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INITIAL-BOUNDARY VALUE PROBLEM FOR 2D MICROPOLAR
EQUATIONS WITHOUT ANGULAR VISCOSITY∗

JITAO LIU† AND SHU WANG‡

Abstract. This paper concerns the initial-boundary value problem for 2D micropolar equations
without angular viscosity in a smooth bounded domain. It is shown that such a system admits a unique
and global strong solution. The main contribution of this paper is to fully exploit the structure of this
system and establish high order estimates via introducing an auxiliary field which is at the energy level
of one order lower than micro-rotation.
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1. Introduction and main results
This paper is devoted to the initial-boundary value problem for the two-dimensional

(2D) micropolar equations without angular viscosity. The micropolar equations were
introduced in 1965 by C.A. Eringen to model micropolar fluids (see, e.g. [6]). Micropolar
fluids are fluids with microstructure. Certain anisotropic fluids, e.g. liquid crystals
which are made up of dumbbell molecules, are of this type. The standard 3D micropolar
equations are given byut−(ν+κ)∆u+u ·∇u+∇π= 2κ∇×w,

wt−γ∆w+4κw−(α+β)∇∇·w+u ·∇w= 2κ∇×u,
∇·u= 0,

(1.1)

where u=u(x,t) denotes the fluid velocity, π(x,t) the scalar pressure, w(x,t) the micro-
rotation field (angular velocity of the rotation of the particles of the fluid), and the
parameter ν≥0 represents the Newtonian kinematic viscosity, κ>0 the micro-rotation
viscosity, α,β,γ≥0 the angular viscosities.

Roughly speaking, they belong to a class of non-Newtonian fluids with nonsymmet-
ric stress tensor (called polar fluids) and include, as a special case, the classical fluids
modeled by the Navier-Stokes equations. In fact, when the micro-rotation effects are
neglected, namely w= 0, (1.1) reduces to the incompressible Navier-Stokes equations.
The micropolar equations are significant generalizations of the Navier-Stokes equations
and cover many more phenomena such as fluids consisting of particles suspended in a
viscous medium. In particular, the dynamic micro-rotation viscosity κ>0 is essential
for the micropolar fluid flows, otherwise the velocity and the micro-rotation are uncou-
pled and the global motion is unaffected by the micro-rotation. Just because of this,
the micropolar equations have been extensively applied and studied by many engineers
and physicists.

In particular, the well-posedness problem on the micropolar equations have at-
tracted considerable attention recently from the community of mathematical fluids
[1, 2, 7, 16]. Lukaszewicz, in his monograph [16], studied the well-posedness problem
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on the 3D stationary model as well as the time-dependent micropolar equations. Yam-
aguchi [24] investigated the 3D time-dependent model with small initial data. In spite of
previous progress on the 3D case, just like the 3D Navier-Stokes equations, the problem
of global regularity or finite-time singularity for strong solutions of 3D micropolar equa-
tions is still widely open. Therefore, more attention is focused on the 2D micropolar
equations, which are a special case of the 3D micropolar equations. In the special case
when

u= (u1(x1,x2,t),u2(x1,x2,t),0), π=π(x1,x2,t),w= (0,0,w(x1,x2,t)),

the 3D micropolar equations reduce to the 2D micropolar equations,ut−(ν+κ)∆u+u ·∇u+∇π=−2κ∇⊥w,
wt−γ∆w+4κw+u ·∇w= 2κ∇⊥ ·u,
∇·u= 0.

(1.2)

Here u= (u1,u2) is a 2D vector with the corresponding scalar vorticity Φ given by

Φ≡∇⊥ ·u=∂1u2−∂2u1,

while ω represents a scalar function with

∇⊥w= (−∂2w,∂1w).

In [3], Dong and Chen obtained the global existence and uniqueness, and sharp
algebraic time-decay rates for the 2D micropolar Equations (1.2). Besides, the system
(1.2) with periodic boundary conditions has been extensively analyzed by Szopa [21].
Despite all this, the global regularity problem for the 2D inviscid micropolar equations is
currently out of reach. Therefore, more recent efforts are focused on the 2D micropolar
equations with partial viscosity, which naturally bridge the inviscid micropolar equations
and the micropolar equations with full viscosity. One case for partial viscosity, (1.2)
with ν= 0, γ >0, κ>0 and κ 6=γ, was examined by Xue, who was able to obtain the
global well-posedness in the frame work of Besov spaces [23]. Recently, for another case
when (1.2) involves only the angular viscosity, i.e.,ut+u ·∇u+∇π=−2κ∇⊥w,

wt−γ∆w+4κw+u ·∇w= 2κ∇⊥ ·u,
∇·u= 0,

(1.3)

Dong et al. [4] and Jiu et al. [13] proved the global (in time) regularity for the Cauchy
problem and initial-boundary value problem respectively.

Nevertheless, there is one model, namely, taking α=β=γ= 0 in (1.1), that is more
interesting in Physics. To be specific, for this model, the stress momentum is lost in
the rotation of the particles, the microstructure plays an important role as it usually
increases the load capacity and stabilizes the flows, this sort of micropolar fluid is less
prone to instability than a classical fluid [9, 20]. Some polymeric fluids and fluids con-
taining certain additives in narrow films may be represented by this mathematical model
(see Section 1 and Section 6 in Eringen [6]). Moreover, the experiments with the fluids
containing extremely small amount of polymeric additives indicate that the skin friction
near a rigid body in such fluids is considerably lower (up to 30-50%) than for the same
fluids without additives (see [19]). Due to its physical applications and mathematical
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significance, in [5], Dong and Zhang examined (1.1) with the micro-rotation viscosities
α=β=γ= 0 in R2, namelyut−(ν+κ)∆u+u ·∇u+∇π=−2κ∇⊥w,

wt+4κw+u ·∇w= 2κ∇⊥ ·u,
∇·u= 0,

(1.4)

and established the global regularity of system (1.4). However, the initial-boundary
value problem of model (1.4) is still open. As a matter of fact, in many real-world ap-
plications, the flows are often restricted to bounded domains with suitable constraints
imposed on the boundaries and these applications naturally lead to the studies of the
initial-boundary value problems. In addition, solutions of the initial-boundary value
problems may exhibit much richer phenomena than those of the whole-space counter-
part.

In this paper, we will investigate the initial-boundary value problem for the system
(1.4) with physical boundary conditions

u|∂Ω = 0, (1.5)

and initial conditions

(u,w)(x,0) = (u0,w0)(x), in Ω, (1.6)

where Ω⊂R2 represents a bounded domain with smooth boundary.
The aim of this paper is to establish the global existence and uniqueness of strong

solutions to the system (1.4)-(1.6). As a result, we obtain the following result, i.e.
Theorem 1.1. It should be especially noted that the hypothesis on the initial data could
be a technical limitation of our proof and not a sharp requirement.

