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ENTROPY STABLE SPACETIME DISCONTINUOUS GALERKIN
METHODS FOR THE TWO-DIMENSIONAL COMPRESSIBLE

NAVIER-STOKES EQUATIONS∗

ANDREAS HILTEBRAND† AND SANDRA MAY‡

Abstract. In this paper, we present entropy stable schemes for solving the compressible Navier-
Stokes equations in two space dimensions. Our schemes use entropy variables as degrees of freedom.
They are extensions of an existing spacetime discontinuous Galerkin method for solving the compressible
Euler equations. The physical diffusion terms are incorporated by means of the symmetric (SIPG) or
nonsymmetric (NIPG) interior penalty method, resulting in the two versions ST-SDSC-SIPG and ST-
SDSC-NIPG. The streamline diffusion (SD) and shock-capturing (SC) terms from the original scheme
have been kept, but have been adjusted appropriately. This guarantees that the new schemes essentially
reduce to the original scheme for the compressible Euler equations in regions with underresolved physical
diffusion. We show entropy stability for both versions under suitable assumptions for the case of
adiabatic solid wall boundary conditions. We also present numerical results confirming the accuracy
and robustness of our schemes.
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bility; entropy variables; interior penalty method; wall boundary conditions.
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1. Introduction
In this contribution, we present schemes for solving the compressible Navier-Stokes

equations in two space dimensions that can be proven to be entropy stable. Our schemes
are extensions of the method by Hiltebrand and Mishra [20, 21] for solving hyperbolic
systems of conservation laws. We use a version specific to the compressible Euler equa-
tions. The scheme by Hiltebrand and Mishra has the following features: it uses entropy
variables as degrees of freedom (instead of the classic conserved variables), uses a space-
time (ST) discontinuous Galerkin (DG) approach on unstructured grids, and involves
streamline diffusion (SD) and shock-capturing (SC) terms. As a result, the scheme can
be shown to be entropy stable, is unconditionally stable, is (arbitrarily) high-order in
smooth flow, and is robust in the presence of shocks and discontinuities.

We extend the scheme to solving the compressible Navier-Stokes equations by
adding a suitable treatment for the physical diffusion terms representing viscosity and
heat conduction. We consider both the nonsymmetric (NIPG) and symmetric (SIPG)
interior penalty (IP) formulation for this purpose, resulting in the versions ST-SDSC-
NIPG and ST-SDSC-SIPG, respectively. In our extension, we preserve all the positive
qualities of the original scheme. In particular, we can show entropy stability of the
resulting numerical scheme under suitable conditions for both ST-SDSC-NIPG and ST-
SDSC-SIPG.

The question of whether one still needs streamline diffusion and shock-capturing
terms when approximating the compressible Navier-Stokes equations is quite controver-
sial. For efficiency reasons, the physical diffusion cannot be resolved everywhere in a
typical computation. In regions where the physical diffusion is sufficiently resolved, e.g.,
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in boundary layers, the additional diffusion terms are not needed. Away from bound-
aries, the solution of the compressible Navier-Stokes equations can behave quite similar
to the solution of the compressible Euler equations when the physical diffusion is not
sufficiently resolved. In these regions, we want to ensure that our scheme essentially
reduces to the original scheme by Hiltebrand and Mishra. Therefore, we do include a
suitable extension of the original SD and SC terms in our new schemes. The artifi-
cial diffusion terms are constructed such that they eliminate most oscillations around
shocks and vanish with the correct order of convergence in smooth flow. In particular
we numerically observe for smooth flow convergence orders of O(hk+1) for polynomial
degrees of order k (with a potentially worse rate for the ST-SDSC-NIPG version for
even polynomial degrees k).

In the literature, there exists a variety of DG methods for solving the compressible
Navier-Stokes equations that are based on discretizing the conserved variables of the
system, see, e.g., [4–12, 14, 16, 18, 19, 31] and the references cited therein. Several of
them use the IP method for discretizing the diffusion term, for example, the work by
Hartmann and Houston [18, 19]. Others use, e.g., the local discontinuous Galerkin
(LDG) approach or the ‘Bassi-Rebay’ (BR) approach. A unified comparison of typical
discretizations for the diffusion terms can be found in [1] for the case of an elliptic model
problem. To the best of our knowledge the above methods do not allow for theoretical
stability results for the case of the actual diffusion operator of the compressible Navier-
Stokes equations.

Though to a smaller extent, there is also some work based on using entropy variables
as degrees of freedom. The use of entropy variables symmetrizes hyperbolic systems of
conservation laws. For the compressible Navier-Stokes equations, their usage also has
a favorable effect on the structure of the diffusion matrix. This is discussed by Hughes
et al. [22]. In [37], Shakib et al. use entropy variables in combination with a spacetime
finite element approach. The authors use discontinuous elements in time but continu-
ous elements in space. Barth [2, 3] uses a spacetime DG approach and discretizes the
diffusion term using the SIPG approach. To the best of our knowledge though he does
not examine entropy stability for the actual discrete formulation nor does he include
shock-capturing terms when solving the Navier-Stokes equations. Further, van der Vegt
and coworkers [27,28,33] have worked on solving the compressible Navier-Stokes equa-
tions using both conserved variables and entropy variables. The authors use a spacetime
DG approach in combination with an IP discretization of the diffusion term but also
do not provide an explicit proof of entropy stability. In [42], Zakerzadeh and G. May
prove entropy stability estimates for the semidiscrete case of considering different dis-
cretizations of the diffusion term. The authors examine entropy stability in particular
for a LDG discretization, a BR2-type discretization, and also a form of the SIPG dis-
cretization. However, their version of the SIPG discretization employs lift operators
and uses a version of the stabilization term that does not involve the diffusion matrix
(different to ours). Further, the authors do not include shock-capturing terms and do
not consider boundary contributions. Finally, May [29, 30] compares one-dimensional
extensions of the scheme by Hiltebrand and Mishra using the IP discretization and the
LDG discretization for the diffusion term and provides corresponding entropy stability
results.

In this contribution, we extend the one-dimensional method based on the IP dis-
cretization to two dimensions. The proof of entropy stability for the SIPG approach
is more challenging in two dimensions (compared to one space dimension) as the 8×8
diffusion matrix written with respect to entropy variables only has rank 5. We also
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examine the case of adiabatic solid wall boundary conditions here whereas all of the
above mentioned contributions neglect the influence of boundary conditions. Further-
more, we provide improved artificial diffusion terms compared to [30] as well as extensive
numerical results in two dimensions.

This paper is structured as follows: in Section 2, we shortly review the original
scheme of Hiltebrand and Mishra for solving hyperbolic systems of conservation laws to
keep this work self-contained. In Section 3, we discuss properties of the compressible
Navier-Stokes equations in two dimensions when entropy variables are used as degrees of
freedom. In Section 4, we present our extensions ST-SDSC-SIPG and ST-SDSC-NIPG
for solving the compressible Navier-Stokes equations. This includes the discretization
of the physical diffusion term as well as the suitable extension of the artificial dif-
fusion terms. In Section 5, we show entropy stability of our schemes under suitable
assumptions. Finally, in Section 6 we present numerical results in one and two space
dimensions for piecewise polynomial spaces of degrees one, two, and three. We conclude
with a summary in Section 7.

2. Review of the spacetime DG method for hyperbolic systems
In this section, we review the spacetime DG formulation for systems of hyperbolic

conservation laws that our new method is based on to keep this work self-contained.
For more detailed information, we refer to [20,21].

Consider a system of hyperbolic conservation laws on the open domain Ω⊂R2 given
by

Ut+F1(U)x1
+F2(U)x2

= 0, (x,t)∈Ω×R+, (2.1)

where U= (u1,. ..,um)T : Ω×R+→Rm,m∈N, is the vector of conserved variables and
Fk :Rm→Rm is the flux function in xk-direction, k= 1,2. We use the short-hand nota-
tion Ut=∂tU and F(U)xk

=∂xk
F(U).

We assume the existence of a strictly convex entropy function S :Rm→R and of
entropy flux functions Qk :Rm→R, k= 1,2. A weak solution of (2.1) is said to be an
entropy solution if it satisfies the following entropy inequality in the sense of distributions

St(U)+Q1
x1

(U)+Q2
x2

(U)≤0.

We note that this assumption is satisfied for the compressible Euler equations. One can

then define entropy variables V =SU(U) :=
(
∂S(U)
∂u1

,. .., ∂S(U)
∂um

)T
and apply a change of

variables to get

U(V)t+F1(V)x1
+F2(V)x2

= 0, (x,t)∈Ω×R+, (2.2)

where Fk(V) =Fk(U(V)) for brevity. The method is based on using these entropy vari-
ables as degrees of freedom instead of the usual conserved variables. Before describing
the discretization of Equation (2.2), we will first set the prerequisites for the spacetime
mesh.

At the nth time level tn, we denote the time step as ∆tn= tn+1− tn and the update
time interval as In= (tn,tn+1). For simplicity, we assume that the spatial domain Ω⊂R2

is bounded and polyhedral and divided into a triangulation T , i.e., a non-overlapping
set of triangles K such that ∪K∈T K̄=Ω̄. Furthermore, we take the usual conditions of
mesh and shape regularity for granted. For a generic element (cell) K, we denote

hK = diam(K), (diameter of K),

N (K) ={K ′∈T :K ′ 6=K∧meas1d(K̄∩K̄ ′)>0}, (neighbors of K).
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The mesh width of the triangulation is h(T ) = maxK hK . A generic spacetime element
is the prism K×In. We also assume that there exists an (arbitrarily large) constant C
such that (1/C)h≤∆tn≤Ch for all time levels n.

