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TWO QUADRATURE RULES FOR STOCHASTIC ITÔ-INTEGRALS
WITH FRACTIONAL SOBOLEV REGULARITY∗

MONIKA EISENMANN† AND RAPHAEL KRUSE‡

Abstract. In this paper we study the numerical quadrature of a stochastic integral, where the tem-
poral regularity of the integrand is measured in the fractional Sobolev–Slobodeckij norm in Wσ,p(0,T ),
σ∈ (0,2), p∈ [2,∞). We introduce two quadrature rules: The first is best suited for the parameter range
σ∈ (0,1) and consists of a Riemann–Maruyama approximation on a randomly shifted grid. The second
quadrature rule considered in this paper applies to the case of a deterministic integrand of fractional
Sobolev regularity with σ∈ (1,2). In both cases the order of convergence is equal to σ with respect to
the Lp-norm. As an application, we consider the stochastic integration of a Poisson process, which has
discontinuous sample paths. The theoretical results are accompanied by numerical experiments.
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1. Introduction
In this paper we investigate the quadrature of stochastic Itô-integrals. Such quadra-

ture rules are, for instance, important building blocks in numerical algorithms for the
approximation of stochastic differential equations (SDEs). For example, let T ∈ (0,∞)
and (ΩW ,FW ,(FWt )t∈[0,T ],PW ) be a filtered probability space satisfying the usual condi-
tions. By W : [0,T ]×ΩW→R we denote a standard (FWt )t∈[0,T ]-Wiener process. Then,
for a given continuous coefficient function λ : [0,T ]→R and a stochastically integrable
process G : [0,T ]×ΩW→R, the numerical solution of the initial value problem{

dX(t) =λ(t)X(t)dt+G(t)dW (t), t∈ [0,T ],

X(0) = 0,

can be reduced to the quadrature of the Itô-integral

X(t) =

∫ t

0

exp
(∫ t

s

λ(u)du
)
G(s)dW (s), t∈ [0,T ],

by the variation of constants formula. We refer to [10, Section 4.4] for further examples
of SDEs which can be reduced to quadrature problems.

In the standard literature, as for example in [2, 7, 14–16, 19], the regularity of the
integrand is often measured in terms of Hölder norms. However, in many cases the order
of convergence observed in numerical experiments is larger than the theoretical order
derived from the Hölder regularity. The starting point of this paper is the observation
that the gap between the theoretical and the experimental order of convergence can
often be closed if the regularity of the integrand is measured in terms of fractional
Sobolev spaces.
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We then introduce two quadrature formulas: The first is a Riemann–Maruyama
quadrature rule but with a randomly shifted mesh. The second is a stochastic version of
the trapezoidal rule and is applicable to Itô-integrals with deterministic integrands pos-
sessing a higher order Sobolev regularity. As our main result, we obtain error estimates
with positive convergence rates even in the case of possibly discontinuous integrands.

To give a more precise outline of this paper, let G : [0,T ]×ΩW→R be a stochas-
tically integrable process as above. We want to find a numerical approximation of the
definite stochastic Itô-integral

I[G] =

∫ T

0

G(s)dW (s). (1.1)

If G∈Cγ([0,T ];Lp(ΩW )), γ∈ (0,1), p∈ [2,∞), then one often applies the classical
Riemann–Maruyama-type quadrature formula

QRM
N [G] =

N∑
j=1

G(tj−1)
(
W (tj)−W (tj−1)

)
, (1.2)

for the approximation of the stochastic integral I[G], where N ∈N determines the
equidistant step size h= T

N and an equidistant partition of [0,T ] of the form

πh={tj := jh : j= 0,1,. ..,N}⊂ [0,T ]. (1.3)

Then, standard results in the literature, see for instance [2, 16,19], show that∥∥I[G]−QRM
N [G]

∥∥
Lp(ΩW )

≤C‖G‖Cγ([0,T ];Lp(ΩW ))h
γ (1.4)

for all N ∈N, where the constant C is independent of N and h.

In this paper, we first focus on the case that the integrand G : [0,T ]×ΩW→R is of
lower temporal regularity. To be more precise, we assume that G∈Lp(ΩW ;Wσ,p(0,T ))
with σ∈ (0,1) and p∈ [2,∞). See Equation (2.1) and (2.2) below for the definition of
the Sobolev–Slobodeckij norm. We emphasize that the space Wσ,p(0,T ) contains pos-
sibly discontinuous trajectories if σp<1. In particular, several of the singular functions
studied in [15] are included in the fractional Sobolev spaces in a natural way.

In this situation we introduce a randomly shifted version of the Riemann–Maru-
yama quadrature rule (1.2) for the approximation of (1.1). To this end, let N ∈N and
set h= T

N as above. We will, however, not make use of the equidistant partition (1.3).
Instead we introduce an additional probability space (ΩΘ,FΘ,PΘ) as well as a uniformly
distributed random variable Θ: ΩΘ→ [0,1], that is assumed to be independent of the
stochastic processes G and W in (1.1). The value of Θ then determines a randomly
shifted equidistant partition πh(Θ) of [0,T ] defined by

πh(Θ) ={0}∪{Θj := (j−1+Θ)h : j= 1,. ..,N}∪{T}⊂ [0,T ], (1.5)

where we also write Θ0 := 0 and ΘN+1 :=T . Note that πh(Θ) is, strictly speaking, not
equidistant due to the addition of the initial and final time point. However, it holds
true that

|Θj−Θj−1|≤h (1.6)
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for all j∈{1,. ..,N+1}, where we have equality in (1.6) for all j∈{2,. ..,N}. The
randomly shifted Riemann–Maruyama quadrature rule is then given by

QSRM
N [G,Θ] =

N∑
j=1

G(Θj)
(
W (Θj+1)−W (Θj)

)
. (1.7)

In Section 3 we will show that QSRM
N is well-defined for all progressively measurable

G∈Lp(ΩW ;Wσ,p(0,T )). If G satisfies an additional integrability condition at t= 0, we
have ∥∥I[G]−QSRM

N [G,Θ]
∥∥
Lp(ΩW×ΩΘ)

≤C(1+‖G‖Lp(ΩW ;Wσ,p(0,T )))h
σ,

where C ∈ (0,∞) is a suitable constant independent of N and h. For a precise statement
of our conditions on G we refer to Assumption 3.1 below.

We remark that quadrature formulas for stochastic integrals on random time grids
are already studied in the literature. In contrast to our observation, however, it usually
turns out that the additional randomization does not yield any advantage over algo-
rithms with deterministic grid points if the regularity of the integrand is measured in
terms of the Hölder norm. See, for instance, [2]. We also refer to [5] for a related
observation in mathematical finance.

In Section 4 we further discuss the case of deterministic integrands g : [0,T ]→R
with regularity g∈W 1+σ,p(0,T ), σ∈ (0,1), p∈ [2,∞). Under this additional regular-
ity assumption we obtain a higher order error estimate for a stochastic version of a
generalized trapezoidal quadrature rule given by

QTrap
N [g] =

N∑
j=1

1

2
(g(θj)+g(θ̂j))(W (tj)−W (tj−1))

+

N∑
j=1

1

h
(g(tj)−g(tj−1))

∫ tj

tj−1

(t− tj− 1
2
)dW (t), (1.8)

where tj− 1
2

= 1
2 (tj−1 + tj), θj = tj−1 +θh and θ̂j = tj−1 +(1−θ)h for θ∈ [0,1] and j∈

{1,. ..,N}. Observe that in the deterministic case, where dW (t) is replaced by dt,
the second sum would disappear and we indeed recover the trapezoidal rule if θ= 0.
Further, the choice θ= 1

2 yields the midpoint rule. In Section 4 we also show that the
implementation of (1.8) is straight-forward.

