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CONVERGENCE TO CONSENSUS OF THE GENERAL
FINITE-DIMENSIONAL CUCKER-SMALE MODEL WITH

TIME-VARYING DELAYS∗

CRISTINA PIGNOTTI† AND EMMANUEL TRÉLAT‡

Abstract. We consider the well known finite-dimensional Cucker-Smale system, modelling inter-
acting collective dynamics and their possible convergence to consensus. The objective of this paper is to
study the influence of time-delays in the general model on the convergence to consensus. By a Lyapunov
functional approach, we establish convergence results to consensus for symmetric and nonsymmetric
communication weights under some structural conditions.
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1. Introduction
The study of collective behavior of autonomous agents has recently attracted great

interest in various scientific applicative areas, such as biology, sociology, robotics, eco-
nomics (see [2, 3, 6, 8, 14, 18, 32, 33, 35, 36, 43, 44, 46]). The main motivation is to model
and explain the possible emergence of self-organization or global pattern formation in a
large group of agents having mutual interactions, where individual agents may interact
either globally or even only at the local scale.

The well known Cucker-Smale model has been proposed and studied in [22, 23] as
a paradigmatic model for flocking, namely for modelling dynamics where autonomous
agents reach a consensus based on limited environmental information. Consider N ∈N
agents and let (xi(t),vi(t))∈ IR2d, i= 1,. ..,N be their phase-space coordinates. One can
think of xi(t)∈ IRd as the position of the ith agent and vi(t)∈ IRd as its velocity, but for
instance, in social sciences these variables may stand for other notions such as opinions.
The general finite-dimensional Cucker-Smale model is the following:

ẋi(t) =vi(t)

v̇i(t) =
λ

N

N∑
j=1

ψij(t)(vj(t)−vi(t)) ∀i= 1,. ..,N
(1.1)

where the real number λ≥0 is a coupling strength and the communication rates ψij(t)
are of the form

ψij(t) =ψ(|xi(t)−xj(t)|)

where the function ψ is called the potential. Here and throughout, the notation | · |
stands for the Euclidean norm in IRd. Along any solution of (1.1), we define the (position
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and velocity) variances

X(t) =
1

2N2

N∑
i,j=1

|xi(t)−xj(t)|2

and

V (t) =
1

2N2

N∑
i,j=1

|vi(t)−vj(t)|2. (1.2)

Definition 1.1. We say that a solution of (1.1) converges to consensus (or flocking)
if

sup
t>0

X(t)<+∞ and lim
t→+∞

V (t) = 0.

The potential function ψ initially considered by Cucker and Smale in [22, 23] is
the function ψ(s) = (1+s2)−b with b≥0. It is proved in these references that there is
unconditional convergence to flocking whenever b< 1

2 . For b≥1/2, there is convergence
to flocking under appropriate assumptions on the values of the initial variances on
positions and speeds (see [26]). Their analysis relies on a Lyapunov approach with
quadratic functionals, which we will refer to in the sequel as an L2 analysis. This L2

approach allows to treat symmetric communication rates. An extension of the flocking
result to the case of nonsymmetric communication rates has been proposed in [40] with
a different approach that we will refer to in the sequel as an L∞ analysis, which we will
describe further.

There have been a number of generalizations and variants of Cucker-Smale mod-
els, involving more general potentials (friction, attraction-repulsion), cone-vision con-
straints, topological interactions (see [5, 31]), leadership (see [16, 20, 29, 39, 41, 49, 51]),
clustering emergence (see [34, 40]), social networks (see [4]), pedestrian crowds (see
[19, 37]), stochastic or noisy models (see [21, 27]), kinetic models in infinite dimension
(see [1, 4, 9, 15,24,30,47]), and the control of such models (see [7, 10–13,45,50]).

Cucker-Smale with time-varying delays. In the present paper, we introduce time-
delays in the Cucker-Smale model and we perform an asymptotic analysis of the resulting
model. Time-delays reflect the fact that, for a given individual agent, information from
other agents does not always propagate at infinite speed and is received after a certain
time-delay, or reflect the fact that the agent needs time to elaborate a reaction to
incoming stimuli.

We assume throughout that the delay τ(t)>0 is time-varying. This models the fact
that the amplitude of the delay may exhibit some seasonal effects or that it depends on
the age of the agents for instance. The time-delay function is assumed to be bounded:
we assume that there exists τ >0 such that

0≤ τ(t)≤ τ ∀ t>0 (1.3)

and that the function t 7→ τ(t) belongs to W 1,∞([0,T ]), for all T >0, and satisfies

τ ′(t)≤ c<1 ∀t>0 (1.4)

for some c>0. Assumptions (1.3) and (1.4), used to perform our analysis, are standard
requirements for problems with time-varying delays in several contexts (see [42,48]). In
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particular, (1.3) says that the time-delay remains in a fixed range, which is a natural
requirement when trying to derive a flocking result, while the bound on the derivative
(1.4) ensures that t−τ(t)≥−τ(0) and thus that our system below is well–posed with
initial conditions given on the interval [−τ(0),0]. Our model, considered throughout, is
the following:

ẋi(t) =vi(t)

v̇i(t) =
λ

N

N∑
j=1

j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vi(t)) ∀i= 1,. ..,N (1.5)

with initial conditions

xi(t) =fi(t), vi(t) =gi(t), ∀t∈ [−τ(0),0]

where fi,gi : [−τ(0),0]→ IR are given functions and ψij(t), i,j= 1,. ..,N, are suitable
communication rates. In the symmetric case, we have

ψij(t) =ψ(|xi(t)−xj(t)|) ∀i,j∈{1,. ..,N}. (1.6)

The potential function ψ in (1.6) is assumed to be continuous and bounded. Without
loss of generality (if necessary, do a time reparametrization), we assume that it takes
values in (0,1], namely ψ : [0,+∞)→ (0,1]. This implies

ψij(t)≤1 ∀t∈ [−τ(0),+∞) ∀i,j∈{1,. ..,N}. (1.7)

In the model (1.5) above, the delay is time-varying. Note that there is no delay in vi in
the equation for velocity vi: this reflects the fact that every agent receives information
coming from the other agents with a certain delay while its own velocity is known exactly
at every time t.