On a given triangulation T with mesh width h(T ), the discrete solution Vh (we
will use the superscript h for referring to discrete variables) is sought in the space

Vk =

{
Wh∈

(
L1(Ω× [0,T ])

)m
:
Wh
i |K×In ∈Pk(K×In) in

each component 1≤ i≤m

}
, (2.3)

where Pk(K×In) is the space of three-dimensional polynomials of order k on the prism
K×In. The discretization of the conservation law (2.2) is given by: find Vh∈Vk such
that

BDG(Vh,Φh)+BSD(Vh,Φh)+BSC(Vh,Φh) = 0 ∀Φh∈Vk. (2.4)

In the following, we will give the details for each of the three quasilinear forms, which
are all nonlinear in the first argument and linear in the second.

2.1. The DG quasilinear form. The form BDG is given by

BDG(Vh,Φh) =−
∑
n,K

∫
In

∫
K

(
U(Vh) ·Φh

t +

2∑
k=1

Fk(Vh) ·Φh
xk

)
dxdt

+
∑
n,K

∫
K

U(Vh
n+1,−,V

h
n+1,+) ·Φh

n+1,−dx−
∑
n,K

∫
K

U(Vh
n,−,V

h
n,+) ·Φh

n,+ dx

+
∑
n,K

∑
K′∈N (K)

∫
In

∫
∂KK′

F(Vh
K,−,V

h
K,+;νKK′) ·Φh

K,− dσ(x)dt, (2.5)

with

Φh
n,±(x) = lim

ε→0+
Φh(x,tn±ε),

∂KK′ =K̄∩K̄ ′,
νKK′ =unit normal for edge KK ′ pointing outwards from element K,

Φh
K,±(x,t) = lim

ε→0+
Φh(x±ενKK′ ,t), ∀x∈∂KK′ ,

(2.6)

for all Φh∈Vk, and a ·b=
∑m
i=1aibi for a,b∈Rm. To enforce boundary conditions, we

will slightly abuse notation and redefine Vh
K,+ on boundary edges appropriately. Details

for Dirichlet and adiabatic solid wall boundary conditions will be given in Section 4.3,
where we will discuss boundary conditions for the complete scheme.

We still need to specify the numerical fluxes that we use. To enable time marching,
we choose the upwind flux for the temporal numerical flux U:

U(Vh
n,−,V

h
n,+) =U(Vh

n,−). (2.7)

For the spatial numerical flux F, we use a consistent, conservative, and entropy-stable
flux given by

F(Vh
K,−,V

h
K,+;νKK′) =

2∑
k=1

Fk,∗(Vh
K,−,V

h
K,+)νkKK′−

1

2
D(Vh

K,+−Vh
K,−) (2.8)
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with D=D(Vh
K,−,V

h
K,+;νKK′). Here, Fk,∗ denotes an entropy-conservative flux (in xk-

direction). The existence of such fluxes for any generic conservation law with an entropy
framework was shown by Tadmor [39]. Explicit expressions of entropy-conservative
fluxes for the compressible Euler equations have been obtained, e.g., by Ismail and Roe
[23]. The operator D represents a numerical diffusion operator. For detailed information
– also concerning the entropy-conservative fluxes – we refer to [20,21].

2.2. Streamline diffusion and shock-capturing operator. If one only used
the BDG-form, i.e., if one defined the discrete solution as the solution of BDG(Vh,Φh) =
0 ∀Φh∈Vk, then this solution would typically exhibit nonphysical oscillations near
shocks and contact discontinuities. Therefore, a streamline diffusion and a shock-
capturing operator are added, compare (2.4). To be more precise, the shock-capturing
term is mainly responsible for damping the nonphysical oscillations. The streamline
diffusion term is mainly helping in solving the resulting nonlinear system in our expe-
rience.

The following form is used for the streamline diffusion operator (cf. [21, 24–26])

BSD(Vh,Φh) =
∑
n,K

∫
In

∫
K

(
UV(Vh)Φh

t +

2∑
k=1

FkV(Vh)Φh
xk

)
·
(
DSD
n,KRes

)
dxdt (2.9)

with intra-element residual

Res =U(Vh)t+

2∑
k=1

Fk(Vh)xk
, (2.10)

and scaling matrix

DSD
n,K =CSD∆tnU−1

V (Vh). (2.11)

Here, CSD denotes a positive constant and is typically chosen to be 10. Further, UV

denotes the Jacobian DU(V) and FkV the Jacobian DFk(V). Note that the intra-
element residual is well defined as the first derivatives are taken of a polynomial function.

The streamline diffusion operator adds numerical diffusion in the direction of the
streamlines. However, one needs further numerical diffusion in order to reduce possible
oscillations at shocks. For this purpose, the following shock-capturing operator (similar
to Barth [2]) is used:

BSC(Vh,Φh) =
∑
n,K

∫
In

∫
K

DSC
n,K

(
Φh
t ·
(
ŨVVh

t

)
+

2∑
k=1

hK
2

(∆tn)2
Φh
xk
·
(
ŨVVh

xk

))
dxdt,

(2.12a)

with ŨV =UV(Ṽn,K) for brevity and

Ṽn,K =
1

meas(In×K)

∫
In

∫
K

Vh(x,t)dxdt

being the cell average. The scaling factor is

DSC
n,K =

∆tnCSCResn,K√∫
In

∫
K

(
Vh
t ·
(
ŨVVh

t

)
+

2∑
k=1

hK
2

(∆tn)2 Vh
xk
·
(
ŨVVh

xk

))
dxdt+ε

,
(2.12b)
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with ε := |K| 12 (∆tn)
−1
2

(
h

diam(Ω)

)θ
and θ≥1/2 (chosen as 1) and

Resn,K :=

√∫
In

∫
K

Res ·
(
U−1

V (Vh)Res
)
dxdt. (2.12c)

Here, CSC is a positive constant, typically taken to be 1. We note that in the original
formulation of the shock-capturing term [20, 21], both an inner residual term (defined
by (2.12c)) and a boundary residual term (not shown here) enter the formula (2.12b).
As the boundary residual term has only little influence, we do not include this term in
our extension to the compressible Navier-Stokes equations and therefore do not present
this term here.

This concludes the brief review of the original scheme for hyperbolic systems.

3. The compressible Navier-Stokes equations
The compressible Navier-Stokes equations in two space dimensions are given by

Ut+F1(U)x1
+F2(U)x2

=H1(U)x1
+H2(U)x2

, (3.1)

with

U=


ρ
ρu
ρv
E

, F1(U) =


ρu

ρu2 +p
ρuv

u(E+p)

, F2(U) =


ρv
ρuv

ρv2 +p
v(E+p)

,
and

H1(U) =


0
τ11

τ21

τ11u+τ12v+κθx1

, H2(U) =


0
τ12

τ22

τ21u+τ22v+κθx2

.
Here, ρ=ρ(x,t)>0 denotes the density, u=u(x,t) the velocity in x1-direction, v=v(x,t)
the velocity in x2-direction, p=p(x,t)>0 the pressure, and

E=
p

γ−1
+

1

2
ρ(u2 +v2)

the total energy with γ>1 being the adiabatic constant. (We note that u and v should
not be mixed up with the conserved variables U= (u1,. ..,u4) and the entropy variables
V = (v1,. ..,v4).) Additionally, R>0 is the gas constant, Cv>0 is the specific heat at
constant volume, and θ= p

Rρ >0 refers to the temperature. The viscous stress tensor τ
is given by

τ =µ

(
∇
(
u
v

)
+

(
∇
(
u
v

))T)
+λ∇·

(
u
v

)
I,

with superscript T denoting the transpose. We assume the viscosity parameters (µ,λ)
and the conductivity κ>0 to be constant. We use λ=− 2

3µ. We further assume the
relation between µ and κ/R to be given by the Prandtl number Pr = 4γ/(9γ−5) via

κ

R
=
γCvµ

RPr
=

γ

(γ−1)Pr
µ.



A. HILTEBRAND AND S. MAY 2101

In order to write the compressible Navier-Stokes equations in the form

Ut+∇·
[
F1(U)
F2(U)

]
=∇·

([
D11(U) D12(U)
D21(U) D22(U)

][
Ux1

Ux2

])
, (3.2)

one needs to define suitable matrices Dij(U)∈R4×4,i,j= 1,2. We do not give the
specifics here; (we refer the interested reader to [16]). We emphasize that the resulting
matrix D= (Dij)i,j=1,2 (which is formulated with respect to the conserved variables) is
not symmetric.

Therefore, we rewrite (3.2) using entropy variables as degrees of freedom. For the
transformation to entropy variables, we use the physical entropy and the corresponding
entropy flux in the following way

s= log(p)−γ log(ρ), S=− ρs

γ−1
, Q1 =− ρus

γ−1
, Q2 =− ρvs

γ−1
. (3.3)

This results in the entropy variables (written in terms of primitive variables and s for
simplicity)

V =

(
γ−s
γ−1

− ρ(u2 +v2)

2p
,

ρu

p
,

ρv

p
, −ρ

p

)T
. (3.4)

Then, we can reformulate the compressible Navier-Stokes equations (3.1) in entropy
variables as follows

U(V)t+∇·
[
F1(V)
F2(V)

]
=∇·

([
A11(V) A12(V)
A21(V) A22(V)

][
Vx1

Vx2

])
, (3.5)

with (compare also [22])

A(V) =

[
A11(V) A12(V)
A21(V) A22(V)

]

=
µ

v3
4



0 0 0 0 0 0 0 0
0 − 4

3v
2
4 0 4

3v2v4 0 0 2
3v

2
4 − 2

3v3v4

0 0 −v2
4 v3v4 0 −v2

4 0 v2v4

0 4
3v2v4 v3v4 − 4

3v
2
2−v2

3 +χv4 0 v3v4 − 2
3v2v4 − 1

3v2v3

0 0 0 0 0 0 0 0
0 0 −v2

4 v3v4 0 −v2
4 0 v2v4

0 2
3v

2
4 0 − 2

3v2v4 0 0 − 4
3v

2
4

4
3v3v4

0 − 2
3v3v4 v2v4 − 1

3v2v3 0 v2v4
4
3v3v4 − 4

3v
2
3−v2

2 +χv4


(3.6)

and χ= γ
(γ−1)Pr . The matrix A has the following property [22].