The remainder of this paper is organized as follows: In Section 2 we recall the defini-
tion of the fractional Sobolev spaces Wσ,p(0,T ) and the associated Sobolev–Slobodeckij
norm. In addition, we fix some notation and collect a few martingale inequalities. Sec-
tion 3 and Section 4 then contain the error analysis of the quadrature rules (1.7) and
(1.8), respectively. In Section 5 we then present several numerical experiments for the
case of deterministic integrands with various degrees of smoothness. In Section 6 we
finally show that a Poisson process satisfies the conditions imposed on the randomly
shifted Riemann–Maruyama rule and state some numerical tests.

2. Preliminaries
First, let us recall the definition of fractional Sobolev spaces which are used in order

to determine the temporal regularity of the integrand. For T ∈ (0,∞) and p∈ [1,∞) the
Sobolev-Slobodeckij norm of an integrable mapping v : [0,T ]→R is given by

‖v‖Wσ,p(0,T ) =
(∫ T

0

|v(t)|pdt+

∫ T

0

∫ T

0

|v(t)−v(s)|p
|t−s|1+σp

dtds
) 1
p

(2.1)
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for σ∈ (0,1) and

‖v‖Wσ,p(0,T ) =
(∫ T

0

|v(t)|pdt+

∫ T

0

|v̇(t)|pdt+

∫ T

0

∫ T

0

|v̇(t)− v̇(s)|p
|t−s|1+(σ−1)p

dtds
) 1
p

(2.2)

for σ∈ (1,2). We denote by Wσ,p(0,T )⊂Lp(0,T ) the subspace of all Lp-integrable map-
pings v : [0,T ]→R such that ‖v‖Wσ,p(0,T )<∞. The space Wσ,p(0,T ) is called fractional
Sobolev space. It holds true that W 1,p(0,T )⊂Wσ,p(0,T )⊂Lp(0,T ) for all σ∈ (0,1). For
further details on fractional Sobolev spaces we refer the reader, for example, to [3, Chap-
ter 4] or to the survey papers [4] and [18].

For the error analysis it is convenient to introduce a further probability space
(Ω,F ,P) which is of product form

(Ω,F ,P) := (ΩW ×ΩΘ,FW ⊗FΘ,PW ⊗PΘ). (2.3)

Recall from Section 1 that (ΩW ,FW ,(FWt )t∈[0,T ],PW ) is the stochastic basis of the
Wiener process W and the integrand G in (1.1), while the family of random temporal
grid points πΘ

h determined by the random variable Θ is defined on (ΩΘ,FΘ,PΘ). In the
following we denote by EW [·] and EΘ[·] the expectation with respect to the measures
PW and PΘ, respectively.

For the error analysis with respect to the Lp(Ω)-norm, p∈ [2,∞), we also require
the following higher moment estimate of stochastic integrals. For a proof we refer
to [11, Chapter 1, Theorem 7.1].

Theorem 2.1. Let p∈ [2,∞) and G∈Lp(ΩW ;Lp(0,T )) be stochastically integrable.
Then, it holds true that

EW
[∣∣∣∫ T

0

G(t)dW (t)
∣∣∣p]≤(p(p−1)

2

) p
2

T
p−2

2 EW
[∫ T

0

|G(t)|pdt
]
.

The error analysis also relies on a discrete-time version of the Burkholder–Davis–
Gundy inequality. A proof is found in [1].

Theorem 2.2. For each p∈ (1,∞) there exist positive constants cp and Cp such that
for every discrete-time martingale (Xn)n∈N and for every n∈N we have

cp

∥∥∥[X]
1
2
n

∥∥∥
Lp(Ω;Rd)

≤
∥∥∥ max
i∈{1,...,n}

|Xi|
∥∥∥
Lp(Ω;Rd)

≤Cp
∥∥∥[X]

1
2
n

∥∥∥
Lp(Ω;Rd)

where [X]n=
∣∣X1

∣∣2 +
∑n−1
i=1

∣∣Xi+1−Xi

∣∣2 denotes the quadratic variation of (Xn)n∈N up
to n.

3. Error analysis of the lower order quadrature rule

In this section we present the error analysis of the randomly shifted Riemann–
Maruyama quadrature rule defined in (1.7). First, we state the assumptions on the
integrand in the stochastic integral (1.1).

Assumption 3.1. The mapping G : [0,T ]×ΩW→R is a (FWt )t∈[0,T ]-progressively
measurable stochastic process such that there exist p∈ [2,∞) and σ∈ (0,1) with

G∈Lp(ΩW ;Wσ,p(0,T )).
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In addition, there exist C0∈ (0,∞) and h0∈ (0,T ] with∫ h

0

EW
[
|G(t)|p

]
dt≤C0h

max(0,pσ− p−2
2 ) for all h≤h0. (3.1)

Under Assumption 3.1 the stochastic process G is stochastically integrable and the
Itô-integral (1.1) is well-defined. For more details on stochastic integration we refer the
reader, for instance, to [8, Chapter 17] or [9, Chapter 25]. Moreover, we stress that
for the case σ∈ (0, 1

p ) the stochastic process G does not necessarily possess continuous
trajectories. In Section 6 we show that a Poisson process satisfies all conditions of
Assumption 3.1 for all p∈ [2,∞) and σ∈ (0,1) with σp<1.

Remark 3.1. The condition (3.1) ensures that the Lp(ΩW )-norm of the process G is
not too explosive at t= 0. In Section 5 we will show that Assumption 3.1 includes weak
singularities of the form [0,T ]3 t 7→ t−γ for γ∈ (0, 1

2 ). On the other hand, if the integrand
enjoys more regularity at t= 0 but is nonzero, then one might apply the quadrature rule
(1.7) to the integrand G̃(t) :=G(t)−G(0) to verify (3.1) for larger values of σ.

Remark 3.2. The randomly shifted quadrature rule QSRM
N [G,Θ] only evaluates G on

the randomized time points in πh(Θ) determined by Θ∼U(0,1). Because of this, the
quadrature rule is independent of the choice of the representation of the equivalence class
G∈Lp(Ω;Wσ,p(0,T )) in the following sense: For all ω∈ΩW with G(·,ω)∈Wσ,p(0,T ) let
Gi(·,ω), i∈{1,2}, be two representations of the same equivalence class in Wσ,p(0,T ).
Then it follows from

G1(t,ω) =G2(t,ω)

for almost all t∈ [0,T ] that

G1(Θj ,ω) =G2(Θj ,ω) PΘ-almost surely in ΩΘ

for every j∈{1,. ..,N}, and hence G1(Θj) =G2(Θj) P-almost surely on Ω = ΩW ×ΩΘ.

First, let us prove a lemma, where we insert an arbitrary but fixed value θ∈ [0,1]
into (1.7) instead of the random variable Θ.

Lemma 3.1. Let Assumption 3.1 be satisfied with p∈ [2,∞), σ∈ (0,1), C0∈ (0,∞),
and h0∈ (0,T ]. Further, let θ∈ [0,1] be arbitrary and θj = tj−1 +θh for j∈{1,. ..,N}
with θ0 = 0 and θN+1 =T . Then, there exists C(p)∈ (0,∞) depending only on p∈ [2,∞)
with ∥∥I[G]−QSRM

N [G,θ]
∥∥
Lp(ΩW )

≤C(p)h
p−2
2p

(∫ θ1

0

EW
[
|G(t)|p

]
dt
) 1
p

+C(p)h
p−2
2p

( N∑
j=1

(∫ θj+1

θj

EW
[
|G(t)−G(θj)|p

]
dt
) 2
p
) 1

2

for all N ∈N with T
N =h≤h0 and almost every θ∈ [0,1].