Theorem 1.1. Let Ω⊂R2 be a bounded domain with smooth boundary. Assume (u0,w0)
satisfies

u0∈H1
0 (Ω)∩H2(Ω), w0∈W 1,4(Ω).

Then there exists a unique strong solution (u,w) to the system (1.4)-(1.6) globally in
time such that

u∈L∞(0,T ;H2(Ω))∩L2(0,T ;W 2,4(Ω)), w∈L∞(0,T ;W 1,4(Ω)) (1.7)

for any T >0.

We remark that the initial-boundary value problem on (1.4) is not trivial and quite
different from the Cauchy problem. The difficulty is due to the dynamic micro-rotational
term −2κ∇⊥w in the equations of the velocity, which prevents us from obtaining any
high order estimates except the basic energy estimates. For the Cauchy problem, the
corresponding equation satisfied by vorticity Φ is

Φt−(ν+κ)∆Φ+u ·∇Φ+2κ∆w= 0, (1.8)

which is a transport-diffusion equation with forcing term −2κ∆w and therefore high
order estimates are available due to its non-boundary conditions. To overcome this
difficulty, the authors in [5] observe that the sum of vorticity and micro-rotation angular
velocity

Z= Φ− 2κ

ν+κ
w
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satisfies the transport-diffusion equation

∂tZ−(ν+κ)∆Z+u ·∇Z=

(
8κ2

ν+κ
− 8κ3

(ν+κ)2

)
w− 4κ2

ν+κ
Z, (1.9)

which helps them to obtain the global bound of ‖Φ(t)‖L∞(R2) via the global bound of
‖Z(t)‖L∞(R2), and therefore the desired high order estimates are established.

However, for the initial-boundary value problem, this method does not work. This
is due to the presence of no-slip boundary conditions for u, and hence the transport-
diffusion Equations (1.8) and (1.9) satisfied by Φ and Z would not work any more.
To overcome the difficulty caused by the term −2κ∇⊥w, our strategy is to utilize an
auxiliary field v which is at the energy level of one order lower than w and implement
appropriate boundary conditions for v. Keep this in mind, we then introduce the vector
field v=− 2κ

ν+κA
−1∇⊥w to be the unique solution of the stationary Stokes system with

source term − 2κ
ν+κ∇

⊥w as follows,
−∆v+∇π=− 2κ

ν+κ∇
⊥w in Ω,

∇·v= 0 in Ω,
v= 0 on ∂Ω,

(1.10)

which also solves, after taking the operator A−1∇⊥ on (1.4)
2
, that

∂tv+4κv−2κA−1∇⊥(∇⊥ ·u)+A−1∇⊥(u ·∇w) = 0. (1.11)

Then, according to (1.4) and (1.10), we further discover that the new field g=u−(ν+
κ)v satisfies the system ∂tg−(ν+κ)∆g+∇p=Q in Ω,

∇·g= 0 in Ω,
g= 0 on ∂Ω,

(1.12)

where Q=−u ·∇u−A−1∇⊥(u ·∇w)+2κA−1∇⊥(∇⊥ ·u)−4κv. The obvious advan-
tage of doing so lies in that it provides us the cornerstone of establishing high order
estimates of velocity u, which naturally overcome the difficulty caused by the dynamic
micro-rotational term −2κ∇⊥w. As a result, after noticing that v is at the energy level
of one order lower than w and some delicate a priori estimates for g, we then success-
fully establish the desired high order estimates, which guarantee the global existence
and uniqueness of strong solution to the system (1.4)-(1.6).

The remainder of this paper is organized in four sections. The second section
serves as a preparation and presents a list of facts and tools for bounded domains,
such as embedding inequalities and logarithmic type interpolation inequalities. Section
3 establishes the a priori estimates, which are essential in the proof of Theorem 1.1.
Section 4 completes the proof of Theorem 1.1.

2. Preliminaries
This section serves as a preparation. We list a few basic tools for bounded domains

to be used in the subsequent sections. In particular, we provide the Gagliardo-Nirenberg
interpolation inequalities, the logarithmic type interpolation inequalities and regulariza-
tion estimates for the elliptic equations and Stokes system in bounded domains. These
estimates will also be handy for future studies on PDEs in bounded domains.

We start with the well-known Gagliardo-Nirenberg interpolation inequality for
bounded domains (see, e.g. [18]).
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Lemma 2.1. Let Ω⊂Rn be a bounded domain with smooth boundary. Let 1≤p,q,r≤∞
be real numbers and j≤m be non-negative integers. If a real number α satisfies

1

p
− j

n
=α

(
1

r
−m
n

)
+(1−α)

1

q
,

j

m
≤α≤1,

then

‖Djf‖Lp(Ω)≤C1‖Dmf‖αLr(Ω)‖f‖
1−α
Lq(Ω) +C2‖f‖Ls(Ω),

where s>0, and the constants C1 and C2 depend upon Ω and the indices p,q,r,m,j,s
only.

Especially, the following special cases will be used.

Corollary 2.1. Suppose Ω⊂R2 be a bounded domain with smooth boundary, then

(1) ‖f‖L4(Ω)≤C (‖f‖
1
2

L2(Ω)‖∇f‖
1
2

L2(Ω) +‖f‖L2(Ω)), ∀f ∈H1(Ω);

(2) ‖∇f‖L4(Ω)≤C (‖f‖
1
4

L2(Ω)‖∇
2f‖

3
4

L2(Ω) +‖f‖L2(Ω)), ∀f ∈H2(Ω);

(3) ‖f‖L∞(Ω)≤C (‖f‖
1
2

L2(Ω)‖∇
2f‖

1
2

L2(Ω) +‖f‖L2(Ω)), ∀f ∈H2(Ω);

(4) ‖f‖L∞(Ω)≤C (‖f‖
2
3

L2(Ω)‖∇
3f‖

1
3

L2(Ω) +‖f‖L2(Ω)), ∀f ∈H3(Ω).

The next lemmas state the regularization estimates for the elliptic equations and
Stokes system defined on bounded domains (see, e.g. [8, 10,12,14,22]).

Lemma 2.2. Let Ω⊂Rn be a bounded domain with smooth boundary. Consider the
elliptic boundary value problem {

−∆f =g in Ω,
f = 0 on ∂Ω.

(2.1)

If, for p∈ (1,∞) and an integer m≥−1, g∈Wm,p(Ω), then the system (2.1) has a
unique solution f satisfying

‖f‖Wm+2,p(Ω)≤C‖g‖Wm,p(Ω),

where the constant C depends only on Ω,m and p.

Lemma 2.3. Let Ω⊂Rn be a bounded domain with smooth boundary. Consider the
stationary Stokes system −∆u+∇p= f in Ω,

∇·u= 0 in Ω,
u= 0 on ∂Ω.