Lemma 3.1. The matrix A∈R8×8 given in (3.6) is symmetric positive semi-definite.

In the following lemma, we examine the properties of A further. To do so, we
introduce a new matrix Â.

Lemma 3.2. Let the matrix R∈R5×8 be given by

R=


0 1 0 0 0 0 0 0
0 0 1√

2
0 0 1√

2
0 0

0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

. (3.7)
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Define

Â=RART . (3.8)

There holds:

(i) The matrix Â∈R5×5 is given by

Â=


a22

√
2a23 a24 a27 a28√

2a32 2a33

√
2a34

√
2a37

√
2a38

a42

√
2a43 a44 a47 a48

a72

√
2a73 a74 a77 a78

a82

√
2a83 a84 a87 a88


and there holds A=RT ÂR. (Note that in the matrix Â most zero-entries of A
have been eliminated except for entries a23/a32 and a37/a73.)

(ii) The matrix Â is symmetric positive definite for µ,κ>0.

(iii) Let EV(A) denote the set of eigenvalues of the matrix A. Then,

EV(A) = EV(Â)∪{0}

with the dimension of the eigenspace corresponding to the eigenvalue 0 being 3.

Proof.
(i) Follows by direct computation, exploiting that columns 3 and 6 and rows 3 and 6

of A have the same entries.

(ii) Follows by direct computation, e.g., by verifying that all leading principal minors
are positive.

(iii) Define

Rext=



0 1 0 0 0 0 0 0
0 0 1√

2
0 0 1√

2
0 0

0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1√

2
0 0 − 1√

2
0 0

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0


.

Note that Rext is an orthogonal matrix and that RextART
ext=


Â

0
0

0

 . This

directly implies the claim.

In Section 5, we will examine the entropy stability of the ST-SDSC-NIPG and of
the ST-SDSC-SIPG method for the compressible Navier-Stokes equations. For the ST-
SDSC-NIPG method, we will assume that A(Vh) is symmetric positive semi-definite,
which is guaranteed by Lemma 3.1. For the ST-SDSC-SIPG method, we will need
Â(Vh) to be symmetric positive definite, which is guaranteed by Lemma 3.2. We will
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additionally assume that the quotient of the largest and smallest eigenvalue of Â(Vh) is
uniformly bounded. We can derive this property from the following assumption which
requires uniform boundedness of the computed solution.

Assumption 3.1 (Ass. for ST-SDSC-SIPG). We assume that there are uniform lower
bounds ρ0>0,p0>0 such that ρh≥ρ0 and ph≥p0. We further assume that there are
uniform upper bounds ρM ,uM ,vM ,pM >0 such that ρh≤ρM , |uh|≤uM , |vh|≤vM , and
ph≤pM .

Remark 3.1. We note that these assumptions are suitable from a physical point of
view. If they are not satisfied, the compressible Navier-Stokes equations do no longer
represent an accurate physical model. For instance, for very low densities, or more ex-
actly for high Knudsen numbers, the continuity assumption breaks down and one would
need to consider the Boltzmann equation. Similarly, if the velocities become too large
(hypersonic flow), then the particles start ionizing and electromagnetic effects would
need to be taken into account. In addition, the ideal gas law is no longer satisfied for
high densities and pressures, and thus another fundamental assumption would collapse.

Lemma 3.3. Under Assumption 3.1, there exist bounds λ and Λ such that 0<λ≤
λh1 ≤ .. .≤λh5 ≤Λ, where λhi are the eigenvalues of Â(Vh) (with Vh denoting the discrete
solution).

Proof. Under the Assumption 3.1, the entropy variables |V h2 |,|V h3 |,|V h4 | are uni-

formly bounded from above. In addition, |V h4 |= |
ρh

ph
|≥ ρ0

pM
>0. Thus, all the entries in

A(Vh) as well as in Â(Vh) are bounded. This directly leads to an upper bound on the
largest eigenvalue

C≥
∑
i,j

(ai,j)
2 = tr(A>A) = tr(Â>Â) =

∑
i

(λhi )2. (3.9)

Let us denote the upper bound of the eigenvalues by Λ and assume that the eigenvalues
are sorted 0≤λh1 ≤ .. .≤λh5 . Then we have

λh1 ≥λh1
λh2
Λ
.. .
λh5
Λ

=
detÂ(Vh)

Λ4
. (3.10)

A lengthy but direct calculation yields

detÂ(Vh) =
8

3

κ2

R2
µ3

(
ph

ρh

)7

. (3.11)

This is bounded from below by Assumption 3.1 and therefore this establishes a lower
bound on the eigenvalues.

4. The ST-NIPG and the ST-SIPG method

In this section, we present our methods ST-SDSC-NIPG and ST-SDSC-SIPG for
solving the compressible Navier-Stokes equations in two space dimensions. Related
versions in one space dimension have been presented in [30]. In Sections 4.1 and 4.2,
we will focus on the description of the methods in the interior of the space domain Ω.
Necessary modifications to account for boundary conditions will be discussed in Section
4.3.
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4.1. The IP formulation. We introduce the following notation: F refers to
the collection of all edges of the triangulation T with Fi referring to the collection of
interior edges and FΓ referring to the collection of boundary edges. For each edge e∈Fi
we assign a unit normal νe= (ν1

e ,ν
2
e )T , e.g., to point from K1 to K2. For an edge e∈FΓ,

νe is assumed to coincide with the exterior unit normal vector. We define the average
and jump for an edge e∈Fi shared by triangles K1 and K2 by{

Vh
}

=
1

2

(
Vh
K1,−+Vh

K2,−
)

and
[
Vh
]

=Vh
K1,−−Vh

K2,−.

For an edge e∈FΓ, which belongs to cell K, we define
{
Vh
}

=
[
Vh
]

=Vh
K,−.

For both ST-SDSC-NIPG and ST-SDSC-SIPG, we seek the discrete solution Vh∈
Vk such that

BDG(Vh,Φh)+BIP
SD(Vh,Φh)+BIP

SC(Vh,Φh)+BIP,ζ(V
h,Φh) = 0 ∀Φh∈Vk. (4.1)

Here, BDG is given by (2.5) and essentially corresponds to the DG discretization of
the compressible Euler equations ; BIP

SD and BIP
SC are modifications of the streamline

diffusion and shock-capturing terms, which will be described in Section 4.2 and have
been added for stability in underresolved regions. Finally, the form BIP,ζ represents the
discretization of the diffusion term (representing physical viscosity and heat conduction)
and is given by

BIP,ζ(V
h,Φh) =

∑
n,K

∫
In

∫
K

∑
ij

(
Aij(V

h)Vh
xj

)
·Φh

xi
dxdt

−
∑
n

∑
e∈Fi

∫
In

∫
e

∑
ij

(
Aij({Vh})

{
Vh
xj

})
·([Φh]νie)dσ(x)dt (B1)

+ζ
∑
n

∑
e∈Fi

∫
In

∫
e

∑
ij

(
Aij({Vh})

{
Φh
xj

})
·([Vh]νie)dσ(x)dt (B2)

+
∑
n

∑
e∈Fi

∫
In

∫
e

σ

he

∑
ij

(
Aij({Vh})([Vh]νje)

)
·([Φh]νie)dσ(x)dt (B3)

+
∑
n

∑
e∈FΓ

BΓ,n,e
IP,ζ (Vh,Φh). (4.2)

Throughout the paper, we will use the short-hand notation
∑
ij which stands for

∑2
i,j=1.

The terms (B1)-(B3) describe terms on interior edges e∈Fi whereas BΓ,n,e
IP,ζ (Vh,Φh)

summarizes the corresponding terms for boundary edges e∈FΓ. We will describe the
details for Dirichlet boundary conditions and adiabatic solid wall boundary conditions
in Section 4.3.

Roughly speaking, one deduces the IP discretization by multiplying ∇·(A(V)∇V)
with a test function Φ, integrating over a space-time domain, and applying integration
by parts in space. This essentially results in the first two lines above. The term (B2) is
then added to make the resulting bilinear form symmetric or anti-symmetric, depending
on the choice of ζ. Finally, the term (B3) is added to enforce stability/coercivity. The
parameter σ>0 represents a penalty parameter and he denotes the length of the edge
that is integrated over. We note that the definition of BIP,ζ is independent of the choice
of the direction of the normal νe. More detailed information about the interior penalty
discretizations for elliptic partial differential equations can be found, e.g., in Rivière [34].
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Notation 4.1. For ζ= 1, the discretization of the diffusion term uses the NIPG
approach (for nonsymmetric interior penalty Galerkin method) and we therefore call the
resulting method ST-SDSC-NIPG; for ζ=−1, the SIPG method (for symmetric interior
penalty Galerkin method) is used for the diffusion term, implying the name ST-SDSC-
SIPG for the full scheme.