We could also consider time-delays depending on the agents pair, namely

ẋi(t) =vi(t)

v̇i(t) =
λ

N

N∑
j=1

j 6=i

ψij(t−τij(t))(vj(t−τij(t))−vi(t)) ∀i= 1,. ..,N (1.8)

where τij(t) is the (time-varying) time-delay of the agent i in receiving the information
from the agent j. Assuming that

0≤ τij(t)≤ τ ∀t>0 ∀i,j∈{1,. ..,N} (1.9)

and that the functions t 7→ τij(t) belong to W 1,∞([0,T ]) for all T >0 and satisfy

τ ′ij(t)≤ c<1 ∀t>0 ∀i,j∈{1,. ..,N} (1.10)

for some c>0, the model (1.8) can be analyzed analogously to (1.5). As it will be
clear from our proofs, the arguments in such a case do not require any substantial
modifications and thus we keep the model (1.5) for the sake of simplicity.
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State of the art. Various delayed Cucker-Smale models have been considered in
several contributions, with a constant delay τ >0.

A time-delayed model has been introduced and studied in [25], where the equation
for velocities (which actually also involves noise terms in that paper) is

v̇i(t) =
λ

N

N∑
j=1

ψij(t−τ)(vj(t−τ)−vi(t−τ))

with a constant delay τ . Considering vi(t−τ) instead of vi(t) in the equation for vi(·)
facilitates much the analysis because it allows to keep one of the most important features
of the standard Cucker-Smale system (1.1), namely the fact that the mean velocity

v̄(t) = 1
N

∑N
i=1vi(t) remains constant in time, i.e., ˙̄v(t) = 0, as in the undelayed Cucker-

Smale model. This fact then simplifies much all arguments in the asymptotic analysis
and in the proof of convergence to consensus.

In our model (1.5) above, in contrast, the mean velocity does not remain constant,
which complicates the analysis significantly as we shall see.

In [38] the authors consider as equation for the velocities

v̇i(t) =α

N∑
j=1

aij(t−τ)(vj(t−τ)−vi(t)) (1.11)

where α>0 and the coupling coefficients aij are such that
∑N
j=1aij = 1, i= 1,. ..,N .

Compared with (1.5), the sum is running over all indices j, including j= i, and thus
(1.11) involves, with respect to (1.5), the additional term aii(t−τ)(vi(t−τ)−vi(t)) at
the right-hand side. Actually, the authors of [38] claim to study (1.5) but their result
(unconditional flocking for all delays) only applies to (1.11) (cf. [38, Equation (7)]).
Note that (1.11) can indeed be rewritten as

v̇i(t) =α

N∑
j=1

aij(t−τ)vj(t−τ)−αvi(t) (1.12)

with a negative coefficient, independent of the time t, for the undelayed velocity vi(t)
of the ith agent. This leads to a strong stability result: unconditional flocking for all
time-delays.

In [17] the authors analyze a Cucker-Smale model with delay and normalized com-
munication weights Φij given by

Φij(x,τ) =


ψ(|xj(t−τ)−xi(t)|)∑
k 6=iψ(|xk(t−τ)−xi(t)|)

if j 6= i

0 if j= i

(1.13)

where the influence function ψ is assumed to be bounded, nonincreasing, Lipschitz
continuous on [0,+∞), with ψ(0) = 1. Since

∑N
j=1Φij = 1, their model can be written as

v̇i(t) =

N∑
j=1

Φij(x,t−τ)vj(t−τ)−vi(t)

and the same considerations as those for the model (1.12) apply. Moreover, the partic-
ular form of the communication weights Φij allows to apply some convexity arguments
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in order to obtain the flocking result for sufficiently small delays. Then the result
relies on the specific form of the interaction between the agents. Note also that the
influence function ψ in the Definition (1.13) of Φij has as arguments |xk(t−τ)−xi(t)|,
k= 1,. ..,N, k 6= i, with the state of the ith agent at the time t and the states of the other
agents at time t−τ. This corresponds to a time-delay in the vision which does not seem
appropriate for describing flocks of birds or, in general, groupings of animals, but may
be relevant for instance in robotics. Moreover, it allows to easily derive the mean-field
limit of the problem at hand by obtaining a nice and tractable kinetic equation. In con-
trast, putting the time-delay also in the state of ith agent is more suitable to describe
the physical model related to groups of animals but it makes unclear (at least to us)
the passage to mean-field limit (see Section 5).

Framework and structure of the present paper. In Section 2, we consider the model
(1.5) with symmetric interaction weights ψij given by (1.6). In this symmetric case, we
perform a L2 analysis, designing appropriate quadratic Lyapunov functionals adapted
to the time-delay framework. The main result, Theorem 2.1, establishes convergence to
consensus for small enough time-delays.

As in [25], a structural assumption is required on the matrix of communication
rates. We define the N×N Laplacian matrix L= (Lij) by

Lij =− λ
N
ψij for i 6= j, Lii=

λ

N

∑
j 6=i

ψij

with ψij =ψ(|xi−xj |). The matrix L is symmetric, diagonally dominant with nonneg-
ative diagonal entries, has nonnegative eigenvalues, and its smallest eigenvalue is zero.
Note that for v∈ (IRd)N , v= (v1,. ..,vN ), the matrix notation Lv does not have the
usual meaning of a N×N matrix acting on IRN . Instead, we have

L(v1,. ..,vN ) =

 N∑
j=1

l1jvj ,. ..,

N∑
j=1

lNjvj

. (1.14)

Considering the matrix L(t) along a trajectory solution of (1.5), we denote by µ(t) its
smallest positive eigenvalue, also called the Fiedler number. The structural assumption
along trajectories that we make throughout is the following:

∃γ>0 | µ(t)≥γ ∀t>0. (1.15)

This is a technical but instrumental and standardly used assumption that we use as
well to perform our convergence analysis. It is guaranteed for instance if, along tra-
jectories, the communication rates are uniformly bounded away from zero, i.e., if there
exists ψ∗>0 such that ψij(t)≥ψ∗ for all i,j and for every t>0 (in that case there is
already convergence to consensus for the undelayed model). Actually, the precise result
established in [22, Proposition 4] states that there exists a constant C>0 such that

µ(t)≥Cψ(X(t)).

