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NUMERICAL COMPUTATION FOR THE NON CUTOFF RADIALLY
SYMMETRIC HOMOGENEOUS BOLTZMANN EQUATION∗
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Abstract. For the non cutoff radially symmetric homogeneous Boltzmann equation with
Maxwellian molecules, we give the numerical solutions using symbolic manipulations and spectral de-
composition of Hermite functions. The initial data can belong to some measure space.
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1. Introduction

1.1. The Boltzmann equation. The Boltzmann equation, derived by Boltz-
mann in 1872 (and Maxwell 1866), models the behavior of a dilute gas (see [8]). As we
know, Boltzmann has created a theory which described the movement of gases as balls
which could bump and rebound against each other [11, 20]. This model can be con-
sidered as one of many cases which represent the so-called kinetic equation. Presently,
a diverse field of sciences and applications use these models such as rarefied gas dy-
namics, semiconductor modeling, radiative transfer, and biological and social sciences.
This type of equation is made by including a combination of a linear transport term
and several interaction terms which provide the time evolution of the distribution of
particles in the phase space. The equation that bears his name is the following{

∂tf+v.∇xf =Q(f,f),
f(t= 0,x,v) =F (x,v)

with f =f(t,x,v)≥0 is the probability density to find a particle at the time t, on the
position x and with velocity v, where the physical and the velocity spaces are located
in three dimensions. The term v.∇xf describes the free action of particles and Q(f,f)
is a bi-linear operator which describes the binary collision process. It is called the
Boltzmann collision operator and is given by

Q(g,f)(v) =

∫
R3

∫
S2
B(v−v∗,σ)(g′∗f

′−g∗f)dv∗dσ

where we use the notation f ′∗=f(t,x,v′∗), f
′=f(t,x,v′), f∗=f(t,x,v∗). The symbols v′∗

and v′ are abbreviations for the expressions

v′=
v+v∗

2
+
|v−v∗|

2
σ, v′∗=

v+v∗
2
− |v−v∗|

2
σ

where σ∈S2 and they are obtained in such a way that collision preserves momentum
and kinetic energy, namely

v′∗+v′=v+v∗, |v′∗|2 + |v′|2 = |v|2 + |v∗|2
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Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray, France (leo.glangetas@univ-rouen.fr).
‡Supported by a grant from Lebanon, Laboratoire de Mathématiques Raphaël Salem, Université de
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where | · | is the Euclidean norm on R3. Note that v, v∗ are the velocities before collision
and v′, v′∗ are the velocities after collision.

The non-negative cross section B(z,σ) with z= (v−v∗) depends only on |z| and the
scalar product z

|z| ·σ= cosθ where θ is the deviation angle. Without loss of generality,

we may assume in the non cutoff case that this cross section is supported on the set
cosθ≥0. See for instance [32] for more details on the cross section and [40] for a general
collision kernel. For physical models, it usually takes the form

B(v−v∗,σ) = Φ(|v−v∗|)b(cosθ), cosθ=
v−v∗
|v−v∗|

·σ, 0≤θ≤ π
2

where Φ(|v−v∗|) = |v−v∗|γ is a kinetic factor and γ >−3.
In this work, we consider the spatially homogeneous case, that means the density

distribution f =f(t,v) depends on the variables t≥0, v∈R3 and is uniform with respect
to x. So that the Boltzmann equation reads as{

∂tf =Q(f,f),
f(t= 0,v) =F (v)

(1.1)

where the initial data F is depends only on v. For the collision kernel, we study only
the Maxwellian molecules, that means the kinetic factor Φ≡1, and both cutoff and non
cutoff (see [12–15,17,26,33]):

• cutoff case: b(cosθ)≡ 1

4π
, (1.2)

• non cutoff case: b(cosθ)≈
0

1

|θ|2+2s
, 0<s<1. (1.3)

1.2. Results on the Boltzmann equation. With the previous assumption
(the non cutoff case) on the cross-section, there is existence of a weak solution for
the Boltzmann equation (1.1) for a positive initial value F ∈L1

2+δ(R3). See [39] and
many others. Moreover, it is well-known that there is a regularization effect in Sobolev
and Schwartz or analytic spaces for any time t>0 (we refer the reader to [12, 13] and
recently [1]) and that the solutions converge to the Maxwellian distribution when the
time tends to infinity [26].

An important point is that our distribution lives in a multidimensional space: this
reason makes us think that we have a numerical problem because in this case the com-
putational cost is more or less forbidden [20]. The study of the numerical part for kinetic
equations is not obvious due to many difficulties arising from the computational cost.
To clarify more, we mention two of these difficulties: it is clear the appearing of multi-
ple scales, and then to get out of the resolution of the stiff dynamics, one should build
suitable numerical schemes [2,18,19,27–29]. The other one is that the collision operator
is defined by multidimensional integrals and to compute one should solve it point by
point as physical space [22,37]. To treat kinetic equations numerically, there are several
ways which are used over the centuries until now: probabilistic numerical methods such
as Direct Simulation Monte Carlo (DSMC) schemes [3,11], and, deterministic numerical
methods such as finite volume, semi-Lagrangian and spectral schemes [20].

There are two important deterministic methods which are used in the past decades:
the discrete velocity method (DVM) [6,9,10,25,35,38] and the Fourier spectral method
(FSM) [7,10,23,36,37]. Due to its discrete nature, the DVM preserves positivity of the
distribution function, the H-theorem and the exact conservation of mass, energy and
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momentum. Note that the Fourier spectral method is based on two main things: the
truncation of the collision operator and the restriction of the distribution function to
an appropriate cube, for more details see [34,37].

Our goal is to present an alternative method to solve formally and numerically the
homogeneous Boltzmann equation in the non cutoff case. In this work, we consider
the radial symmetric case and we use a spectral method: we first compute the spectral
coefficients of the solution with a formal computation software (Maple R©13 and 2016;
most of the codes are provided in Appendix E). We then approximate these exact
solutions and check the numerical results.

The used method helps us to motivate our work in several ways. In the physical
view, it lets us understand more about the behavior of the solutions, see for example
the measure-type initial data. In the numerical view, exact spectral solutions are con-
structed that could be used to test numerical algorithms that are similar to the exact
formulas for higher order moments defined in the paper of Krook-Wu [30] by equation
(35). On the other hand, we study the accuracy (using the BKW solution) and du-
ration of this symbolic method. Recall that the explicit BKW solution (3.4) obtained
independently in [4, 30] is used to test the accuracy of the numerical methods in the
case of a regular collision kernel B≡ 1

4π , see for example [10, 23]. Finally, we do hope
that our work will give some clues to formulate new mathematical conjectures.

The paper is organized as follows. In Section 2, we state the main theoretical results.
The numerical details are provided in Section 3. Sections 4 and 5 present the numerical
results of the Boltzmann equation with different initial data for the Cauchy problem:
we estimate in Section 4 the error between the approximate spectral solution and the
explicit BKW solution. In Section 5, we consider the case of a measure initial data.
After that, we give a conclusion for this work in Section 6. The paper ends with an
appendix where we set some technical results and we provide some algorithms.

2. Theoretical results
In this section, we present some theoretical parts: we begin by linearizing the

Boltzmann equation and giving the spectral decomposition of this equation.

2.1. Linearization of the Boltzmann equation. We remark that Q(µ,µ) = 0
where the Maxwellian distribution is defined by

µ(v) =
1

(2π)3/2
e−
|v|2
2

and it is a stationary solution of the Boltzmann equation. We consider now a pertur-
bation g of the Maxwellian distribution. Then the solution f of (1.1) can be written
as

f(t,v) =µ(v)+
√
µ(v)g(t,v),

F (v) =µ(v)+
√
µ(v)G(v).

It is easy to show that g is a solution of the Cauchy problem{
∂tg+L(g) =Γ(g,g),

g|t=0 =g(0,v) =G(v)
(2.1)

where

L(g) =− 1
√
µ

[Q(
√
µg,µ)+Q(µ,

√
µg)]
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is a linear operator and

Γ(g,h) =
1
√
µ

Q(
√
µg,
√
µh)

is a nonlinear operator. We decompose the solution of (2.1) into a linear and nonlinear
part:

g(t,v) =e−tLG(v)︸ ︷︷ ︸
linear part

+ e−tLh(t,v)︸ ︷︷ ︸
nonlinear part

where eαL is the exponential of the linear operator defined by its spectral decomposition
(see below) and the new function h(t,v) satisfies the following equation{

∂th=etLΓ(e−tL (G+h),e−tL (G+h)),
h(0,v) = 0.