4.2. Streamline diffusion and shock-capturing operator. We adjust the
streamline diffusion and shock-capturing terms in order to account for the presence of
the diffusion term. Different to (2.10), the intra-element residual is now given by

ResIP =U(Vh)t+

2∑
k=1

Fk(Vh)xk
−

2∑
k=1

(
Ak1(Vh)Vh

x1
+Ak2(Vh)Vh

x2

)
xk
. (4.3)

One could then define a shock-capturing term BIP
SC without further changes (other than

using ResIP in the definition of Resn,K , cmp. (2.12c), instead of Res). For the streamline
diffusion, one needs to make the following adjustment

BIP
SD(Vh,Φh) =

∑
n,K

∫
In

∫
K

(
UV(Vh)Φh

t +

2∑
k=1

FkV(Vh)Φh
xk

−
2∑
k=1

(
Ak1(Vh)Φh

x1
+Ak2(Vh)Φh

x2

)
xk

)
·
(
DSD
n,K ResIP

)
dxdt. (4.4)

This adjustment is necessary in order to ensure the entropy stability of the resulting
method. (This will become more obvious in the proof of the entropy stability in Section
5.)

If we used these formulations of BIP
SC and BIP

SD in (4.1), we would observe suboptimal
convergence rates of O(hk) for tests involving smooth flow (compare the corresponding
one-dimensional results in [30]). This was not the case for the original scheme (2.4)
for conservation laws when the artificial diffusion terms were included. We believe that
this is due to the fact that now second-order derivatives enter the computation of the
residual and therefore reduce the order of convergence of the residual. In [17], Hartmann
presents shock-capturing terms for the compressible Navier-Stokes equations. If we
multiplied BIP

SC (on a cell-wise level) with h0.9
K , the shock-capturing terms would have

certain similarities. However, in this case our resulting shock-capturing term would not
reduce to the shock-capturing term for the compressible Euler equations if the physical
diffusion is not sufficiently resolved; as a result, oscillations might not be sufficiently
damped.

We therefore adjust the formulation of the streamline diffusion and shock-capturing
term differently: In [21], the authors introduced a pressure scaling term in BSC in order
to capture contact discontinuities for the compressible Euler equations more sharply:
they changed the term DSC

n,K in (2.12b) in the following way

DSC
n,K→DSC

n,K ·D
p
n,K (4.5)

with

Dp
n,K =h2

K

1
∆tn

1
|K|
∫
In

∫
K

√∑2
k=1p

2
xkxk

dxdt

1
∆tn

1
|K|
∫
In

∫
K
pdxdt

. (4.6)
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The authors did not include this term in their formulation of BSC (for general systems
of conservation laws in [21]) as this adjustment is specific to the compressible Euler
equations. Since we are specifically interested in solving the compressible Navier-Stokes
equations, we will use this adjustment in our method. To be consistent, we also change
the streamline diffusion term and scale DSD

n,K defined in (2.11) with Dp
n,K .

We summarize our changes compared to the streamline diffusion and shock-
capturing terms of the original scheme:

• use the definition of the cell-wise residual ResIP given by (4.3) (instead of Res
given by (2.10)); also change this in the definition of Resn,K in (2.12c);

• use the definition of BIP
SD given by (4.4) instead of BSD given by (2.9);

• multiply DSC
n,K in (2.12b) and DSD

n,K in (2.11) with the pressure scaling term
defined in (4.6):

DSC
n,K→DSC

n,K ·D
p
n,K and DSD

n,K→DSD
n,K ·D

p
n,K . (4.7)

4.3. Boundary conditions. It remains to specify the discretization on the
domain boundary ∂Ω for the quasi-linear forms BDG, BIP

SD, BIP
SC, and BIP,ζ . The artificial

diffusion terms BIP
SD and BIP

SC do not contain boundary terms. Therefore, nothing needs
to be changed. For BDG, we enforce the boundary condition in the following way: like
for interior edges, we compute a numerical flux for boundary edges based on the interior
value Vh

K,− and on an outer value Vh
K,+, which we will specify in the following for the

case of Dirichlet and adiabatic solid wall boundary conditions. Finally, for BIP,ζ , the

boundary treatment is captured in the term BΓ,n,e
IP,ζ and will be specified in the following.

To do so, let e∈FΓ belong to a cell K and denote by νe the exterior unit normal of
triangle K on edge e.

4.3.1. Dirichlet boundary conditions. For imposing the Dirichlet boundary
conditions U=g weakly on an edge e∈FΓ, we use Vh

K,+ =SU(g) in BDG on edge e.

The term BΓ,n,e
IP,ζ in (4.2) uses the following modified versions of (B1)−(B3) from (4.2):

BΓ,n,e
IP,ζ (Vh,Φh)

=−
∫
In

∫
e

∑
ij

(
Aij(SU(g))Vh

xj ,K,−

)
·(Φh

K,−ν
i
e)dσ(x)dt (B1′)

+ζ

∫
In

∫
e

∑
ij

(
Aij(SU(g))Φh

xj ,K,−

)
·(Vh

K,−−SU(g))νie dσ(x)dt (B2′)

+

∫
In

∫
e

σ

he

∑
ij

(
Aij(SU(g))(Vh

K,−−SU(g))νje
)
·(Φh

K,−ν
i
e)dσ(x)dt. (B3′)

4.3.2. Adiabatic solid wall boundary conditions. We enforce on e∈FΓ the
conditions

• u=v= 0 (no slip condition) and

• κ ∂θ
∂νe

= 0 (no heat flux condition).

To enforce this in BDG, we define the outer input argument (based on the function
value Vh

K,− on the edge e)

Vh
K,+ =

(
vh1,K− , −v

h
2,K−

, −vh3,K− , v
h
4,K−

)T
. (4.8)

This corresponds to inverting the velocity vector and ensures that the second and third
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component of 1
2

(
Vh
K,−+Vh

K,+

)
vanish. For BIP,ζ , we define the vector

vΓ =
(
0, 0, 0, vh4,K−

)T
. (4.9)

(We note that the entry vh1,K− will not play a role in the following.) Further, we define

Aµ(vΓ) as A(vΓ) but with the heat conduction terms µγ
(γ−1)Pr

1
v2
4

in entries (A(vΓ))4,4

and (A(vΓ))8,8 being removed. Then, for e∈FΓ, the term BΓ,n,e
IP,ζ in (4.2) (which captures

the appropriate modifications of (B1)−(B3)) is given by

BΓ,n,e
IP,ζ (Vh,Φh) =−

∫
In

∫
e

∑
ij

(
Aµ
ij(vΓ)Vh

xj ,K,−

)
·(Φh

K,−ν
i
e)dσ(x)dt (B1′′)

+ζ

∫
In

∫
e

∑
ij

(
Aµ
ij(vΓ)Φh

xj ,K,−

)
·(Vh

K,−−vΓ)νie dσ(x)dt (B2′′)

+

∫
In

∫
e

σ

he

∑
ij

(
Aµ
ij(vΓ)(Vh

K,−−vΓ)νje
)
·(Φh

K,−ν
i
e)dσ(x)dt. (B3′′)

We note that the vector Aµ(vΓ)vΓ has only zero entries. We keep it though for consis-
tency with the formulation for interior edges and Dirichlet boundary conditions.

5. Entropy stability
In this section, we examine under which conditions the suggested formulations of the

ST-SDSC-NIPG and the ST-SDSC-SIPG method are entropy stable for the compressible
Navier-Stokes equations.

5.1. Statement of main results. We will focus on the case of adiabatic solid
wall boundary conditions, i.e., Γ= Γadia, which are commonly used for the compressible
Navier-Stokes equations. We described in Section 4.3.2 how we enforce these boundary
conditions. When enforcing adiabatic solid wall boundary conditions, there should hold

d

dt

∫
Ω

S(U(x,t))dx≤0.

Remark 5.1. In numerical tests, one often has a combination of different boundary
condition types. For example, for flow around an airfoil (compare Section 6.5), Γadia

corresponds to the airfoil boundary and Γremainder = ΓrΓadia corresponds to the far
field boundary. In our considerations below, we will focus on effects caused by the
boundary treatment of Γadia. (This corresponds to assuming that, e.g., the far field
treatment is done in such a way that the simulation does not see a difference to using
an infinite domain.) In our theorems, we will assume to have adiabatic solid wall
boundary conditions everywhere.

Theorem 5.1 (Entropy stability for ST-SDSC-NIPG). Consider the compressible
Navier-Stokes Equations (3.1) and let the entropy pair (S,Q) be given by (3.3). Consider
adiabatic solid wall boundary conditions. For the numerical enforcement of boundary
conditions on Γadia follow Section 4.3.2. Follow [23] for the definition of the entropy
conservative flux Fk,∗ and use Rusanov diffusion for the operator D. Let the final time
be denoted by tN . Then, the approximate solutions generated by the scheme (4.1) with
ζ= 1 and σ>0 satisfy∫

Ω

S(U(Vh
N,−(x)))dx≤

∫
Ω

S(U(Vh
0,−(x)))dx.



2108 ENTROPY-STABLE DG SCHEMES FOR THE COMPRESSIBLE N-S EQUATIONS

For the proof of entropy stability for the ST-SDSC-SIPG method, we will need the
following inverse trace estimate [36,41].

Lemma 5.1. There holds for ph∈Pk(K)∫
∂K

ph(x)2 dσ(x)≤ cinv

hK

∫
K

ph(x)2dx

with cinv = ck2 and with hK denoting the diameter of the cell K.

Theorem 5.2 (Entropy stability for ST-SDSC-SIPG). Let Assumption 3.1 and the
assumptions of Theorem 5.1 hold true. Then, the approximate solutions generated by
the scheme (4.1) with ζ=−1 satisfy∫

Ω

S(U(Vh
N,−(x)))dx≤

∫
Ω

S(U(Vh
0,−(x)))dx,

provided σ is chosen sufficiently large such that

σ≥ cinvΛ

λ
(5.1)

where λ,Λ are defined in Lemma 3.3 and the constant cinv is specified in Lemma 5.1.

