented Gibbs measure µ defined in (2.3) is the unique invariant prob-
ability measure for the Markov process x(t) solving (NHB).

(b) There exists β∗>0 such that for all ε,β0 with 0<ε<β0<β∗ there exists W ∈
C2(X ;(0,∞)) and constants C,η>0 for which

exp((β0−ε)H)≤W ≤ exp((β0 +ε)H)

is satisfied on X and such that the following bound holds for all ν ∈MW and
all t≥0

ρW (νPt,µ)≤Ce−ηtρW (ν,µ).

As we recall that ξ is a fictitious control variable, consider now the marginal prob-
ability distributions µ̄ of µ and Pt(x, ·) of Pt(x, ·), x∈X , defined on the Borel sets
B(Y) of Y :=O×(Rk)N by

µ̄(A) =

√
2π

Z2aβ

∫
A

e−βH(q,p,0)dqdp and P̄t(x,A) =

∫
A

∫
R

Pt(x,dξdqdp)

for A∈B(Y). Note that µ̄ is the canonical Boltzmann-Gibbs measure

µ̄(dqdp) =

√
2π

Z2aβ
exp(−β(‖p‖2m/2+U(q)))dqdp. (2.6)

By combining Birkoff’s ergodic theorem (see, for example, [35]) with Theorem 2.1, we
immediately obtain the following corollary.

Corollary 2.1. For every f ∈L1(µ̄):

1

t

∫ t

0

f(q(s),p(s))ds→
∫
Y
f(y)µ̄(dy) as t→∞
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where the convergence holds µ-almost surely and in the L1(µ)-sense. Furthermore, if
W ∈C2(X ;(0,∞)) is any such function given in the conclusion of Theorem 2.1 and
C,η>0 are the associated constants in part (b) of the result, then for all t≥0 and all
x∈X we have

‖Pt(x, ·)− µ̄‖TV ≤Ce−ηt sup
‖φ‖W≤1

{
φ(x)−

∫
X
φ(x′)µ(dx′)

}
(2.7)

where ‖·‖TV denotes the total variation distance.

Before proceeding further, we make some remarks.

Remark 2.4. In addition to proving Theorem 2.1, we also provide an estimate on the
parameter β∗>0 in the statement of the result which depends on the maximum, which
we will denote by Dmax, of Dawson’s integral. Dawson’s integral is a special function
D :R→R defined by

D(z) = exp(−z2)

∫ z

0

exp(y2)dy (2.8)

and it arises in heat conduction and the theory of electrical oscillators [15,22,28,30,36].
From this point of view, perhaps it is not surprising that it would turn up in the setting
of Equation (NHB). To understand why it is surprising from another perspective, later
we will see that we can pick

β∗=
1

8D2
max

β= 0.42701...× 1

kBT
(2.9)

and that, to the best of the author’s knowledge, the argument given here does not
allow for larger β∗. From working on other stochastic Hamiltonian dynamics, however,
one expects to be able to choose β∗=β= 1/(kBT ) due to the asymptotic behavior of
the probability density of the augmented Gibbs measure µ as H→∞. Thus from this
perspective, there appears to be a discrepancy in the arguments of

β− 1

8D2
max

β.

The question hence becomes: Is β∗ given in (2.9) optimal and if so, why is this the case?
In the theoretical arguments that identify the threshold, the behavior of the fictitious
control variable ξ in the region where ξ�−1 and p is bounded plays a fundamental
role. Recall from (2.5) that this is the region where the energy of the system is in-
creasing pointwise. We will see that D, hence Dmax, is related to the exit distribution
of the process from this “bad” part of space, so one might conjecture that Dmax is a
fundamental parameter governing the stability of the system. Thus the given threshold
may not be so surprising.

Remark 2.5. One can improve the left-hand side of the inequality (2.7) by replacing
it with the weighted total variation distance

sup
φ:Y→R
‖φ‖W≤1

∫
Y
φ(y)(Pt(x,dy)− µ̄(dy)) (2.10)

where the supremum is taken over all measurable φ :Y→R satisfying

sup
(q,p,ξ)∈X

|φ(q,p)|
1+W (q,p,ξ)

≤1.
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Also note that the right-hand side of (2.7) can be made more explicit by bounding it
above by

Ce−ηt
{

2+W (x)+

∫
X
W (x′)µ(dx′)

}
. (2.11)

The proof of Theorem 2.1 splits into two parts: the existence of the appropriate
Lyapunov function W to ensure regular and sufficiently fast return times to a compact
set in X , as stated in Theorem 2.2 below, and the necessary support and regularity
properties of the Markov transitions outlined in Proposition 2.1.

Theorem 2.2. Recall that L denotes the generator of the Markov process x(t). Let
ε>0 and fix β0>0 satisfying

β0<β∗ :=
β

8D2
max

. (2.12)

Then there exists W ∈C2(X ) and constants α,K>0 such that the following two esti-
mates hold on X

exp((β0−ε)H)≤W ≤ exp((β0 +ε)H), (I)

LW ≤−αW +K. (II)

The proof of Theorem 2.2 is given in Section 4 and is motivated by the heuristics
in Section 3.

Fundamental to the supports of the Markov transitions is the notion of the arc
length Lγ of a curve γ∈C1([0,1];O) with respect to the norm ‖·‖m defined by

Lγ =

∫ 1

0

‖γ̇(t)‖mdt.

Since O is a connected subset of Euclidean space, O is path connected. Hence this
notion of arc length allows us to define the O-distance Lq,q′ between q,q′∈O by

Lq,q′ = inf{Lγ : γ∈C1([0,1];O), γ(0) = q,γ(1) = q′}.

Clearly if O= (Rk)N , then Lq,q′ =‖q−q′‖m. However, if O( (Rk)N as in the case of
a potential with singularities, then the shortest distance between q,q′∈O in the norm
‖·‖m is Lq,q′ . For x= (q,p,ξ)∈X and t>0, define

A(x,t) =
{

(q′,p′,ξ′)∈X : ξ′≥ ξ+(ta)−1L2
q,q′− ta−1kBTkN

}
. (2.13)

We have the following.

Proposition 2.1.
(i) For each x∈X and t>0, the measure Pt(x, ·) is absolutely continuous with re-

spect to Lebesgue measure on X . Denoting the probability density of Pt(x, ·) by
rt(x,y), the mapping (t,x,y) 7→ rt(x,y) : (0,∞)×X ×X → [0,∞) is continuous.

(ii) For any x∈X and t>0

suppPt(x, ·) =A(x,t)

where suppν denotes the support of the measure ν and A(x,t) is as in (2.13).
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We will see in the Appendix that Theorem 2.2 and Proposition 2.1 together imply
Theorem 2.1. This implication follows from Theorem 1.2 of [14]. In essence, one has
to translate the conclusions of Theorem 2.2 and Proposition 2.1 to, respectively, As-
sumption 1 and Assumption 2 of [14] to an embedded Markov chain. Thus Theorem
1.2 of [14] can be applied to that chain and then one has to translate the bound ob-
tained back to one for the original process, hence producing Theorem 2.1. The proof of
Proposition 2.1 relies on by now standard methods to produce the necessary smoothing
of the Markov semigroup via Hörmander’s theorem [20] and support properties of the
associated transitions via the support theorems [40,41]. Somewhat surprisingly, in this
degenerate setting we are able to produce a characterization (part (ii) of Proposition 2.1)
of the supports. The proof of Proposition 2.1 will be given in Section 5.

3. Heuristics
As emphasized at the end of the previous section, the main difficulty in proving

Theorem 2.1 is the absence of a natural Lyapunov function. This is clearly evident in
Equation (2.5) which shows that LH is positive and large in the region where ξ�−1
and |p| is bounded. Thus if we expect dissipation in the system at large energies, then it
must be due to averaging effects not captured by the pointwise equality (2.5). As in the
works [5,19], we will look for a small perturbation ψ of the energy H that encapsulates
these effects. The construction of such a perturbation uses a slight modification of the
procedure developed in [2, 18].