(2.2)

The linearized operator L is a positive unbounded symmetric operator on L2(R3
v) (see

[11,31–33]) with the kernel

N = span
{√

µ,
√
µv1,
√
µv2,
√
µv3,
√
µ|v|2

}
.

From a rescaling argument (see Appendix B), we can always assume that the initial
condition G satisfies

G∈N⊥.

In [32], for the radially symmetric case, the authors show that the linear Boltzmann
operator behaves like the fractional harmonic oscillator Hs (0<s<1) with

H=−∆+
|v|2

4
.

We study in the next section the spectral properties of the operators L and Γ.

2.2. The spectral problem. We introduce now an orthonormal basis of
L2
r(R3), the radial symmetric functions of L2(R3) involving the generalized Laguerre

polynomials L
`+ 1

2
n : for that, we set for any n≥0

ϕn(v) =

(
n!√

2Γ(n+3/2)

)1/2

e−
|v|2
4 L

[ 12 ]
n

(
|v|2

2

)
1√
4π

(2.3)

where Γ( ·) is the standard gamma function, for all x>0

Γ(x) =

∫ +∞

0

tx−1e−tdt

and the Laguerre polynomial L
[α]
n of order α, degree n is

L[α]
n (x) =

n∑
r=0

(−1)n−r
Γ(α+n+1)

r!(n−r)!Γ(α+n−r+1)
xn−r.
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We have the spectral decomposition for the linear Boltzmann operator

Lϕn=λnϕn

for all n≥0 with ϕ0 =
√
µ, λ0 = 0 and for n≥1

λn=

∫ π

0

2π sinθb(cosθ)
{

1−cos2n
(
θ
2

)
−sin2n

(
θ
2

)}
dθ (2.4)

where b(cos(θ)) is defined from the collision kernel (see (1.2)-(1.3)). The two families
(ϕn)n≥0 and (λn)n≥0 represent the eigenvectors and the eigenvalues of L. Remark that
this diagonalization of the linearized Boltzmann operator with Maxwellian molecules is
also verified in the cutoff case (see [5, 11,21,31,32]).

We consider the spectral expansion

g(t,v) =

∞∑
n=0

gn(t)ϕn(v), G(v) =

∞∑
n=0

Gnϕn(v) (2.5)

where gn(t) =
(
g(t,·),ϕn(·)

)
L2

and Gn=
(
G,ϕn

)
L2

. By definition, we have

e−tLG(v) =

∞∑
n=0

e−λntGnϕn(v).

It is the solution of the equation{
∂tg

`in+Lg`in= 0,
g`in(0,v) =G(v).

Then the operator Γ satisfies for p,q≥0

Γ(ϕp,ϕq) =µpqϕp+q

where the nonlinear eigenvalues are given by
µpq =

(
(2p+2q+1)!

(2p+1)!(2q+1)!

) 1
2
∫ π

0

2π sinθb(cosθ)
{

sin2p
(
θ
2

)
cos2q

(
θ
2

)}
dθ for p≥1,

µ0q =−
∫ π

0

2π sinθb(cosθ)
{

1−cos2q
(
θ
2

)}
dθ.

(2.6)
We note that λn=−(µ0n+µn0). Following [33], we therefore derive from (2.1) the
following infinite system of ordinary differential equations:

g′0(t) = 0, g′1(t) = 0 and for all n≥2

g′n(t)+λngn(t) =
∑

p+q=n
0≤p,q≤n

µpq gp(t)gq(t) (2.7)

with λ1 = 0, µ00 = 0, µ10 =−µ01 and the initial conditions (see (2.5))

gn(0) =Gn for n≥0.

The goal is to study the behavior of each function gn.
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In the rest, we will focus on the computation and properties of the intermediate
solution h(t,v).

Proposition 2.1. We assume that G∈N⊥. Then the intermediate solution h(t,v)
defined by (2.2) satisfies

h(t,v) =

∞∑
n=0

hn(t)ϕn(v)

where h0≡h1≡h2≡h3≡0 and for all n≥4

hn(t) =
∑

p+q=n
2≤p,q≤n−2

∫ t

0

µpq e
−(λp+λq−λn)s

(
Gp+hp(s)

)(
Gq+hq(s)

)
ds. (2.8)

Remark 2.1. Since G∈N⊥, we have g(t, ·)∈N⊥ for all t>0. As we have seen before,
we divide the function g in two parts as follows:

g(t,v) =

∞∑
n=2

e−λn tGnϕn(v)︸ ︷︷ ︸
g`in(t,v)

+

∞∑
n=2

e−λn thn(t)ϕn(v)︸ ︷︷ ︸
gn`(t,v)

(2.9)

therefore the formal solution f(t,v) can be written as

f(t,v) =µ(v)+
√
µ(v)

∞∑
n=2

(
e−λn tGn+e−λn thn(t)

)
ϕn(v).

Proof. (Proof of Proposition 2.1.) As G∈N⊥, we get G0 =G1 = 0 and we can verify
from (2.7) that

g0(t) =g1(t) = 0, g2(t) =G2e
−λ2 t, g3(t) =G3e

−λ3 t

and therefore h0≡h1≡h2≡h3≡0. By (2.7), we may write

gn(t) =e−λn tGn+e−λn thn(t) (2.10)

and

g′n(t)+λngn(t) =
∑

p+q=n
2≤p,q≤n−2

µpq gp(t)gq(t). (2.11)

We plug again the value of gn from (2.10) into the equation (2.11) and we get

h′n(t) =eλn t
∑

p+q=n
2≤p,q≤n−2

µpq gp(t)gq(t).

Note that hn(0) =gn`n (0) = 0. Finally, plugging the expression of gp and gq from (2.10)
into the previous equation and integrating, we prove (2.8). Concerning the exact ex-
pression of the eigenvalue λn and µpq, see [33]. This concludes the proof.
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We now introduce the following notations. For a k-uplet α∈Nk,

Λα=λα1
+λα2

+ ·· ·+λαk ,

Gα=Gα1
×Gα2

·· ·×Gαk .

Proposition 2.2. For each integer n≥4, we define In a set of admissible indices

In=
{
α∈Nk

∣∣∣k∈N∗, αi≥2, |α|=n
}
.

Then for each multi-index α,β,∈ In there exist some real coefficients cαβ which depend
only on λ2,. ..,λn and µpq for 2≤p,q≤n−2, p+q≤n such that

hn(t) =
∑

α,β∈In

cαβ G
α
(

1−e−(Λβ−λn)t
)
. (2.12)

Proof. We compute directly from (2.8)

h4(t) = c
(2,2)
(2,2)G2

2
(

1−e−(Λ(2,2)−λ4)t
)

where

c
(2,2)
(2,2) =

µ22

(Λ(2,2)−λ4)

and

h5(t) = c
(2,3)
(2,3)G2G3

(
1−e−(Λ(2,3)−λ5)t

)
+c

(3,2)
(3,2)G3G2

(
1−e−(Λ(3,2)−λ5)t

)
where

c
(2,3)
(2,3) =

µ23

(Λ(2,3)−λ5)
and c

(3,2)
(3,2) =

µ32

(Λ(3,2)−λ5)
.

We prove the result by induction. Then we can suppose that (2.12) is true for each
hn′ (4≤n′≤n−1). We will use the integral expression (2.8) of hn. We consider two
integers p,q such that 2≤p,q≤n−2 and p+q=n. Then from (2.12)

hp(t) =
∑

α,β∈Ip

cαβ G
α
(

1−e−(Λβ−λp)t
)
,

hq(t) =
∑

α′,β′∈Iq

cα
′

β′ G
α′
(

1−e−(Λβ′−λq)t
)
.