Proof. Analogously to (1.6), we have for all j∈{0,1,. ..,N} and every θ∈ [0,1]
that

|θj+1−θj |≤h
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by definition of (θj)j∈{0,...,N+1}. We abbreviate the time-discrete error term by

Enθ =

∫ θn

0

G(t)dW (t)−
n−1∑
j=1

G(θj)
(
W (θj+1)−W (θj)

)
=

∫ θ1

0

G(t)dW (t)+

n−1∑
j=1

∫ θj+1

θj

(
G(t)−G(θj)

)
dW (t)

for n∈{1,. ..,N+1}. Then, we can write the error of the quadrature rule (1.7) as∥∥I[G]−QSRM
N [G,θ]

∥∥p
Lp(ΩW )

=EW
[∣∣EN+1

θ

∣∣p].
Furthermore, it follows from Assumption 3.1 and Theorem 2.1 that Enθ : ΩW→R is
an element of Lp(ΩW ) for every n∈{1,. ..,N+1}. In addition, Enθ is measurable with
respect to the σ-algebra FWθn . Since we obtain for all 1≤m≤n≤N+1 that

EW
[
Enθ

∣∣∣FWθm]=EW
[∫ θ1

0

G(t)dW (t)+

n−1∑
j=1

∫ θj+1

θj

(
G(t)−G(θj)

)
dW (t)

∣∣∣FWθm]

=

∫ θ1

0

G(t)dW (t)+

m−1∑
j=1

∫ θj+1

θj

(
G(t)−G(θj)

)
dW (t)

+EW
[ n−1∑
j=m

∫ θj+1

θj

(
G(t)−G(θj)

)
dW (t)

∣∣∣FWθm]=Emθ ,

the process (Enθ )n∈{1,...,N+1} is a discrete-time martingale with respect to the filtration(
FWθn

)
n∈{1,...,N+1}. From an application of the Burkholder–Davis–Gundy inequality

from Theorem 2.2 and the triangle inequality we obtain(
EW
[∣∣EN+1

θ

∣∣p]) 1
p

≤Cp
(
EW
[(∣∣E1

θ

∣∣2 +

N∑
j=1

∣∣Ej+1
θ −Ejθ

∣∣2) p2 ]) 1
p

=Cp

(∥∥∥∣∣E1
θ

∣∣2 +

N∑
j=1

∣∣Ej+1
θ −Ejθ

∣∣2∥∥∥
L
p
2 (ΩW )

) 1
2

≤Cp
(∥∥E1

θ

∥∥2

Lp(ΩW )
+

N∑
j=1

∥∥Ej+1
θ −Ejθ

∥∥2

Lp(ΩW )

) 1
2

≤Cp
∥∥E1

θ

∥∥
Lp(ΩW )

+Cp

( N∑
j=1

∥∥Ej+1
θ −Ejθ

∥∥2

Lp(ΩW )

) 1
2

=:Cp
(
X1 +X2

)
,

where we will consider X1 and X2 separately in the following. By making use of Theo-
rem 2.1 we obtain the estimate for X1

Xp
1 =

∥∥∥∫ θ1

0

G(t)dW (t)
∥∥∥p
Lp(ΩW )

≤
(p(p−1)

2

) p
2

h
p−2

2

∫ θ1

0

EW
[
|G(t)|p

]
dt,
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since θ1≤h. To estimate X2 we again apply Theorem 2.1 and obtain that

X2
2 =

N∑
j=1

∥∥Ej+1
θ −Ejθ

∥∥2

Lp(ΩW )

=

N∑
j=1

∥∥∥∫ θj+1

θj

(
G(t)−G(θj)

)
dW (t)

∥∥∥2

Lp(ΩW )

≤p(p−1)

2
h
p−2
p

N∑
j=1

(∫ θj+1

θj

EW
[
|G(t)−G(θj)|p

]
dt
) 2
p

.

Altogether, this yields the assertion with C(p) =Cp(
p(p−1)

2 )
1
2 .

Lemma 3.2. Let Assumption 3.1 be satisfied with p∈ [2,∞), σ∈ (0,1), C0∈ (0,∞),
and h0∈ (0,T ]. For every h= T

N ≤h0, N ∈N, consider for n∈{1,. ..,N} and θ∈ [0,1]
the discrete-time error process

Enθ =

∫ θ1

0

G(t)dW (t)+

n−1∑
j=1

∫ θj+1

θj

(
G(t)−G(θj)

)
dW (t), (3.2)

where θj = (j−1+θ)h, j∈{1,. ..,N}. Then the mapping

[0,1]×ΩW 3 (θ,ωW ) 7→Enθ (ωW )∈R

is B(0,1)⊗FWtn /B(R)-measurable.

Proof. Recall that for every stochastically integrable process G : [0,T ]×ΩW→R
the stochastic Itô-integral ∫ t

0

G(s)dW (s)

considered as a stochastic process with respect to its upper integration limit t∈ [0,T ] is
(FWt )t∈[0,T ]-progressively measureable. From this it follows that the mapping

[0,1]×ΩW 3 (θ,ωW ) 7→E1
θ (ωW ) =

(∫ hθ

0

G(s)dW (s)
)

(ωW )

is B(0,1)⊗FWt1 /B(R)-measureable.
For the same reasons, due to θj≤ tn for all j∈{0,. ..,n}, and sinceG is assumed to be

(FWt )t∈[0,T ]-progressively measureable we also obtain the claimed product measurability
of all other summands in (3.2).

We now state and prove the error estimate of the randomly shifted Riemann–
Maruyama quadrature rule defined in (1.7).

Theorem 3.1. Let Assumption 3.1 be satisfied with p∈ [2,∞), σ∈ (0,1), C0∈ (0,∞),
and h0∈ (0,T ] and let Θ: Ω→ [0,1] be a uniformly distributed random variable which
is independent of the stochastic processes G and W . Then, there exists C(p)∈ (0,∞)
depending only on p∈ [2,∞) with∥∥I[G]−QSRM

N [G,Θ]
∥∥
Lp(Ω)

≤C(p)
(
C

1
p

0 h
max(0, p−2

2p −σ)

0 +T
p−2
2p ‖G‖Lp(ΩW ;Wσ,p(0,T ))

)
hσ
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for all N ∈N with T
N =h≤h0.

Proof. As in Lemma 3.2 we abbreviate the time-discrete error process Enθ , n∈
{1,. ..,N+1}, for each value of θ∈ [0,1] by

Enθ =

∫ θ1

0

G(t)dW (t)+

n−1∑
j=1

∫ θj+1

θj

(
G(t)−G(θj)

)
dW (t),

where θj = (j−1+θ)h.
By EnΘ we then denote the composition of the mappings Ω3 (ωW ,ωΘ) 7→

(Θ(ωΘ),ωW )∈ (0,1)×ΩW and (0,1)×ΩW 3 (θ,ωW ) 7→Enθ (ωW )∈R. Clearly, the ran-
dom variable EnΘ is then FWtn ⊗FΘ/B(R)-product measureable for all n∈{1,. ..,N+1}.