(2.2)

If, for q∈ (1,∞), f ∈Lq(Ω), then there exists a unique solution u∈W 1,q
0 (Ω)∩W 2,q(Ω)

of system (2.2) satisfying

‖u‖W 2,q(Ω) +‖∇p‖Lq(Ω)≤C‖f‖Lq(Ω). (2.3)

If f =∇·F with F ∈Lq(Ω), then

‖u‖W 1,q(Ω)≤C‖F‖Lq(Ω). (2.4)
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Besides, if f =∇·F with Fij =∂kH
k
ij and Hk

ij ∈W
1,q
0 (Ω) for i,j,k= 1,...,n, then

‖u‖Lq(Ω)≤C‖H‖Lq(Ω). (2.5)

Here, all the above constants C depend only on Ω and q.

Lemma 2.4. Let Ω⊂Rn be a bounded domain with smooth boundary and f =∇·F be
the same as in system (2.2), then for F ∈W 1,q(Ω) with q∈ (2,∞), the solution u of
system (2.2) satisfies

‖∇u‖L∞(Ω)≤C(1+‖F‖L∞(Ω))ln(e+‖∇F‖Lq(Ω)), (2.6)

where the constant C depends only on Ω.

Proposition 2.1. Let Ω⊂Rn be a bounded domain with smooth boundary, 1<p, q<

∞, and assume that f ∈Lp(0,T ;Lq(Ω)), u0∈D
1− 1

p ,p
q . If (u, p) is a solution of the Stokes

system 
∂tu−∆u+∇p= f in Ω,
∇·u= 0 in Ω,
u= 0 on ∂Ω,
u(x,0) =u0(x) in Ω,

(2.7)

then there exists a constant C depending only on p, q and Ω such that

‖∂tu,∇2u,∇p‖Lp(0,T ;Lq(Ω))≤C(‖f‖Lp(0,T ;Lq(Ω)) +‖u0‖
D

1− 1
p
,p

q

). (2.8)

Here, the space Dα,s
q is defined as follows:

Dα,s
q

def
=

{
v∈Lqσ(Ω) :‖v‖Dα,sq

=‖v‖Lq(Ω) +
(∫ ∞

0

‖t1−αAe−tAv‖sLq(Ω)

dt

t

) 1
s

<+∞

}
,

where A is the Stokes operator, n is the unit outward normal vector and Lqσ(Ω)
def
= {v∈

Lq(Ω)n :∇·v= 0 in Ω, v ·n= 0 on ∂Ω}.

Lemma 2.5. Let α, s, 1<p≤ q<∞ and n be as in Proposition 2.1, then for k= 1,2
and 0<α< k

2 −
n
2 ( 1

p−
1
q ), there exists an absolute constant C such that

‖v‖Dα,sq
≤C‖v‖Wk,p(Ω). (2.9)

Proof. To avoid repetition, we only provide a simple proof for the case k= 1.
According to the decay estimates for the Stokes semigroup in bounded domain (see [11]
for details), the inequality

‖Ase−tAv‖Lq(Ω)≤Ct−s−
n
2 ( 1

p−
1
q )‖v‖Lp(Ω) (2.10)

holds for 1<p≤ q<∞ and s∈ [0,1]. Thanks to (2.10), for α< 1
2−

n
2 ( 1

p−
1
q ), we have∫ 1

0

‖t1−αAe−tAv‖sLq(Ω)

dt

t
≤C‖∇v‖sLp(Ω)

∫ 1

0

t−1+
(

1
2−α−

n
2 ( 1

p−
1
q )
)
sdt≤C‖v‖sW 1,p(Ω),



JITAO LIU AND SHU WANG 2153

and for α>0, we have∫ ∞
1

‖t1−αAe−tAv‖sLq(Ω)

dt

t
≤C‖v‖sLp(Ω)

∫ ∞
1

t−1−
(
α+n

2 ( 1
p−

1
q )
)
sdt≤C‖v‖sLp(Ω).

Thus, by summing up the above two inequalities and applying the definition of the
space Dα,s

q , we finally complete the proof.

Thanks to Lemma 2.5, for 1<p≤ q<∞, by taking α= 1− 1
p , s=p and k= 2, we

can then update Proposition 2.1 as follows.

Lemma 2.6. Let 1<p≤ q<∞, and suppose that f ∈Lp(0,T ;Lq(Ω)), u0∈W 2,p(Ω). If
(u, p) is a solution of the Stokes system

∂tu−∆u+∇p= f in Ω,
∇·u= 0 in Ω,
u= 0 on ∂Ω,
u(x,0) =u0(x) in Ω,

(2.11)

then there holds that

‖∂tu,∇2u,∇p‖Lp(0,T ;Lq(Ω))≤C(‖f‖Lp(0,T ;Lq(Ω)) +‖u0‖W 2,p(Ω)), (2.12)

where the constant C depends only on p, q and Ω.

3. A priori estimates
This section is devoted to establishing the a priori estimates for the system (1.4)-

(1.6), which is an important step in the proof of Theorem 1.1. To be more precise, we
first introduce the definition of weak solutions of system (1.4)-(1.6) and then state the
main result of this section as a proposition.

Definition 3.1. Let Ω⊂R2 be a bounded domain with smooth boundary. A pair of
measurable functions (u,w) is called a weak solution of system (1.4)-(1.6) if

(1) u∈C(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)), w∈C(0,T ;L4(Ω));

(2)

∫
Ω

u0 ·ϕ0dx+

∫ T

0

∫
Ω

[
u ·ϕt−(ν+κ)∇u :∇ϕ+u ·∇ϕ ·u+2κw∇⊥ ·ϕ

]
dxdt= 0,

∫
Ω

w0ψ0dx+

∫ T

0

∫
Ω

[
wψt−4κwψ+u ·∇ψw−2κu ·∇⊥ψ

]
dxdt= 0;

(3) At each time 0≤ t<T,
∫

Ω

u ·∇φdx= 0;

hold for any test vector field ϕ∈C∞0 ([0,T )×Ω)2 with ∇·ϕ= 0, any test functions
ψ∈C∞0 ([0,T )×Ω) and φ∈C∞0 (Ω), where A :B denotes the matrix product

∑
i,j

aijbij.

The main result of this section is stated in the following proposition.

Proposition 3.1. Let Ω⊂R2 be a bounded domain with smooth boundary and (u,w)
be the smooth solution of system (1.4)-(1.6). Assume u0∈H1

0 (Ω)∩H2(Ω) and w0∈
W 1,4(Ω), then there holds that

‖u‖L∞(0,T ;H2(Ω)) +‖u‖L2(0,T ;W 2,4(Ω)) +‖w‖L∞(0,T ;W 1,4(Ω))≤ C, (3.1)
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where C depends only on Ω, T , ‖u0‖H2(Ω) and ‖w0‖W 1,4(Ω).

The proof of this proposition relies on the following basic energy estimates.