From the integral formula (2.8) we get

hn(t) =

∫ t

0

∑
p+q=n

2≤p,q≤n−2

(A+B+C+D)ds

with

A=µpqGpGq e
−(λp+λq−λn)s,

B=
∑

α′,β′∈Iq

µpq c
α′

β′ GpG
α′ (e−(λp+λq−λn)s−e−(λp+Λβ′−λn)s),
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C=
∑

α,β∈Ip

µpq c
α
β G

αGq (e−(λp+λq−λn)s−e−(Λβ+λq−λn)s),

D=
∑

α,β∈Ip

∑
α′,β′∈Iq

µpq c
α
β c

α′

β′ G
αGα

′
×

(e−(λp+λq−λn)s−e−(Λβ+λq−λn)s−e−(λp+Λβ′−λn)s+e−(Λβ+Λβ′−λn)s).

Expanding each of the previous terms and integrating over [0,t], we get the result (2.12)
since each number λp+λq−λn, Λβ+λq−λn, λp+Λβ′−λn, Λβ+Λβ′−λn is positive
from the next lemma and |α|= |β|=p, |α′|= |β′|= q and p+q=n.

Lemma 2.1. The linear eigenvalues λn defined in (2.4) for the radially symmetric
spatially homogeneous Boltzmann equation verify the following property

λα1+···+αk <λα1 + ·· ·+λαk(= Λα)

for multi-index α∈ (N\{0,1})k.

Proof. By [33], we may write

λα1+α2
<λα1

+λα2

then by iteration, we have

λ(α1+···+αk)+αk+1
<λα1+···+αk +λαk+1

< (λα1
+ ·· ·+λαk)+λαk+1

.

3. Numerical computations
From the previous section, we set the following approximate spectral solution

fN (t,v) =µ(v)+
√
µ(v)

(
N∑
n=0

e−λn t(Gn+hn(t))ϕn(v)

)
,

hn(t) =
∑

p+q=n
2≤p,q≤n−2

∫ t

0

µpq e
−(λp+λq−λn)s

(
Gp+hp(s)

)(
Gq+hq(s)

)
ds

(3.1)

with the approximate initial data

FN (v) =µ(v)+
√
µ(v)

(
N∑
n=0

Gnϕn(v)

)
. (3.2)

The eigenfunctions ϕn(v) are explicitly given by the formula (2.3). The eigenvalues
defined by (2.6) and (2.4) are computed by an integral which involves the collision
kernel b(cosθ). We distinguish the two cases:

(i) The cutoff case: b(cosθ)≡ 1
4π , that is

2π sinθb(cosθ) =
1

2
sinθ, θ∈ [0,π]. (3.3)

The aim of studying this case is to compare the spectral solutions with the
explicit fBKW solution [4, 30] (see Remark A.1 in Appendix A).

fBKW(t,v) =
1

2(2π)
3
2 (1−e−t/6)

5
2

[
(2−5e−t/6)+

e−t/6

1−e−t/6
|v|2
]

e
− |v|2

2

(
1−e−t/6

)
.

(3.4)
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(ii) The non cutoff case: we recall that the collision kernel has a singularity
b(cosθ)≈θ−(2+2s) for θ= 0 (see (1.3)). For sake of simplicity we consider for a
given s∈]0,1[ the following form

2π sinθb(cosθ) =

{
sin−(1+2s)

(
θ
2

)
if θ∈ [0, π2 [,

0 if θ∈ [π2 ,π].
(3.5)

In the specific case s= 1
2 , we get, by symbolic computations, the exact value of

the eigenvalues, although for s 6= 1
2 , we get only approximate values.

In this section, we begin by giving the exact and approximate values of the eigenvalues
and the estimates of the error. After that we present the method to compute the linear
and nonlinear part of the solution and give some theoretical estimates of the error in
the linear case.

3.1. Computation of the linear eigenvalues. The linear eigenvalue λn is
given by simple 1-dimensional integral (2.4).

(i) Cutoff case. The collision kernel b(cosθ) is regular and the approximate value
is easily computed with standard method. We use the numerical tool of Maple

int(function(θ),θ=0..π,numeric)'
∫ π

0

function(θ)dθ

with 5, 10 or 20 significant digits. In the special case of the BKW solution, the form of
the eigenvalues is explicit and given by Proposition A.3.

(ii) Non cutoff case. We recall that the collision kernel b(cosθ)≈θ−(2+2s) is
singular but is controlled by the other terms sinθ(1−cos2n(θ/2)−sin2n(θ/2)). To avoid
a “division by zero” error, we use the following form

int(function(θ),θ= 10−40..π,numeric)'
∫ π

0

function(θ)dθ

to compute an approximate value λappr.
n with the algorithm 4 of Appendix E. In the

special case s= 1
2 (see (3.5)), we compute with the algorithm 4-bis the symbolic value

λexact
n which is given for n≥2 by the integral

λn=

∫ π/2

0

1

sin2
(
θ
2

) {1−cos2n
(
θ
2

)
−sin2n

(
θ
2

)}
dθ.

We first reduce the trigonometric fraction inside the integral by the symbolic tool of
Maple:

simplify

(
1

sin2
(
θ
2

) (1−cos2n
(
θ
2

)
−sin2n

(
θ
2

)))
which removes the singularity of the collision kernel and gives a regular trigonometric
polynomial. Then the symbolic integration

int(function(θ),θ= 0..π)=

∫ π

0

function(θ)dθ

gives the exact value λexact
n . We then estimate the relative error |λexact

n −λappr.
n |/λexact

n

in the numerical Table 3.1.
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Exact value Approximate value Relat. error

λ1 0 0 –

λ2 1+ 1
2 π 2.5707963267948966193 2.7×10−20

λ3
3
2 + 3

4 π 3.8561944901923449289 1.4×10−20

λ4
23
12 + 15

16 π 4.8619097794070978277 5.3×10−21

λ10
61717
16128 + 109395

65536 π 9.0707560428160875528 1.7×10−21

λ20
60225247403
9906683904 + 83945001525

34359738368 π 13.754545239649748132 2.6×10−20

λ30
382807351536613
48879680618496 + 54496920530418135

18014398509481984 π 17.335530084539302322 6.4×10−21

λ40 9657438142855448158667
1036599248915011731456

+ 66341473743672640538025π
18889465931478580854784

20.350013652434449681 5.0×10−20

Table 3.1. Symbolic and numerical computation of λn with 20 significant digits, non cutoff case.

3.2. Computation of the nonlinear eigenvalues. The nonlinear eigenvalues
µpq are also given by the 1-dimensional integral (2.6) and take an explicit form in the
cutoff case b(cosθ)≡ 1

4π (see Proposition A.3). We apply in the cutoff and non cutoff
case the same numerical tool of Maple as in the previous section using algorithm 4 for
a numerical computation of µapprox.

pq .

In the special case (3.5) where we take s= 1
2 , the symbolic value µexact

pq of

µpq =

(
(2p+2q+1)!

(2p+1)!(2q+1)!

) 1
2
∫ π/2

0

1

sin2
(
θ
2

) {sin2p
(
θ
2

)
cos2q

(
θ
2

)}
dθ.

is computed by the algorithm 4-bis for p+q=n= 2,. ..,N = 40. After that, we present
in Table (3.2) some symbolic and numerical values of results including the relative error
|µexact
pq −µappr.

pq |/µexact
pq . The relative error on the linear and nonlinear eigenvalues using

Exact value Approximate value Relat. error

µ1,1
√

30
(

1
6 + 1

12π
)

2.3468052315616459661 5.2×10−20

µ1,2
√

7
(

1
2 + 3

16π
)

2.8813518209196856030 1.1×10−20

µ2,1
√

7
(

1
16π
)

0.51949205512913010260 1.3×10−20

µ1,19
√

2460( 4001928871
59440103424 + 1472719325

68719476736π) 6.6786311833698659912 1.4×10−20

µ10,10
√

627967520180( 1
69730304

+ 12155π
481036337152

π) 0.074270916564345586742 2.8×10−20

µ19,1
√

2460( −108158197
59440103424 + 39803225

68719476736π) 0.17472370665141693658e−5 2.2×10−19

Table 3.2. Symbolic and numerical computation of µpq with 20 significant digits, non cutoff case.