This fact, adequately used in the proof of [22], makes it possible to establish that,
for the potential function ψ(s) = (1+s2)−b with b≥0, there is unconditional conver-
gence to consensus if b< 1

2 , and (conditional) convergence if b≥1/2 under an additional
requirement on initial conditions (thus giving a region of initial conditions for which
convergence to consensus is guaranteed, see also [26]).
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In Section 3, we consider the model (1.5) with possibly nonsymmetric potentials:

ẋi(t) =vi(t)

v̇i(t) =
λ

N

∑
j 6=i

aij(t−τ(t))(vj(t−τ(t))−vi(t)) ∀i= 1,. ..,N

where the communication rates aij>0 are arbitrary. They may of course be symmetric
as above, for instance,

aij(t) =ψ(|xi(t)−xj(t)|) (1.16)

or nonsymmetric, for instance

aij(t) =
Nψ(|xi(t)−xj(t)|)∑N
k=1ψ(|xk(t)−xi(t)|)

(1.17)

for a suitable bounded function ψ. To analyze such models, we perform an L∞ analysis
as in [40], by considering, instead of Euclidean norms, the time-evolution of the diam-
eters in position and velocity phase space. The main result, Theorem 3.1, establishes
convergence to consensus under the following structural assumption along trajectories:

∃ ψ∗>0 | 1

N2

N∑
i,j=1

min(aqi(t)apj(t),aqj(t)api(t))≥ψ∗ ∀ p,q= 1,. ..,N. (1.18)

As above, Assumption (1.18) is instrumental in order to ensure convergence. It corre-
sponds to require that the interactions in the flock are strong enough. In particular,
(1.18) is satisfied for the interactions (1.16) and (1.17) if the influence function ψ in the
definitions of aij satisfies the lower bound ψ(r)≥ψ0>0. Indeed, (1.18) is verified in

both cases with ψ∗=ψ0
2 and ψ∗=

(
ψ0

‖ψ‖∞

)2
respectively.

In Section 4, we give some numerical simulations illustrating our results and, finally,
in Section 5, we provide a conclusion and further comments.

2. Consensus for symmetric potentials: L2 analysis

2.1. The main result.
Several notations. Following [22], we set

∆ =
{

(v1,v2,. ..,vN )∈ (IRd)N | v1 = ·· ·=vN

}
=
{

(v,v,...,v) | v∈ IRd
}
.

The set ∆ is the eigenspace for the operator L, defined in (1.14), associated with the
zero eigenvalue. Its orthogonal in (IRd)N is

∆⊥=

{
(v1,v2,. ..,vN )∈ (IRd)N |

N∑
i=1

vi= 0

}
.

Given any v= (v1,v2,. ..,vN )∈ (IRd)N , we denote the mean by v̄= 1
N

∑N
j=1vj ∈ IRd, and

we define w= (w1,. ..,wN )∈ (IRd)N by wi=vi− v̄ for i= 1,. ..,N , so that

v= (v̄, . . ., v̄)+w∈∆+∆⊥ (2.1)
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and we have Lw=Lv. Moreover,

1

2N2

N∑
i,j=1

|wi−wj |2 =
1

N
‖w‖2 (2.2)

and

〈Lv,v〉= 1

2

λ

N

N∑
i,j=1

ψij |vi−vj |2. (2.3)

Theorem 2.1. We set

χ=
γ2

2λ2
1−c

2λ2 +γ2
. (2.4)

Let τ0>0 be the unique1 positive real number such that

τ20 e
τ0 =χ. (2.5)

Under the structural Assumption (1.15), if τ <τ0 then every solution of the system (1.5)
satisfies

V (t)≤Ce−rt (2.6)

with

r= min

{
γ−4

λ2

γ

λ2τ2

(1−c)e−τ −2λ2τ2
,1

}
(2.7)

and

C=V (0)+
λ2τ

γN

1

(1−c)e−τ −2λ2τ2

∫ 0

−τ(0)
es
∫ 0

s

N∑
i=1

|v̇i(σ)|2dσds.

Remark 2.1. As already said, the structural Assumption (1.15) is either always
satisfied for some classes of potentials, or, for other potentials, leads to a region of
favorable initial conditions. Under this assumption, for τ̄ = 0 (no delay in the model),
convergence to consensus is guaranteed. The theorem says that convergence to consensus
withstands the introduction of a delay in the model, provided that the maximal delay
τ̄ does not exceed the threshold τ0 defined by (2.4) and (2.5).

Note the interesting fact that the threshold τ0 depends on the parameter λ and on
the lower bound γ in (1.15) for the Fiedler number, but does not depend on the number
N of the agents.

2.2. Proof of Theorem 2.1. We start with the following lemma.

Lemma 2.1. We consider an arbitrary solution (x(·),v(·)) of (1.5). Setting

Rτ (t) =
1

N

∫ t

t−τ(t)

N∑
i=1

|v̇i(s)|2ds (2.8)

1The threshold τ0 is well defined in this way because the function x 7→x2ex is continuous and
monotone increasing from (0,+∞) to (0,+∞).
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we have

1

N

N∑
i=1

|v̇i(t)|2≤4
λ2

N
‖w(t)‖2 +2λ2τRτ (t) (2.9)

for every t>0.

Proof. First observe that, from (2.1), vi−vj =wi−wj , for all i,j= 1,. ..,N. Using
(1.5), we then obtain

v̇i(t) =
λ

N

∑
j 6=i

ψij(t−τ(t))(wj(t)−wi(t))+
λ

N

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t))

=
λ

N

∑
j 6=i

ψij(t−τ(t))(wj(t)−wi(t))−
λ

N

∑
j 6=i

ψij(t−τ(t))

∫ t

t−τ(t)
v̇j(s)ds.