3.1. A simplifying ansatz. Guided by the behavior of the density of µ in (2.3)
as H→∞, fixing ε>0 and β0>0 small enough we look for a function ψ∈C2(X ) such
that

W (x) = exp(β0H(x)+ψ(x)) (3.1)

satisfies conclusions (I) and (II) of Theorem 2.2. First note that if V =β0H+ψ, then
applying the generator L to W of the form (3.1) produces

LW =W{L V +γkBT |∇pV |2}.

Thus for this choice of W , conclusion (II) of Theorem 2.2 holds if and only if the
following bound holds

L V +γkBT |∇pV |2≤−α+K1A (3.2)

on X for some α,K>0 and A⊆X compact. Note clearly that if the property given
in (3.2) holds, then

L V ≤−α+K1A (3.3)

holds on X for the same choice of α,K>0 and A⊆X compact. What is surprising is
that the reverse implication is often true as well. In other words, by slightly tweaking
V satisfying (3.3) we can also obtain the stronger property (3.2), but perhaps for a
different choice of α,K,A.

The reverse implication can be intuited by scaling V by a small constant ε>0; that
is, if one sets Vε= εV , then the gradient term in (3.2) is of order ε2 while the L Vε is of
order ε. This also seems plausible when one considers the case when ψ= 0, so V =β0H
and hence

L V +γkBT |∇pV |2 =β0LH+β2
0γkBT |∇pH|2
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=−γβ0(1−β0/β)

N∑
i=1

|pi|2

m2
i

−β0ξkBTkN+β0

N∑
i=1

γkBT

mi
.

Note that as β0↘0, after consulting (2.5) we see that the expression on the right-hand
side above is asymptotically equal to β0L V .

With these simple observations in mind, we are now squarely concerned with finding
a perturbation ψ so that V =β0H+ψ satisfies the presumably weaker condition (3.3).

3.2. Subsolutions of L V =−α for H�1. Employing our ansatz, fixing α>0
the goal is to now find subsolutions of the PDE

L V =−α on H≥R (3.4)

of the form V =β0H+ψ where ψ is the unknown and R>0 is large. Of course, we also
want to be able to “tune” the perturbation ψ so that for any ε>0 we can construct
ψ=ψε to be a subsolution of (3.4) with the additional property that |ψ|≤ εH on X .
As we will see below, however, this additional property is a simple consequence of the
structure of subsolutions.

We first consult Equation (2.5) to see that in the region

R0 =
{

(q,p,ξ)∈X : ξ≥K∗ or |p|2≥p∗
√
ξ2 +1

}
for K∗,p∗>0 sufficiently large we have that

L (β0H) =β0LH≤−α.

Thus we need not perturb off of the energy to have the desired effect in this region. In
other words, we should set

ψ= 0 on R0 (3.5)

and restrict our analysis of the problem (3.4) to the complement

Rc0 =
{

(q,p,ξ)∈X : ξ≤K∗ and |p|2≤p∗
√
ξ2 +1

}
.

To help reduce the difficulty in finding subsolutions of (3.4) on Rc0, similar to the
works [5, 19] we will study the dynamics at large energies. This will be done by using
formal scaling analysis applied to the infinitesimal generator

L =

N∑
i=1

pi
mi
·∇qi−

N∑
i=1

(
ξ+

γ

mi

)
pi ·∇pi−∇U ·∇p+a−1(‖p‖2m−kN/β)∂ξ+

γ

β
∆p. (3.6)

This analysis allows us to at least heuristically justify neglecting terms in (3.6) when
solving (3.4) on Rc0. For simplicity, we restrict our discussion in this section to the case
when N =k=m1 =a=kBT = 1, so that

L =p∂q−(ξ+γ)p∂p−U ′∂p+(p2−1)∂ξ+γ∂2
p . (3.7)

Furthermore, to make the scaling analysis that follows more explicit, we will assume that
our potential U :R→ [0,∞) is a polynomial of degree `≥2. Note that such a potential
satisfies the hypotheses made at the beginning of Section 2.

We start by considering the subregion R′1 in Rc0 where ξ is assumed to be bounded.
In particular, |p| must also be bounded in R′1. Consequently, as H→∞ in R′1, U→∞
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while ξ and |p| remain bounded. Thus, making the substitution q=λQ for λ�1 and
not changing ξ and p in the expression (3.7) produces

L =−λ`−1U ′L(Q)∂p+r(Q,p,ξ,λ)

where U ′L is the leading order term in U ′ and the remainder term r is o(λ`−1) as λ→∞.
Since `≥2, this argument suggests that in the region Rc0 where ξ is bounded

L ≈−U ′(q)∂p. (3.8)

A nearly identical scaling argument yields the same approximation (3.8) in the region

R1 =Rc0∩
{

(q,p,ξ)∈X : |U ′(q)|≥U∗(ξ6 +1)1/4
}

(3.9)

for U∗>0 large enough. Note that the set R1 subsumes the region in R′1 where H is
large. Also, the power (ξ6)1/4 = |ξ|3/2 in (3.9) above balances the term −(ξ+γ)p on

the boundary of Rc0 where |p|2 =p∗
√
ξ2 +1, so when U∗>0 is large enough, the −U ′∂p

term still dominates.
Translating this scaling analysis back to solving the problem (3.4) in the region R1,

we consider solving the equation

−U ′∂pψ=−α1

√
ξ2 +1 (3.10)

for some constant α1>0. Note that the right-hand side of (3.10) is natural since in Rc0

|L (β0H)|≤C
√
ξ2 +1 (3.11)

for some C>0. Thus for α1>C, the solution ψ is designed to counteract any “bad”
parts in β0LH arising in the region R1. Observe that in R1, Equation (3.10) clearly
has a particular solution defined by

ψ(q,p,ξ) =
α1p

√
ξ2 +1

U ′
, (3.12)

thus giving a natural choice for the perturbation ψ in R1. Note that this choice of ψ
can be made arbitrarily small on R1 by choosing U∗>0 large enough.

We next turn our attention to the region

R2 =Rc0∩Rc1 =
{

(q,p,ξ)∈X : ξ≤K∗, |p|2≤p∗
√
ξ2 +1, |U ′|≤U∗(ξ6 +1)1/4

}
. (3.13)

In R2, any route to infinite energy must have ξ→−∞. It is with this fact and how the
boundaries in R2 for |p|2 and |U ′| scale in ξ that we introduce the following family of
scaling substitutions:

ξ=λΞ, p= (c1λ
1/2 +c2 +c3λ

−δ)P, q= (c4λ
3

2(`−1) +c5)Q (3.14)

where (Q,P,Ξ) are the new variables, and ci∈{0,1}, δ>0 are constants. Observe that
the introduction of the constants ci∈{0,1} allows us to consider several different scaling
regimes. For example if c1 = c3 = c4 = 0 and c2 = c5 = 1, then the scaling transformation
in (3.14) becomes (ξ=λΞ,p=λ1/2P,q=Q). Note that this scaling in particular allows
us to analyze the part of the region in R2 where |p|2 is on the same scale as |ξ| while q
remains bounded.
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Fig. 3.1. The regions R0 and R1∪R2 sketched in the (ξ, |p|)-plane with the values p∗= 1 and
K∗= 10.