20 significant digits remains less than 10−18 and the computing time is less than 600
seconds (in each type of kernel) for a degree of freedom N = 40. For large N , the
computation time of the eigenvalues is much lower than the calculation time for the
nonlinear term hn(t) (many hours for N = 40), see Figure 4.4 on the right.
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3.3. Numerical solutions of the linear problem. We introduce from (2.9)
the approximation of the linear solution

g`inN (t,v) =

N∑
n=0

e−λn tGnϕn(v) (3.6)

where the reals Gn are the given initial spectral coefficients. In order to compute
the linear solution, we need to set the value of the eigenfunctions ϕn by the formula

(2.3) which involves the generalized Laguerre polynomials L
[ 12 ]
n and some other classical

mathematical functions: see Appendix E, Maple algorithm 3.
Finally, by (2.5) and since g0(t) =g1(t) = 0 then

g`inN (t,v) =

N∑
n=2

e−λntGnϕn(v).

The approximate value g`inN (t,v) can be computed by the algorithm 7-bis of Appendix
E. We consider the solution of the following linear problem{

∂tg
`in+Lg`in= 0,

g`in(0,v) =G(v).
(3.7)

and we estimate the L2 theoretical error (g`in−g`inN ) for different initial data G used
for computation in the next sections.

(i) Cutoff case. The collision kernel is regular, then from the convergence domi-
nated theorem applied to the integral (2.4), we obtain the following estimate of λn

λn≈
∫ π

0

2π sinθb(cosθ) dθ.

Therefore, we get for an initial data G∈L2 and when n goes to infinity

‖g`in(t,·)−g`inN (t,·)‖2L2 .e−ct
∑

n≥N+1

|Gn|2.

For a measure initial data, there is no regularization in L2 of the solution for positive
time.

(ii) Non cutoff case. We study the theoretical rate of convergence of the approx-
imate solution. By the following assumption b(cosθ)≈

0

1
|θ|2+2s , we have the following

estimate (see [32]) on the linear eigenvalues λn of L defined in (2.4)

λn≈∞n
s. (3.8)

Therefore, there is a regularization of the solution for positive time and we obtain the
following rates of convergence.

Proposition 3.1. We consider the solution of the linear problem (3.7). Then we
have the following estimates:

(1) For initial data G∈L2,

‖g`in(t,·)−g`inN (t, ·)‖L2 .e−cN
s t‖G‖L2 .
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(2) For the measure initial data G defined by (5.1) and s= 1
2 (see also Proposition

C.1), there exist some constants b>0 and γ>0 such that for t>0

‖g`in(t,·)−g`inN (t,·)‖L2 .
1

tb
e−γN

1
2 t.

Proof. The solution of (3.7) is

g`in(t,v) =

∞∑
n=0

e−λn tGnϕn(v).

From (3.6), the exact error in L2 is

‖g`in(t,·)−g`inN (t, ·)‖2L2 =

∞∑
n=N+1

e−2λn t |Gn|2.

We first prove (1). If G∈L2(R3
v), then as we have from (3.8)

‖g`in(t,·)−g`inN (t,·)‖2L2 =

∞∑
n=N+1

e−2λn t |Gn|2 .e−2cN
1
2 t‖G‖2L2 .

We can deduce that the exact error tends to zero when N tends to infinity.

We now prove (2). We suppose now that F is the measure initial data µ+δ. We

can approximate the spectral coefficients Gn of G by n
1
4 and by (3.8) we can then find

some positive constants c and C such that

‖g`in(t,·)−g`inN (t,·)‖2L2 ≤C
∞∑

n=N+1

e−cn
1
2 tn

1
2 .

We consider the function ρt defined on R+ by ρt(x) =e−cx
1
2 tx

1
2 . So that ρt is positive,

continuous increasing for 0≤x≤1/(ct)2 and decreasing for x≥1/(ct)2, therefore by
using the Cauchy integral criterion, we can write the following inequality:

‖g`in(t,·)−g`inN (t, ·)‖L2 ≤ C
tb
e−γN

1
2 t−→0

N→∞

where C, b and γ are some positive constants.

3.4. Numerical solutions of the nonlinear part. From (2.9), we consider the
approximate solution of the nonlinear part

gn`N (t,v) =

N∑
n=0

e−λn thn(t)ϕn(v). (3.9)

We compute hn(t) using the algorithm 6 in Appendix E.

(1) h0 =h1 =h2 =h3≡0

(2) We suppose that for n≥4 we have computed hk(t) for k= 0,1,·· · ,n−1. From
Proposition 2.2, hk(t) is a finite sum of exponential terms aie

−αi t. Then we
compute hn(t) by the formula (2.8) and the symbolic tool of Maple

int(function(s), s=0..t)=

∫ t

0

function(s)ds

which consists of integration of exponential terms.
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We therefore obtain the following symbolic solutions:

h4 =
µ22

λ2 +λ2−λ4
G2

2
(

1−e−(λ2+λ2−λ4)t
)
,

h5 =
µ23 +µ32

λ2 +λ3−λ5
G2G3

(
1−e−(λ2+λ3−λ5)t

)
,

·· ·

In the algorithm, we assign the numerical values to the variables Gn, λn, µpq as soon
as possible to reduce the lengths of the expressions of hn(t). For example, in non cutoff
case s= 1

2 , we get the numerical approximation:

h0 =h1 =h2 =h3 = 0,

h4 =2.51G2
2
(
1−e−0.279t

)
,

h5 =1.62G2G3

(
1−e−0.698t

)
,

h6 =0.322G3
2
(
1−e−1.20t

)
+1.17

(
1− e−0.928t

)
G2G4

+
(
−2.95e−0.928t+0.677+2.26e−1.20t

)
G2

3,

h7 =0.501G2G5

(
1−e−1.09t

)
+0.220

(
1− e−1.51t

)
G3G4

+
(
0.201+0.478e−1.79t−0.274e−1.51t−0.407e−1.09t

)
G2

2G3,

...

We finally get from (3.9) the approximation gn`N of the nonlinear part of the solution
gn`(t,v) by the algorithm 7-bis.

Remark 3.1.
(1) In order to compare the linear part and the nonlinear part, we define the ratio

in L2-norm

RN (t) =
‖gn`N (t,·)‖L2

v

‖g`inN (t,·)‖L2
v

=

(∑N
n=4 |e−λnthn(t)|2

) 1
2

(∑N
n=2 |e−λntGn|2

) 1
2

. (3.10)

In the non cutoff case, if we suppose for a small initial data G in L2 that G2 6= 0
and the solution is regular (which is true from [33]), then the approximation of
the series by their first term gives

g`inN (t,v)≈e−λ2 tG2ϕ2(v),

gn`N (t,v)≈e−λ4 th4(t) =
µ22

2λ2−λ4
G2

2e
−λ4 t (1−e−(2λ2−λ4)t)ϕ4(v)

since λn'ns. Therefore, the ratio RN (t) can be approximated by

RN (t)≈ R̃(t)
def
=

µ22

2λ2−λ4
|G2|e−(λ4−λ2)t(1−e−(2λ2−λ4)t). (3.11)

For a measure initial data, the previous approximation is no more accurate
for small t since the L2 norm of the linear part blows up when t→0. If we
consider the problem for the initial distribution data µ+δ where G2n≈n

1
4 (see

Proposition C.1), we can check that the linear part of the solution is singular

‖g`in(t,·)‖2L2 =

∞∑
n=2

G2
ne
−2λnt≈ 1

tα
, when t→0 (3.12)
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for some α>0.

(2) The length of the symbolic expression hn(t) increases exponentially with respect
to n and therefore by (3.9), the length of gn`N (t,v) blows up: h40 has 7355
exponential terms aie

−βit and gn`40 (t,v) has 1.6×106 exponential polynomial
terms aiv

nie−βit after expanding the expression of gn`40 (t,v) with the Maple tool
expand(expression). We present in Figure 3.1 the evolution of the number of
terms of hn(t) and gn`n (t,v) for n= 4,. ..,N = 40.

10 20 30 40

100

101

102

103

104

105

106

n

num. of terms of gn`n
num. of terms of hn

Fig. 3.1. Number of terms of the approximate solution

The symbolic and numerical computation of the nonlinear part hn(t) play the major
role of our method with respect to cost in time and storage. We analyze the computation
time and rounding off error in the next section.