Next, we give an estimate of the Lp(Ω)-norm of the error of the quadrature rule
(1.7) ∥∥I[G]−QSRM

N [G,Θ]
∥∥p
Lp(Ω)

=EΘ

[
EW
[∣∣EN+1

Θ

∣∣p]].
Using Lemma 3.1, we now obtain that for almost every ωΘ∈ΩΘ(

EW
[∣∣EN+1

Θ(ωΘ)

∣∣p]) 1
p

≤C(p)h
p−2
2p

(∫ Θ1(ωΘ)

0

EW
[
|G(t)|p

]
dt
) 1
p

+C(p)h
p−2
2p

( N∑
i=1

(∫ Θi+1(ωΘ)

Θi(ωΘ)

EW
[
|G(t)−G(Θi(ωΘ))|p

]
dt
) 2
p
) 1

2

,

where C(p) =Cp(
p(p−1)

2 )
1
2 and Θi= (i−1+Θ)h. Hence, after applying the norm

(EΘ[(·)p]) 1
p we get∥∥EN+1

Θ

∥∥
Lp(Ω)

=
(
EΘ

[
EW
[
|EN+1

Θ |p
]]) 1

p

≤C(p)h
p−2
2p

[(
EΘ

[∫ Θ1

0

EW
[
|G(t)|p

]
dt
]) 1

p

+
(
EΘ

[( N∑
i=1

(∫ Θi+1

Θi

EW
[∣∣G(t)−G(Θi)

∣∣p]dt) 2
p
) p

2
]) 1

p

]
. (3.3)

Due to h≤h0 we have, by condition (3.1), for the first term that

EΘ

[∫ Θ1

0

EW
[∣∣G(t)

∣∣p]dt]=
1

h

∫ h

0

∫ θ

0

EW
[
|G(t)|p

]
dtdθ

≤
∫ h

0

EW
[
|G(t)|p

]
dt≤C0h

max(0,pσ− p−2
2 ).

Since |t−Θi|≤ |Θi+1−Θi|≤h is fulfilled in the second summand on the right-hand side
of (3.3) we further estimate the second sum by

EΘ

[( N∑
i=1

(∫ Θi+1

Θi

EW
[∣∣G(t)−G(Θi)

∣∣p]dt) 2
p
) p

2
]
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≤N p−2
2

N∑
i=1

EΘ

[∫ Θi+1

Θi

EW
[∣∣G(t)−G(Θi)

∣∣p]dt]
≤N p−2

2 h1+pσ
N∑
i=1

EΘ

[∫ Θi+1

Θi

EW
[∣∣G(t)−G(Θi)

∣∣p]
|t−Θi|1+pσ

dt
]

≤N p−2
2 h1+pσ

N∑
i=1

∫ T

0

EΘ

[EW [∣∣G(t)−G(Θi)
∣∣p]

|t−Θi|1+pσ

]
dt

=N
p−2

2 h1+pσ
N∑
i=1

∫ T

0

1

h

∫ ti

ti−1

EW
[∣∣G(t)−G(s)

∣∣p]
|t−s|1+pσ

dsdt

≤N p−2
2 hpσ‖G‖pLp(ΩW ;Wσ,p(0,T )),

where we made use of the fact that Θi∼U(ti−1,ti) in the second last step. The assertion
then follows at once after inserting the last two estimates into (3.3) and by noting that

N
p−2
2p h

p−2
2p =T

p−2
2p and max(0,σ− p−2

2p )+ p−2
2p = max(p−2

2p ,σ)≥σ.

Remark 3.3. Let us briefly compare the error estimate of Theorem 3.1 to the
standard case with Hölder regularity, where it is assumed that G∈Cγ([0,T ];Lp(ΩW )),
γ∈ (0,1). In this case the random shift of the mesh πh is not required and the standard
Riemann–Maruyama quadrature rule (1.2) converges with order γ.

Since every function in Cγ([0,T ];Lp(ΩW ))∩Lp((0,T )×ΩW ) is also an element of
Lp(ΩW ;Wσ,p(0,T )), for all σ∈ (0,γ) the error estimate in Theorem 3.1 guarantees
that γ is essentially also a lower bound for the order of convergence of the quadra-
ture rule (1.7). However, as we will also see in Section 5, one readily finds inte-
grands G∈Cγ([0,T ];Lp(ΩW ))∩Lp(ΩW ;Wσ,p(0,T )) with σ>γ. For example, the pro-

cess G(t) := t
1
4 +W (t), t∈ [0,T ], is an element of Cγ([0,T ];L2(ΩW )) with γ= 1

4 . How-
ever, it is simple to verify that we also have G∈L2(ΩW ;Wσ,2(0,T )) for every σ∈ (0, 1

2 ).

4. Higher order quadrature rule
In this section we present the details on the higher order quadrature rule (1.8).

To the best of our knowledge there is little literature on higher order quadrature rules
for Itô-integrals. When estimating the solution of a stochastic differential equation
with higher order Runge–Kutta schemes, our quadrature rule with θ= 0 appears as a
by-product. See, for example, in [10, Chapter 12] and [17] with classical and stricter
regularity assumptions on the integrand. For further results on higher order Runge–
Kutta schemes we also refer the reader to [12, Chapter 1], where schemes containing
a derivative of g are considered. Let us mention that the quadrature rule (1.8) can
also be seen as a derivative-free version of the Wagner–Platen scheme, see [10]. This
has been studied in [14] under classical smoothness assumptions, that is, g∈C1([0,T ])
with a globally Lipschitz continuous derivative. For the case of arbitrary θ∈ [0,1] as,
for example, the midpoint rule when choosing θ= 1

2 , there are no known results to us.
Furthermore, the regularity assumption in the standard literature is stricter than in our
work.

First we state the conditions for our error analysis.

Assumption 4.1. There exist p∈ [2,∞) and σ∈ (0,1) such that the mapping
g : [0,T ]→R is an element of W 1+σ,p(0,T ).

Let us take note that Assumption 4.1 and the Sobolev embedding theorem ensure
the existence of a continuous representative of the integrand. Hence, the point evaluation
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of g on the deterministic grid points in (1.8) is well-defined. Because of this the artificial
randomization of the freely selectable parameter value θ∈ [0,1] is not necessary.

Still, different choices of θ can affect the error. While the rate of convergence does
not change when varying θ, it can have an effect on the error constant. For each value
of θ we then define the two points

θj = tj−1 +θh, θ̂j = tj−1 +(1−θ)h, j∈{1,. ..,N},

where as before h= T
N , N ∈N, and tj = jh, j∈{0,. ..,N}. Also we denote the midpoint

between two grid points tj−1 and tj by tj− 1
2
, that is,

tj− 1
2

=
tj−1 + tj

2
, j∈{1,. ..,N}.

Then, the quadrature rule studied in this section is given by

QTrap
N [g] =

N∑
j=1

1

2
(g(θj)+g(θ̂j))(W (tj)−W (tj−1))

+

N∑
j=1

1

h
(g(tj)−g(tj−1))

∫ tj

tj−1

(t− tj− 1
2
)dW (t).

Let us observe that the parameter value θ= 0 yields the stochastic trapezoidal rule.
This choice of θ also admits the practical advantage that it only requires N+1 function
evaluations of the integrand g, since then θj = tj−1 and θ̂j = tj . Furthermore, choosing
θ= 0.5 we obtain the stochastic midpoint rule. Therefore, our general approach offers
an analysis that covers two well known rules at once.

Theorem 4.1. Let Assumption 4.1 be satisfied with p∈ [2,∞) and σ∈ (0,1). Then,
for all N ∈N with T

N =h it holds true that∥∥I[g]−QTrap
N [g]

∥∥
Lp(Ω)

≤Cp
(
2p(p−1)

) 1
2T

p−2
2p h1+σ‖g‖W 1+σ,p(0,T ).

The proof of Theorem 4.1 relies on the following lemma, which contains a useful
representation of the error of the quadrature formula (1.8).