As dictated by the generator L , in the region R2 we will see that there are four
cases covering five qualitatively different scalings. Before we write each of these regimes
down, we apply the general transformation (3.14) to the generator to see that in these
new coordinates

L =
c1λ

1/2 +c2 +c3λ
−δ

c4λ
3

2(`−1) +c5
P∂Q−(λΞ+γ)P∂P −

U ′((c4λ
3

2(`−1) +c5)Q)

c1λ1/2 +c2 +c3λ−δ
∂P

+λ−1
(
(c1λ

1/2 +c2 +c3λ
−δ)2−1

)
∂Ξ +γ

1

(c1λ1/2 +c2 +c3λ−δ)2
∂2
P . (3.15)

Case 1. (c1 = c4 = 0, c2,c5 = 1, c3∈{0,1}) or (c1 = c5 = 1,c4 = 0, c2,c3∈{0,1}).
Observe that this is the regime wherein the transformation (3.14) satisfies either
(ξ=λΞ,p≈P,q=Q) or (ξ=λΞ,p≈λ1/2P,q=Q). From relation (3.15) we infer that
as λ→∞

L ≈−λΞP∂P .

Case 2. (c1 = 0,c2 = c4 = 1,c3,c5∈{0,1}). Recalling that U is a polynomial of de-
gree `≥2 so that U ′ is a polynomial of degree `−1, in this scenario the transforma-

tion (3.14) satisfies (ξ=λΞ,p≈P,q≈λ
3

2(`−1)Q). Reading off the dominant balance of
terms in (3.15) with this choice of constants, we have that as λ→∞

L ≈−λ3/2U ′L(Q)∂P

where we recall that U ′L is the leading order term in the polynomial U ′.

Case 3. (c1 = c4 = 1,c2,c3,c4∈{0,1}). Note that in this case (3.14) satisfies (ξ=

λΞ,p≈λ1/2P,q≈λ
3

2(`−1)Q). Considering (3.15) in this regime we have that as λ→∞

L ≈−λΞP∂P −λU ′L(Q)∂P
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where we neglect any cancellation that could occur between these two leading-order
terms.

Case 4. (c1 = c2 = 0,c3 = 1,c4,c5∈{0,1}). In this scenario, the scaling (3.14) sat-

isfies (ξ=λΞ,p=λ−δP,q= (c4λ
3

2(`−1) +c5)Q). This particular case allows us to analyze
the dynamics when p is small. From (3.15), it is evident that as λ→∞

L ≈−λΞP∂P −
λδ

c3
U ′((c4λ

3
2(`−1) +c5)Q)∂P +

γ

c23
λ2δ∂2

P .

In summary, in the region R2 the scaling analysis suggests that at large energies

L ≈A :=−(ξ+γ)p∂p−U ′(q)∂p+γ∂2
p .

See Figure 3.1 for a cartoon of the regions R0, R1∪R2.

Remark 3.1. Of course we could break apart the region in R2 further according
to how L changes above, but the operator A is simple enough to work with and
encapsulates the dominant behaviors identified in the scaling analysis. Note that the
reason A is simple is that the dynamics driven by this operator is constant in ξ and
q. In other words, the scalings suggest that in this region at large energies, the Markov
process associated to L is approximated well by the Ornstein-Uhlenbeck dynamics

dPt=−(ξ+γ)Ptdt−U ′(q)dt+
√

2γdBt (3.16)

where Bt is a standard, real-valued Brownian motion and ξ�−1 and q∈R are fixed
constants.

Motivated by this analysis and relation (3.11), for H�1 in R2 we should take our
perturbation ψ to satisfy

A ψ=−α2|ξ+γ| (3.17)

for some constant α2>0. Note that in this case we do not need a large negative constant
on the right-hand side of the Equation (3.17) because |ξ|→∞ at large energies in R2.
Also, the appearance of γ in the formula (3.17) does not change the qualitative behavior
of the solution but it makes the explicit formula below more compact. Specifically, a
particular solution of Equation (3.17) is given by

ψ(q,p,ξ) =−2α2

∫ |ξ+γ|1/2√
2γ

(
p−U

′(q)
|ξ+γ|

)
0

D(z)dz (3.18)

where D :R→R is Dawson’s integral, which was introduced and discussed in Re-
mark 2.4. By using some well-known asymptotics for the function D, we will see in
the next section that for any ε>0, |ψ(q,p,ξ)|≤ εH(q,p,ξ) in R2 for all |ξ|>0 large
enough depending on ε. Thus using the appropriate cutoff functions, we will see that
we can construct, for a given ε>0, our desired subsolution ψ with |ψ|≤ εH globally.

4. The Lyapunov function
Following the ideas of Section 3, in this section we prove Theorem 2.2. We recall

that the Lyapunov function W in the statement of Theorem 2.2 will be of the form (3.1)
where H is the energy (2.1) and ψ∈C2(X ) is an appropriately chosen perturbation. The
heuristic scaling analysis coupled with the behavior of LH(q,p,ξ) when ξ�−1 and |p|
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is bounded suggested two qualitatively different forms for ψ in two different regions in
X . Refer to expressions (3.12) and (3.18) for these two forms in the simplified case when
N =k=m1 =a=kBT = 1. These forms will be slightly generalized below to account for
changes in dimensionality and parameters. We also must cutoff each function when
the asymptotic analysis is no longer valid. This will then produce two globally-defined
perturbations, which we denote by ψ1 and ψ2 below.

Remark 4.1. We will need one more perturbation, denoted by ψ0 below, which we
did not motivate in the previous section. The function ψ0, however, should be thought
of as an auxiliary perturbation which places slightly more weight in H on the variable
ξ in the region where ξ <0. While a small perturbation itself, it has the advantage of
inducing dissipation whenever the kinetic energy is large enough while not changing
the essential behavior of L (β0H) in the “bad” part of space where ξ�−1 and |p| is
bounded. The function ψ0 moreover is convenient in that it helps subsume various
remainder terms brought on by ψ1 and ψ2.

Following these remarks, Theorem 2.2 is an immediate consequence of the following.

Theorem 4.1. Fix β0>0 satisfying (2.12) and ε∈ (0,β0). Then there exist ψi∈
C2(X ), i= 0,1,2, satisfying the following two properties:

(i) |ψ0 +ψ1 +ψ2|≤ εH.

(ii) If V =β0H+ψ0 +ψ1 +ψ2, then there exists a compact set A⊆X and constants
α,K>0 for which the bound (3.2) holds.

The proof of Theorem 4.1 will be broken up into several smaller pieces. In particular,
as the functions ψi are introduced, we will also deduce a series of estimates which, when
combined at the end of the section, will imply Theorem 4.1.

4.1. Perturbation ψ0. Our first perturbation, ψ0, is the simplest. In order to
define it, let f0∈C∞(R;[0,1]) be a cutoff function satisfying the following conditions

f0(y) =

{
1 if y≤−1

0 if y≥0
, f ′0≤0, and |f ′0|≤2.

Let δ>0 and for (q,p,ξ)∈X define

ψ0(q,p,ξ) = δf0(ξ)
aξ2

2
. (4.1)

Then it is not hard to check that on X

|ψ0|≤ δH, (4.2)

Lψ0(q,p,ξ)≤−f0δ|ξ|‖p‖2m+f0
δ

β
kN |ξ|+ δ

β
kN (4.3)

and

∇pψ0 = 0. (4.4)

Remark 4.2. As discussed in Remark 4.1, note that when δ>0 in (4.3) is small, ψ0

allows for a dissipative effect in the region where ξ�−1 and ‖p‖2m is bounded below by
a sufficiently large positive constant. Moreover, for δ>0 small, the perturbation is small
relative to β0H and the tradeoff for introducing it is also small relative to L (β0H) in
the sense that Lψ0≤Cδ(|ξ|+1) for some constant C>0 independent of δ.
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4.2. Perturbation ψ1. Now to define ψ1, let K∗>0 be a parameter and
fi∈C∞(R;[0,1]), i= 1,2,3, be cutoff functions satisfying

f1(y) =

{
1 if y≤K∗
0 if y≥K∗+1

, f2(y) =

{
1 if |y|≤1

0 if |y|≥2
, f3(y) =

{
1 if |y|≥2

0 if |y|≤1
.