Now, using (1.7), we get that

|v̇i(t)|≤
λ

N

∑
j 6=i

|wj(t)−wi(t)|+
λ

N

∑
j 6=i

∫ t

t−τ(t)
|v̇j(s)|ds.

Then,

|v̇i(t)|2≤2
λ2

N2

 N∑
j=1

|wi(t)−wj(t)|

2

+2
λ2

N2

 N∑
j=1

∫ t

t−τ(t)
|v̇j(s)|ds

2

≤2
λ2

N

N∑
j=1

|wj(t)−wi(t)|2 +2
λ2

N

N∑
j=1

(∫ t

t−τ(t)
|v̇j(s)|ds

)2

.

Using (2.2), the Cauchy-Schwarz inequality and (1.3), we infer that

N∑
i=1

|v̇i(t)|2≤2
λ2

N

N∑
i,j=1

|wi(t)−wj(t)|2 +2λ2τ(t)

∫ t

t−τ(t)

N∑
i=1

|v̇i(s)|2ds

≤4λ2‖w(t)‖2 +2λ2τ

∫ t

t−τ(t)

N∑
i=1

|v̇i(s)|2ds

which gives (2.9).

Remark 2.2. The term Rτ (t) is due to the presence of the time-delay. Indeed,
we have two quantities at the right-hand side of the inequality (2.9): the “classical”
term ‖w‖2 (coming from the undelayed model), and the term Rτ (t) caused by the delay
effect.

Lemma 2.2. Given any solution (x(·),v(·)) of (1.5), we have

d

dt

(
1

N
‖w(t)‖2

)
≤− γ

N
‖w(t)‖2 +

λ2τ

γ
Rτ (t) (2.10)

for every t>0.
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Proof. Using (1.5), we compute

ẇi(t)= v̇i(t)−
1

N

N∑
k=1

v̇k(t)

=
λ

N

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vi(t))−
λ

N2

N∑
k=1

∑
j 6=k

ψkj(t−τ(t))(vj(t−τ(t))−vk(t))

=
λ

N

∑
j 6=i

ψij(t−τ(t))(vj(t)−vi(t))+
λ

N

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t))

− λ

N2

N∑
k=1

∑
j 6=k

ψkj(t−τ(t))(vj(t)−vk(t))−
λ

N2

N∑
k=1

∑
j 6=k

ψkj(t−τ(t))(vj(t−τ(t))−vj(t))

=
λ

N

∑
j 6=i

ψij(t−τ(t))(wj(t)−wi(t))+
λ

N

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t))

− λ

N2

N∑
k=1

∑
j 6=k

ψkj(t−τ(t))(wj(t)−wk(t))

− λ

N2

N∑
k=1

∑
j 6=k

ψkj(t−τ(t))(vj(t−τ(t))−vj(t)).

Then,

N∑
i=1

wi(t)ẇi(t) =−1

2

λ

N

N∑
i,j=1

ψij(t−τ(t))|wi−wj |2

+
λ

N

N∑
i=1

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t))wi

where we have used that
∑
iwi= 0 and∑

j 6=i

ψij(t−τ(t))(wj(t)−wi(t))wi(t)

=
∑
j 6=i

ψij(t−τ(t))(wj(t)−wi(t))(wi(t)−wj(t))+
∑
j 6=i

ψij(t−τ(t))(wj(t)−wi(t))wj(t)

=− 1

2

∑
j 6=i

ψij(t−τ(t))|wi(t)−wj(t)|2.

Therefore, thanks to (2.3), we infer that

d

dt

(
1

2
‖w(t)‖2

)
=−〈L(t−τ(t))w(t),w(t)〉+ λ

N

∑
i

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t))wi(t)

=− 1

2

λ

N

N∑
i,j=1

ψij(t−τ(t))|wi(t)−wj(t)|2

+
λ

N

∑
i

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t))wi(t).
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The second term at the right-hand side of the above equality is bounded by∣∣∣ λ
N

∑
i

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t))wi(t)
∣∣∣≤ λ

N
‖w(t)‖‖U(t)‖

where U(t) = (U1(t),. ..,UN (t)) is defined by

Ui(t) =
∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t)), i= 1,. ..,N

and is estimated by

‖U(t)‖≤
N∑
i=1

|Ui(t)|≤
N∑
i=1

∑
j 6=i

ψij(t−τ(t))

∫ t

t−τ(t)
|v̇j(s)|ds

≤
∑
ij

ψij(t−τ(t))

∫ t

t−τ(t)
|v̇j(s)|ds.

Therefore, we get

d

dt

(
1

2
‖w(t)‖2

)
≤−1

2

λ

N

N∑
i,j=1

ψij(t−τ(t))|wi(t)−wj(t)|2

+
λ

N

∑
ij

ψij(t−τ(t))

∫ t

t−τ(t)
|v̇j(s)|ds‖w(t)‖

≤−1

2

λ

N

N∑
i,j=1

ψij(t−τ(t))|wi(t)−wj(t)|2 +λ

N∑
j=1

∫ t

t−τ(t)
|v̇j(s)|ds‖w(t)‖

≤−1

2

λ

N

N∑
i,j=1

ψij(t−τ(t))|wi(t)−wj(t)|2 +λ
δ

2
‖w‖2

+
λ

2δ

 N∑
j=1

∫ t

t−τ(t)
|v̇j(s)|ds

2

where we have used the Young inequality2 for some arbitrary δ>0. Choosing δ= γ
λ ,

where γ is the constant in the structural Assumption (1.15), we infer that

d

dt

(
1

2
‖w(t)‖2

)
≤−〈L(t−τ(t))w(t),w(t)〉+ γ

2
‖w(t)‖2 +

λ2

2γ

 N∑
j=1

∫ t

t−τ(t)
|v̇j(s)|ds

2

≤−γ
2
‖w(t)‖2 +

λ2τ(t)

2γ

N∑
j=1

∫ t

t−τ(t)
|v̇j(s)|2ds (2.11)

which, using (1.3) and the Definition (2.8) of Rτ (t), gives (2.10).