Proposition 3.2. Suppose Ω⊂R2 be a bounded domain with smooth boundary and
(u,w) be the smooth solution of system (1.4)-(1.6). If, in addition, u0∈L2(Ω) and
w0∈L2(Ω), then it holds that

‖u‖L∞(0,T ;L2(Ω)) +‖u‖L2(0,T ;H1
0 (Ω)) +‖w‖L∞(0,T ;L2(Ω))≤ C,

where C depends only on T , ‖u0‖L2(Ω) and ‖w0‖L2(Ω).

Proof. We start with the global L2-bound. Taking the inner product of system
(1.4) with (u,w) yields

1

2

d

dt
(‖u‖2L2(Ω) +‖w‖2L2(Ω))+(ν+κ)‖∇u‖2L2(Ω) +4κ‖w‖2L2(D)

=−2κ

∫
D

∇⊥w ·udx+2κ

∫
Ω

∇⊥ ·uwdx.

Noticing that ∇⊥ ·u=∂1u2−∂2u1 and ∇⊥w= (−∂2w,∂1w), we have

−∇⊥w ·u=u1∂2w−u2∂1w=∂2(u1w)−∂1(u2w)+∇⊥ ·uw.

Integrating by parts and applying the boundary condition (1.5) for u, we have

−2κ

∫
Ω

∇⊥w ·udx+2κ

∫
Ω

∇⊥ ·uwdx

= 4κ

∫
Ω

∇⊥ ·uwdx−2κ

∫
∂Ω

u ·n⊥wds

= 4κ

∫
Ω

∇⊥ ·uwdx

≤ (ν+κ)

2
‖∇u‖2L2(Ω) +C‖w‖2L2(Ω), (3.2)

where n⊥= (−n2,n1). It then follows, after integration in time, that

‖u‖2L2(Ω) +‖w‖2L2(Ω) +(ν+κ)

∫ T

0

‖∇u‖2L2(Ω)dt+8κ

∫ T

0

‖w‖2L2(Ω)dt

≤eCT (‖u0‖2L2(Ω) +‖w0‖2L2(Ω))≡A1(T,‖u0,w0‖L2), (3.3)

where C=C(ν,κ). This completes the proof of Proposition 3.2.

Our next goal is to establish the global bound of ‖u‖H1(Ω). As stated in the in-
troduction, v is at the energy level of one order lower than w. Then by recalling the
system (1.10) and setting

F =
2κ

ν+κ

(
0 w
−w 0

)
,

we can then invoke (2.4) in Lemma 2.3 to build up the estimates

‖v‖W 1,q(Ω)≤C‖w‖Lq(Ω) (3.4)



JITAO LIU AND SHU WANG 2155

holding for any q∈ (1,∞), which further yields, after applying Proposition 3.2, that

‖v‖L∞(0,T ;H1(Ω))≤C‖w‖L∞(0,T ;L2(Ω))≤C. (3.5)

Therefore, to establish the H1(Ω) estimates of velocity u, it suffices to do the H1(Ω)
estimates of g=u−(ν+κ)v as below.

Lemma 3.1. Under the assumptions of Proposition 3.2, we further assume u0∈H1
0 (Ω)

and w0∈L4(Ω), then there holds that

‖∇g‖L∞(0,T ;L2(Ω)) +‖∆g‖L2(0,T ;L2(Ω)) +‖w‖L∞(0,T ;L4(Ω)) +‖w‖L2(0,T ;L4(Ω))≤ C,

where C depends only on Ω, T , ‖u0‖H1(Ω) and ‖w0‖L4(Ω).

Proof. Taking inner product of (1.12)
1

with −∆g, and applying the boundary
conditions g|∂Ω = 0 and the Cauchy-Schwarz inequality, we have

1

2

d

dt
‖∇g‖2L2(Ω) +(ν+κ)‖∆g‖2L2(Ω)

=−
∫

Ω

Q ·∆gdx

≤‖Q‖L2(Ω)‖∆g‖L2(Ω)

≤ (ν+κ)

8
‖∆g‖2L2(Ω) +C‖Q‖2L2(Ω), (3.6)

with

‖Q‖2L2(Ω)≤‖u ·∇u‖
2
L2(Ω) +‖A−1∇⊥(u ·∇w)‖2L2(Ω)

+C‖A−1∇⊥(∇⊥ ·u)‖2L2(Ω) +C‖v‖2L2(Ω)

=

4∑
i=1

Ii. (3.7)

Next, we will estimate the four terms one by one. By applying Hölder’s inequality,
Corollary 2.1, (3.4), Lemma 2.2 and Young’s inequality, it follows that

I1≤C‖u ·∇g‖2L2(Ω) +C‖u ·∇v‖2L2(Ω)

≤C‖u‖2L4(Ω)‖∇g‖
2
L4(Ω) +C‖u‖2L4(Ω)‖∇v‖

2
L4(Ω)

≤C‖u‖L2(Ω)‖∇u‖L2(Ω)(‖∇g‖2L2(Ω) +‖∇g‖L2(Ω)‖∆g‖L2(Ω))

+C‖u‖L2(Ω)‖∇u‖L2(Ω)‖∇v‖2L4(Ω)

≤C‖u‖L2(Ω)‖∇u‖L2(Ω)(‖∇g‖2L2(Ω) +‖∇g‖L2(Ω)‖∆g‖L2(Ω))

+C‖u‖L2(Ω)‖∇u‖L2(Ω)‖w‖2L4(Ω)

≤ (ν+κ)

8
‖∆g‖2L2(Ω) +C‖u‖L2(Ω)‖∇u‖L2(Ω)‖∇g‖2L2(Ω)

+C‖u‖2L2(Ω)‖∇u‖
2
L2(Ω)‖∇g‖

2
L2(Ω) +C‖u‖L2(Ω)‖∇u‖L2(Ω)‖w‖2L4(Ω). (3.8)

Regarding the remaining terms, thanks to the incompressible condition ∇·u= 0 and
the boundary conditions u|∂Ω = 0, we can infer that u ·∇w=∇·(uw) and uw|∂Ω = 0.
Therefore, by using Hölder’s inequality, Corollary 2.1, Lemma 2.3 and (3.4), we obtain

I2 +I3 +I4
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≤C‖A−1∇⊥∇(uw)‖2L2(Ω) +C‖A−1∇⊥(∇⊥ ·u)‖2L2(Ω) +C‖v‖2L2(Ω)

≤C‖uw‖2L2(Ω) +C‖u‖2L2(Ω) +C‖w‖2L2(Ω)

≤C‖u‖2L4(Ω)‖w‖
2
L4(Ω) +C‖u‖2L2(Ω) +C‖w‖2L2(Ω)

≤C‖u‖L2(Ω)‖∇u‖L2(Ω)‖w‖2L4(Ω) +C(‖u‖2L2(Ω) +‖w‖2L2(Ω)). (3.9)

Finally, we add up the estimates from (3.6) to (3.9), which yields that

1

2

d

dt
‖∇g‖2L2(Ω) +

3(ν+κ)