Let p∗,U∗>0 be parameters and set

g1(q,p,ξ) =f1(ξ)f2

(
|p|2

p∗
√
ξ2 +1

)
f3

(
|∇U(q)|2

U∗(ξ2 +1)

)
.

Let α1>0 and consider ψ1 defined by

ψ1(q,p,ξ) =

g1(q,p,ξ)α1

√
ξ2 +1

p ·∇U(q)

|∇U(q)|2
if |∇U(q)|2≥U∗/2

0 otherwise
. (4.5)

Observe that by construction ψ1∈C∞(X ). We will now prove the following.

Lemma 4.1. For any ε,α1,K∗>0, by first picking p∗>0 large enough and then picking
U∗>0 large enough we have the global bounds on X

|ψ1|≤ εH, (4.6)

Lψ1≤−g1α1

√
ξ2 +1+εf0|ξ|‖p‖2m+ε|p|2 +εf0|ξ|+ε, (4.7)

|∇pψ1|≤ ε. (4.8)

Remark 4.3. Note that when g1 = 1, we have

ψ1(q,p,ξ) =α1

√
ξ2 +1

p ·∇U(q)

|∇U(q)|2
(4.9)

and

−∇U(q) ·∇pψ1(q,p,ξ) =−α1

√
ξ2 +1. (4.10)

In particular by settingN =k= 1, the function ψ1 as in (4.9) is precisely the perturbation
ψ as in (3.12). Moreover when g1 = 1, ψ1 satisfies the corresponding version (4.10) of
Equation (3.10) in general dimensions.

Remark 4.4. Note that the region where g1 = 1 does not quite coincide with the
form of the region R1 introduced in (3.9). In particular, by considering powers of ξ, for
large |ξ| the region here is larger than R1 in the case when N =k= 1. The fact that ψ1

provides the needed Lyapunov estimate on this larger region is only made possible by
the presence of ψ0, as it allows us to estimate meddling remainder terms, e.g. ε|ξ|‖p‖2m
in (4.7), for which ψ1 itself cannot account. Noticing this fact was crucial in the analysis
because it affords the luxury of working with normal, as opposed to a more restricted
class of, potentials U .
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Proof. (Proof of Lemma 4.1.) The first estimate (4.6) follows easily after noting
that

|ψ1(q,p,ξ)|≤ 2α1p
1/2
∗

U
1/2
∗

(ξ2 +1)1/4.

We now turn to the issue of estimating Lψ1, which we split into three parts as follows

Lψ1 =T1ψ1 +A ψ1 +T2ψ1

where T1 =
∑N
i=1m

−1
i pi ·∇qi , T2 =a−1(‖p‖2m−kN/β)∂ξ and

A =
γ

β
∆p−∇qU ·∇p+

N∑
i=1

−
(
ξ+

γ

mi

)
pi ·∇pi (4.11)

where we again recall that β= 1/(kBT ). First note that if c= minimi, then

T1ψ1 =
∑
i,`

g1α1

√
ξ2 +1m−1

i p`ip ·∂q`i

(
∇U
|∇U |2

)

+
∑
i,`,j,`′

f1f2f
′
3α1

√
ξ2 +1m−1

i p`i
p ·∇U
|∇U |2

2(∂q`′j
U)∂2

q`iq
`′
j

U

U∗(ξ2 +1)

≤g1c
−1α1

√
ξ2 +1|p|2|∇G|+4c−1f1f2|f ′3|α1

√
ξ2 +1|p|2 |∇

2U |
|∇U |2

where G=∇U/|∇U |2. Note that for every ε,α1,K∗>0 since U is a normal potential (see
Definition 2.1) we may choose U∗>0 large enough to control the ∇G and |∇2U |/|∇U |2
terms above and arrive at the global estimate

T1ψ1(q,p,ξ)≤ εf0|ξ|‖p‖2m+ε|p|2. (4.12)

Turning to the next term A ψ1, observe that

A ψ1 =
4γα1 +2γα1kN

βp∗
f1f
′
2f3

p ·∇U
|∇U |2

+
4γα1

βp∗
f1f
′′
2 f3

|p|2

p∗
√
ξ2 +1

p ·∇U
|∇U |2

−g1α1

√
ξ2 +1+

2α1

p∗
f1f
′
2f3

(p ·∇U)2

|∇U |2

+

N∑
i=1

−g1α1(ξ+γ/mi)
√
ξ2 +1

pi ·∇qiU
|∇U |2

+

N∑
i=1

−2α1

p∗
f1f
′
2f3(ξ+γ/mi)|pi|2

p ·∇U
|∇U |2

.

Recalling that c= minimi>0, note that we can estimate each term above as follows

A ψ1≤−g1α1

√
ξ2 +1+

4γα1 +2γα1kN

βp∗
f1|f ′2|f3

|p|
|∇U |

+
8γα1

βp∗
f1|f ′′2 |f3

|p|
|∇U |

+
2α1

p∗
f1|f ′2|f3|p|2
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+g1α1
(|ξ|+γ/c)

√
ξ2 +1

|∇U |
|p|+ 2α1

p∗
f1|f ′2|f3

(|ξ|+γ/c)|p|
|∇U |

|p|2.

Now for any ε,α1,K∗>0, by first picking p∗>0 large enough and then picking U∗>0
large enough, we arrive at the global estimate

A ψ1≤−g1α1

√
ξ2 +1+εf0|ξ|‖p‖2m+εf0|ξ|+ε|p|2 +ε. (4.13)

Finally, we estimate T2ψ1. Note that

T2ψ1(q,p,ξ) =
α1p ·∇U
a|∇U |2

(‖p‖2m−kN/β)

{
f ′1f2f3

√
ξ2 +1−f1f

′
2f3

|p|2ξ
p∗(ξ2 +1)

−f1f2f
′
3

2|∇U |2ξ
U∗(ξ2 +1)3/2

+g1
ξ√
ξ2 +1

}
≤ (‖p‖2m+kN/β)

{
α1

a
|f ′1|f2f3

|p|
√
ξ2 +1

|∇U |
+

2α1

a
f1|f ′2|f3

|p||ξ|
|∇U |

√
ξ2 +1

+
4α1

a
f1f2|f ′3|

|p||ξ|
|∇U |(ξ2 +1)

+
α1

a

|p||ξ|
|∇U |

√
ξ2 +1|

}
.

Thus by counting powers of |ξ|, for any choice of ε,α1,p∗,K∗>0, we may pick U∗>0
large enough so that

T2ψ1(q,p,ξ)≤ εf0|ξ|‖p‖2m+εf0|ξ|+ε|p|2 +ε. (4.14)

Combining the bounds (4.12), (4.13) and (4.14) and adjusting ε>0 and the constants
appropriately produces the estimate (4.7).

To establish the bound on ∇p(ψ1) observe that

∇pψ1 =g1α1

√
ξ2 +1

∇U
|∇U |2

+f1f
′
2f3

2α1p

p∗

p ·∇U
|∇U |2

,

hence

|∇pψ1|≤g1α1

√
ξ2 +1

|∇U |
+f1|f ′2|f3

2α1|p|2

p∗|∇U |
.

Thus for every ε,α1,p∗,K∗>0 we may pick U∗>0 large enough so that the estimate (4.8)
holds.

4.3. Perturbation ψ2. In order to define the second perturbation ψ2, let α2>0
be a parameter and F :R→R be given by

F (z) =−2α2

∫ z

0

exp(−y2)

∫ y

0

exp(x2)dxdy. (4.15)

Observe that F ′/(−2α2) =D where D is Dawson’s integral, as defined and discussed in
Remark 2.4. The function F will make up part of the formula for ψ2, and thus we will
need the following proposition in our analysis below.