2This inequality states that, given any positive real numbers a, b and δ, we have ab≤ a2

2δ
+ δb2

2
.
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We are now in a position to prove Theorem 2.1. Let β>0 be a positive constant to
be chosen later. We consider the Lyapunov functional along solutions of (1.5), defined
by

L(t) =
1

2N
‖w(t)‖2 +

β

N

∫ t

t−τ(t)
e−(t−s)

∫ t

s

N∑
i=1

|v̇i(σ)|2dσds. (2.12)

Using (2.11) and Lemma 2.1, we have

L̇(t)≤− γ

2N
‖w(t)‖2 +

λ2τ

2γ
Rτ (t)+

βτ(t)

N

N∑
i=1

|v̇i(t)|2

− β

N
(1−τ ′(t))e−τ(t)

∫ t

t−τ(t)

N∑
i=1

|v̇j(s)|2ds

− β

N

∫ t

t−τ(t)
e−(t−s)

∫ t

s

N∑
i=1

|v̇i(σ)|2dσds

≤− 1

N

(γ
2
−4λ2βτ

)
‖w(t)‖2−

(
β(1−c)e−τ − λ

2τ

2γ
−2βλ2τ2

)
Rτ (t)

− β

N

∫ t

t−τ(t)
e−(t−s)

∫ t

s

N∑
i=1

|v̇i(σ)|2dσds,

where we have used (1.3) and (1.4). Convergence to consensus is then ensured if

γ

2
−4βλ2τ >0 and β(1−c)e−τ − λ

2τ

2γ
−2βλ2τ2≥0. (2.13)

The second inequality of (2.13) gives a first restriction on the size of the delay, namely,
that τ2eτ < 1−c

2λ2 . Let us now choose the constant β>0 in the Definition (2.12) of L(·)
so that both conditions in (2.13) are satisfied:

λ2τ

2γ

1

(1−c)e−τ −2λ2τ2
≤β< γ

8λ2τ
.

This is possible only if

λ2τ2

(1−c)e−τ −2λ2τ2
<
γ2

4λ2
,

which is equivalent to

τ2eτ <χ

with χ defined by (2.4). We conclude that, if τ2eτ <χ, then we can choose β such that

dL
dt

(t)≤−rL(t) (2.14)

for a suitable positive constant r. In particular, in order to obtain the best decay rate
with our procedure, we fix

β=
λ2τ

2γ

1

(1−c)e−τ −2λ2τ2
,
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thus obtaining (2.14) with r as in (2.7).
To conclude, it suffices to write that

1

N
‖w(t)‖2≤2L(t)≤2L(0)e−rt.

Then (2.6) follows from the latter inequality, (1.2) and (2.2) with C=L(0) as in the
statement.

3. Consensus for nonsymmetric potentials: L∞ analysis

3.1. The main result. In this section, we consider nonsymmetric potentials,
and we perform an L∞ analysis as in [40]. We consider the Cucker-Smale system

ẋi(t) =vi(t)

v̇i(t) =
λ

N

∑
j 6=i

aij(t−τ(t))(vj(t−τ(t))−vi(t)) ∀i= 1,. ..,N
(3.1)

with initial conditions, for i= 1,. ..,N,

xi(t) =fi(t), vi(t) =gi(t) ∀t∈ [−τ(0),0]

where fi,gi : [−τ(0),0]→ IR are given functions and aij>0 quantifies the pairwise influ-
ence of jth agent on the alignment of ith agent. By rescaling λ if necessary (or by time
reparametrization), we assume that

1

N

∑
j 6=i

aij<1. (3.2)

This includes, for instance, the case considered in the previous section, that is

aij(t) =ψ(|xi(t)−xj(t)|)

with ψ : [0,+∞)→ [0,+∞) satisfying ψ(r)<1 for every r≥0, but we can consider a
nonsymmetric interaction, for instance like in (1.17),

aij(t) =
Nψ(|xi(t)−xj(t)|)∑N
k=1ψ(|xk(t)−xi(t)|)

for a suitable bounded function ψ.
As shortly mentioned before, an analogous delay model has also been investigated

in [17] for τ constant and under a restrictive assumption on the potential interaction.
Indeed, the authors there consider the problem

ẋi(t) =vi(t)

v̇i(t) =

N∑
j=1

Φij(x,τ)(vj(t−τ)−vi(t)) ∀i= 1,. ..,N
(3.3)

where the communication weights are defined in (1.13). With such communication
rates, the analysis of convergence to consensus is significantly easier because, using that∑N
j=1Φij = 1 for i= 1,. ..,N , one can rewrite the velocity equation as

v̇i(t) =

N∑
j=i

Ψij(x,τ)vj(t−τ)−vi(t) ∀i= 1,. ..,N.
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Namely, the term depending on vi in the left-hand side of (3.3) is not λ
N

∑
j 6=iaij(t−

τ)vi(t) as in the more general model (3.1), but simply −vi(t).
Following [40], we set aii=N−

∑
j 6=iaij , so that

∑N
j=1aij =N , i= 1,. ..,N . Setting

ṽi(t) =
1

N

N∑
j=1

aij(t−τ(t))vj(t) ∀i= 1,. ..,N (3.4)

the system (3.1) is written as

ẋi(t) =vi(t)

v̇i(t) =λ(ṽi(t)−vi(t))+
λ

N

∑
j 6=i

aij(t−τ(t))(vj(t−τ(t))−vj(t)) ∀i= 1,. ..,N.

We denote by dX(t) and dV (t) the diameter in position and velocity phase spaces (see
[30]), respectively defined by

dX(t) = max
i,j
|xj(t)−xi(t)|

and

dV (t) = max
i,j
|vj(t)−vi(t)|.

A solution of (3.1) converges to consensus if

sup
t≥0

dX(t)<+∞ and lim
t→+∞

dV (t) = 0.