4
‖∆g‖2L2(Ω)

≤C(‖u‖L2(Ω)‖∇u‖L2(Ω) +‖u‖2L2(Ω)‖∇u‖
2
L2(Ω))‖∇g‖

2
L2(Ω)

+C‖u‖L2(Ω)‖∇u‖L2(Ω)‖w‖2L4(Ω) +C(‖u‖2L2(Ω) +‖w‖2L2(Ω)). (3.10)

Clearly, (3.10) is not a closed estimate still because the bound of ‖w‖L4(Ω) is un-
known. However, we discover that, the estimate of ‖w‖L4(Ω) can be bounded in turn
by ‖∇g‖L2(Ω) and ‖∆g‖L2(Ω). This motivates us to search for the closed estimates of

‖∇g‖2L∞(0,T ;L2(Ω)) +‖w‖2L∞(0,T ;L4(Ω)). To start with, by multiplying (1.4)
2

with |w|3w
and integrating on Ω, we have

1

4

d

dt
‖w‖4L4(Ω) +4κ‖w‖4L4(Ω)

= 2κ

∫
Ω

∇⊥ ·u|w|3wdx

≤C‖∇u‖L4(Ω)‖w‖3L4(Ω)

≤C(‖∇g‖L4(Ω) +‖∇v‖L4(Ω))‖w‖3L4(Ω)

≤C(‖∇g‖L2(Ω) +‖∇g‖
1
2

L2(Ω)‖∆g‖
1
2

L2(Ω) +‖w‖L4(Ω))‖w‖3L4(Ω), (3.11)

which further implies, after dividing ‖w‖2L4(Ω) on both sides, that

1

2

d

dt
‖w‖2L4(Ω) +4κ‖w‖2L4(Ω)

≤C(‖∇g‖L2(Ω) +‖∇g‖
1
2

L2(Ω)‖∆g‖
1
2

L2(Ω) +‖w‖L4(Ω))‖w‖L4(Ω)

≤ (ν+κ)

4
‖∆g‖2L2(Ω) +C(‖∇g‖2L2(Ω) +‖w‖2L4(Ω)). (3.12)

Subsequently, by summing up the estimates (3.10) and (3.12), we finally obtain,
after some basic calculations, that

1

2

d

dt
(‖∇g‖2L2(Ω) +‖w‖2L4(Ω))+

(ν+κ)

2
‖∆g‖2L2(Ω) +4κ‖w‖2L4(Ω)

≤C(1+‖u‖2L2(Ω)‖∇u‖
2
L2(Ω))(‖∇g‖

2
L2(Ω) +‖w‖2L4(Ω))+C(‖u‖2L2(Ω) +‖w‖2L2(Ω)). (3.13)

This, together with Grönwall’s inequality and (3.3), then yields the following bound

‖∇g‖2L2(Ω) +‖w‖2L4(Ω) +(ν+κ)

∫ T

0

‖∆g‖2L2(Ω)dt+8κ

∫ T

0

‖w‖2L4(Ω)dt

≤C1e
C2T (‖∇u0,w0‖2L2(Ω) +‖w0‖2L4(Ω) +TA1(T,‖u0,w0‖L2))≡A2(T ), (3.14)
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where C1 =C1(ν,κ), C2 =C2(ν,κ,‖u0,w0‖L2(Ω)). This completes the proof of Lemma
3.1.

Although we have derived the estimate of ‖u‖L∞(0,T ;H1(Ω)), to prove the global
existence of strong solutions, we need the estimate of ‖u‖L2(0,T ;H2(Ω)). Therefore, even
with the help of the estimate of ‖g‖L2(0,T ;H2(Ω)), we still need the global bound of
‖v‖L2(0,T ;H2(Ω)). Namely, we should prove that ‖w‖L2(0,T ;H1(Ω)) is globally bound ac-
cording to Lemma 2.3. To achieve this, we first establish the bound of ‖w‖L∞(0,T ;Lq(Ω)).

Proposition 3.3. In addition to the conditions in Lemma 3.1, if we further assume
w0∈Lp(Ω) for any 2≤p≤∞, then the micro-rotation w obeys the global bound

‖w‖L∞(0,T ;Lq(Ω))≤C,

where C depends only on Ω, T , ‖u0‖H1(Ω) and ‖w0‖Lq(Ω).

Proof. We start with the equation of w, namely (1.4)
2
. For any 2≤ q<∞, multi-

plying (1.4)
2

with |w|q−2w and integrating on Ω, we obtain

1

q

d

dt
‖w‖qLq(Ω) +4κ‖w‖qLq(Ω)≤2κ‖∇u‖Lq(Ω)‖w‖q−1

Lq(Ω),

i.e.,

d

dt
‖w‖Lq(Ω) +4κ‖w‖Lq(Ω)≤2κ‖∇u‖Lq(Ω).

Then, by employing the definition of g, (3.4) and the Sobolev embedding inequali-
ties, we further have

d

dt
‖w‖Lq(Ω) +4κ‖w‖Lq(Ω)

≤C‖∇g‖Lq(Ω) +C‖∇v‖Lq(Ω)

≤C‖g‖W 1,q(Ω) +C‖w‖Lq(Ω)

≤C‖g‖H2(Ω) +C‖w‖Lq(Ω)

≤C‖g‖L2(Ω) +C‖∆g‖L2(Ω) +C‖w‖Lq(Ω)

≤C‖u‖L2(Ω) +C‖v‖L2(Ω) +C‖∆g‖L2(Ω) +C‖w‖Lq(Ω)

≤C‖u‖L2(Ω) +C‖w‖L2(Ω) +C‖∆g‖L2(Ω) +C‖w‖Lq(Ω),

which, according to Grönwall’s inequality, Proposition 3.2 and Lemma 3.1 further im-
plies

‖w‖Lq(Ω) +4κ

∫ T

0

‖w‖Lq(Ω)dt

≤eCT
[
‖w0‖Lq(Ω) +

∫ T

0

(
‖u‖L2(Ω) +‖w‖L2(Ω) +‖∆g‖L2(Ω)

)
dt

]
≤C(T ).

Noting that the constant C is independent of q, we then derive, after letting q→∞,
that

‖w‖L∞(Ω) +4κ

∫ T

0

‖w‖L∞(Ω)dt
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≤eCT
[
‖w0‖L∞(Ω) +

∫ T

0

(
‖u‖L2(Ω) +‖w‖L2(Ω) +‖∆g‖L2(Ω)

)
dt

]
≤C(T ).

This completes the proof of Proposition 3.3.

We now move on to the next lemma asserting the bound of ‖g‖L2(0,T ;W 2,q(Ω)).

Lemma 3.2. Under the assumptions of Proposition 3.3, if in addition, u0∈H2(Ω) and
w0∈H1(Ω), then the inequality

‖g‖L2(0,T ;W 2,q(Ω))≤ C

holds for any 2≤ q<∞, where C depends only on Ω, T , ‖u0‖H2(Ω) and ‖w0‖H1(Ω).