Proposition 4.1. As |z|→∞

|F (z)|
α2 log(|z|)

→1 and
|z||F ′(z)|

α2
→1. (4.16)
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Proof. By symmetry, it suffices to prove the asymptotic formulas as z→∞. Note
that for z≥1 we may write

−F (z)

2α2
=

∫ z

1

exp(−y2)

∫ y

1

exp(x2)dxdy+R0(z) (4.17)

where

R0(z) =

∫ 1

0

exp(−y2)

∫ y

0

exp(x2)dxdy+

∫ z

1

exp(−y2)

∫ 1

0

exp(x2)dxdy

satisfies R0(z) =o(log(z)) and R′0(z) =o(1/z) as z→∞. After writing∫ y

1

exp(x2)dx=

∫ y

1

1

2x
(exp(x2))′dx

integration by parts on this term in (4.17) produces

−F (z)

2α2
=

log(z)

2
+R0(z)+R1(z)

where

R1(z) =−
∫ z

1

exp(−y2)dy+

∫ z

1

exp(−y2)

∫ y

1

exp(x2)

2x2
dxdy

also satisfies R1(z) =o(log(z)) and R′1(z) =o(1/z) as z→∞. This finishes the proof.

Fix i∈{1,2,. ..,N} and a constant ξ∗>maxj(3γ/mj+1). Let h2 =f2 and introduce
auxiliary cutoff functions hi∈C∞(R;[0,1]), i= 1,3, satisfying

h1(y) =

{
1 if y≤−ξ∗−1

0 if y≥−ξ∗
with |h′1|≤2

and

h3(y) =

{
1 if |y|≤3

0 if |y|≥4

Recalling the parameters p∗,U∗>0, define

g2(q,p,ξ) =h1(ξ)h2

(
|p|2

p∗
√
ξ2 +1

)
h3

(
|∇U(q)|2

U∗(ξ2 +1)

)
.

Fixing `∈{1,2,. ..,k} we set

ψ`i (q,p,ξ) =

g2(q,p,ξ)F

(
|ξ+ γ

mi
|1/2√

2γ/β

(
p`i−

∂
q`
i
U

|ξ+ γ
mi
|

))
if ξ≤− 3γ

mi

0 if ξ >− 3γ
mi

and define ψ2 :X →R by

ψ2(q,p,ξ) =

N∑
i=1

k∑
`=1

ψ`i (q,p,ξ). (4.18)
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Our next goal is to prove the following:

Lemma 4.2. For each ε,α2,K∗>0 we can pick p∗>0 large enough, then U∗>0 large
enough and then ξ∗>0 large such that the following estimates hold on X

|ψ2|≤ εH, (4.19)

Lψ2(q,p,ξ)≤−α2kNg2|ξ|+ε|p|2 +ε+εf0|ξ|‖p‖2m+εf0|ξ|, (4.20)

and

γ

β
|∇p(ψ2)|2≤2kNα2

2D
2
maxg2|ξ|+εf0|ξ|+ε. (4.21)

Remark 4.5. To compare with the heuristics of Section 3, note that if g2 = 1 we have
ξ≤−3γ/mi for every i for ξ∗>0 large enough. Thus when N =k=m1 =a=kBT = 1,
ψ2 above precisely coincides with ψ in (3.18), which we recall is a particular solution
of the Equation (3.17). Now observe that ψ`i is the corresponding particular solution of
the equation

A `
i ψ

`
i (q,p,ξ) =−α2|ξ+γ/mi|.

where

A `
i = (|ξ+γ/mi|p`i−∂q`iU)∂p`i +

γ

β
∂2
p`i
. (4.22)

Hence when g2 = 1, ψ2 is simply the superposition of these particular solutions. Heuris-
tically this makes sense since at large energies where g2 6= 0, ξ and q are approximately
constant so that each momentum variable p`i is “approximately” independent.

Proof. (Proof of Lemma 4.2.) To see the first estimate (4.19), fix i∈{1,2,. ..,N}
and `∈{1,2,. ..,k}. Applying Proposition 4.1, we see that there exist constants C,D>0
such that for all (q,p,ξ)∈X

|ψ`i (q,p,ξ)|≤g2(C log |ξ|+D).

Since 0≤g2≤1 globally and g2≡0 whenever ξ≥−ξ∗, it follows that we may pick ξ∗>0
large enough so that (4.19) holds.

To estimate Lψ2, we again fix i∈{1,2,. ..,N} and `∈{1,2,. ..,k} and estimate Lψ`i ,
showing that for each ε,α2,K∗>0, we may pick p∗>0 large enough, then U∗>0 large
enough and then ξ∗>0 large enough so that the estimate

Lψ`i (q,p,ξ)≤−α2g2|ξ|+ε|p|2 +ε+εf0|ξ|‖p‖2m+εf0|ξ| (4.23)

holds on X . As in the previous lemma, we again break up Lψ`i as

Lψ`i =T1ψ
`
i +A ψ`i +T2ψ

`
i

where T1,T2 and A were introduced either just above or in Equation (4.11). Even
though F in the definition of ψ`i depends on i,`, we will suppress this dependence for
simplicity. Beginning with T1ψ

`
i observe that if c= minimi we have

T1ψ
`
i =
∑
n,j

{
−g2F

′
pjn∂

2
qjnq

`
i

U√
2γ/β|ξ+γ/mi|

+
∑
s,t

h1h2h
′
3F

2pjn∂qtsU∂
2
qjnqts

U

U∗(ξ2 +1)

}
1

mn
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≤ c−1g2
|F ′||p||∇2U |√
2γ/β|ξ+γ/mi|

+2c−1h1h2|h′3|
|F ||∇U ||∇2U ||p|

U∗(ξ2 +1)

≤ c−1g2
|F ′||p||∇2U |√
2γ/β|ξ+γ/mi|

1{U≤R}+c−1g2
|F ′||p||∇U |ζ√
2γ/β|ξ+γ/mi|

|∇2U |
|∇U |ζ

1{U≥R}

+2c−1h1h2|h′3|
|F ||∇U ||∇2U ||p|

U∗(ξ2 +1)
1{U≤R}

+4c−1h1h2|h′3||F ||∇U |ζ−1|p| |∇
2U |

|∇U |ζ
1{U≥R}

where ζ ∈ (1,2) is the constant in (A4) of Definition 2.1. Applying the asymptotics in
(A4) and those for F in Proposition 4.1, for each ε>0 we may pick R>0 large enough
so that

T1ψ
`
i ≤C1g2

|p|
|ξ+γ/mi|1/2

+εg2|p||ξ|1/2 +2C2h1h2|h′3|
|p|
|ξ|

+εh1h2|h′3||ξ||p|

for some constants Ci>0 depending on α2,p∗,U∗,ε,R. Thus for all ε,α2,p∗,U∗>0,
picking ξ∗>0 large enough we can arrive at the inequality

T1ψ
`
i ≤ ε+εf0|ξ|+εf0|ξ|‖p‖2m. (4.24)

Turning now to A ψ`i , recall the definition of A `
i given in (4.22) and note

A ψ`i =A `
i ψ

`
i +

∑
(n,j)6=(i,`)

FA j
n g2

=g2A
`
i (F )+

2γ

β
∂p`i (g2)∂p`i (F )+

∑
n,j

FA j
n g2

=−α2g2|ξ+γ/mi|+
√

2γ/βh1h
′
2h3F

′ 2p
`
i |ξ+γ/mi|1/2

p∗
√
ξ2 +1

+
∑
n,j

FA j
n g2.