Note that the functions dX and dV are not of class C1 in general. We will thus use a
suitable notion of generalized gradient, namely the upper Dini derivative, as in [38], in
order to perform our computations. We recall that, for a given function F continuous
at t, the upper Dini derivative of F at t is defined by

D+F (t) = limsup
h→0+

F (t+h)−F (t)

h
.

If F is differentiable at t, then D+F (t) = dF
dt (t). However, for all t there exists a sequence

hn→0+ such that

D+F (t) = lim
n→+∞

F (t+hn)−F (t)

hn
.

In particular, from the definition of dX(·), there exists at most countable increasing
sequence {tk}k such that dX(t) = |xr(t)−xs(t)|, for suitable r,s∈{1,. ..,N}, on [tk,tk+1).
Then, for fixed t one can find a sequence hn→0+ for which dX(t+hn) = |xr(t+hn)−
xs(t+hn)|, for n large (small hn), and

D+dX(t) = lim
n→∞

h−1n {|xr(t+hn)−xs(t+hn)|−|xr(t)−xs(t)|}

≤
∣∣∣∣dxrdt (t)− dxs

dt
(t)

∣∣∣∣ . (3.5)
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Analogous arguments apply to D+dV (t) and D+d2V (t).

Theorem 3.1. We set

χ=
1−c
λ

ψ∗

ψ∗+2
(3.6)

where ψ∗ is the constant in (1.18). Under (1.18), if τeτ <χ then every solution of (3.1)
satisfies

dV (t)≤Ce−rt ∀t≥0 (3.7)

with

r= min

{
λ
(
ψ∗− 2λτ

(1−c)e−τ −λτ

)
,1

}
(3.8)

and

C=dV (0)+
2λ

(1−c)e−τ −λτ

∫ 0

−τ(0)
es
∫ 0

s

max
j=1,...,N

|v̇j(σ)|dσds. (3.9)

3.2. Proof of Theorem 3.1. We start by establishing several estimates.
Lemma 3.1 ( [40]). Let S= (S)1≤i,j≤N be a skew-symmetric matrix such that |Sij |≤M
for all i,j. Let u,w∈ IRN be two given real vectors with nonnegative entries, ui,wi≥0,
and let U = 1

N

∑
iui and W = 1

N

∑
iwi. Then

1

N2
|〈Su,w〉|≤M

UW − 1

N2

N∑
i,j=1

min (uiwj ,ujwi)

 . (3.10)

Lemma 3.2. Let (x(·),v(·)) be a solution of (3.1). Setting

στ (t) =

∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds, (3.11)

we have, for every t≥0,

D+dX(t)≤dV (t), D+dV (t)≤−λψ∗dV (t)+2λστ (t), (3.12)

where ψ∗ is the constant in (1.18).

Proof. Fix t≥0 and let p,q,r and s be indices such that dX(t) = |xr(t)−xs(t)|
and dV (t) = |vp(t)−vq(t)|. Then, from (3.5), we have D+dX(t)≤|vr(t)−vs(t)|≤dV (t).
Also, observing that for D+dV (·) and D+d2V (·), analogous considerations to those for
D+dX(·) (see comments before (3.5)) are valid, we have

D+(d2V (t)) = 2〈vp(t)−vq(t), v̇p(t)− v̇q(t)〉
= 2λ〈vp(t)−vq(t), ṽp(t)− ṽq(t)〉−2λ|vp(t)−vq(t)|2

+2
λ

N

〈
vp(t)−vq(t),

∑
j 6=p

apj(t−τ(t))(vj(t−τ(t))−vj(t))

−
∑
j 6=q

aqj(t−τ(t))(vj(t−τ(t))−vj(t))
〉
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where ṽi, i= 1,. ..,N, are defined in (3.4), and then

D+(d2V (t)) = 2〈vp(t)−vq(t), v̇p(t)− v̇q(t)〉
≤2λ〈vp(t)−vq(t), ṽp(t)− ṽq(t)〉−2λ|vp(t)−vq(t)|2

+4λ|vp(t)−vq(t)|
∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds.

But since

ṽp(t)− ṽq(t) =
1

N

N∑
j=1

apj(t−τ(t))vj(t)−
1

N

N∑
i=1

aqi(t−τ(t))vi(t)

=
1

N2

N∑
i=1

aqi(t−τ(t))

N∑
j=1

apj(t−τ(t))vj(t)

− 1

N2

N∑
j=1

apj(t−τ(t))

N∑
i=1

aqi(t−τ(t))vi(t)

=
1

N2

N∑
i,j=1

aqi(t−τ(t))apj(t−τ(t))(vj(t)−vi(t)),

we get that

D+(d2V (t))≤ 2
λ

N2

N∑
i,j=1

aqi(t−τ(t))apj(t−τ(t))〈vj(t)−vi(t),vp(t)−vq(t)〉

−2λ|vp(t)−vq(t)|2 +4λ|vp(t)−vq(t)|
∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds. (3.13)

We estimate the first term at the right-hand side of (3.13) by applying Lemma 3.1,
with Sij = 〈vj(t)−vi(t),vp(t)−vq(t)〉 and ui=aqi(t−τ) and wj =apj(t−τ(t)) for i,j=
1,. ..,N . Since |Sij |≤d2V (t) and U,W = 1, using Assumption (1.18), we infer from (3.10)
with θ=ψ∗ that∣∣∣ 1

N2

N∑
i,j=1

aqi(t−τ(t))apj(t−τ(t))〈vj(t)−vi(t),vp(t)−vq(t)〉
∣∣∣≤ (1−ψ∗)d2V (t).

With the above estimate, we obtain from (3.13) that

D+(d2V (t))≤2λ(1−ψ∗)d2V (t)−2λd2V (t)+4λdV (t)στ (t),

from which (3.12) follows.

Lemma 3.3. Let (x(·),v(·)) be a solution of (3.1). Then

max
j=1,...,N

|v̇j(t)|≤λdV (t)+λστ (t) (3.14)

for every t≥0.