Proof. Initially, by applying Lemma 2.6 to (1.12) and Lemma 2.3, it is clear that

‖∇2g‖L2(0,T ;Lq(Ω))≤C(‖Q‖L2(0,T ;Lq(Ω)) +‖g0‖H2(Ω))

≤C(‖Q‖L2(0,T ;Lq(Ω)) +‖u0‖H2(Ω) +‖v0‖H2(Ω))

≤C(‖Q‖L2(0,T ;Lq(Ω)) +‖u0‖H2(Ω) +‖w0‖H1(Ω)), (3.15)

with

‖Q‖L2(0,T ;Lq(Ω))≤‖u ·∇u‖L2(0,T ;Lq(Ω)) +‖A−1∇⊥(u ·∇w)‖L2(0,T ;Lq(Ω))

+‖A−1∇⊥(∇⊥ ·u)‖L2(0,T ;Lq(Ω)) +‖v‖L2(0,T ;Lq(Ω))

=

4∑
i=1

Ii. (3.16)

For the first term, by employing Hölder’s inequality, the Sobolev embedding in-
equalities, (3.4), Proposition 3.2, Lemma 3.1 and Proposition 3.3, we have

I1

≤‖u‖L∞(0,T ;L2q(Ω))‖∇u‖L2(0,T ;L2q(Ω))

≤C‖u‖L∞(0,T ;H1(Ω))(‖∇g‖L2(0,T ;L2q(Ω)) +‖∇v‖L2(0,T ;L2q(Ω)))

≤C(‖u‖L∞(0,T ;L2(Ω)) +‖∇u‖L∞(0,T ;L2(Ω)))(‖g‖L2(0,T ;H2(Ω)) +‖w‖L2(0,T ;L2q(Ω)))

≤C(1+‖∇g‖L∞(0,T ;L2(Ω)) +‖∇v‖L∞(0,T ;L2(Ω)))(‖g‖L2(0,T ;L2(Ω)) +‖∆g‖L2(0,T ;L2(Ω)) +1)

≤C(1+‖w‖L∞(0,T ;L2(Ω)))(‖u‖L2(0,T ;L2(Ω)) +‖w‖L2(0,T ;L2(Ω)) +1)

≤C(T ). (3.17)

As for the remaining terms, by using the equality u ·∇w=∇·(uw) and the same tools
used for estimating (3.17), it follows that

I2 +I3 +I4

≤‖A−1∇⊥∇(uw)‖L2(0,T ;Lq(Ω)) +C‖A−1∇⊥(∇⊥ ·u)‖L2(0,T ;Lq(Ω)) +C‖v‖L2(0,T ;Lq(Ω))

≤C‖uw‖L2(0,T ;Lq(Ω)) +C‖u‖L2(0,T ;Lq(Ω)) +C‖w‖L2(0,T ;Lq(Ω))

≤C‖u‖L2(0,T ;L2q(Ω))‖w‖L∞(0,T ;L2q(Ω)) +C‖u‖L2(0,T ;H1(Ω)) +C‖w‖L2(0,T ;Lq(Ω))

≤C‖u‖L2(0,T ;H1(Ω))‖w‖L∞(0,T ;L2q(Ω)) +C‖u‖L2(0,T ;H1(Ω)) +C‖w‖L2(0,T ;Lq(Ω))

≤C(T ). (3.18)
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Thus, through summing up the estimates from (3.15) to (3.18) and applying Propo-
sition 3.2 again, we finally prove that ‖g‖L2(0,T ;W 2,q(Ω))≤C(T ).

Finally, to guarantee both the global existence and the uniqueness of strong solu-
tions, we further need the global bound of ‖∇w‖L∞(0,T ;L4(Ω)). And now, we get to work
on it.

Proposition 3.4. In addition to the conditions in Lemma 3.2, we further assume
∇w0∈Lq(Ω) for any 2≤ q<∞, we then derive the global bound

‖∇w‖L∞(0,T ;Lq(Ω))≤C,

where C depends only on Ω, T , ‖u0‖H2(Ω), ‖w0‖H1(Ω) and ‖∇w0‖Lq(Ω).

Proof. Taking the first-order partial ∂i on (1.4)
2

yields,

∂iwt+4κ∂iw+u ·∇∂iw+∂iu ·∇w= 2κ∂i∇⊥ ·u. (3.19)

Then, for any 2≤ q<∞, multiplying (3.19) with |∂iw|q−2∂iw, summing over i and
integrating on Ω, we obtain

1

q

d

dt
‖∇w‖qLq(Ω) +4κ‖∇w‖qLq(Ω)≤‖∇u‖L∞(Ω)‖∇w‖qLq(Ω) +2κ‖∇2u‖Lq(Ω)‖∇w‖q−1

Lq(Ω),

i.e.,

d

dt
‖∇w‖Lq(Ω) +4κ‖∇w‖Lq(Ω)≤‖∇u‖L∞(Ω)‖∇w‖Lq(Ω) +2κ‖∇2u‖Lq(Ω).

Next, by employing Lemma 2.4 for the system (1.10), it clearly holds

‖∇v‖L∞(Ω)≤C(1+‖w‖L∞(Ω))ln(e+‖∇w‖Lq(Ω)) (3.20)

for any q∈ (2,∞). Subsequently, by recalling the definition of g, applying Lemma 2.3,
(3.20) and the Sobolev embedding inequalities, we further deduce that

d

dt
‖∇w‖Lq(Ω) +4κ‖∇w‖Lq(Ω)

≤‖∇u‖L∞(Ω)‖∇w‖Lq(Ω) +2κ‖∇2u‖Lq(Ω)

≤‖∇g‖L∞(Ω)‖∇w‖Lq(Ω) +(ν+κ)‖∇v‖L∞(Ω)‖∇w‖Lq(Ω) +2κ‖∇2g‖Lq(Ω)

+2κ‖∇2v‖Lq(Ω)

≤C‖g‖W 2,q(Ω)‖∇w‖Lq(Ω) +C(1+‖w‖L∞(Ω))ln(e+‖∇w‖Lq(Ω))‖∇w‖Lq(Ω)

+C‖g‖W 2,q(Ω) +C‖∇w‖Lq(Ω)

≤Cϕ(t)(1+‖∇w‖Lq(Ω))ln(e+‖∇w‖Lq(Ω)),

where ϕ(t) = (1+‖w‖L∞(Ω))(1+‖g‖W 2,q(Ω)). According to Proposition 3.3 and Lemma
3.2, it is clear that ϕ(t)∈L1(0,T ). This, together with Grönwall’s inequality yields that

‖∇w‖Lq(Ω) +4κ

∫ T

0

‖∇w‖Lq(Ω)dt≤C(T ).