Lemma 4.1. Let Assumption 4.1 be satisfied with p∈ [2,∞), σ∈ (0,1). Then, for every
N ∈N the discrete-time error process (En)n∈{0,...,N} of the quadrature rule (1.8) defined
by E0 := 0 and

En=

n∑
j=1

∫ tj

tj−1

(
g(t)− 1

2
(g(θj)+g(θ̂j))−

1

h
(g(tj)−g(tj−1))(t− tj− 1

2
)
)

dW (t)

for n∈{1,. ..,N}, is a discrete-time (Ftn)n∈{0,...,N}-adapted Lp(ΩW )-martingale. More-
over, it holds true that

En=
1

h

n∑
j=1

∫ tj

tj−1

∫ tj

tj−1

(∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
ds

− 1

2

∫ θj

t
j− 1

2

(
ġ(s)− ġ(r)

)
ds− 1

2

∫ θ̂j

t
j− 1

2

(
ġ(s)− ġ(r)

)
ds
)

drdW (t) (4.1)
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for all n∈{1,. ..,N}.
Proof. The martingale property and the Lp(ΩW )-integrability follow directly from

the definition of En and the fact that g∈W 1+σ,p(0,T ) implies the boundedness of g. In

order to prove (4.1) let us rewrite g(θj)+g(θ̂j) in a suitable way by

g(θj)+g(θ̂j) = 2g(tj− 1
2
)+

∫ θj

t
j− 1

2

ġ(s)ds+

∫ θ̂j

t
j− 1

2

ġ(s)ds,

where ġ denotes the weak derivative of g∈W 1+σ,p(0,T ). Therefore, we have for all
t∈ [tj−1,tj ] that

g(t)− 1

2
(g(θj)+g(θ̂j)) =g(t)−g(tj− 1

2
)− 1

2

∫ θj

t
j− 1

2

ġ(s)ds− 1

2

∫ θ̂j

t
j− 1

2

ġ(s)ds.

Inserting this into the definition of En then yields the three terms

En=

n∑
j=1

(
Xj
a−

1

2
Xj
b −Xj

c

)
,

where

Xj
a =

∫ tj

tj−1

(
g(t)−g(tj− 1

2
)
)
dW (t),

Xj
b =

∫ tj

tj−1

(∫ θj

t
j− 1

2

ġ(s)ds+

∫ θ̂j

t
j− 1

2

ġ(s)ds
)

dW (t),

Xj
c =

1

h
(g(tj)−g(tj−1))

∫ tj

tj−1

(t− tj− 1
2
)dW (t).

In the following let j∈{1,. ..,n} be arbitrary. For the term Xj
c we then obtain

Xj
c =

1

h
(g(tj)−g(tj−1))

∫ tj

tj−1

(t− tj− 1
2
)dW (t)

=
1

h

∫ tj

tj−1

ġ(r)dr

∫ tj

tj−1

∫ t

t
j− 1

2

dsdW (t)

=
1

h

∫ tj

tj−1

∫ t

t
j− 1

2

∫ tj

tj−1

ġ(r)drdsdW (t).

This now enables us to write

Xj
a−Xj

c =

∫ tj

tj−1

∫ t

t
j− 1

2

ġ(s)dsdW (t)− 1

h

∫ tj

tj−1

∫ t

t
j− 1

2

∫ tj

tj−1

ġ(r)drdsdW (t)

=
1

h

∫ tj

tj−1

∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t).
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Further, due to the identity θj− tj− 1
2

=−(θ̂j− tj− 1
2
) we have for the term Xj

b that

Xj
b =

∫ tj

tj−1

∫ θj

t
j− 1

2

ġ(s)dsdW (t)+

∫ tj

tj−1

∫ θ̂j

t
j− 1

2

ġ(s)dsdW (t)

=
1

h

∫ tj

tj−1

∫ tj

tj−1

∫ θj

t
j− 1

2

ġ(s)dsdrdW (t)+
1

h

∫ tj

tj−1

∫ tj

tj−1

∫ θ̂j

t
j− 1

2

ġ(s)dsdrdW (t)

−
θj− tj− 1

2

h

∫ tj

tj−1

∫ tj

tj−1

ġ(r)drdW (t)−
θ̂j− tj− 1

2

h

∫ tj

tj−1

∫ tj

tj−1

ġ(r)drdW (t)

=
1

h

∫ tj

tj−1

∫ tj

tj−1

(∫ θj

t
j− 1

2

(
ġ(s)− ġ(r)

)
ds+

∫ θ̂j

t
j− 1

2

(
ġ(s)− ġ(r)

)
ds
)

drdW (t).

Altogether, this completes the proof of (4.1).

This lemma in mind, we now present our proof of the main result of this section.

Proof. (Proof of Theorem 4.1.) Let N ∈N be arbitrary. Due to Lemma 4.1 we
know that the discrete-time error process (En)n∈{0,...,N} is a p-fold integrable martingale
with respect to the filtration (FWtn )n∈{0,...,N}. Thus, an application of Theorem 2.2 yields

∥∥ max
n∈{0,...,N}

|En|
∥∥
Lp(ΩW )

≤Cp
∥∥∥(∣∣E0

∣∣2 +

N−1∑
j=0

∣∣Ej+1−Ej
∣∣2) 1

2
∥∥∥
Lp(ΩW )

.

After inserting E0 = 0 and the representation (4.1), we obtain by an application of the
triangle inequality∥∥ max

n∈{1,...,N}
|En|

∥∥
Lp(ΩW )

≤Cp
1

h

∥∥∥( N∑
j=1

∣∣∣∫ tj

tj−1

∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t)

∣∣∣2) 1
2
∥∥∥
Lp(ΩW )

+Cp
1

2h

∥∥∥( N∑
j=1

∣∣∣∫ tj

tj−1

∫ tj

tj−1

∫ θj

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t)

∣∣∣2) 1
2
∥∥∥
Lp(ΩW )

+Cp
1

2h

∥∥∥( N∑
j=1

∣∣∣∫ tj

tj−1

∫ tj

tj−1

∫ θ̂j

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t)

∣∣∣2) 1
2
∥∥∥
Lp(ΩW )

. (4.2)

All three terms on the right-hand side of (4.2) can be estimated by the same arguments.
We only give details for the first term: First note that

Cp
1

h

∥∥∥( N∑
j=1

∣∣∣∫ tj

tj−1

∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t)

∣∣∣2) 1
2
∥∥∥
Lp(ΩW )

=Cp
1

h

(∥∥∥ N∑
j=1

∣∣∣∫ tj

tj−1

∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t)

∣∣∣2∥∥∥
L
p
2 (ΩW )

) 1
2

≤Cp
1

h

( N∑
j=1

∥∥∥∫ tj

tj−1

∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t)

∥∥∥2

Lp(ΩW )

) 1
2

.
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Next, we apply Theorem 2.1 to each summand and obtain( N∑
j=1

∥∥∥∫ tj

tj−1

∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t)

∥∥∥2

Lp(ΩW )

) 1
2

≤
(p(p−1)

2

) 1
2

h
p−2
2p

( N∑
j=1

(∫ tj

tj−1

∣∣∣∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdr

∣∣∣pdt
) 2
p
) 1

2

≤
(p(p−1)

2

) 1
2

h
p−2
2p N

p−2
2p

( N∑
j=1

∫ tj

tj−1

∣∣∣∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdr

∣∣∣pdt
) 1
p

≤
(p(p−1)

2

) 1
2

T
p−2
2p

( N∑
j=1

h2(p−1)

∫ tj

tj−1

∫ tj

tj−1

∫ t

t
j− 1

2

∣∣ġ(s)− ġ(r)
∣∣pdsdrdt

) 1
p

≤
(p(p−1)

2

) 1
2

T
p−2
2p

( N∑
j=1

h2p+pσ

∫ tj

tj−1

∫ tj

tj−1

∣∣ġ(s)− ġ(r)
∣∣p

|s−r|pσ+1
dsdr

) 1
p

≤
(p(p−1)

2

) 1
2

T
p−2
2p h2+σ‖g‖W 1+σ,p(0,T ),

where we also applied Hölder’s inequality several times. Thus, together with the factor
Cp

1
h we arrive at

Cp
1

h

∥∥∥( N∑
j=1

∣∣∣∫ tj

tj−1

∫ tj

tj−1

∫ t

t
j− 1

2

(
ġ(s)− ġ(r)

)
dsdrdW (t)

∣∣∣2) 1
2
∥∥∥
Lp(ΩW )

≤Cp
(p(p−1)

2

) 1
2

T
p−2
2p h1+σ‖g‖W 1+σ,p(0,T ).