Now,

FA j
n g2 =Fh1h

′
2h3

2pjn

p∗
√
ξ2 +1

(|ξ+γ/mn|pjn−∂qjnU)+
γ

β
Fh1h

′′
2h3

4(pjn)2

p2
∗(ξ

2 +1)

+
γ

β
Fh1h

′
2h3

2

p∗
√
ξ2 +1

≤C1h1|h′2|h3||p||ξ+γ/mn|1/2 log |ξ+γ|+C2(h1|h′2|h3 +h1|h′′2 |h3)
log |ξ+γ/mn|√

ξ2 +1

for some constants Ci>0 depending on α2,p∗,U∗. Thus for every ε,α2,p∗,U∗,K∗>0,
picking ξ∗>0 large enough produces the global estimate

A ψ`i ≤−α2g2|ξ|+εf0‖p‖2m|ξ|+εf0|ξ|+ε|p|2 +ε. (4.25)

Lastly, we consider T2ψ
`
i and note

T2ψ
`
i =a−1(‖p‖2m−kNkBT )×

{
h′1h2h3F −h1h

′
2h3F

ξ|p|2

p∗(ξ2 +1)3/2
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−2h1h2h
′
3F

ξ|∇U |2

U∗(ξ2 +1)2
+

g2

2|ξ+γ/mi|
F ′
|ξ+γ/mi|1/2√

2γ/β

(
pmi −

∂q`iU

|ξ+γ/mi|
)

+
g2F

′∂q`iU√
2γ/β|ξ+γ/mi|3/2

}
.

Hence,

T2ψ
m
` ≤a−1(‖p‖2m+kNkBT )

{
|h′1|h2h3|F |+2h1|h′2|h3

|ξ|
ξ2 +1

+6h1h2|h′3|
|ξ|

ξ2 +1

+C1
g2

|ξ+γ/m`|
+C2g2

}
for some constant C1>0 depending on α2 and some constant C2>0 depending on
α2,U∗. Picking ξ∗>0 large enough as before, we can thus arrive at the estimate

T2ψ
`
i ≤ εf0|ξ|‖p‖2m+εf0|ξ|. (4.26)

Putting the estimates together we arrive at the claimed inequality (4.23).
Finally, we turn to estimating γ

β |∇p(ψ2)|2. Note that for each i,j∈{1,2,. ..,N} and

each n,`∈{1,2,. ..,k} we have that

∂pnj (ψ`i ) = δ(i,`)(j,n)g2F
′ |ξ+γ/mi|1/2√

2γ/β
+h1h

′
2h3F

2pnj

p∗
√
ξ2 +1

where δ(i,`)(j,n) = 1 if (j,n) = (i,`) and 0 otherwise. Hence

|∂pnj (ψ2)|≤g2
2α2Dmax√

2γ/β
|ξ+γ/mj |1/2 +h1|h′2|h3

4(C log |ξ|+D)

p
1/2
∗ (ξ2 +1)1/4

for some constants C,D>0. Thus applying Proposition 4.1 for every ε>0 by picking
ξ∗>0 large as before we find that

|∂pnj (ψ2)|≤g2
2α2Dmax√

2γ/β
|ξ+γ/mj |1/2 +ε

for all j,n. Hence applying this bound and by possibly increasing ξ∗>0 if necessary we
arrive at the claimed estimate (4.21).

We now combine the previous estimates to prove Theorem 4.1. Whenever we need
to adjust the parameters as done in the statement of Lemma 4.2, in the proof below
we will simply say “by adjusting the parameters”. Also, we have provided a sketch of
the basic form of the Lyapunov function V =β0H+ψ0 +ψ1 +ψ2 in Figure 4.1 in various
regions in the (ξ,|p|)-plane.

Proof. (Proof of Theorem 4.1.) Let β0>0 satisfy (2.12) and fix ε0∈ (0,β0). Pick
δ>0 such that

δ= min

{
ε0
3
,
β∗
2
− β0

2

}
where we recall the constant δ>0 was introduced above (4.1). Note that by adjusting
the parameters, the estimates (4.2), (4.6) and (4.19) together imply part (i) of the result.
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Fig. 4.1. The form of the Lyapunov function V =β0H+ψ0 +ψ1 +ψ2 given in the (ξ, |p|)-plane
for |∇U |2≥4U∗(ξ2 +1), |∇U |2≤U∗(ξ2 +1) and U∗(ξ2 +1)≤|∇U |2≤4U∗(ξ2 +1), respectively. For
simplicity, here we have chosen K∗+1 = ξ∗+1 =10 and p∗= 1/2.

To establish condition (ii) of the result, first note that

L (β0H) =−γβ0

N∑
i=1

|pi|2

m2
i

− β0

β
kNξ+

β0

β
K1, (4.27)

where K1 :=γ
∑
im
−1
i >0, and

∇pi(β0H) =β0
pi
mi

. (4.28)

Let V =β0H+ψ0 +ψ1 +ψ2. Combining relations (4.3) and (4.4) with Lemma 4.1 and
Lemma 4.2, for each ε>0 we may vary the parameters so that

L V (q,p,ξ)≤−γβ0(1−ε)
N∑
i=1

|pi|2

m2
i

− β0

β
kNξ−f0δ(1−ε)|ξ|‖p‖2m

−g1α1

√
ξ2 +1−α2kNg2|ξ|+f0

δ+ε

β
kN |ξ|+ β0

β
K1 +

δ+ε

β
kN (4.29)

as well as the inequality

γ

β
|∇pV |2≤

γ

β

{
|∇p(β0H)|2 + |∇p(ψ1)|2 + |∇p(ψ2)|2 +2|∇p(β0H)||∇p(ψ1)|
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+2|∇p(β0H)||∇p(ψ2)|+2|∇p(ψ1)||∇p(ψ2)|
}

≤ γβ
2
0

β

N∑
i=1

|pi|2

m2
i

+2kNα2
2D

2
maxg2|ξ|+εf0|ξ|+εf0‖p‖2m|ξ|+ε+ε|p|2.

Combining the previous inequality with (4.29) and adjusting ε>0 and the parameters
accordingly produces the estimate

L V (q,p,ξ)+
γ

β
|∇p(V )|2

≤−γβ0(1−β0/β−ε)
N∑
i=1

|pi|2

m2
i

− β0

β
kNξ−f0δ(1−ε)|ξ|‖p‖2m

−g1α1

√
ξ2 +1−g2α2kN(1−2α2D

2
max)|ξ|+f0

δ+ε

β
kN |ξ|+ β0

β
K1 +

δ+ε

β
kN. (4.30)

Let α>0 and pick the rest of the parameters as follows:

ε<min

{
1

2
− β0

2β
,
1

2
,

β

8D2
max

−β0−δ
}
, α1 = 2α+2

β0

β
K1 +2

β0 +δ+ε

β
kN, (4.31)

α2 =
1

4D2
max

K∗=
βα

β0kN
+
K1

kN
+
β0 +δ+ε

β0
. (4.32)

Applying these choices to the estimate (4.30) then gives

L V (q,p,ξ)+
γ

β
|∇p(V )|2≤−γβ0

2
(1−β0/β)

N∑
i=1

|pi|2

m2
i

− β0

β
kN |ξ|(1−f0)− f0

2
δ|ξ|‖p‖2m

−g1
α1

2
|ξ|−g1

α1

2
−g2

kN

8D2
max

|ξ|+f0
β0 +δ+ε

β
kN |ξ|

+
β0

β
K1 +

β0 +δ+ε

β
kN

where we have left α1 as is for brevity of mathematical expression. First observe that
if ξ≥K∗, then

L V (q,p,ξ)+
γ

β
|∇p(V )|2≤−β0

β
kNK∗+

β0

β
K1 +

β0 +δ+ε

β
kN ≤−α.

Also note that

L V (q,p,ξ)+
γ

β
|∇p(V )|2≤−γβ0

2
(1−β0/β)

N∑
i=1

|pi|2

m2
i

− f0

2
δ|ξ|‖p‖2m

+f0
β0 +δ+ε

β
kN |ξ|+ β0

β
K1 +

β0 +δ+ε

β
kN.