This completes the proof of Proposition 3.4.
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Proposition 3.5. Assume that (u0,w0) satisfies the conditions stated in Theorem 1.1
and (u,w) be the smooth solution of system (1.4)-(1.6). Then, it holds that

‖u‖L∞(0,T ;H1(Ω)) +‖u‖L2(0,T ;W 2,4(Ω)) +‖w‖L∞(0,T ;W 1,4(Ω))≤C, (3.21)

where the constant C depends only on Ω, T , ‖u0‖H2(Ω) and ‖w0‖W 1,4(Ω).

Proof. According to the assumptions on the initial data, Proposition 3.3 and Propo-
sition 3.4, it is clear that ‖w‖L∞(0,T ;W 1,4(Ω))≤ C. Then, by the definition of g and
Lemma 2.3, we have

‖u‖L∞(0,T ;H1(Ω)) +‖u‖L2(0,T ;W 2,4(Ω))

≤‖g‖L∞(0,T ;H1(Ω)) +‖g‖L2(0,T ;W 2,4(Ω)) +(ν+κ)
[
‖v‖L∞(0,T ;H1(Ω)) +‖v‖L2(0,T ;W 2,4(Ω))

]
≤‖g‖L∞(0,T ;H1(Ω)) +‖g‖L2(0,T ;W 2,4(Ω)) +(ν+κ)

[
‖w‖L∞(0,T ;L2(Ω)) +‖w‖L2(0,T ;W 1,4(Ω))

]
.

The terms ‖w‖L∞(0,T ;L2(Ω)), ‖g‖L∞(0,T ;H1(Ω)) and ‖g‖L2(0,T ;W 2,4(Ω)) are globally
bounded due to Proposition 3.2, Lemma 3.1 and Lemma 3.2 respectively. To bound the
term ‖w‖L2(0,T ;W 1,4(Ω)), it suffices to apply Proposition 3.3, Proposition 3.4 with q= 4
and Hölder’s inequality. This completes the proof of Proposition 3.5.

Proof. (Proof of Proposition 3.1.) In terms of Proposition 3.5, it suffices to
establish the estimate of ‖u‖L∞(0,T ;H2(Ω)). To this end, we first estimate ‖wt‖L2(Ω).
Multiplying the equation of w in (1.4) with wt and integrating on Ω, we have

‖wt‖2L2(Ω) =−4κ

∫
Ω

wwtdx−
∫

Ω

u ·∇wwtdx+2κ

∫
Ω

∇⊥ ·uwtdx

≤ 1

2
‖wt‖2L2(Ω) +C‖w‖2L2(Ω) +C‖u ·∇w‖2L2(Ω) +C‖∇u‖2L2(Ω)

≤ 1

2
‖wt‖2L2(Ω) +C‖w‖2L2(Ω) +C‖u‖2L4(Ω)‖∇w‖

2
L4(Ω) +C‖u‖2H1(Ω)

≤ 1

2
‖wt‖2L2(D) +C‖w‖2L2(Ω) +C‖u‖2H1(Ω)‖∇w‖

2
L4(Ω) +C‖u‖2H1(Ω).

The global bounds in Proposition 3.2 and Proposition 3.5 then imply

‖wt‖L∞(0,T ;L2(Ω))≤C. (3.22)

To estimate ‖ut‖L2(Ω), we take the temporal derivative of the equations of u in
(1.4) to get

utt−(ν+κ)∆ut+u ·∇ut+ut ·∇u+∇πt=−2κ∇⊥wt. (3.23)

Taking the dot product of (3.23) with ut and integrating on Ω, it follows that

1

2

d

dt
‖ut‖2L2(Ω) +(ν+κ)‖∇ut‖2L2(Ω)

=−
∫

Ω

ut ·∇u ·utdx−2κ

∫
Ω

∇⊥wt ·utdx. (3.24)

By integration by parts, Hölder’s inequality and Young’s inequality, we obtain

−
∫

Ω

ut ·∇u ·utdx−2κ

∫
Ω

∇⊥wt ·utdx
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=

∫
Ω

ut ·∇ut ·udx+2κ

∫
Ω

wt∇⊥ ·utdx

≤C‖ut‖L4(Ω)‖∇ut‖L2(Ω)‖u‖L4(Ω) +C‖∇ut‖L2(Ω)‖wt‖L2(Ω)

≤C‖ut‖
1
2

L2(Ω)‖∇ut‖
3
2

L2(Ω)‖u‖
1
2

L2(Ω)‖∇u‖
1
2

L2(Ω) +C‖∇ut‖L2(Ω)‖wt‖L2(Ω)

≤ ν+κ

2
‖∇ut‖2L2(Ω) +C‖u‖2L2(Ω)‖u‖

2
H1(Ω)‖ut‖

2
L2(Ω) +C‖wt‖2L2(Ω).

Combining the estimate above with (3.24), applying (3.22), and invoking Proposition
3.5, we conclude that

‖ut‖L∞(0,T ;L2(Ω))≤C. (3.25)

By Lemma 2.3,

‖u‖H2(Ω)≤C1

(
‖ut‖L2(Ω) +‖u ·∇u‖L2(Ω) +‖∇w‖L2(Ω)

)
, (3.26)

where C1 depends only on Ω. Then by Hölder’s inequality and Corollary 2.1, we have

‖u ·∇u‖L2(Ω)≤‖u‖L4(Ω)‖∇u‖L4(Ω)

≤C2‖u‖
1
2

L2(Ω)‖∇u‖
1
2

L2(Ω)(‖∇u‖
1
2

L2(Ω)‖∇
2u‖

1
2

L2(Ω) +‖∇u‖L2(Ω))

≤2C2‖u‖
3
2

H1(Ω)‖u‖
1
2

H2(Ω)

≤ 1

2C1
‖u‖H2(Ω) +2C1C

2
2‖u‖3H1(Ω),

where C2 also depends only on Ω. Together with (3.26), (3.25) and Proposition 3.5, we
obtain the desired global bound. This completes the proof of Proposition 3.1.

4. Proof of Theorem 1.1
The goal of this section is to complete the proof of Theorem 1.1. To do so, we

first establish the global existence of weak solutions by Schauder’s fixed point theorem.
Moreover, due to the global bounds derived in (3.1), these solutions are actually strong
solutions. Then the a priori estimates obtained in the previous sections for u and w
allow us to prove the uniqueness of strong solutions.

Proof. (Existence.) The proof is a consequence of Schauder’s fixed point theorem.
We shall only provide the sketches.

To define the functional setting, we fix T >0 and R0 to be specified later. For
notational convenience, we write

X≡C(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω))

with ‖g‖X ≡‖g‖2C(0,T ;L2(Ω)) +‖g‖2
L2(0,T ;H1

0 (Ω))
, and define

B={g∈X |‖g‖X ≤R0}.