Remark 5.2. Our proofs are set up in such a way that they first consider the
case of only interior edges and then take the edge terms on the domain boundary into
account, on which adiabatic solid wall conditions are enforced. Therefore, as a side effect,
the proofs imply the corresponding results for the case of only having interior edges.
Consequently, one can extend the proofs to other types of boundary conditions, provided
they are mathematically meaningful and that a suitable numerical discretization has
been chosen.

For the proofs of these theorems, we partially rely on the corresponding results for
the original scheme for hyperbolic systems that we briefly reviewed in Section 2. We
will summarize these results in the following.

5.2. Entropy stability for the original scheme for conservation laws [21].
There holds the following theorem.

Theorem 5.3 (Partial restatement of Theorem 3.1 in [21]). Consider the system
of conservation laws (2.1) with a uniformly convex entropy function S and entropy
flux functions Qk (1≤k≤2). For simplicity, assume that the exact and approximate
solutions have compact support inside the spatial domain Ω. Let the final time be denoted
by tN . Then, the streamline diffusion shock-capturing discontinuous Galerkin scheme
(2.4) approximating (2.1) is entropy-stable, i.e., the approximate solutions satisfy∫

Ω

S(U(Vh
N,−(x)))dx≤

∫
Ω

S(U(Vh
0,−(x)))dx. (5.2)

One can also extract the following property of the quasilinear form BDG from the
proof of Theorem 5.3 (given as proof of Theorem 3.1 in [21]).

Lemma 5.2. Under the conditions of Theorem 5.3, there holds

BDG(Vh,Vh)≥
∫

Ω

S(U(Vh
N,−(x)))dx−

∫
Ω

S(U(Vh
0,−(x)))dx. (5.3)
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Different to the result of Lemma 5.2 (which assumes compact support of the solu-
tion), we consider here the case of adiabatic solid wall boundary conditions. One can
adjust the proof of Lemma 5.2 appropriately to also prove the following result.

Lemma 5.3. Let the assumptions of Theorems 5.1 and 5.2, respectively, hold true.
Let the input argument Vh

K,+ in the computation of the numerical inviscid flux at the
wall boundary be given by (4.8). Then, there holds

BDG(Vh,Vh)≥
∫

Ω

S(U(Vh
N,−(x)))dx−

∫
Ω

S(U(Vh
0,−(x)))dx.

As the focus of this contribution is on the viscous terms, we provide a sketch of the
proof of Lemma 5.3 in the Appendix.

5.3. Proofs of Theorems 5.1 and 5.2. In order to prove these theorems, we
need the following auxiliary results.

Lemma 5.4. For the ST-SDSC-NIPG method, under the assumptions of Theorem 5.1,
there holds

BIP,1(Vh,Vh)≥0.

Proof. By definition, there holds for Φh=Vh and Γ = Γadia,

BIP,1(Vh,Vh) =
∑
n,K

∫
In

∫
K

∑
ij

(
Aij(V

h)Vh
xj

)
·Vh

xi
dxdt

−
∑
n

∑
e∈Fi

∫
In

∫
e

∑
ij

(
Aij({Vh})

{
Vh
xj

})
·([Vh]νie)dσ(x)dt

+
∑
n

∑
e∈Fi

∫
In

∫
e

∑
ij

(
Aij({Vh})

{
Vh
xj

})
·([Vh]νie)dσ(x)dt

+
∑
n

∑
e∈Fi

∫
In

∫
e

σ

he

∑
ij

(
Aij({Vh})([Vh]νje)

)
·([Vh]νie)dσ(x)dt.

+
∑
n

∑
e∈FΓ

BΓ,n,e
IP,1 (Vh,Vh),

with BΓ,n,e
IP,1 (Vh,Vh) representing the treatment on Γadia. Let us first consider interior

edges: The terms in the second and third line cancel each other. As A is positive
semi-definite according to Lemma 3.1 and σ>0, the terms in the first and fourth line
are non-negative. Let us now consider the boundary terms that are given by (compare
also Section 4.3.2)

BΓ,n,e
IP,1 (Vh,Vh) =−

∫
In

∫
e

∑
ij

(
Aµ
ij(vΓ)Vh

xj ,K,−

)
·(Vh

K,−ν
i
e)dσ(x)dt

+

∫
In

∫
e

∑
ij

(
Aµ
ij(vΓ)Vh

xj ,K,−

)
·(Vh

K,−−vΓ)νie dσ(x)dt

+

∫
In

∫
e

σ

he

∑
ij

(
Aµ
ij(vΓ)(Vh

K,−−vΓ)νje
)
·(Vh

K,−ν
i
e)dσ(x)dt.
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For e∈FΓadia
, with vΓ defined by (4.9), there holds Aµ(vΓ)vΓ =0. Therefore, due to

the symmetry of Aµ, the terms in the first and second line cancel each other. Further,
due to Aµ being positive semi-definite, the term in the third line is non-negative. This
implies the claim.

Lemma 5.5. For the ST-SDSC-SIPG method, under the assumptions of Theorem 5.2,
there holds

BIP,−1(Vh,Vh)≥0.

The proof is fairly lengthy and given below. With these prerequisites, we first want to
present the proof of Theorems 5.1 and 5.2 – keeping in mind that Lemma 5.5 still needs
to be shown.

Proof. (Proof of Theorems 5.1 and 5.2.) Testing in (4.1) with Φh=Vh

results in

BDG(Vh,Vh)+BIP
SD(Vh,Vh)+BIP

SC(Vh,Vh)+BIP,ζ(V
h,Vh) = 0.

We consider each of the four terms separately:

(1) Term BDG(Vh,Vh): According to Lemma 5.3, there holds

BDG(Vh,Vh)≥
∫

Ω

S(U(Vh
N,−(x)))dx−

∫
Ω

S(U(Vh
0,−(x)))dx.

(2) Term BIP
SD(Vh,Vh): Claim: There holds

BIP
SD(Vh,Vh)≥0.

Proof: We essentially follow the proof of Theorem 3.1 in [21]. (Note that both BIP
SD

and BIP
SC only include domain terms (and no boundary terms) and that therefore they

do not need to be adjusted for boundary treatment.) Based on our new definition of
the streamline diffusion term given by (4.4), there holds, by chain rule (remember
that within each cell our discrete solution is a polynomial and therefore smooth),

BIP
SD(Vh,Vh) =

∑
n,K

∫
In

∫
K

ResIP ·
(
DSD
n,K ResIP

)
dxdt.

With the definition of DSD
n,K given by (4.7) and (2.11) and due to the entropy S

being strictly convex, this implies BIP
SD(Vh,Vh)≥0.

(3) Term BIP
SC(Vh,Vh): Claim: There holds

BIP
SC(Vh,Vh)≥0.

Proof: By definition (compare (2.12a) and Section 4.2)

BIP
SC(Vh,Vh) =

∑
n,K

∫
In

∫
K

DSC
n,K(

Vh
t ·
(
UV(Ṽn,K)Vh

t

)
+

2∑
k=1

h2
K

(∆tn)2
Vh
xk
·
(
UV(Ṽn,K)Vh

xk

))
dxdt

with DSC
n,K being given by (4.7) and (2.12b) but with Resn,K being based on ResIP

instead of being based on Res. Due to the strict convexity of the entropy function
S, both UV and U−1

V are strictly positive definite. This implies DSC
n,K ≥0. This

also directly implies BIP
SC(Vh,Vh)≥0.
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(4) Term BIP,ζ(V
h,Vh): Based on Lemmata 5.4 and 5.5 there holds for both the ST-

SDSC-NIPG and the ST-SDSC-SIPG method (under the respective assumptions)

BIP,ζ(V
h,Vh)≥0.

Summarizing the estimates for the four terms results in

0 =BDG(Vh,Vh)+BIP
SD(Vh,Vh)+BIP

SC(Vh,Vh)+BIP,ζ(V
h,Vh)

≥
∫

Ω

S(U(Vh
N,−(x)))dx−

∫
Ω

S(U(Vh
0,−(x)))dx+0+0+0,

which implies the claim.

This concludes the proof of entropy stability for ST-SDSC-NIPG. In order to show
entropy stability for ST-SDSC-SIPG, it remains to prove Lemma 5.5. To do so, we need
the following lemma.

Lemma 5.6. Let the matrix C :Rm→Rm be symmetric positive semi-definite. Then
there holds for arbitrary vectors v,w∈Rm and δ>0

2wTCv≤ δwTCw+
1

δ
vTCv.

Proof. The proof follows directly from

0≤ 1

δ

(
(δw−v)TC(δw−v)

)
= δwTCw−2wTCv+

1

δ
vTCv.

We can now proceed to proving Lemma 5.5.

Proof. (Proof of Lemma 5.5.) Using that A is symmetric, there holds

BIP,−1(Vh,Vh) =
∑
n,K

∫
In

∫
K

∑
ij

(
Aij(V

h)Vh
xj

)
·Vh

xi
dxdt

−2
∑

n,e∈Fi

∫
In

∫
e

∑
ij

(
Aij({Vh})

{
Vh
xj

})
·([Vh]νie)dσ(x)dt

+
∑

n,e∈Fi

∫
In

∫
e

σ

he

∑
ij

(
Aij({Vh})([Vh]νje)

)
·([Vh]νie)dσ(x)dt

+
∑
n

∑
e∈FΓ

BΓ,n,e
IP,−1(Vh,Vh).