4. Spectral computation of the BKW solution
In this section, we give a numerical example of exact solutions (we take the BKW

solution in the cutoff and non cutoff case) and we test the accuracy of the method using
these solutions. In the cutoff case, the initial data is represented by a small L2 initial
condition. In the non cutoff case, it is represented by an initial distribution data.

4.1. Numerical results for the cutoff case. We study the specific case of a
constant kernel (1.2) and the spectral approximation of the BKW solution (3.4) (see also
Appendix A). In [23], the authors test their numerical method for a time t∈ [5.5,6.5] to
get a positive solution. For that, we assume that t0 = 5.5 is the initial time and t1 = 6.5
is the final time. So we consider the following initial condition

F (v) =fBKW(t0,v).

We show in the Figure 4.1 the spectral approximation FN (v) of the initial data F (v)
(see (3.2)). We next compute the nonlinear solutions hn(t) of the Proposition 2.1 for
n= 4,5,. ..,N with N = 40. For each integer n, the function t→hn(t) is monotone and
tends to a finite limit when t goes to infinity, see Figure 4.2. We recall that hn(t) is
a finite sum of decreasing exponential terms, see Proposition 2.2. In the special case
of the BKW solution, we have computed the exact values of hn(t), see Proposition
A.2. Since the initial data G is a regular function, the spectral coefficients Gn decrease
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Fig. 4.1. Approximation of the initial data of the BKW solution.
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Fig. 4.2. Behavior of the nonlinear solution hn.

exponentially. We can check from Proposition A.3 and the Stirling’s formula that Gn≈
n

5
4 e−nt0/6.

Finally, using the algorithm 8 in Appendix E, we calculate the relative error

EN (t) =
‖fN (t, ·)−fBKW(t,·)‖L∞v

‖fBKW(t,·)‖L∞v

between the spectral approximate solution fN and the BKW solution at time t0 and
t1 and for different significant digits: 5, 10, 20. We present this error EN (t) at time t0
and t1 in Figure 4.3, and the final error at time t1 in Table 4.1. We remark that the
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accuracy at time t1 is better than at time t0. We can explain this because of a fast
regularization effect in time of the solution f(t, ·). For our numerical analysis, we will
focus on the final time t1. More precisely:

10 20 30 40

10−14

10−11

10−8

10−5

10−2

N

Error at t0

Digits=5
Digits=10
Digits=20

10 20 30 40
10−17

10−13

10−9

10−5

10−1

N

Error at t1

Digits=5
Digits=10
Digits=20

Fig. 4.3. Relative error EN (t) in L∞v between fN (t, ·) and fBKW(t, ·).

N Digits=5 Digits=10 Digits=20
5 7.0e-02 7.0e-02 7.0e-02
10 8.9e-04 7.7e-04 7.7e-04
15 8.6e-05 6.0e-06 6.0e-06
20 8.6e-05 3.8e-08 4.0e-08
25 3.2e-04 4.0e-09 2.5e-10
30 3.7e-02 4.0e-09 1.4e-12
35 1.4e+01 8.2e-08 7.8e-15
40 2.0e+03 3.0e-06 8.5e-17

Table 4.1. Relative error EN (t1) in L∞v between fN (t1, ·) and fBKW(t1, ·).

• From the Table 4.1, we conclude that for a given (large enough) digits and for
large N , we have EN ≈6.3×10−0.42N .

• To have a relative precision of 10−5, just choose the degree of freedom N =
15 and set the software’s accuracy to 5, 10 or 20 significant digits. But in the
case of Digits = 5, do not take N big: indeed, from N = 15, the exact error
stabilizes, and even increases starting at N = 25.

• For an accuracy of 10−10, the precision Digits = 5 is no longer valid. We can
choose Digits = 10 or 20, but limit to N = 23 in the case of Digits = 10, because
the error stagnates.

• To have a precision around 10−17, we have to set the software to Digits = 20
and choose N = 40. But we point out that the duration time lengthens rapidly
and exponentially. It is here approximated for N ∈ [30,40] by 0.0407×100.146N

(see Table 4.2).

• We notice that the computing time is about the same for numerical accuracy
of the Maple software set to 5 or 10 significant digits, but is different for 20
significant digits (see the left Figure 4.4).
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All
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GN
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Fig. 4.4. Computing time (in seconds)

• For large N (N ≥30), the main part of the computing time is devoted to cal-
culate the nonlinear part hn(t) (see the right Figure 4.4).

• We compare our numerical results (see Table 4.2) with (for example) the results
of Gamba et al. [23] (see Section 4.1) where the authors have tested their fast
spectral method on the BKW solution at the same time [5.5,6.5]. They have
obtained, for a degree of freedom N = 32, an error of 3.90e-08 (time=1.78s) and
an error of 3.81e-08 (time=33.15s) for N = 64. We point out that our method
is limited to radial solutions. But it can be generalized to non-radial solutions
using the spherical harmonics (see [24] and the associated references).

N 10 20 30 40
CPU time (s) 31. 192. 973. 28007.
Error EN (t1) 7.7e-04 4.0e-08 1.4e-12 8.5e-17

Table 4.2. CPU time and error of all algorithms for Digits=20, cutoff case.

4.2. Numerical results for the non cutoff case. We test our method in the
non cutoff case. We remark that if we set the collision kernel (non cutoff case (3.5) with
s= 1

2 )

2π sinθb(cosθ) =

{
2

6+3π sin−2
(
θ
2

)
if θ∈ [0, π2 [,

0 if θ∈ [π2 ,π].

then the constant defined in (A.1) is B̄= 1
6 , and choosing again β0 =− 1

2 , we derive
exactly the same explicit BKW solution (3.4) which was tested in the previous section.
But note that the eigenvalues λn and µpq are completely different. For t≥5.5, this
solution is positive and tends to the Maxwellian distribution as t goes to infinity. We
compare the approximated solution with this BKW solution and we test the accuracy
of the method. Note that for t= 0, the initial data F =fBKW(0, ·) is a sign-changing
distribution whose Fourier transform is

F(F )(ξ) = 1− 1

2
|ξ|2
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and the spectral coefficients of G= (F −µ)/
√
µ are given in Proposition A.2 by

Gn=
−(n−1)

√
(2n+1)!

2nn!
. (4.1)

We can check with the Stirling’s formula that Gn≈n
5
4 so that we can also test the

method with a distribution initial data. Therefore, we have set directly in the Algorithm
5 the spectral coefficients Gn by the formula (4.1). Remark that the solution BKW
changes sign for t<5.5. We get roughly the same results as in Section 4.1, see Table
4.2 and 4.3. The difference in time comes from the difference in the collision kernel.

N 10 20 30 40
CPU time (s) 3.2 33. 570. 35924.
Error EN (t1) 7.6e-04 4.0e-08 1.4e-12 4.2e-17

Table 4.3. CPU time and error of all algorithms for Digits=20, non cutoff case.

5. Numerical results for initial measure data
We apply in this section the previous symbolic and numerical codes to calculate the

solution for the positive initial measure data

F̃ = (Maxwellian distribution)+Dirac =µ+δ.

We consider only the non cutoff case, since there is some regularization in time. We
have tested the algorithm for an explicit BKW solution for a sign-changing distribution
initial data. Following the Lemma B.1 and rescaling the solution F (v) = 2−

5
2 F̃ (2−

1
2 v),

we get the normalized initial data{
F (v) = 2−

5
2µ(2−

1
2 v)+2−1δ(v),

G(v) = 2−
13
4 π−

3
4 −
√
µ(v)+2−

1
4π

3
4 δ(v).

(5.1)

We verify that 〈G,ϕ0〉= 〈G,ϕ1〉= 0 and therefore G∈N⊥. We then compute the spec-
tral coefficients for n≥0 (see Proposition C.1)

Gn= 〈G,ϕn〉=
1+(−1)n

2

(
(2n+1)!

22n(n!)2

) 1
2

.

Note that the coefficientsG2n+1 are equal to zero and we have from the Stirling’s formula
the following approximation of G

G(v)≈
∞∑
n=1

n
1
4ϕ2n(v).