Up to an additional factor 1
2 , the same estimate is valid for the other two terms in (4.2).

This completes the proof.

Remark 4.1. Note that for the implementation of the quadrature rule (1.8) we have
to simulate the stochastic integral∫ tj

tj−1

(t− tj− 1
2
)dW (t)

in addition to the standard increments W (tj)−W (tj−1). This can easily be accom-
plished by taking note of

EW
[
(W (tj)−W (tj−1))

∫ tj

tj−1

(t− tj− 1
2
)dW (t)

]
=

∫ tj

tj−1

(t− tj− 1
2
)dt= 0,

that is, the two random variables are uncorrelated. Since they are jointly normally
distributed, they are also mutually independent. Therefore, we can simulate the two
increments in practice by generating (Z1,Z2)∼N (0,I2) and then setting(

W (tj)−W (tj−1)∫ tj
tj−1

(t− tj− 1
2
)dW (t)

)
∼
(
h

1
2 0

0 1
2
√

3
h

3
2

)(
Z1

Z2

)
,

hereby we make use of the fact that

EW
[∣∣∣∫ tj

tj−1

(t− tj− 1
2
)dW (t)

∣∣∣2]=

∫ tj

tj−1

(t− tj− 1
2
)2 dt=

1

12
h3.
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5. Numerical examples with some deterministic integrands
In this section we perform numerically the quadrature of the Itô-integral (1.1) with

three deterministic integrands gi : [0,T ]→R, i∈{1,2,3}. Hereby, the first integrand g1

is smooth but oscillating, while the second is discontinuous with a jump. The third
integrand is not smooth in the sense that either itself or its derivative contains a weak
singularity at t= 0. We perform a series of numerical experiments which verify the
theoretical results of both quadrature formulas (1.7) and (1.8).

For the implementation of the numerical examples, we follow a similar approach as
already mentioned in Remark 4.1. In order to approximate the error, we simultaneously
generate the exact value of the Itô-integral and the Wiener increments required for the
quadrature rules. For this we generate a random vector (Z1,Z2,Z3)∼N (0,I3) and define

X1

X2

X3

 :=


∫ tj
tj−1

dW (t)∫ tj
tj−1

(t− tj− 1
2
)dW (t)∫ tj

tj−1
g(t)dW (t)

∼G
Z1

Z2

Z3

, (5.1)

where tj− 1
2

= 1
2 (tj−1 + tj) and the matrix G is the Cholesky decomposition of the co-

variance matrix Q∈R3,3 given by

Q=
(
EW
[
XnXm

])
n,m∈{1,2,3}.

Similar to Remark 4.1 the upper left part of Q takes on the values

EW
[
X2

1

]
=h, EW

[
X2

2

]
=
h3

12
, and EW

[
X1X2

]
= 0.

The newly appearing terms in the third column and row of Q are given by

EW
[
X2

3

]
=

∫ tj

tj−1

g2(t)dt, EW
[
X1X3

]
=

∫ tj

tj−1

g(t)dt, and

EW
[
X2X3

]
=

∫ tj

tj−1

tg(t)dt− tj− 1
2

∫ tj

tj−1

g(t)dt.

The random variables are then used to compute the exact value of the Itô-integral as
well as the stochastic integral in the higher order quadrature formula (1.8). In the
same way, we simulate the increments and the exact solution for the randomly shifted
Riemann–Maruyama rule (1.7), where we do not need to simulate X2 and we have
to replace the grid points πh= (tj)j∈{0,...,N} by those in πh(Θ) for each realization of
the random shift Θ∼U(0,1) as defined in (1.5). For a more detailed introduction and
explanation of this procedure, see, for example, [6, Section 2.3.3].

In our example we first choose the function g1 : [0,T ]→R with g1(t) = sin(λt) for
a constant value λ∈R. For this choice of integrand the appearing integrals in the
covariance matrix Q can be stated explicitly and are given by∫ tj

tj−1

g1(t)dt=
1

λ

(
−cos(λtj)+cos(λtj−1)

)
,∫ tj

tj−1

tg1(t)dt=
1

λ2

(
sin(λtj)−sin(λtj−1)

)
− 1

λ

(
tj cos(λtj)− tj−1 cos(λtj−1)

)
,
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as well as∫ tj

tj−1

g2
1(t)dt=

h

2
− 1

4λ

(
sin(2λtj)−sin(2λtj−1)

)
.

Using the fact that |sin(t)|≤ t holds true for all t∈ [0,∞), we obtain for every h0∈ (0,T ]
and σ∈ (0,1) that∫ h

0

sin2(λt)dt≤
∫ h

0

λ2t2 dt=
1

3
λ2h3 for all h≤h0.

Thus, it is easy to see that our choice of the integrand g1 fulfills Assumption 3.1 and
Assumption 4.1 for p= 2 and every value σ∈ (0,1). Therefore, our results from Theo-
rem 3.1 and Theorem 4.1 suggest that the quadrature rule (1.7) converges with a rate
of 1 whereas the quadrature rule (1.8) converges with rate 2.

Next, for c∈ (0,T ) we consider the jump function

g2 : [0,T ]→R, g2(t) =

{
0, if t∈ [0,c),

1, if t∈ [c,T ].

This type of function is considered in more detail in Section 6 below. There, we prove
in Lemma 6.1 that this function is an element of Wσ,p(0,T ) for σp<1. Therefore,
Assumption 3.1 is fulfilled for p∈ [2,∞) and every value σ∈

(
0, 1
p

)
and Theorem 3.1 yields

the convergence of (1.7) with a rate σ. Note that this function is not even continuous,
therefore one can not expect to prove any rate of convergence when measuring the
regularity in an Hölder setting. The integrals appearing in the covariance matrix Q can
also be stated explicitly as

∫ tj

tj−1

g2(t)dt=

∫ tj

tj−1

g2
2(t)dt=


0, if tj<c,

tj−c, if c∈ [tj−1,tj ],

tj− tj−1, if tj−1>c,

and

∫ tj

tj−1

tg2(t)dt=


0, if tj<c,
1
2 (t2j−c2), if c∈ [tj−1,tj ],
1
2 (t2j− t2j−1), if tj−1>c.

As a third example we consider functions of the form g3 : [0,T ]→R with g3(t) = tγ

for γ∈ (− 1
2 ,

1
2 ]\{0}. For this choice of integrand the appearing integrals can again be

stated explicitly and are given by∫ tj

tj−1

g3(t)dt=
1

γ+1

(
tγ+1
j − tγ+1

j−1

)
,

∫ tj

tj−1

tg3(t)dt=
1

γ+2

(
tγ+2
j − tγ+2

j−1

)
,

as well as ∫ tj

tj−1

g2
3(t)dt=

1

2γ+1

(
t2γ+1
j − t2γ+1

j−1

)
.
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The regularity of the third integrand g3 requires a little more attention and depends
on the choice of γ. First, if γ∈ (0, 1

2 ] the weak derivative of g3 satisfies ġ3∈Lp(0,T ) for
p< 1

1−γ . Hence, from Sobolev’s embedding theorem, see, for example, [18, Corollary

18], we get

W 1,p(0,T ) ↪→Wσ,2(0,T )

for 1− 1
p =σ− 1

2 . This implies g3∈Wσ,2(0,T ) for every σ= 3
2− 1

p <
3
2−(1−γ) = 1

2 +γ.

Thus, in this case Assumption 3.1 is satisfied with p= 2 and for all σ∈ (0, 1
2 +γ) including

condition (3.1) for the initial value. Assumption 4.1 is, however, not satisfied for any
value γ∈ (0, 1

2 ].
Next, we turn to the case γ∈ (− 1

2 ,0), where we explicitly estimate the Sobolev–
Slobodeckij norm. For this, let s,t∈ [0,T ] with s<t be arbitrary. Then, since g3 is a
decreasing, nonnegative function for γ∈ (− 1

2 ,0) we have

|g3(t)−g3(s)|=g3(s)−g3(t)≤g3(s) =sγ .