We will first focus on the case of interior edges e∈Fi and only discuss the adjustments
necessary for BΓ,n,e

IP,−1 with Γ = Γadia at the end of this proof. For simplicity, we will
just write

∑
e in the following with the meaning of

∑
e∈Fi

. Applying Lemma 5.6 with
arbitrary δ>0 to the terms in the second line gives

2
∑

ij

(
Aij({Vh})

{
Vh
xj

})
·([Vh]νie)

≤ δhe
∑

ij

(
Aij({Vh})

{
Vh
xj

})
·
{
Vh
xi

}
+

1

δhe

∑
ij

(
Aij({Vh})([Vh]νje)

)
·([Vh]νie)

with δ to be determined later. We note that for σ≥ 1
δ , the second term can trivially be

bounded by the penalty term. Let us therefore focus on the first term, which we want
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to bound by means of the domain term. Applying Lemma 3.2 and using the therein
defined matrices R and Â implies∑

n,K

∫
In

∫
K

∑
ij

(
Aij(V

h)Vh
xj

)
·Vh

xi
dxdt

−
∑
n,e

∫
In

∫
e

δhe
∑

ij

(
Aij({Vh})

{
Vh
xj

})
·
{
Vh
xi

}
dσ(x)dt

=
∑
n,K

∫
In

∫
K

(
(Vh

x1
)T (Vh

x2
)T
)
RT Â(Vh)R

(
Vh
x1

Vh
x2

)
dxdt

−
∑
n,e

∫
In

∫
e

δhe

({
Vh
x1

}T {
Vh
x2

}T)RT Â({Vh})R
({

Vh
x1

}{
Vh
x2

})dσ(x)dt.

We note that Â is positive definite and that by Assumption 3.1 its eigenvalues are
uniformly bounded. Therefore, the above term can be bounded from below by∑

n,K

∫
In

∫
K

λ
(
(Vh

x1
)T (Vh

x2
)T
)
RTR

(
Vh
x1

Vh
x2

)
dxdt

−
∑
n,e

∫
In

∫
e

Λδhe

({
Vh
x1

}T {
Vh
x2

}T)RTR

({
Vh
x1

}{
Vh
x2

})dσ(x)dt

=
∑
n,K

∫
In

∫
K

λ

(
(v2)2

x1
+

1

2
((v3)x1

+(v2)x2
)
2

+(v4)2
x1

+(v3)2
x2

+(v4)2
x2

)
dxdt

−
∑
n,e

∫
In

∫
e

Λδhe

(
{(v2)x1}2+

1

2
({(v3)x1}+{(v2)x2})

2
+{(v3)x2}2+

2∑
k=1

{(v4)xk
}2
)
dσ(x)dt.

We want to transform the boundary integral to a domain integral. Let e be the
edge between cells K1 and K2 and note that

{(vj)xd
}2e =

(
1

2
((vj)xd,K1

−
+(vj)xd,K2

−
)

)2

≤ 1

2

(
(vj)

2
xd,K1

−
+(vj)

2
xd,K2

−

)
. (5.4)

Denote by e1
K , e2

K , and e3
K the three edges of a triangle K. Further note that for fixed

t, (vj)xd
(t,x1,x2) is a polynomial of degree k−1 in (x1,x2). We can apply the inverse

trace estimate from Lemma 5.1 to get

3∑
k=1

∫
ekK

(vj)
2
xd,K−

dσ(x) =

∫
∂K

(vj)
2
xd,K−

dσ(x)≤ cinv

hK

∫
K

(vj)
2
xd
dx.

This implies

∑
n,e

∫
In

∫
e

Λδhe

(
{(v2)x1}2 +{(v3)x2}2 +

1

2
({(v3)x1

+(v2)x2
})2

+

2∑
k=1

{(v4)xk
}2
)
dσ(x)dt

≤
∑
n,e

∫
In

∫
e

Λδhe

(
1

2

(
(v2)2

x1,K1
−

+(v2)2
x1,K2

−

)
+

1

2

(
(v3)2

x2,K1
−

+(v3)2
x2,K2

−

)
+

1

4

(
((v3)x1,K1

−
+(v2)x2,K1

−
)2 +((v3)x1,K2

−
+(v2)x2,K2

−
)2
)
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+
1

2

(
(v4)2

x1,K1
−

+(v4)2
x1,K2

−

)
+

1

2

(
(v4)2

x2,K1
−

+(v4)2
x2,K2

−

))
dσ(x)dt

=
∑
n,K

∫
In

3∑
k=1

∫
ekK

1

2
ΛδhekK

(
(v2)2

x1,K−+(v3)2
x2,K−

+
1

2
((v3)x1,K−+(v2)x2,K−)2 +(v4)2

x1,K−+(v4)2
x2,K−

)
dσ(x)dt

≤
∑
n,K

∫
In

∫
K

1

2
cinvΛδ

hekK
hK

(
(v2)2

x1
+(v3)2

x2
+

1

2
((v3)x1 +(v2)x2)

2
+

2∑
k=1

(v4)2
xk

)
dxdt,

where we have reordered the sum over edges as sum over triangles and have ignored
contributions from the domain boundary Γ. As the length of each triangle edge hekK
can be bounded by the diameter of the cell hK , this implies∑
n,K

∫
In

∫
K

λ
(
(Vh

x1
)T (Vh

x2
)T
)
RTR

(
Vh
x1

Vh
x2

)
dxdt

−
∑
n,e

∫
In

∫
e

Λδhe

({
Vh
x1

}T {
Vh
x2

}T)RTR

({
Vh
x1

}{
Vh
x2

})dσ(x)dt

≥
∑
n,K

∫
In

∫
K

(λ− 1

2
cinvΛδ)

(
(v2)2

x1
+

1

2
((v3)x1

+(v2)x2
)
2

+(v3)2
x2

+

2∑
k=1

(v4)2
xk

)
dxdt.

To summarize the results for interior edges, there holds

BIP,−1(Vh,Vh)

≥
∑
n,K

∫
In

∫
K

(λ− 1

2
cinvΛδ)

(
(v2)2

x1
+

1

2
((v3)x1

+(v2)x2
)
2

+(v3)2
x2

+

2∑
k=1

(v4)2
xk

)
dxdt

+
∑

n,e∈Fi

∫
In

∫
e

σ− 1
δ

he

∑
ij

(
Aij({Vh})([Vh]νje)

)
·([Vh]νie)dσ(x)dt

+
∑
n

∑
e∈FΓ

BΓ,n,e
IP,−1(Vh,Vh),

which implies the claim if we only had interior edges if δ≤ 2λ
cinvΛ and σ≥ 1

δ , resulting in

the condition σ≥ cinvΛ
2λ , which is guaranteed by the condition cinvΛ

λ given by (5.1).
Let us now consider the edges e∈FΓadia

, on which we enforce adiabatic solid wall
boundary conditions. Using Aµ(vΓ)vΓ =0 and the symmetry of Aµ, we have

BΓ,n,e
IP,−1(Vh,Vh) =−2

∫
In

∫
e

∑
ij

(
Aµ
ij(vΓ)Vh

xj ,K,−

)
·(Vh

K,−ν
i
e)dσ(x)dt

+

∫
In

∫
e

σ

he

∑
ij

(
Aµ
ij(vΓ)(Vh

K,−ν
j
e)
)
·(Vh

K,−ν
i
e)dσ(x)dt.

Different to the ST-SDSC-NIPG method, we need to include the domain term∫
In

∫
K

∑
ij

(
Aij(V

h)Vh
xj

)
·Vh

xi
dxdt
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in our estimates for the terms on the domain boundary. We proceed exactly like for
interior edges and apply Young’s inequality to split the boundary term with the factor
2. Then, we bound one part by the penalty term. The other part can be bounded by the
domain term (together with the boundary terms from interior edges) like we did above
for interior edges. Note that we did not change the matrix occurring in the domain
term. Therefore, we can bound this term from below using the lower bound for the
eigenvalues λ provided Assumption 3.1 holds true. Note further that the eigenvalues of
Aµ(vΓ) can still be bounded from above by Λ from Lemma 3.3.

We remark that one should not first deduce estimates for interior edges and then
deduce estimates for boundary edges separately. This was just done to simplify the
presentation. Instead one needs to consider both edge types simultaneously. This gives

BIP,−1(Vh,Vh)

≥
∑
n,K

∫
In

∫
K

(λ−cinvΛδ)

(
(v2)2

x1
+

1

2
((v3)x1

+(v2)x2
)
2

+(v3)2
x2

+

2∑
k=1

(v4)2
xk

)
dxdt

+
∑

n,e∈Fi

∫
In

∫
e

σ− 1
δ

he

∑
ij

(
Aij({Vh})([Vh]νje)

)
·([Vh]νie)dσ(x)dt

+
∑

n,e∈FΓ

∫
In

∫
e

σ− 1
δ

he

∑
ij

(
Aµ
ij(vΓ)(Vh

K,−ν
j
e)
)
·(Vh

K,−ν
i
e)dσ(x)dt.

Comparing with the case of only considering interior edges, we find that there is a factor
of 1

2 missing (which was present for interior edges, compare (5.4)). Therefore, we need to
increase the penalty parameter σ by a factor of 2 on boundary cells to guarantee entropy
stability for adiabatic solid wall boundary conditions. This results in the condition cinvΛ

λ
stated in (5.1).

6. Numerical results
In the following, we present numerical examples, mostly comparing with standard

tests from the literature. Following (2.8), the numerical flux F is split into two parts: We
follow [23] for the definition of Fk,∗ (the entropy-conservative flux in xk-direction) for
the compressible Euler equations and use Rusanov diffusion for the operator D [21]. We
will start with the Sod test in one space dimension in order to confirm the appropriate
behavior of our artificial diffusion terms close to shocks and contact discontinuities.