We set Freg(v) = 2−
5
2µ(2−

1
2 v) as the regular part of the distribution F . We check in the

left Figure 5.1 that the approximate initial data behaves as a Dirac function.
Remark that to capture the approximation of the regular part Freg, we have to

rescale the y-axis. We observe the oscillations of FN , which are expected since the
functions FN approach the Dirac function when N tends to infinity (see the right Figure
5.1). We now focus on the evolution problem. We next compute the nonlinear part hn(t)
of the solution (see Figure 5.2).
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Fig. 5.1. Approximation of the initial data v1→FN (v1,0,0).
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log10 |hn|∞
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Fig. 5.2. Behavior of the nonlinear part hn.

We observe some numerical evidences that these functions are increasing less than
some power of n

sup
t≥0
|hn(t)|≤Cna

with a close to 1. Since G2n≈n
1
4 , the behavior of a term of the series (g`inN (t)+gn`N (t))

is dominated by the linear part: we can check this observation by computing the ratio
RN (t) =‖gn`N (t,·)‖L2/‖g`inN (t, ·)‖L2 defined in (3.10) (see Figure 5.3). The numerical
computations in the left figure show that gn`N (t) is a regular function for all time. For
small time, we verify that g`inN (t) is singular as t→0 as pointed in (3.12). For a large
time, the L2 norm of the linear part (∼e−λ2 t) dominates the norm of the nonlinear part
(∼e−λ4 t) and the ratio RN (t) behaves as R̃(t), see (3.11).

We then compute the numerical approximation fN of the solution f for N = 40
and we check that the solution behaves as a Dirac function as t→0 and tends to the
Maxwellian distribution as t→∞ (see Figure 5.4). Since λn≈ c

√
n and if the behavior

of supt≥0 |hn(t)| is dominated by some power of n (which is numerically verified), then
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Fig. 5.4. Graph of (t,v1) 7→fN (t,v1,0,0) for N = 20, 40 and µ(v1,0,0).

we have for some b,γ >0

∀t>0, ‖(fN (t, ·)−f(t, ·))/√µ‖L2 .
1

tb
e−γ
√
N t→0 as N→∞.

The previous numerical observations suggest that the series (g`inN (t)+gn`N (t)) converges
in L2 for t>0 and the solution f(t,·) converges to a Maxwellian distribution as t→∞.

6. Conclusion

We have considered the perturbation g of the solution f of the Boltzmann equation
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defined by

f =µ+
√
µg where g(t,v) =

∑
n

gn(t)ϕn(v)

and we have studied the behavior of the spectral coefficients

gn(t) =e−λnt(Gn+hn(t)), gn(0) =Gn.

We have then computed formally the spectral coefficients hn(t) for n= 0,1,. ..,N with
N = 40. We have considered the case of the BKW solution and the case of the
distribution-type initial data µ+δ:

• We have tested the algorithms with the explicit BKW solution in both cases
(cutoff and non cutoff). In the cutoff case, we have deduced that the relative er-
ror between the approximated solution and the BKW solution is exponentially
decreasing (EN ≈6.3×10−0.42N ) with respect to the degree of freedom N . The
CPU time is exponentially increasing with respect to N (0.0407×100.146N ).
Moreover, it is increasing as long as the significant digit increases. The com-
puting time shows that the nonlinear part hn(t) and the initial data Gn take
most of the time. Note that we have obtained the same results in the non cutoff
case.

• We have computed in the non cutoff case the solution for the distribution initial
data µ+δ. The simulations show some numerical evidences that for all positive
time the spectral series converges in L2

v. On the other hand, the nonlinear part
gn` stays uniformly bounded in time in L2

v. Moreover, there is a regularization
in time of the solution for t>0.

We have computed the formal solutions of the spectral coefficients hn(t) related to the
solution of the Boltzmann equation and we get the exact values for the special collision
kernels cutoff (3.3) and non cutoff (3.5) with s= 1

2 . The numerical results are coherent
for small L2

v initial data or for the distribution case µ+δ. There is conservation of the
mass, momentum and energy of the approximated solution since g(t, ·) is orthogonal to
the kernel N for all time, see Remark 2.1. Moreover the approximated solution fN (t,·)
defined in (3.1) converges to a Maxwellian distribution when t goes to infinity.
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discussions. They also gratefully acknowledge the referees for their constructive input.
This project was co-financed by the European Union with the European regional de-
velopment fund (ERDF, HN0002137) and by the Normandie Regional Council via the
M2NUM project.

Appendix A. On the BKW solution. We recall the definition of the BKW
solution.

Proposition A.1. [4,30] We note B̄ the positive real which is defined from the Boltz-
mann kernel

B̄=

∫ π

0

2π sinθb(cosθ)

{
cos2

(
θ

2

)
sin2

(
θ

2

)}
dθ (A.1)

and we consider for a given real β0 the function

fBKW(t,v) =
1

(2π)
3
2

1

(1+2β(t))
7
2

[
(1+5β(t))(1+2β(t))−β(t)|v|2

]
e−

|v|2
2+4β(t)
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where β(t) =β0e
−B̄ t. Then the Fourier transform is given by

f̂BKW(t,ξ) =e−( 1
2 +β(t))|ξ|2 +β(t)|ξ|2e−( 1

2 +β(t))|ξ|2

and the function fBKW(t,v) is a solution of the Boltzmann equation.

Remark A.1. Following [30] and the associated references, if we choose b(cosθ)≡ 1
4π

and β(0) =− 1
2 , we get B̄= 1

6 , β(t) =− 1
2e
−t/6, and the BKW solution given in (3.4).

Proof. (Proof of Proposition A.1.) We follow the proof of [16]. We are looking for
a radial solution of the form

f̂(t,ξ) = c(1+β(t)|ξ|2)e−(α+β(t))|ξ|2 , α, c>0.

Then

∂tf̂(t,ξ) =−cβ(t)β′(t) |ξ|4e−(α+β(t))|ξ|2 . (A.2)

To compute the collision term F (Q(f,f)(v))(ξ), we use the Bobylev identity

F [Q(f,f)(t,·)](ξ) =

∫
SN−1

b

(
ξ

|ξ|
·σ
){

f̂(t,ξ−) f̂(t,ξ+)− f̂(t,0) f̂(t,ξ)
}
dσ

where F(f)(ξ) =
∫
e−iξ·vf(v)dv and ξ+ and ξ− are defined by

ξ+ =
ξ+ |ξ|σ

2
, ξ−=

ξ−|ξ|σ
2

.

If we set ξ= (|ξ|,0,0) and σ= (cosθ,sinθcosφ,sinθsinφ), we can verify that

|ξ+|= |ξ||cos(θ/2)|, |ξ−|= |ξ||sin(θ/2)|

and{
f̂(t,ξ−) f̂(t,ξ+)− f̂(t,0) f̂(t,ξ)

}
= c2

{
(1+β |ξ−|2)(1+β |ξ+|2)−(1+β |ξ|2)

}
e−(α+β)|ξ|2

= c2β2 |ξ−|2 |ξ+|2e−(α+β)|ξ|2 .

Therefore, from the Bolylev identity, we have

F [Q(f,f)(t,·)](ξ) = B̄×c2β(t)2 |ξ|4e−(α+β(t))|ξ|2

where B̄ is defined in (A.1). Finally, we compare the previous identity with (A.2), we
get the ODE on β(t)

β′(t) =−cB̄β(t).

Therefore β(t) =β(0)e−cB̄ t.

We compute the exact coefficient of the BKW solution in the spectral basis.

Proposition A.2. We consider the BKW solution (3.4) defined in Remark A.1.
Then we have the following expansion in the spectral basis

f(t,v) =µ(v)+
√
µ(v)

(
g2(t)ϕ2(v)+ ·· ·+gn(t)ϕn(v)+ ·· ·

)
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where for n≥2

gn(t) =
−(n−1)

√
(2n+1)!

2nn!
e−

nt
6 .

Proof. We consider the Fourier transform of the BKW solution where β(t) =
− 1

2e
−t/6

f̂(t,ξ) =

(
1− 1

2
e−

t
6 |ξ|2

)
e−(1−e−

t
6 )
|ξ|2
2 .