Moreover, by the fundamental theorem of calculus it holds true that

|g3(t)−g3(s)|= 1

|γ|
∣∣∣∫ 1

0

(
s+ρ(t−s)

)−1+γ
dρ
∣∣∣|t−s|≤ 1

|γ|s
−1+γ |t−s|.

Inserting this into the Sobolev–Slobodeckij semi-norm yields for every µ∈ (0, 1
2 +γ) that∫ T

0

∫ T

0

|g3(t)−g3(s)|2
|t−s|1+2σ

dsdt=2

∫ T

0

∫ t

0

|g3(t)−g3(s)|2(1−µ) |g3(t)−g3(s)|2µ
|t−s|1+2σ

dsdt

≤ 2

|γ|2µ
∫ T

0

∫ t

0

s2(1−µ)γs2µ(−1+γ)|t−s|2µ−1−2σdsdt

=
2

|γ|2µ
∫ T

0

∫ t

0

s2γ−2µ|t−s|2µ−1−2σdsdt.

The latter integral is finite for every σ∈ (0,µ) due to 2γ−2µ>−1 by our choice of µ∈
(0, 1

2 +γ). In sum, this proves that g3∈Wσ,2(0,T ) for all σ∈ (0, 1
2 +γ). Since condition

(3.1) is also easily verified, it again follows that g3 satisfies Assumption 3.1 with p= 2 and
for all σ∈ (0, 1

2 +γ) if γ∈ (− 1
2 ,0). Therefore, we can apply Theorem 3.1 and we obtain

that the quadrature rule (1.7) converges with a rate of γ+ 1
2 in both the parameter

ranges γ∈ (0, 1
2 ) and γ∈ (− 1

2 ,0).
Since Assumption 4.1 is violated for all values of γ, Theorem 4.1 does not apply to

g3. Nevertheless, we still used the quadrature rule (1.8) in our numerical experiments
in this case. Hereby, it should be mentioned that for γ∈ (− 1

2 ,0) the scheme (1.8) is
actually not well-defined, since there appears an evaluation of the function g3 at the
point t0 = 0, at which g3 possesses a singularity. In the numerical example we made use
of the fact that we knew in advance where the singularity is situated and left out this
specific summand in the quadrature rule.

This problem illustrates well one advantage of a randomized point evaluation. A
quadrature formula based on a deterministic time grid might not offer a useful ap-
proximation if a singularity of the integrand happens to be at a grid point. On the
other hand, an evaluation at a point of a singularity will not occur almost surely if a
randomized grid is used.
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Fig. 5.1. L2-convergence of the lower order scheme (1.7) (triangles) and the higher order scheme
(1.8) (circles) with g1 with λ= 42, g2 with c= 0.5 as well as g3 with both γ= 0.5 and γ=−0.3. For the
function g1 we inserted order lines with slopes 1 and 2 as well as an order line of slope 0.5 for g2. In
the second row we added two order lines with slope 1 into the left-hand subfigure while both order lines
have a slope of 0.2 on the right-hand side.

h error of
(1.7)

95% conf. interval
for (1.7),

error of
(1.8)

95% conf. interval
for (1.8)

.1250 .24767 [.23849, .25652] .20473 [.19829, .21097]

.0625 .17613 [.16952, .18249] .14520 [.14053, .14972]

.0312 .12149 [.11686, .12596] .10246 [.09929, .10554]

.0156 .08925 [.08605, .09234] .07201 [.06979, .07417]

.0078 .06480 [.06226, .06725] .05062 [.04901, .05219]

.0039 .04426 [.04257, .04589] .03601 [.03489, .03709]

.0020 .03129 [.03006, .03248] .02544 [.02468, .02618]

.0010 .02205 [.02122, .02285] .01809 [.01750, .01866]

.0005 .01593 [.01532, .01652] .01300 [.01259, .01339]

.0002 .01148 [.01105, .01190] .00902 [.00873, .00930]

Table 5.1. Numerical example, for g3 with γ=−0.3

For the numerical experiments displayed in Figure 5.1 and Table 5.1, we chose
the final time T = 1 and the parameter values λ= 42 for g1, c= 0.5 for g2 as well as the
parameters γ=−0.3 and γ= 0.5 for g3. As step sizes we took hi= 2−i with i∈{3,. ..,12}.
For the computation of the error we used the sum of the random variables X3 defined
in (5.1) as the exact solution. For both quadrature formulas, the L2(Ω)-norm was
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approximated by taking the average over 2000 Monte Carlo iterations. The parameter
θ in (1.8) was chosen to be 0.

It can be seen in Figure 5.1 that both quadrature rules (1.7) and (1.8) performed
as expected in all our experiments. In particular, for the case of g1 we observed an
experimental order of convergence of rate 1 for (1.7) and of rate 2 for (1.8). For the
function g2 the randomly shifted Riemann–Maruyama rule (1.7) converges experimen-
tally with a rate of 0.5. Even though the assumptions for Theorem 4.1 are not fulfilled,
the approximation (1.8) is comparable to (1.7). For g3 we expected a convergence rate
of γ+ 1

2 for (1.7) which is well visible in our two numerical tests in the second row of
Figure 5.1. Observe that (1.8) shows the same convergence rates in our last two exper-
iments as (1.7) but with a better error constant. This indicates that the higher order
method is advantageous even in some situations, where the regularity of the integrand is
not sufficient to ensure a more accurate approximation. However, as already mentioned
above, we had to slightly modify the quadrature rule (1.8) for g3 with γ=−0.3 in order
to prevent an evaluation of g3 at its singularity.

To see if the number of 2000 Monte Carlo samples was sufficiently high, we also
computed the 95%-confidence intervals based on the central limit theorem in Table 5.1.
As one can observe, the variance of the error estimates are already reasonably small for
both quadrature rules (1.7) and (1.8) applied to g3 with the parameter γ=−0.3.

6. Application to Poisson processes

In this section we apply the randomly shifted Riemann–Maruyama rule (1.7) for
the approximation of a stochastic integral whose integrand is a Poisson process. To this
end, we first recall the definition of a Poisson process. Then we show that it fulfills the
condition of Assumption 3.1. Finally, we perform a numerical experiment.

Definition 6.1. A Poisson process Π: [0,T ]×ΩW→N0 with intensity a∈ (0,∞) is a
stochastic process on (ΩW ,FW ,PW ) with the following properties:

(1) There holds Π(0) = 0 almost surely.

(2) For any 0≤ t0<t1<...< tn≤T , n∈N, the random variables (Π(ti)−
Π(ti−1))i∈{1,...,n} are independent.

(3) For all 0≤s≤ t≤T the law of the increment Π(t)−Π(s) is the Poisson distri-
bution with mean a(t−s), that is

PW
(
Π(t)−Π(s) =n

)
=

(a(t−s))n
n!

e−a(t−s), for all n∈N0.

(4) The sample paths of Π are càdlàg.

The following proposition is very useful in order to determine the temporal regu-
larity of a typical sample path of a Poisson process. A proof is found, for instance,
in [13, Proposition 4.9].

Proposition 6.1. Let Π: [0,T ]×ΩW→N0 be a Poisson process with intensity a∈
(0,∞). Then there exists an independent, and with the same parameter a∈ (0,∞),
exponentially distributed family of random variables (Zn)n∈N on (ΩW ,FW ,PW ) such
that

Π(t) =

{
0, if t∈ [0,Z1),

k, if t∈ [Z1 + .. .+Zk,Z1 + .. .+Zk+1).
(6.1)
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We recall that a random variable Z : ΩW→R is exponentially distributed with
parameter a∈ (0,∞) if

PW (Z>x) = e−ax for all x∈ [0,∞).