Hence if c= minimi and |p|≥P >0 for any P >0 sufficiently large we have

L V (q,p,ξ)+
γ

β
|∇p(V )|2≤−α.
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Thus now suppose that |p|≤P and −ξ∗−3≤ ξ≤K∗. This means that both |p| and ξ
are bounded. Thus the only possibility for H→∞ is if U(q)→∞. Thus, for U(q) large
enough in this region, g1 = 1, f0 = 1 and

L V (q,p,ξ)+
γ

β
|∇p(V )|2≤−α1

2
|ξ|− α1

2
+
β0 +δ+ε

β
kN |ξ|+ β0

β
K1 +

β0 +δ+ε

β
kN

≤−α

where in the last inequality we used the choice of α1 in (4.31). Finally, if |p|≤P and
ξ≤−ξ∗−3, then g2 = 1, f0 = 1 and

L V (q,p,ξ)+
γ

β
|∇p(V )|2≤− kN

8D2
max

|ξ|+ β0 +δ+ε

β
kN |ξ|+ β0

β
K1 +

β0 +δ+ε

β
kN.

By choice of δ,ε>0, we observe that β0+δ+ε
β < 1

8D2
max

, so by increasing ξ∗>0 if necessary,

we also arrive at the estimate

L V (q,p,ξ)+
γ

β
|∇p(V )|2≤−α

in the region |p|≤P and ξ≤−ξ∗−3. This finishes the proof.

5. Smoothing and support properties
Here we establish conclusions (i) and (ii) of Proposition 2.1 separately.

Proof. (Proof of Proposition 2.1 (i).) We apply Corollary 7.2 of [35] and
check that Hörmander’s bracket condition, as stated in relation (162) of [35], is satisfied
on X . See [20] for Hörmander’s original statement and proof. Letting L ∗ denote the
formal L2-adjoint of L , this will then ensure hypoellipticity of the operators L ,L ∗,∂t±
L ,∂t±L ∗ on the respective domains X ,X ,(0,∞)×X ,(0,∞)×X . For i∈{1,2,. ..,N}
and `∈{1,2,. ..,k}, let X`

i =∂p`i and define

X0 =

N∑
i=1

pi
mi
·∇qi−

N∑
i=1

(
ξ+

γ

mi

)
pi ·∇pi−∇U ·∇p+a−1(‖p‖2m−kN/β)∂ξ.

Letting [A,B] =AB−BA denote the commutator of operators A and B, we find that

[X`
i ,X0] =m−1

i ∂q`i −(ξ+γ/mi)∂p`i +
2

ami
p`i∂ξ

and [X`
i ,[X

`
i ,X0]] = 2

ami
∂ξ. Therefore, the list of vector fields

X`
i , i= 1,2,. ..,N, `= 1,2,. ..,k

[X`
i ,X0], i= 1,2,. ..,N, `= 1,2,. ..,k

[X`
i , [X

`
i ,X0]], i= 1,2,. ..,N, `= 1,2,. ..,k

has full rank at every point x∈X .

We next turn to the proof of Proposition 2.1 (ii) which relies on the support theo-
rems [40,41]. That is, to Equation (NHB) we associate a deterministic control problem
on X

Q̇i=
Pi
mi
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Ṗi=−ΞPi−
γ

mi
Pi−∇QiU(Q)+

√
2γ/βηi

Ξ̇ =

N∑
i=1

|Pi|2

ami
− kN
aβ

(5.1)

where η= (ηi) is a piecewise continuous (Rk)N -valued control and β= 1/(kBT ). In-
tuitively for a fixed such η, the solution of (5.1) represents an approximate sample
trajectory of the solution of (NHB). The support theorems [40, 41] make this intuition
precise. In particular, for x∈X and t>0 define A(x,t) to be the set of points y∈X
such that there exists a piecewise continuous (Rk)N -valued control η= (ηi) for which
the solution of (5.1) exists on the time interval [0,t] in X and has (Q(0),P (0),Ξ(0)) =x
and (Q(t),P (t),Ξ(t)) =y. Then the support theorems [40,41] imply that for every x∈X
and every t>0

suppPt(x, ·) = closure(A(x,t)). (5.2)

Thus the problem of finding points in suppPt(x, ·) can be cast in terms finding points
reachable from the system (5.1) at exactly time t>0 started at x∈X as the controls
vary through the class of piecewise continuous functions.

Remark 5.1. It is worth noting that solving the control problem above is slightly more
involved than the one in the case of Langevin dynamics with uniformly elliptic noise
in the momentum directions. One can see the difference between the two cases almost
immediately, as the process solving (NHB) is not fully supported in X instantaneously.
Indeed, for all t≥0

ξ(t)≥ ξ(0)− ta−1kN/β P−a.s.

In other words, the ξ process is only allowed to decrease so fast, hence restricting access
to points at a given time t>0 sufficiently far to the left of where it started. Although
from this observation one is tempted to conjecture that for a given x= (q,p,ξ)∈X and
t>0

suppPt(x, ·) ={(q′,p′,ξ′)∈X : ξ′≥ ξ− ta−1kBTkN},

which is false. Consult the statement of Proposition 2.1 (ii) to see what precisely
is claimed. Thus, determining the supports of the transitions, and hence solving the
control problem (5.1), is more subtle.

While there are other methods, such as those from geometric control theory, that
could prove useful in analyzing the problem above (see, for example, [11, 24] and the
Agrachev-Sarachev approach as outlined in the infinite-dimensional setting in [39]), we
choose to prove Proposition 2.1 (ii) by an essentially explicit construction. As seen
below, we can recast the control problem as a calculus of variations problem.

Proof. (Proof of Proposition 2.1 (ii).) Let x= (q,p,ξ)∈X and t>0. By the
support theorems [40,41], it suffices to prove that

closure(A(x,t)) =A(x,t) (5.3)

where A(x,t) is as in (2.13). To see the inclusion “⊆” in (5.3), let η= (ηi) be an
arbitrary piecewise continuous (Rk)N -valued control such that the solution of (5.1)
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with (Q(0),P (0),Ξ(0)) = (q,p,ξ) exists in X for all times on [0,t]. Letting q′=Q(t) and
ξ′= Ξ(t), note by the Cauchy-Schwarz inequality

L2
q,q′ ≤

(∫ t

0

‖P (u)‖mdu
)2

≤ t
∫ t

0

‖P (u)‖2mdu.

Consequently,

ξ′= ξ+a−1

∫ t

0

‖P (u)‖2mdu− ta−1kBTkN

≥ ξ+
L2
q,q′

ta
− ta−1kBTkN.

This establishes the claimed inclusion. For the other inclusion “⊇” in (5.3), since O is
open let ε>0 be small enough so that Bε(q)⊆O and define Xε=Bε(q)×(Rk)N ×R. It
suffices to show that

closure(A(x,t))∩Xε⊇A(x,t)∩Xε.

Note that this allows us to “convexify” the problem; that is, for any q′∈Bε(q), Lq,q′ =
‖q−q′‖m. Let (q′,p′,ξ′)∈Xε and t>0. For a small parameter δ∈ (0,t/2), consider the
following piecewise linear curve φδ : [0,t]→ (Rk)N given by

φδ(u) =


q+up if 0≤u≤ δ
`u(q+δp,q′−δp′) if δ≤u≤ t−δ
q′+(u− t)p′ if t−δ≤u≤ t.

where u 7→ `u(q+δp,q′−δp′) linearly interpolates between the points q+δ at time
u= δ and q′−δp′ at time u= t−δ. Observe that for any δ>0 sufficiently small,
φδ([0,t])⊆Bε(q) and that for every δ>0, φδ(0) = q,φ̇δ(0) =p,φδ(t) = q′,φ̇δ(t) =p′. More-
over, observe that as δ→0∫ t

0

‖φ̇δ(u)‖2mdu→
‖q−q′‖2m

t
=
L2
q,q′

t
.