We set a= 1
2e
− t6 so that

f̂(t,ξ) =
(
ea|ξ|

2

−a|ξ|2ea|ξ|
2
)
e−
|ξ|2
2

=

(
1+

a

1!
|ξ|2 + ·· ·+ an

n!
|ξ|2n+ ·· ·−a|ξ|2−···− an

(n−1)!
|ξ|2n−···

)
e−
|ξ|2
2 .

Since an

n! −
an

(n−1)! = an(1−n)
n! , we get

f̂(t,ξ) =
(

1− a
2

2
|ξ|4−···− (n−1)an

n!
|ξ|2n−···

)
e−
|ξ|2
2 .

Then comparing to the expansion in the spectral basis F(ϕn)(ξ) = |ξ|2n√
(2n+1)!

(see [32])

f̂(t,ξ) =
(

1+
g2(t)√

5!
|ξ|4 + ·· ·+ gn(t)√

(2n+1)!
|ξ|2n+ ·· ·

)
e−
|ξ|2
2 ,

we get the value of gn(t).

The eigenvalues of the Boltzmann operators have explicit expressions.

Proposition A.3. We suppose that b(cosθ)≡ 1
4π on all [0,π]. We have the following

formulas

(i) λ0 = 0 and for all n≥1 we have λn= n−1
n+1 .

(ii) For all q≥0, µ0q =− q
q+1 .

(iii) For all p≥1 and q≥0, µpq =
(

(2p+2q+1)!
(2p+1)!(2q+1)!

) 1
2 p!q!

(p+q+1)! .

Proof. We first compute λn where

λn=

∫ π

0

1

2
sinθ

{
1−cos2n

(
θ
2

)
−sin2n

(
θ
2

)}
dθ.

We pose x= cos2 θ
2 and we easily get

λn=

∫ 1

0

(1−xn−(1−x)n) dx=
n−1

n+1
.

We then compute µ0q and µpq: from the same previous change of variable, we have

µ0q =−
∫ π

0

1

2
sinθ

{
1−cos2q

(
θ
2

)}
dθ=−

∫ 1

0

(1−xq) dx=− q

q+1
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and by the classical formula of the beta function, µpq =
(

(2p+2q+1)!
(2p+1)!(2q+1)!

) 1
2

Mpq where

Mpq =

∫ π

0

1

2
sinθ

{
sin2p

(
θ
2

)
cos2q

(
θ
2

)}
dθ=

∫ 1

0

(1−x)pxq dx=B(q+1,p+1).

Appendix B. Rescaling of the solution. We consider a radial solution f̃(s,w)
of the Boltzmann equation {

∂sf̃ =Q(f̃ , f̃),

f̃ |t=0 = F̃ .

Lemma B.1. We consider the functions f(t,v) and F (v) defined by the change of
variable

f(t,v) =αf̃

(
α

β3
t,βv

)
and F (v) =αF̃ (βv)

where

α=

(
1
3

∫
R3w

2 F̃ (w)dw
) 3

2

(∫
R3 F̃ (w)dw

) 5
2

and β=

(
1
3

∫
R3w

2 F̃ (w)dw
) 1

2

(∫
R3 F̃ (w)dw

) 1
2

.

Therefore f(t,v) is a solution of the Boltzmann equation (1.1) with initial data F .
Moreover, if we set F =µ+

√
µG, we then have G∈N⊥.

Remark B.1. If F is such that∫
R3

F (v)dv=

∫
R3

µ(v)dv= 1,∫
R3

v2F (v)dv=

∫
R3

v2µ(v)dv= 3

then the function G defined by G= 1√
µ (F −µ) belongs to N⊥.

Proof. It is easy to check that f(t,v) is a solution of the Boltzmann equation.
Since G is a radial function, it is enough to check that(

G,
√
µ
)
L2

=
(
G,|v|2√µ

)
L2

= 0.

Recalling that {(
ϕp,ϕq

)
L2

= δpq,

ϕ0 =
√
µ and ϕ1 = 6−

1
2 (3−|v|2)

√
µ.

It is equivalent to prove that

(F/
√
µ,ϕ0)L2 = 1 and (F/

√
µ,ϕ1)L2 = 0
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which gives the equations{∫
R3F (v)dv=

∫
R3 µ(v)dv= 1,∫

R3 |v|2F (v)dv=
∫
R3 |v|2µ(v)dv= 3.

Using the change of variable w=βv, we can check that if we set the values of α and β
given in the lemma, the previous equations are fulfilled.

Appendix C. Measure initial data. We define the following distribution initial
data:

F̃ =µ+δ.

Following the rescaling of Lemma B.1, we compute

〈F̃ ,1〉=
∫
R3

µ(v)1dv+〈δ,1〉= 2,

〈F̃ ,v2〉= 1

3

∫
R3

µ(v)v2dv+〈δ,v2〉= 1

and then α= 2−
5
2 and β= 2−

1
2 . Using the change of variable w=βv, we get the new

rescaled distribution initial data

F =αF̃ ◦(β Id) = 2−
5
2

(
µ(2−

1
2 ·)+(2

1
2 )3δ

)
.

Proposition C.1. We consider the initial data

F = 2−
5
2

(
µ(2−

1
2 ·)+(2

1
2 )3δ

)
and we set G such that F =µ+

√
µG. Then G∈N⊥ and we have

G=−√µ+2−
13
4 π−

3
4 +2−

1
4π

3
4 δ.

We consider the coordinates Gn= 〈G,ϕn〉 of the distribution G in the spectral basis
(ϕn)n. We can check that

G0 =G1 = 0

and for all integer n≥2

Gn= 〈G,ϕn〉=
1+(−1)n

2

(
(2n+1)!

22n(n!)2

) 1
2

. (C.1)

Proof. The expression of G follows from the definition of the Maxwellian distribu-
tion µ. We then compute

〈G,ϕn〉=−(ϕ0,ϕn)L2 +2−
13
4 π−

3
4 (1,ϕn)L2 +2−

1
4π

3
4ϕn(0)

and the conclusion results directly from Lemma D.1.

We consider now a special Maxwellian approximation Fε∈L2 of the distribution
initial data F =µ+δ and we obtain some spectral stability result in this case.
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Proposition C.2. We consider the initial data for ε>0

F̃ε(w) =µ(w)+
1

ε3
µ
(w
ε

)
.

Following Lemma B.1, the rescaled initial data of F̃ε is Fε=µ+
√
µGε where Gε∈N⊥

and

Gε(v) =−
√
µ(v)+2−

5
2

(
1+ε2

)3/2(√
µ(εv)+

1

ε3

√
µ(v/ε)

)
.

Then we have, when ε goes to zero, the following limit in the sense of distribution

Fε→F = 2−
5
2

(
µ(2−

1
2 ·)+(2

1
2 )3δ

)
,

Gε→G=−√µ+2−
13
4 π−

3
4 +2−

1
4π

3
4 δ.

The coordinates of Gε in the spectral basis (ϕn)n≥0 are given by

Gε,0 =Gε,1 = 0,

Gε,n=
1+(−1)n

2

(
1−ε2

)n
(1+ε2)

n

(
(2n+1)!

22n(n!)2

) 1
2

, ∀n≥2.

Moreover we have Gε,n→Gn as ε tends to 0 as ε→0 where Gn is given in (C.1).

Remark C.1. There is continuity of the spectral coefficients: Gε,n→Gn as ε tends
to 0.

Proof. From Lemma B.1, we set

Fε(v) =αεF̃ε(βεv)

where

αε=

(
1
3

∫
R3w

2 F̃ε(w)dw
) 3

2

(∫
R3 F̃ε(w)dw

) 5
2

=

√
2

8

(
1+ε2

)3/2
,

βε=

(
1
3

∫
R3w

2 F̃ε(w)dw
) 1

2

(∫
R3 F̃ε(w)dw

) 1
2

=

√
2

2

(
1+ε2

)1/2
.