Proof. Using (3.1), we have

v̇i(t) =
λ

N

∑
j 6=i

aij(t−τ(t))(vj(t)−vi(t))+
λ

N

∑
j 6=i

aij(t−τ(t))(vj(t−τ(t))−vj(t)),
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from which we infer that

|v̇i(t)|≤
λ

N

∑
j 6=i

aij(t−τ(t))dV (t)+
λ

N

∑
j 6=i

aij(t−τ(t))

∫ t

t−τ(t)
|v̇j(s)| ds.

Then, we have

|v̇i(t)|≤λdV (t)+λ

∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds

and the lemma follows by taking the maximum in the left-hand side and using the
Definition (3.11) of στ (t).

We are now in a position to prove the theorem. Let β>0 to be chosen later. We
consider the Lyapunov functional defined along any solution by

F(t) =dV (t)+β

∫ t

t−τ(t)
e−(t−s)

∫ t

s

max
j=1,...,N

|v̇j(σ)| dσds. (3.15)

First of all, using (3.12), we have

D+F(t)≤−λψ∗dV (t)+2λστ (t)

−β(1−τ ′(t))e−τ(t)
∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds+βτ(t) max

j=1,...,N
|v̇j(t)|

−β
∫ t

t−τ(t)
e−(t−s)

∫ t

s

max
j=1,...,N

|v̇j(σ)| dσds.

Using (1.3) and (1.4), it follows from Lemma 3.3 that

D+F(t)≤−λψ∗dV (t)+(2λ−β(1−c)e−τ )στ (t)+βτλdV (t)

+βτλ

∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds−β

∫ t

t−τ(t)
e−(t−s)

∫ t

s

max
j=1,...,N

|v̇j(σ)| dσds

≤−λ(ψ∗−βτ)dV (t)−(β(1−c)e−τ −2λ−βτλ)στ (t)

−β
∫ t

t−τ(t)
e−(t−s)

∫ t

s

max
j=1,...,N

|v̇j(σ)| dσds.

Convergence to consensus is ensured if

ψ∗−τβ >0 and β(1−c)e−τ −2λ−βτλ≥0. (3.16)

The second inequality of (3.16) gives a first restriction on the size of the delay: τeτ <
1−c
λ . Let us now choose the constant β>0 in the Definition (3.15) of the Lyapunov

functional F so that both conditions in (3.16) are satisfied. We impose that β< ψ∗

τ and

β≥ 2λ
(1−c)e−τ−λτ . This is possible if and only if 2λ

(1−c)e−τ−λτ <
ψ∗

τ , that is, equivalently,

τeτ <χ where χ is defined by (3.6).
We now choose β in the definition of F such that

D+F(t)≤−rF(t) (3.17)
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for a suitable positive constant r. In order to have a better decay estimate, let us fix

β=
2λ

(1−c)e−τ −λτ
.

Then, we obtain (3.17) with r as in (3.8). Therefore,

dV (t)≤F(t)≤F(0)e−rt ∀t≥0.

The exponential decay estimate (3.7) is then proved with C=F(0) as in (3.9).

4. Numerical simulations
We provide here some numerical simulations illustrating our results. Throughout

the section, we take d= 2 and we choose the Cucker and Smale potential

ψ(s) =
1

(1+s2)b

with b= 2. As recalled in the introduction, for this value of b, for the classical model
without time-delay, there is a conditional flocking result (see [22,23,26]): under a suit-
able relation on the initial data, itself implying that the structural Assumption (1.15) is
satisfied along trajectories, convergence to consensus is ensured (and we find numerically
that γ= 1).

Here, we have λ= 1. The value of the threshold τ0 defined by (2.5) in Theorem 2.1
is

τ0'0.3437.

Recall that this threshold does not depend on the number N of agents. According to
Theorem 2.1, if the initial conditions are chosen in the favorable region of consensus
(determined by the structural Assumption (1.15)) for the undelayed model, then we still
do have convergence to consensus for the delayed model provided τ <τ0.

Interestingly, we are going to see in our numerical simulations hereafter that the
maximal threshold value τ0 for the delay under which convergence to consensus is kept,
seems to be sharp when N is large.

All numerical simulations have been done with Matlab on a standard desktop com-
puter. The differential system to be integrated has been discretized with the usual
explicit Runge-Kutta method of order 4 (RK4 scheme). The subdivision of the time in-
terval has been chosen regular, and the values of the delays have been chosen such that,
at some given time ti of the subdivision, denoting by τ a delay, the subdivision is such
that ti−τ belongs to the subdivision: this condition is often referred to as a commen-
surability assumption in the literature treating numerical simulations of time-delayed
systems.

4.1. Simulations with 3 agents. We take N = 3 (3 agents).
For the moment, we do not consider any time-delay in the model, i.e., τ(·)≡0. We

take as initial conditions

x01 = (0,0), v01 = (1,0),

x02 = (0,1), v02 = (1,0),

x03 = (1,0), v03 = (0.5,0.5).
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Fig. 4.1. N = 3, no time-delay (τ = 0). Simulation on the time interval [0,30].

These initial conditions are “favorable” in the sense that we have convergence to consen-
sus, as it can be seen on Figure 4.1. At the top left are drawn the curves t 7→xi(t)∈R2:
motion in the plane of the three agents; the initial points are represented with a star.
At the top right, one can see the modulus of the speeds ‖vi(t)‖, as a function of t. At
the bottom left is drawn the time evolution of the position variance X(t), and at the
bottom right, the speed variance V (t) in a logarithmic scale.

We now introduce a time-delay which, for simplicity, we take constant: τ(t)≡ τ .
We take as initial conditions, on [−τ,0],

xi(t) =x0i +(t+τ)v0i , vi(t) =v0i , i= 1,. ..,N. (4.1)

In other words, along the interval [−τ,0] the agents follow the dynamics ẋi=vi and
v̇i= 0, and thus each agent performs a translation motion, starting at x0i with the speed
v0i .

We observe in the numerical simulations that convergence of consensus is obtained
for any value of the delay satisfying τ <τ0, as expected.