In many test cases, the results for ST-SDSC-SIPG and ST-SDSC-NIPG are very
similar to each other. We will therefore only present results for ST-SDSC-NIPG unless
otherwise specified. We use σ= 10 and σ= 20 for our computations for ST-SDSC-NIPG
and ST-SDSC-SIPG, respectively.

For our one-dimensional test, we use a uniform mesh. For our tests in two dimen-
sions, we use a structured or unstructured triangle mesh in space. The latter one is
generated using the DistMesh package [32]. Although not needed for stability, we typi-
cally use for our time-dependent test problems a CFL condition with CFL number 0.5
(taken with respect to the convective part of the equations) for accuracy reasons.

We use a scaled and shifted monomial basis and employ Dunavant quadrature rules
[13] for the evaluation of the integrals over triangles and Gaussian quadrature otherwise.
We use a damped Newton method with an analytically computed Jacobian matrix to
solve the nonlinear system in each time step. The linear system in each Newton iteration
is solved by means of a preconditioned GMRES scheme [35]. More details concerning
the implementation can be found in [20,21].
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(d) h= 1.25 ·10−4, V1
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−0.5 0 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 

 

w/o

w/

(f) h= 1.25 ·10−4, V3

Fig. 6.1. Sod test: Result for density for varying polynomial degree and grid resolution. The plots
show the solution for using the methods both without BIPSD and BIPSC terms (‘w/o’) and with BIPSD and

BIPSC terms (‘w/’).

6.1. Sod test. We start with a version of the Sod test, similar to the test
in [30,40]. Although the focus of this contribution is on two space dimensions, we start
with this one-dimensional test problem as it is very well-understood and very suitable
for testing the behavior of our artificial diffusion terms. We consider initial data

(ρ,m,E) =

{
(1.0,0.0,2.5) if x<0,

(0.125,0.0,0.25) if x>0,

on the domain Ω = (−0.5,0.5). The viscosity µ= 2.5 ·10−6 is fairly small.
Figure 6.1 shows the result for density for the final time T = 0.2 for polynomial

degrees one, two, and three and for two different grid resolutions h= 1.0 ·10−2 and
h= 1.25 ·10−4. Although we solved the compressible Navier-Stokes equations, the small
diffusion terms could not be resolved on the coarse grid with mesh width h= 1.0 ·10−2

and therefore the solution behaves similar to the solution of the compressible Euler
equations: we observe oscillations around contact discontinuity and shock when not
using artificial viscosity terms. The oscillations are mostly gone when the BIP

SD and BIP
SC

terms included. This shows that (a) stabilization terms are needed in underresolved
regions of the flow and (b) that our BIP

SD and BIP
SC terms are suitable for that purpose.

If we solve the compressible Navier-Stokes equations on a finer grid with width
h= 1.25 ·10−4, the physical diffusion will serve as stabilization. We observe in Figure
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6.1 that with increasing polynomial degree the overshoot decreases due to a better
resolution of the physical diffusion. Thus artificial stabilization is not really needed.
But the results also show that our artificial terms still slightly enhance the solution for
this scenario.

6.2. Manufactured solution. To test the accuracy of our schemes in smooth
flow we use the test of a manufactured solution provided in the literature [16, sect. 4.1]
but we use a square domain (−3,3)2 without the cylinder cut out1. Also, we use µ= 1.0
instead of µ= 0.01. As our artificial diffusion terms are not meant to deal with source
terms we do not include them in the simulation.

The results for the L1 error measured over all 4 components at the final time T = 0.1
for ST-SDSC-SIPG and ST-SDSC-NIPG (without BIP

SD and BIP
SC) are shown in Figure

6.2. We observe convergence rates of O(hk+1) for all scenarios except for using the ST-
SDSC-NIPG method with polynomial degree two. In that case, the finest two grids show
a convergence rate of 2.3. This behavior of the NIPG method of showing suboptimal
convergence rates of order O(hk) for even polynomial degree is well-known in the context
of solving the Poisson equation, see, e.g., Rivière [34].
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Fig. 6.2. Results for manufactured solution: L1 error measured over all components. The x-axis
denotes the mesh width h, the y-axis the L1 error.

6.3. Steady state test with smooth solution. To be able to also include
our artificial diffusion term, we construct a smooth solution of the compressible Navier-
Stokes equations ourselves. We restrict ourselves to a steady state, axisymmetric case
such that we are able to construct a reference solution by numerical integration of a
system of ODEs. More precisely, consider the steady state compressible Navier-Stokes
equations in polar coordinates (r,φ) with velocity components ur and uφ. (In the
following, superscripts r and φ denote the respective components of u, subscripts denote

1Note that there is a typo in [16, p. 276, eq (75)]: the term 3ω in s2 and s3 needs to be replaced
by 3k.
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Fig. 6.3. Results for steady state test with smooth solution: L1 error measured over all com-
ponents. The x-axis denotes the mesh width h, the y-axis the L1 error. Dashed lines correspond to
results with BIPSD and BIPSC, solid lines to results without BIPSD and BIPSC.

partial derivatives.) For simplicity, we set tangential velocity uφ= 0. This results in

(ρur)r =− 1

r
ρur

(ρ(ur)2 +p)r =− 1

r
ρ(ur)2 +

1

r
(rτ rr)r−

1

r
τφφ

(ur(E+p))r =− 1

r
ur(E+p)+

1

r
(rτ rrur)r+κ

1

r
(rθr)r

(6.1)

with

τ rr =(2µ+λ)urr+λ
ur

r
, τφφ=(2µ+λ)

ur

r
+λurr,

E=
p

γ−1
+

1

2
ρ(ur)2, θ=

p

Rρ
.

Here, unknowns density ρ, radial velocity ur, and pressure p are functions of the radius
r only. We solve the first equation in (6.1) for ρ analytically, using integration. We solve
the remaining two equations with unknowns ur and p numerically with high accuracy.
We use the initial conditions ρ(1) = 1, ur(1) = 1, p(1) = 1, urr(1) = 0.1, and pr(1) = 0.1
and parameter values µ= 2.5/

√
10 and κ/R= 1.1875∗

√
10. We solve for r∈ [1,3]. We

use the result as a reference solution that we compare our numerical solution with.

For our numerical test, we use the following data: the initial and boundary data
are given by the reference solution, and we solve on the domain (1/

√
2,1+1/

√
2)2 until

we have reached steady state.

Figure 6.3 shows the L1 error measured over all components for the ST-SDSC-
SIPG and the ST-SDSC-NIPG scheme for both options of using the terms BIP

SD and
BIP

SC (dashed line) and not using them (solid line). We essentially observe optimal
convergence rates of O(hk+1) for all scenarios. In particular,

• we do not observe a decay of convergence order for the ST-SDSC-NIPG scheme
for V2;
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• our artificial diffusion terms BIP
SD and BIP

SC do not deteriorate the convergence
order of our scheme; also in terms of the actual size of the errors, the results with
BIP

SD and BIP
SC are fairly close to the results without artificial diffusion terms; it is

not clear why, for V1, the solution with artificial diffusion shows smaller errors
than without artificial diffusion; (for one grid level finer, the results with BIP

SD

and BIP
SC are still slightly better than without BIP

SD and BIP
SC but the quotient is

close to 1.)

6.4. Blasius boundary layer. Next, we consider the classic Blasius boundary
layer test for low-speed laminar flow along an adiabatic plate. Under the assumptions
that the flow is incompressible and that the Reynolds number is sufficiently large, one
assumes the solution of the compressible Navier-Stokes equations in the boundary layer
to be close to the solution of the Prandtl boundary layer equations that we want to
compare our results with.
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Fig. 6.4. Results for Blasius boundary layer: scaled velocities ũ and ṽ.

We solve the compressible Navier-Stokes equations with Mach number M = 0.1,
Reynolds number Re = 105, and Prandtl number Pr = 0.72. Our grid uses 2544 cells
and is chosen such that there are sufficient cells in the boundary layer to resolve it.
Therefore, we do not include artificial viscosity terms in this test. We solve on the
domain (−0.5,1)×(0,0.25) and assume the flat plate to be located at [0,1]× [0]. We
evaluate scaled velocities ũ and ṽ at x1 = 0.5 and plot η vs. ũ and η vs. ṽ with

η=
x2

x1

√
Rex1 , Rex1 =

u∞x1

ν
, ũ=

u

u∞
, ṽ=

2v

u∞

√
Rex1 ,

with u∞ denoting the far field velocity in x1-direction, which satisfies Re = u∞L
ν with L

denoting the plate length.
Figure 6.4 shows the results for the scaled velocities ũ and ṽ, both plotted against

η, for polynomial degrees two and three. The results for ũ match very well with the
reference solution. Even for coarser grids, it was very straight-forward to capture the
scaled u-velocity well. A more challenging test is the approximation of the velocity ṽ –
for which we also observe a good agreement with the ‘analytic’ solution. We notice the
following though: as we compute the discrete solution more accurately, the agreement
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Fig. 6.5. Airfoil test: Base mesh M with 1728 cells zoomed around the airfoil.

with the reference solution seems to become slightly worse, i.e., the computed solution
then lies slightly above the reference solution. We attribute this to the fact that our
reference solution is not the true solution of the compressible Navier-Stokes equations
for the chosen setting – but for the boundary layer equations.

6.5. Flow around NACA 0012 airfoil. We conclude our numerical results
with a standard test in the literature: flow around a two-dimensional NACA 0012 airfoil.
We use the following airfoil geometry

x2 =±0.594689181 · [0.298222773
√
x1−0.127125232x1

−0.357907906x1
2 +0.291984971x1

3−0.105174606x1
4
]
.