Then Fε=µ+
√
µGε where

Gε(v) =−
√
µ(v)+

2
3
4

(
1+ε2

)3/2
16π3/4

(
e−

ε2 v2

4 +
1

ε3
e−

v2

4ε2

)
or

Gε(v) =−
√
µ(v)+

2
1
2

(
1+ε2

)3/2
8

(√
µ(εv)+

1

ε3

√
µ(v/ε)

)
then Gε∈N⊥. We compute from Lemma D.1

Gε,n= (Gε,ϕn)L2 = I1 +
2

1
2

(
1+ε2

)3/2
8

(I2 +I3)
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where

I1 = (−√µ,ϕn)L2 = (−ϕ0,ϕn)L2 =−δ0,n,

I2 =
(√

µ(ε·),ϕn
)
L2

= (2
9
4π

3
4 )ϕn(0)

(
1−ε2

)n
(1+ε2)

n+3/2
,

I3 = (−1)nI2.

Finally we get

Gε,n=−δ0,n +
1+(−1)n

2

(
1−ε2

)n
(1+ε2)

n

(
(2n+1)!

22n(n!)2

) 1
2

.

+

Appendix D. Some results on the spherical harmonics. We recall that

ϕn(v) =

(
n!√

2Γ(n+3/2)

)1/2

e−
|v|2
4 L

[ 12 ]
n

(
|v|2

2

)
1√
4π

where the Laguerre polynomial L
[α]
n of order α, degree n is

L[α]
n (x) =

n∑
r=0

(−1)n−r
Γ(α+n+1)

r!(n−r)!Γ(α+n−r+1)
xn−r.

Lemma D.1. For a>0 and n≥0 we have

ϕn(0) =
1

(2π)
3
4

(
(2n+1)!

22n(n!)2

) 1
2

,∫
R3

ϕn(v)dv= (−1)n23π
3
2 ϕn(0),

(
√
µ(a·),ϕn)L2 = (2

9
4π

3
4 )ϕn(0)

(
1−a2

)n
(1+a2)

n+3/2
.

Proof. These equalities come from classical properties of the Hermite funtions (we
have checked them using Maple R©13 for integers n≤20).

Appendix E. Maple codes. We present the algorithms using Maple in this paper.
They have been tested on version Maple13 and Maple2016.

Algorithm 1: Initialization (see (3.3) and (3.5))

Digits:= 20:

N:=10:

# Collision kernel: beta = 2*Pi*sin(theta)*b(cos(theta))

# beta:= (1/2)*sin(theta): theta_max:= Pi: # cutoff

s0:=1/2: beta:= 1/sin(theta/2)^(1+2*s0): theta_max:= Pi/2: # non cutoff

# Maxwellian mu1 and its square root mu2

mu1:= (2*Pi)^(-3/2)*exp(-(1/2)*v^2):

mu2:= (2*Pi)^(-3/4)*exp(-(1/4)*v^2):
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Algorithm 2: Initial data of the BKW solution (3.4)

# BKW Solution

fBKW:= a1 *( (2-5*(1-K)) + (1-K)*v^2/K) * exp(-v^2/(2*K)):

a1:= (1/(2*(2*Pi)^(3/2)*K^(5/2))):

K:= 1 - exp(-t/6):

# Computation of the BKW solution at time t0 = 5.5

F_:= subs(t=5.5, fBKW):

G_:= simplify(expand( (F_ - mu1)/mu2) , exp):

Algorithm 3: Computation of the eigenvectors ϕn(v) (2.3)

for n from 1 to N do

a1:= sqrt(factorial(n)/(sqrt(2)*GAMMA(n+3/2))):

f1:= exp(-(1/4)*v^2)*LaguerreL(n, 1/2, (1/2)*v^2)/sqrt(4*Pi):

phi[n]:= simplify(a1*f1):

end do:

Algorithm 4: Numerical computation of the eigenvalues µp,q and λn (2.6)

mu[0,0]:= 0: lambda[0]:= 0:

for n from 1 to N do

# Computation of mu[0,n]

f1:= 1 - (cos(theta/2))^(2*n):

f2:= simplify( beta*f1 ):

mu[0,n]:= - int(f2, theta=10^(-40)..theta_max, numeric):

# Computation of mu[p,q], p+q=n, p>0

for p from 1 to n do

q:=n-p:

a1:= ( (2*p+2*q+1)! /((2*p+1)!*(2*q+1)!) )^(1/2):

f1:= (sin(theta/2))^(2*p) * (cos(theta/2))^(2*q):

f2:= simplify( beta*f1 ):

mu[p,q]:= evalf(a1) * int(f2, theta=10^(-40)..theta_max, numeric):

end do:

# Computation of lambda[n]

lambda[n]:= -(mu[n,0]+mu[0,n]):

end do:

Algorithm 4-bis: Symbolic computation of the eigenvalues µp,q and λn (2.6)

mu[0,0]:= 0: lambda[0]:= 0:

for n from 1 to N do

# Computation of mu[0,n]

f1:= 1 - (cos(theta/2))^(2*n):

f2:= simplify( beta*f1 ):

mu[0,n]:= - int(f2, theta=0..theta_max):

# Computation of mu[p,q], p+q=n, p>0
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for p from 1 to n do

q:=n-p:

a1:= ( (2*p+2*q+1)! /((2*p+1)!*(2*q+1)!) )^(1/2):

f1:= (sin(theta/2))^(2*p) * (cos(theta/2))^(2*q):

f2:= simplify( beta*f1 ):

mu[p,q]:= a1 * int(f2, theta=0..theta_max):

end do:

# Computation of lambda[n]

lambda[n]:= -(mu[n,0]+mu[0,n]):

end do:

Algorithm 5: Computation of the spectral initial data Gn= (G,ϕn)L2(R3)

G[0]:=0: G[1]:=0:

for n from 2 to N do

G[n]:= int(G_*phi[n]*4*Pi*v^2, v=0..infinity, numeric):

end do:

Algorithm 6: Computation of the nonlinear part hn(t) (2.8)

h[0]:= 0: h[1]:= 0: h[2]:= 0: h[3]:= 0:

for n from 4 to N do

h[n]:= 0:

for p from 2 to n-2 do

q:=n-p:

a1:= mu[p,q] * exp((lambda[n]-lambda[p]-lambda[q])*t):

f1:= a1 * (G[p]+h[p]) * (G[q]+h[q]);

f2:= subs(t = s, f1):

f3:= int(f2, s = 0..t):

h[n]:= h[n] + f3:

end do:

end do:

Algorithm 7: Computation of the successive approximate solutions (3.1) and (3.6):
gapprox
n (t,v) =

∑n
k=2e

−λk t(Gk+hk(t))ϕk(v), fn(t,v) =µ(v)+
√
µ(v)gapprox

n (t,v)

gapprox[0]:= 0:

fapprox[0]:= mu1 + mu2 * gapprox[0]:

for n from 1 to N do

gapprox[n]:= gapprox[n-1] + exp(-lambda[n]*t)*(G[n]+h[n])*phi[n]:

fapprox[n]:= mu1 + mu2 * gapprox[n]:

end do:

Algorithm 7-bis: Computation of the successive approximate solutions (3.1) and
(3.6):
g`inn (t,v) =

∑n
k=2e

−λk tGkϕk(v), gn`n (t,v) =
∑n
k=2e

−λk thk(t)ϕk(v),

fn(t,v) =µ(v)+
√
µ(v)(g`inn (t,v)+gn`n (t,v))
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glin[0]:= 0: gnl[0]:= 0:

fapprox[0]:= mu1 + mu2 * (glin[0] + gnl[0]):

for n from 1 to N do

glin[n]:= glin[n-1] + exp(-lambda[n]*t)*G[n]*phi[n]:

gnl[n]:= gnl[n-1] + exp(-lambda[n]*t)*h[n]*phi[n]:

fapprox[n]:= mu1 + mu2 * (glin[n] + gnl[n]):

end do:

Algorithm 8: Computation of the error between spectral and BKW solution at time
T = t0 or T = t1.

fBKW_T:= subs(t=T, fBKW):

m1:= 0:

for v1 from -4 to 4 by 0.1 do

a1:= evalf(subs(v=v1, fBKW_T):

m1:= max(m1,a1):

end do:

fBKW_max:= m1:

f_T:= subs(t=T, fapprox[n]):

for n from 4 to N do

m1:= 0:

for v1 from -4 to 4 by 0.1 do

a1:= evalf(subs(v=v1, abs(f_T - fBKW_T)):

m1:= max(m1,a1):

end do:

erreur[n]:= m1/fBKW_max:

end do:
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