Next, let us introduce an indicator function Ic : [0,T ]→R, c∈ [0,∞), of the form
Ic(t) = I[c,∞)(t), t∈ [0,T ]. It then follows from Proposition 6.1 that we can formally
write Π as a series of the form

Π(t,ω) =

∞∑
k=1

ISk(ω)(t), t∈ [0,T ], ω∈ΩW , (6.2)

where the random jump points Sk(ω) are given by

Sk(ω) :=

k∑
j=1

Zj(ω), for all ω∈ΩW . (6.3)

The following lemma is concerned with the temporal regularity of the indicator function
Ic, c∈ [0,∞).

Lemma 6.1. For every c∈ [0,T ], σ∈ (0,1), and p∈ [1,∞) with σp<1 it holds true that
Ic∈Wσ,p(0,T ). In addition, we have

sup
c∈[0,T ]

‖Ic‖Wσ,p(0,T )<∞.

Proof. Since the indicator function is bounded by 1 we directly get

‖Ic‖Lp(0,T )≤T
1
p

for all p∈ [1,∞). In addition, for every c∈ [0,T ], σ∈ (0,1), and p∈ [1,∞) with σp<1 we
have ∫ T

0

∫ T

0

|Ic(t)−Ic(s)|p
|t−s|1+σp

dtds

=

∫ c

0

∫ T

c

1

|t−s|1+σp
dtds+

∫ T

c

∫ c

0

1

|t−s|1+σp
dtds

=
2

σp

∫ T

c

(
(t−c)−σp− t−σp

)
dt≤ 2

σp(1−σp)T
1−σp.

Since c∈ [0,T ] was arbitrary, the assertion follows.

We are now well-prepared to verify that every Poisson process indeed satisfies the
conditions of Assumption 3.1.

Theorem 6.1. Let Π: [0,T ]×ΩW→N0 be a Poisson process with intensity a∈ (0,∞).
Then, for any p∈ [2,∞), σ∈ (0,1) with σp<1 we have

Π∈Lp(ΩW ;Wσ,p(0,T )).

In addition, for every h0∈ (0,T ] there exists C0∈ (0,∞) such that∫ h

0

EW
[
|Π(t)|p

]
dt≤C0h

max(0,pσ− p−2
2 ) for all h≤h0. (6.4)
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In particular, every Poisson process with intensity a∈ (0,∞) fulfills the conditions of
Assumption 3.1 for every p∈ [2,∞) and σ∈ (0,1) with σp<1.

Proof. First, let p∈ [1,∞) be arbitrary. We observe that a typical sample
path of Π is nonnegative and increasing. Hence, we have supt∈[0,T ]‖Π(t)‖Lp(ΩW ) =
‖Π(T )‖Lp(ΩW )<∞ by the Poisson distribution of Π(T ) with mean aT . From this we
immediately obtain ∫ h

0

EW
[
|Π(t)|p

]
dt≤C0h

for all h≤h0. Since max(0,pσ− p−2
2 )<1 for p∈ [2,∞) and σp<1, condition (6.4) fol-

lows.
Furthermore, we obtain PW (A) = 1 where A∈FW denotes the event

A=
{
ω∈ΩW : sup

t∈[0,T ]

Π(t,ω) = Π(T,ω)<∞
}
.

Then, for every ω∈A the series in (6.2) consists in fact of only finitely many indicator
functions. More precisely, there exists N(ω) := Π(T,ω)∈N0 such that

Π(t,ω) =

N(ω)∑
k=1

ISk(ω)(t), t∈ [0,T ], (6.5)

where Sk(ω) are defined in (6.3). Together with Lemma 6.1 this proves that for every
p∈ [1,∞), σ∈ (0,1) with σp<1 we have

PW
(
{ω∈ΩW : Π(·,ω)∈Wσ,p(0,T )}

)
= 1. (6.6)

Hence, it remains to show that

EW
[∫ T

0

∫ T

0

|Π(t)−Π(s)|p
|t−s|1+σp

dsdt
]
<∞.

To this end, we insert the representation (6.5) and obtain

EW
[∫ T

0

∫ T

0

|Π(t)−Π(s)|p
|t−s|1+σp

dsdt
]

=
∞∑
n=0

∫
ΩW

I{Π(T,ω)=n}(ω)

∫ T

0

∫ T

0

|Π(t,ω)−Π(s,ω)|p
|t−s|1+σp

dsdtdPW (ω)

≤
∞∑
n=0

n∑
k=1

∫
ΩW

I{Π(T,ω)=n}(ω)np−1

∫ T

0

∫ T

0

|ISk(ω)(t)−ISk(ω)(s)|p
|t−s|1+σp

dsdtdPW (ω)

≤
∞∑
n=0

n∑
k=1

∫
ΩW

I{Π(T,ω)=n}(ω)np−1
∥∥ISk(ω)

∥∥p
Wσ,p(0,T )

dPW (ω)

≤ sup
c∈[0,T ]

∥∥Ic∥∥pWσ,p(0,T )

∞∑
n=0

np
∫

ΩW

I{Π(T,ω)=n}(ω)dPW (ω)

≤ sup
c∈[0,T ]

∥∥Ic∥∥pWσ,p(0,T )

∥∥Π(T )
∥∥p
Lp(ΩW )

,
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Fig. 6.1. L2-convergence of the lower order scheme (1.7) to the Itô-integral of a Poisson process
with intensity a= 3

4
on the interval [0,10] with 2000 Monte Carlo samples.

h error 95% conf. interval
1.2500 2.55293 [2.45273, 2.64935]
0.6250 1.65424 [1.58914, 1.71688]
0.3125 1.12986 [1.08814, 1.17010]
0.1562 0.76850 [0.73918, 0.79675]
0.0781 0.54830 [0.52936, 0.56660]
0.0391 0.37698 [0.36380, 0.38971]
0.0195 0.26343 [0.25427, 0.27227]
0.0098 0.17800 [0.17186, 0.18394]
0.0049 0.12968 [0.12501, 0.13419]

Table 6.1. Numerical example, for Poisson process.

where we also used that Sk(ω)∈ [0,T ] for all ω∈{Π(T ) =n} and 1≤k≤n. An applica-
tion of Lemma 6.1 then completes the proof.

We close this section with a short numerical experiment. Hereby we applied the
randomly shifted Riemann–Maruyama quadrature rule for the approximation of an Itô-
integral whose integrand is a Poisson process. For the error plot displayed in Figure 6.1
we chose the final time T = 10 and the intensity parameter a= 3

4 . As step sizes we took
h∈{T 2−i : i= 3,. ..,11}. For the approximation of the error we compared the result of
the quadrature rule with a given step size h to a numerical reference solution with the
smaller step size h

16 driven by the same stochastic trajectories. In addition, the L2(Ω)-
norm was approximated by a standard Monte Carlo simulation with 2000 independent
samples.

As one can see in Figure 6.1, the randomly shifted Riemann–Maruyama rule per-
formed as expected with an experimental order of convergence close to 1

2 , in agreement
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with the regularity of the Poisson process. Since we already knew from Section 5 that
the higher order quadrature rule (1.8) does not yield an advantage if the integrand
has jumps, it was not implemented in this example. In Table 6.1 we also show the
numerical values of the computed errors and the corresponding asymptotically valid
95%-confidence intervals based on the central limit theorem. Apparently, already with
just 2000 Monte Carlo samples the variance of the error estimator is quite decent.
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of Mathematics and its Applications, Cambridge University Press, Cambridge, 113, 2007. 6

[14] P. Przyby lowicz, Linear information for approximation of the Itô integrals, Numer. Algorithms,
52(4):677–699, 2009. 1, 4
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equations, PAMM, 5(1):817–818, 2005. 4
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