Thus by picking η= (ηi,δ) to satisfy the second equation in (5.1) with this choice of

(Q,P ) = (φδ,φ̇δ) proves that all points (q′,p′,ξ′)∈Xε with

ξ′= ξ+(at)−1L2
q,q′− ta−1kBTkN

belong to closure(A(x,t)). To get the remaining points, first suppose that q 6= q′. For
s∈ (0,t], define

φsδ(u) =


q+up if 0≤u≤ δ
`u(q+δp,q′−δp′) if δ≤u≤s−δ
q′−δp′ if s−δ≤u≤ t−δ
q′+(u− t)p′ if t−δ≤u≤ t

where in the above, the u 7→ `u(q1,q2) is the line segment connecting q1 and q2 at times
u= δ and u=s−δ. Note that for every s∈ (0,t], as δ→0∫ t

0

‖φ̇sδ(u)‖2mdu→
‖q−q′‖2m

s
:=f(s).
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Since f is a continuous function of s∈ (0,t] with f(t) =‖q−q′‖2m/t and lims↓0f(s) =∞,
we can apply the Intermediate Value Theorem to see that all points (q′,p′,ξ′)∈Xε with
q′ 6= q satisfying

ξ′>ξ+(at)−1L2
q,q′− ta−1kBTkN

belong to closure(A(x,t)). Since closure(A(x,t)) is a closed set the result follows.
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Appendix. Here we use Theorem 2.2 and Proposition 2.1 to conclude Theorem 2.1.
What follows is fairly standard but we provide the details for completeness. We first
translate Theorem 2.2 and Proposition 2.1 to the following two corollaries which allow
us to better connect with the setup in [14].

Corollary 6.1. Let β0>0 satisfy (2.12), fix ε∈ (0,β0) and let W ∈C2(X ) and
R,α,K>0 satisfy (I) and (II) in Theorem 2.2. Then for all t≥0 and all x∈X

PtW (x)≤e−αtW (x)+K/α. (6.4)

Proof. For n∈N, define σn= inf{t>0 :W (x(t))>n} and let σn(t) = t∧σn. By
construction of W , we see that Exe

ασn(t)(W (xσn(t))−K/α)≤W (x)−K/α, which in
turn implies the estimate

Exe
ασn(t)W (xσn(t))≤W (x)+Exe

ασn(t)K/α. (6.5)

Note that σn ↑∞ Px-almost surely since W (x)→∞ as H(x)→∞ and x(t) is non-
explosive. Applying Fatou’s lemma and monotone convergence to (6.5) finishes the
proof.

Corollary 6.2. Let β0>0 satisfy (2.12), fix ε∈ (0,β0) and let W ∈C2(X ) and
R,α,K>0 satisfy (I) and (II) in Theorem 2.2. For R>0, define

CR={x∈X :W (x)≤R}.

Then for each R>0, CR is compact. Also, for each R>0 large enough and each t0>0,
there exists a probability measure ν on Borel subsets of X and a constant c>0 such that
for all A∈B(X )

inf
x∈CR

Pt0(x,A)≥ cν(A). (6.6)

Proof. The fact that CR is compact for R>0 follows since W (x)→∞ as H(x)→∞,
W ∈C2(X ;(0,∞)) and since the potential U is normal. Let R>0 be large enough so
that CR 6=∅ and fix t0>0. First observe that for any A⊆X Borel and x∈X we may
write

Pt0(x,A) =

∫
A

∫
X
r t0

2
(x,y)r t0

2
(y,z)dydz (6.7)
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where we recall that y 7→ rt(x,y) denotes the probability density of Pt(x, ·) with respect
to Lebesgue measure on X . From this expression, the goal is to now use support
and regularity properties of the transitions to bound the quantity below by a positive
constant times normalized Lebesgue measure on a bounded subset of X . To this end,
since CR is compact let

ξR= max
(q′,p′,ξ′)∈CR

ξ′ and L2
R= max

(q,p,ξ),(q′,p′,ξ′)∈CR
L2
q,q′

and note that by Proposition 2.1 (ii)

P t0
2

(x,Bδ(y
′))>0

for all x∈CR, δ>0 and all y′= (q′,p′,ξ′)∈X with

ξ′≥ ξR+(at0/2)−1L2
R−

t0
2
a−1kBTkN.

Let y′∈X be any such point satisfying the above. Clearly, there exists z′∈X such that
rt0/2(y′,z′)>0. Employing continuity of the density on (0,∞)×X ×X and picking δ>0
small enough we can ensure the following bound

r t0
2

(y,z)≥ ε>0

for all (y,z)∈Bδ(y′)×Bδ(z′) where ε>0 is a constant. Hence by way of (6.7) we obtain
for x∈CR

Pt0(x,A)≥ ελ(Bδ(z
′))P t0

2
(x,Bδ(y

′))
λ(A∩Bδ(z′))
λ(Bδ(z′))

where λ denotes Lebesgue measure. Since x 7→P t0
2

(x,Bδ(y
′)) is continuous and positive

on CR, we infer the existence of a constant c>0 such that

inf
x∈CR

Pt0(x,A)≥ c λ(A∩Bδ(z′))
λ(Bδ(z′))

for all A⊆X Borel. This finishes the proof.

We now use the previous two corollaries to conclude Theorem 2.1.

Proof. (Proof of Theorem 2.1.) We first show that the augmented Gibbs measure
µ defined in relation (2.3) is an invariant probability measure for the Markov process
x(t) satisfying (NHB). Since U is a normal potential, µ is a probability measure by
definition. Note also that it is a routine calculation to check that

L ∗(exp(−βH)) = 0

where we recall that β= 1/(kBT ) and L ∗ is the formal L2-adjoint of the generator L .
This in turn implies that µPt=µ for all t≥0. To see that µ is unique, Proposition 2.1
(i) implies that (Pt)t≥0 is a strong Feller Markov semigroup. Moreover, we claim
that suppν=X for any invariant probability measure ν for the Markov process x(t).
Uniqueness of µ will then follow by, for example, Theorem 3.16 of [13]. Supposing
that ν is an invariant probability measure for x(t), there exists x∗∈X for which x∗∈
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suppν. By Proposition 2.1 (ii), for any y∈X we may pick t>0 large enough so that
y∈ suppPt(x

∗, ·). Since for any U,V ∈B(X )

ν(U) =

∫
X
ν(dx)Pt(x,U)≥

∫
V

ν(dx)Pt(x,U)

it follows that y∈ suppν.
To obtain the remaining conclusions in the Theorem 2.1, we seek to apply Theo-

rem 1.2 of [14] to the embedded Markov chain on X given by Pt0
n :=Pnt0 where t0>0 is

as in the statement of Corollary 6.2. Note that Corollary 6.1 and Corollary 6.2 together
imply Assumption 1 and Assumption 2 of [14]. Applying Theorem 1.2 of [14], there
exist constants C>0 and δ∈ (0,1) such that

ρW (ν1P
t0
n ,ν2P

t0
n )≤CδnρW (ν1,ν2)

for all νi∈MW and all n∈N∪{0}. To reintroduce the continuous-time parameter t>0
in the bound above, let t=nt0 +ε for some ε∈ (0,t0) and n∈N∪{0}. Observe that for
any ϕ :X →R measurable with ‖ϕ‖W ≤1, Corollary 6.1 gives

‖Pεϕ‖W ≤‖ϕ‖W sup
x∈X

1+PεW (x)

1+W (x)
≤C ′

for some constant C ′>0 independent of ε>0. Applying Fubini-Tonelli and the
Chapman-Kolmogorov equations, it then follows that

ρW (ν1Pt,ν2Pt)≤C ′ρW (ν1P
t0
n ,ν2P

t0
n )≤CC ′δnρW (ν1,ν2).

Picking η=− 1
t0

logδ and C ′′=CC ′/δ1/t0 produces the desired estimate

ρW (ν1Pt,ν2Pt)≤C ′′e−ηtρW (ν1,ν2)

which is satisfied for all t≥0 and νi∈MW .
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