Clearly, B⊂X is closed and convex.
We fix ε∈ (0,1) and define a continuous map on B. For any v∈B, we regularize it

and the initial data (u0,w0) via the standard mollifying process,

vε=ρε ∗v, uε0 =ρε ∗u0, wε0 =ρε ∗w0,
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where ρε is the standard mollifier. Initially, the transport equation with smooth external
forcing term 2κ∇⊥ ·vε and smooth initial data wε0{

wt+vε ·∇w+4κw= 2κ∇⊥ ·vε,
w(x,0) =wε0(x),

(4.1)

has a unique solution wε. We then solve the nonhomogeneous (linearized) Navier-Stokes
equations with smooth initial data uε0ut+vε ·∇u−(ν+κ)∆u+∇π=−2κ∇⊥wε,

∇·u= 0, u|∂Ω = 0,
u(x,0) =uε0(x),

(4.2)

and denote the solution by uε. This process allows us to define the map

F ε(v) =uε.

We then apply Schauder’s fixed point theorem to construct a sequence of approxi-
mate solutions to the system (1.4)-(1.6). It suffices to show that, for any fixed ε∈ (0,1),
F ε :B→B is continuous and compact. More precisely, we need to show

(a) ‖uε‖B≤R0;

(b) ‖uε‖C(0,T ;H1
0 (Ω)) +‖uε‖L2(0,T ;H2(Ω))≤C;

(c) ‖F ε(v1)−F ε(v2)‖B≤C‖v1−v2‖B for C independent of ε and any v1,v2∈B.

We verify (a) first. A simple L2-estimate on (4.1) leads to

‖wε‖2L2(Ω) +4κ

∫ T

0

‖wε‖2L2(Ω)dt≤‖w
ε
0‖2L2(Ω) +4κ

∫ T

0

‖∇vε‖2L2(Ω)dt

≤‖w0‖2L2(Ω) +4κ

∫ T

0

‖∇v‖2L2(Ω)dt

≤‖w0‖2L2(Ω) +4κR0.

Then by taking inner product of (4.2) with uε and after some basic calculations, we
have

‖uε‖2L2(Ω) +(ν+κ)

∫ T

0

‖∇uε‖2L2(Ω)dt≤‖u0‖2L2(Ω) +
4κ2

ν+κ

∫ T

0

‖wε‖2L2(Ω)dt.

In order for F ε maps B to B, it suffices for the right-hand side to be bounded by
R0. Invoking the bound for ‖wε‖L2(Ω), we obtain a condition for T and R0, namely

‖u0‖2L2(Ω) +CT (‖w0‖2L2(Ω) +R0)≤R0, (4.3)

where the constant C depends only on the parameters ν and κ. It is not difficult to see
that, if CT <1 and R0>>‖u0‖2L2(Ω) +‖w0‖2L2(Ω), (4.3) would hold. Similarly, we can

verify (c) under the condition that T is sufficiently small. Besides, (b) can be verified
by the similar way as estimating (3.21). Schauder’s fixed point theorem then allows us
to conclude the existence of a solution on a finite time interval [0,T ]. These uniform
estimates would allow us to pass to the limit to obtain a weak solution (u,w).

We remark that the local solution obtained by Schauder’s fixed point theorem can
be easily extended into a global solution via Picard-type extension theorem due to the
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global bounds obtained in (3.21). This allows us to obtain the desired global weak
solutions.

As mentioned in the beginning of this section, the solutions established in the
previous step are actually strong solutions due to their global bounds (3.1). Now, we
are in the position to prove the uniqueness of strong solutions. To be more precise, we
will consider the difference between two strong solutions and then establish the energy
estimates for the resulting system of the difference at the level of basic energy.

Proof. (Uniqueness.) Assume (u,w,π) and (ũ,w̃,π̃) are two strong solutions of
the system (1.4)-(1.6) with the regularity specified in (1.7). Consider their difference

U=u− ũ, W =w− w̃, Π =π− π̃,

which solves the following initial-boundary value problem
Ut−(ν+κ)∆U+u ·∇U+U ·∇ũ+∇Π =−2κ∇⊥W,
Wt+4κW +u ·∇W +U ·∇w̃= 2κ∇⊥ ·U,
∇·U= 0,U|∂Ω = 0,

(U,W )(x,0) = 0.

(4.4)

Taking the dot product of the first two equations of (4.4) with (U,W ) yields

1

2

d

dt
(‖U‖2L2(Ω) +‖W‖2L2(Ω))+(ν+κ)‖∇U‖2L2(Ω) +4κ‖W‖2L2(Ω)

=−
∫

Ω

U ·∇ũ ·Udx−
∫

Ω

U ·∇w̃Wdx−2κ

∫
Ω

∇⊥W ·Udx

+2κ

∫
Ω

∇⊥ ·UWdx. (4.5)

Then by the divergence theorem and boundary conditions U|∂Ω = 0,

−2κ

∫
Ω

∇⊥W ·Udx+2κ

∫
Ω

∇⊥ ·UWdx

= 4κ

∫
Ω

∇⊥ ·UWdx

≤ (ν+κ)

4
‖∇U‖2L2(Ω) +C ‖W‖2L2(Ω).

To bound the first and second terms on the right-hand side of (4.5), we invoke the
Hölder’s inequality, Corollary 2.1 and Young’s inequality to obtain

−
∫

Ω

U ·∇ũ ·Udx−
∫

Ω

U ·∇w̃Wdx

≤‖∇ũ‖L2(Ω)‖U‖2L4(Ω) +‖∇w̃‖L4(Ω)‖U‖L4(Ω)‖W‖L2(Ω)

≤C‖∇ũ‖L2(Ω)‖U‖L2(Ω)‖∇U‖L2(Ω) +C‖∇w̃‖L4(Ω)‖U‖
1
2

L2(Ω)‖∇U‖
1
2

L2(Ω)‖W‖L2(Ω)

≤ (ν+κ)

4
‖∇U‖2L2(Ω) +C (1+‖∇ũ‖2L2(Ω) +‖∇w̃‖2L4(Ω))(‖U‖2L2(Ω) +‖W‖2L2(Ω)).

Inserting the above estimates into (4.5) yields

d

dt
(‖U‖2L2(Ω) +‖W‖2L2(Ω))



2164 2D MICROPOLAR EQUATIONS

≤C (1+‖∇ũ‖2L2(Ω) +‖∇w̃‖2L4(Ω))(‖U‖2L2(Ω) +‖W‖2L2(Ω)).

By Grönwall’s inequality, we obtain

‖U(t)‖2L2(Ω) +‖W (t)‖2L2(Ω)

≤eC
∫ t
0

(
1+‖∇ũ‖2

L2(Ω)
+‖∇w̃‖2

L4(Ω)

)
dτ

(‖U0‖2L2(Ω) +‖W0‖2L2(Ω))

for any t∈ (0,T ). According to Proposition 3.2, Proposition 3.4 and noting that U0 =
W0 = 0, we obtain the desired uniqueness U=W ≡0. This finishes the proof of Theorem
1.1.
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