Our base mesh M has 1728 triangles and uses a far field radius of 50 chords. Figure 6.5
shows the close neighborhood of the airfoil. We also use once and twice globally refined
meshes, denoted by M1 and M2, with 6912 and 27648 cells, respectively. We note that
the results of airfoil tests strongly depend on the quality of the mesh: the goal is to
have enough cells in the boundary layer while having as little cells as possible in total.
Our mesh has not been optimized in that respect. The focus here is on validation of
our method, for which this mesh turned out to be sufficient. We use piecewise cubic
polynomials for our tests and Pr = 0.72. We use a higher-order boundary approximation
along the airfoil boundary to be consistent with using higher-order polynomial spaces.

6.5.1. Re=5000, Ma=0.5, α= 0◦. We start with one of the most popular
tests and choose Re=5000, Ma=0.5, α= 0◦. We do not include artificial diffusion terms
for this test. We evaluate the functionals [18]

cpD =
2

ρ∞u2
∞

∫
S

p(n ·ψd)ds, cpL=
2

ρ∞u2
∞

∫
S

p(n ·ψl)ds,

cvD =
2

ρ∞u2
∞

∫
S

(τn) ·ψd ds, cvL=
2

ρ∞u2
∞

∫
S

(τn) ·ψl ds,
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cpD cvD cpL cvL

ST-SIPG, mesh M1 0.02409 0.03371 -3.33e-03 -1.22e-04
ST-NIPG, mesh M1 0.02385 0.03367 -3.38e-03 -1.05e-04
ST-SIPG, mesh M2 0.02231 0.03238 1.50e-04 1.31e-05
ST-NIPG, mesh M2 0.02229 0.03239 1.44e-04 1.28e-05

Hartmann & Houston [18] 0.02229 0.03254

Swanson & Langer [38] 0.02279 0.03279

Theory 0 0

Table 6.1. Airfoil test: Results for Re=5000, Ma=0.5, α= 0◦.
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Fig. 6.6. Airfoil test: Results for Mach contours for mesh M1 for Re=1000, Ma=1.2, α= 0◦.

with S denoting the airfoil surface, ρ∞ the far-field density, τ the viscous stress tensor,

and (for 0◦ angle of attack) ψd=
(
1 0
)T

and ψl=
(
0 1
)T

. Note that due to 0◦ angle of
attack, cpL= cvL= 0 for the exact solution.

Table 6.1 reports the results for meshes M1 and M2 using both SIPG and NIPG
discretization for the physical diffusion term. The results for SIPG and NIPG are very
similar. Table 6.1 also includes reference values reported by other researchers. Our
results for the mesh M2 are in very good agreement with these values, whereas the
results for mesh M1 are slightly off. We attribute this to the boundary layer not being
sufficiently resolved in the latter case.

6.5.2. Re=1000, Ma=1.2, α= 0◦. In our final numerical test we combine
flow around an airfoil with a shock. We follow Hartmann [17] for the test setup. In this
test we compare the performance of our method with and without the artificial diffusion
terms BIP

SD and BIP
SC.

Figure 6.6 shows the Mach contour lines for both versions for mesh M1. Without
artificial diffusion terms we observe oscillations in the neighborhood of the shock. These
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are mostly removed when the BIP
SD and BIP

SC are employed. Away from the shock, the
results are very similar.

7. Conclusions
In this paper, we presented two schemes, ST-SDSC-SIPG and ST-SDSC-NIPG, for

solving the compressible Navier-Stokes equations. The schemes are based on a spacetime
DG approach and use entropy variables as degrees of freedom. The schemes include
streamline diffusion and shock-capturing terms that vanish with the correct order of
convergence in smooth flow. For the discretization of the physical diffusion terms the
NIPG and the SIPG formulation are used, respectively. The resulting schemes satisfy
entropy stability estimates when using adiabatic solid wall boundary conditions. The
provided numerical results show that the schemes also perform well numerically. Possible
future directions are the extension to three dimensions or to goal-oriented adaptivity,
compare, e.g., [19].
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Appendix. Proof of entropy stability for inviscid term.
Lemma 8.1 (Restatement of Lemma 5.3). Let the assumptions of Theorems 5.1 and
5.2, respectively, hold true. Let the input argument Vh

K,+ in the computation of the
numerical inviscid flux at the wall boundary be given by (4.8). Then, there holds

BDG(Vh,Vh)≥
∫

Ω

S(U(Vh
N,−(x)))dx−

∫
Ω

S(U(Vh
0,−(x)))dx.

Proof. (Sketch of proof.) The proof of this statement is very similar to the proof of
Lemma 5.2, which has been shown as part of Theorem 3.1 in [21] under the assumption of
compact support. We now extend the proof to the case of adiabatic solid wall boundary
conditions. As that proof is quite long, we do not review the full proof here. Instead we
focus on the differences. In [21], BDG (using upwind flux in time) is split into temporal
terms

BtDG(Vh,Vh) =−
∑
n,K

∫
In

∫
K

U(Vh) ·Vh
t dxdt

+
∑
n,K

∫
K

U(Vh
n+1,−) ·Vh

n+1,−dx−
∑
n,K

∫
K

U(Vh
n,−) ·Vh

n,+ dx

and spatial terms

BsDG(Vh,Vh) =−
∑
n,K

∫
In

∫
K

2∑
k=1

Fk(Vh) ·Vh
xk
dxdt

+
∑
n,K

∑
K′∈N (K)

∫
In

∫
∂KK′

F(Vh
K,−,V

h
K,+;νKK′) ·Vh

K,− dσ(x)dt.

As BtDG does not include spatial boundary terms, one can follow the proof provided
in [21] to show

BtDG(Vh,Vh)≥
∫

Ω

S(U(Vh
N,−(x)))dx−

∫
Ω

S(U(Vh
0,−(x)))dx.
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We are now going to show that

BsDG(Vh,Vh)≥0 (8.1)

still holds true for adiabatic solid wall boundary conditions. For the considered entropy
pair (S,Q), denote by ψk =V ·Fk−Qk, k= 1,2, the corresponding entropy potential.
Then, using ψkxk

=Vxk
·Fk [21, p.115], we get by means of the divergence theorem∫

In

∫
K

2∑
k=1

Fk(Vh) ·Vh
xk
dxdt=

∫
In

∫
K

2∑
k=1

ψk(Vh)xk
dxdt

=
∑

K′∈N (K)

∫
In

∫
∂KK′

2∑
k=1

ψk(Vh
K,−)νkKK′ dσ(x)dt.

This implies

BsDG(Vh,Vh) =
∑
n,K

∑
K′∈N (K)

∫
In

∫
∂KK′(

−
2∑
k=1

ψk(Vh
K,−)νkKK′+F(Vh

K,−,V
h
K,+;νKK′) ·Vh

K,−

)
dσ(x)dt. (8.2)

We note that we slightly misused notation in the above considerations by assuming that
every cell K has (potentially fictitious) cell neighbors K ′. In [21, p.115/116], it is shown
under the assumption of compact support inside Ω that (8.2) implies (8.1). Here, we
show the same claim for the case of an edge e∈FΓadia

, which belongs to cell K. Using
the definition (2.8) of the numerical flux, we consider

∫
In

∫
e

(
−

2∑
k=1

ψk(Vh
K,−)νke +

2∑
k=1

(
Fk,∗(Vh

K,−,V
h
K,+) ·Vh

K,−
)
νke

−1

2
D(Vh

K,+−Vh
K,−) ·Vh

K,−

)
dσ(x)dt. (8.3)

Following (4.8), we set on e (for given Vh
K,−) Vh

K,+ =
(
vh1,K− , −v

h
2,K−

, −vh3,K− , v
h
4,K−

)T
.

The entropy conservative flux that we use [23] (see [15] for a two-dimensional version)
is based on evaluating various arithmetic and logarithmic means. Due to the specific
relation of Vh

K,− and Vh
K,+, most terms cancel; a short computation shows

F1,∗(Vh
K,−,V

h
K,+) =

(
0, phK− , 0, 0

)T
and F2,∗(Vh

K,−,V
h
K,+) =

(
0, 0, phK− , 0

)T
.

This implies (using (3.4))

2∑
k=1

(
Fk,∗(Vh

K,−,V
h
K,+) ·Vh

K,−
)
νke =phK−v

h
2,K−ν

1
e +phK−v

h
3,K−ν

2
e

=ρhK−u
h
K−ν

1
e +ρhK−v

h
K−ν

2
e .

Furthermore, there holds [15, p. 567]

ψ1(Vh
K,−) =ρhK−u

h
K− , ψ2(Vh

K,−) =ρhK−v
h
K− .
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Therefore, the terms in the first line of (8.3) cancel each other. It remains to show
that the diffusion operator in the second line results in a non-negative value. We use
Rusanov diffusion and consider the following formulation [20]

D(a,b;ν) = max(λmax(U(a),ν),λmax(U(b),ν))UV

(
SU

(
U(a)+U(b)

2

))
with λmax(U,ν) denoting the maximum eigenvalue, taken in absolute value, of the Jaco-

bian F1
U(U)ν1 +F2

U(U)ν2. A short computation shows that the 4×4 matrix UV

(
Ṽ
)

with Ṽ =SU

(
1
2

(
U(Vh

K,−)+U(Vh
K,+)

))
only has non-zero entries on the diagonal and

for indices (1,4) and (4,1). Then, with p(Ṽ) denoting the pressure corresponding to

entropy variable Ṽ

−1

2

(
Vh
K,−

)T
UV

(
Ṽ
)

(Vh
K,+−Vh

K,−) =p(Ṽ)(vh2,K−)2 +p(Ṽ)(vh3,K−)2≥0,

which concludes the sketch of the proof.
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