Let us test, however, larger values of τ .
The corresponding solution for τ = 1 is drawn on Figure 4.2. For this value of the

time-delay, we observe that convergence to consensus is still obtained. This shows that
our threshold τ0 is not sharp for N = 3. This is not surprising because the region of
consensus (set of “favorable” initial conditions, studied in [22,26]) depends on N .

The corresponding solution for τ = 5 is drawn on Figure 4.3. For this value of the
time-delay, convergence to consensus is now lost. When time goes to infinity, the agents
do not remain grouped, and one can indeed observe that the position variance X(t)
tends to +∞.
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Fig. 4.2. N = 3, time-delay τ = 1. Simulation on the time interval [−1,80].

Fig. 4.3. N = 3, time-delay τ = 5. Simulation on the time interval [−5,80].
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We do not provide here any numerical simulation with time-varying delays, because
they do not provide any new relevant information with respect to that already provided
here. Anyway, if one would like to simulate time-varying delays, note that one should in
any case take care of the commensurability condition, as already mentioned; therefore
the delay function t 7→ τ(t) should be discretized as a piecewise constant function in
accordance with the subdivision that is used in the RK4 scheme.

4.2. Simulations with 50 agents. We now take N = 50.
As before, we first consider the model without delay, i.e., τ̄ = 0. We take as initial

conditions

x0i = (1.1cos(i+
√

2),1.1cos(i+2
√

2))

v0i = (2+0.15isin(
√

3−1),2+0.15isin(
√

3−2)) ∀i= 1,. ..,N.

These initial conditions are “favorable”: we have convergence to consensus (see Figure
4.4). At the top left of this figure are drawn the curves t 7→xi(t)∈R2: motion in the
plane of the 50 agents (initial points are represented with a star); for better readability,
the trajectories are drawn only on the time interval [0,3]. At the top right are drawn
the speeds ‖vi(t)‖, as a function of t, only on the time interval [0,200] to have better
readability. At the bottom left is drawn the time evolution of the position variance
X(t), and at the bottom right, the speed variance V (t) in a logarithmic scale, on the
time interval [0,2000], so that convergence to consensus can clearly be observed.

Fig. 4.4. N = 50, no time-delay (τ = 0).

We now introduce a constant time-delay (τ(t)≡ τ). We take initial conditions (4.1)
on [−τ,0] as before.
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Fig. 4.5. N = 50, time-delay τ = 0.25. Simulation on the time interval [−0.25,20000].

Fig. 4.6. N = 50, time-delay τ = 0.5. Simulation on the time interval [−0.5,20000].
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We observe in the numerical simulations that convergence to consensus is obtained
for any value of the delay satisfying τ <τ0, as expected.

For instance, for τ = 0.25 the corresponding solution is drawn on Figure 4.5. At the
bottom left: the position variance X(t); at the bottom right: the speed variance V (t)
in a logarithmic scale; both drawn on the time interval [0,20000], because convergence
to consensus is slow. The curves t 7→xi(t)∈R2 (motion in the plane) and t 7→‖vi(t)‖
(modulus of the speeds) are represented within a much smaller time frame to have better
readability.

Finally, for τ = 0.5 the corresponding solution is drawn on Figure 4.6. For this value
of the time-delay, which is larger than the threshold τ0, convergence to consensus does
not hold: one can indeed observe that the position variance X(t) tends to +∞, that
V (t) converges to a limit that is positive, and that the speeds do not coincide at the
limit.

This simulation, as well as others that are not reported here, illustrates that the
threshold τ0 defined by (2.5) in Theorem 2.1 seems to be sharp, at least when N is
sufficiently large.

5. Conclusion and further comments
We have analyzed the finite-dimensional general Cucker-Smale model with time-

varying time-delays, and we have established rigorous convergence results to consensus
under appropriate assumptions on the time-delay function τ(·). Our results are valid
for symmetric as well as for nonsymmetric interaction rates. The symmetric case has
been analyzed thanks to a L2 analysis, in the spirit of the original papers [22,23], while
we were able to deal with the loss of symmetry by carrying out a L∞ analysis as in [40].

In both cases, we have established convergence to consensus provided the time-delay
is below an explicit threshold given by a Lyapunov stability analysis. The bound on
the time-delay depends on the coupling strength λ, on the communication weights and
on the bound c on the time-derivative of τ(·), but it does not depend on the number
N of the agents. This important fact suggests that it might be possible to extend our
analysis performed here on the finite-dimensional Cucker-Smale model to the infinite-
dimensional case, as we comment next.

Towards a kinetic extension. The kinetic equation for the undelayed Cucker-Smale
model has been derived in [30], using the BBGKY hierarchy, from the Cucker-Smale
particle model as a mesoscopic description for flocking (see also [28,45]). By considering
the mean-field limit in the case τ = 0, one obtains the kinetic equation

∂tµ+〈v,gradxµ〉+divv ((ξ[µ])µ) = 0

where µ(t) =µ(t,x,v) is the density of agents at time t at (x,v) and the interaction field
is defined by

ξ[µ](x,v) =

∫
IRd×IRd

ψ(|x−y|)(w−v)dµ(y,w).

If we introduce a delay τ in the Cucker-Smale system as in (1.5), even when τ is
constant, it is not clear how to deduce the corresponding kinetic model. In contrast, it
is easy to pass to the mean-field limit when one considers a Cucker-Smale model with
communication weights as in (1.13): indeed, the authors of [17], putting a delay on xj
but not on xi in the communication weights in the equation for vi, are able to pass to
the mean-field limit and obtain the kinetic equation

∂tµ(t)+〈v,gradxµ(t)〉+divv ((ξ[µ(t−τ)])µ(t)) = 0.
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Deriving an appropriate kinetic equation by considering the mean-field limit of (1.5),
with communication weights depending on the states at time t−τ for all the agents; as
it is, in our opinion, more adequate from a physical point of view; seems out of reach
at this moment. We let it as an open question.
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ment models, Math. Models Meth. Appl. Sci., 25(3):521–564, 2015. 1

[12] M. Caponigro, B. Piccoli, F. Rossi, and E. Trélat, Sparse Jurdjevic–Quinn stabilization of dissi-
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