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DETECTION OF CONDUCTIVITY INCLUSIONS IN A SEMILINEAR
ELLIPTIC PROBLEM ARISING FROM CARDIAC

ELECTROPHYSIOLOGY∗

ELENA BERETTA† , LUCA RATTI‡ , AND MARCO VERANI§

Abstract. In this work we tackle the reconstruction of discontinuous coefficients in a semilinear
elliptic equation from the knowledge of the solution on the boundary of the planar bounded domain.
The problem is motivated by an application in cardiac electrophysiology.

We formulate a constraint minimization problem involving a quadratic mismatch functional en-
hanced with a regularization term which penalizes the perimeter of the inclusion to be identified. We
introduce a phase-field relaxation of the problem, employing a Ginzburg-Landau-type energy and as-
sessing the Γ-convergence of the relaxed functional to the original one. After computing the optimality
conditions of the phase-field optimization problem and introducing a discrete finite element formulation,
we propose an iterative algorithm and prove convergence properties. Several numerical results are re-
ported, assessing the effectiveness and the robustness of the algorithm in identifying arbitrarily-shaped
inclusions.

Finally, we compare our approach to a shape derivative based technique, both from a theoretical
point of view (computing the sharp interface limit of the optimality conditions) and from a numerical
one.
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1. Introduction
We consider the following Neumann problem, defined over Ω⊂R

2:{
−div(k̃(x)∇y)+χΩ\ωy3=f in Ω

∂νy=0 on ∂Ω,
(1.1)

where χΩ\ω is the indicator function of Ω\ω and

k̃(x)=

{
k if x∈ω
1 if x∈Ω\ω,

with 0<k�1 and f ∈L2(Ω).
The boundary value problem (1.1) consists of a semilinear diffusion-reaction equa-

tion with discontinuous coefficients across the interface of an inclusion ω⊂Ω, in which
the conducting properties are different from the background medium. Supposing the
value of k to be known, our goal is the determination of the inclusion from the knowl-
edge of the value of y on the boundary ∂Ω. More precisely, given the measured data
ymeas on the boundary, we search for the inclusion ω⊂Ω that is associated with those
exact measurements, i.e. such that the corresponding solution y of (1.1) satisfies

y|∂Ω=ymeas. (1.2)
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Since, to the best of our knowledge, few works deal with inverse boundary value problems
for nonlinear equations, the reconstruction problem analyzed in this paper is interesting
from both an analytic and a numerical standpoint.

The direct problem can be related to a meaningful application arising in cardiac
electrophysiology: in that context (see [19, 39]), the solution y represents the electric
transmembrane potential in the heart tissue, the coefficient k̃ is the tissue conductivity
and the nonlinear reaction term encodes an ionic transmembrane current. An inclusion
ω models the presence of an ischemia, which modifies substantially the conductivity
properties of the tissue. The objective of our work, in the long run, is the identification
of ischemic regions through a set of measurements of the electric potential acquired on
the surface of the myocardium. We remark that our model is a simplified version of the
more complex monodomain model (see e.g. [39, 40]). The monodomain is a continuum
model which describes the evolution of the transmembrane potential on the heart tis-
sue according to the conservation law for currents and a satisfying description of the
ionic current, which entails the coupling with a system of ordinary differential equations
for the concentration of chemical species. In this preliminary setting, we remove the
coupling with the ionic model, adopting instead a phenomenological description of the
ionic current, through the introduction of a cubic reaction term. Moreover, we consider
the stationary case in presence of a source term which plays the role of the electrical
stimulus. Despite the simplifications, the problem we consider in this paper is a mathe-
matical challenge in itself. Indeed, here the difficulties include the nonlinearity of both
the direct and the inverse problem, as well as the lack of measurements at our disposal.

The linear counterpart of the problem, obtained when the nonlinear reaction term
is removed, is strictly related to the inverse conductivity problem, also called Calderón
problem, which has been the object of several studies in the last decades. The problem
is severly ill-posed and highly nonlinear. Moreover, infinite measurements are needed to
recover smooth inclusions (see [30] and references therein). A finite number of measure-
ments is sufficient to determine uniquely and in a stable (Lipschitz) way the inclusion,
only after introducing additional information either on the shape of the inclusion or on
its size.

Several reconstruction algorithms have been developed for the solution of the in-
verse conductivity problem, and it is beyond the purposes of this introduction to provide
an exhaustive overview on the topic. Under the assumption that the inclusion to be
reconstructed is of small size, an extended review of methods is presented in [4], many
of which heavily rely on the linearity of the direct problem. Some efficient and more
versatile algorithms can be derived by a variational approach, i.e., by the constraint
minimization of a quadratic misfit functional, as in [31], and [3]. When dealing with
the reconstruction of arbitrary inclusions in the linear case, several variational algo-
rithms are available. A shape-optimization approach, with suitable regularization, is
explored in [1, 28, 32] and [2]; in [29] this approach is coupled with topology optimiza-
tion; whereas the level set technique has been applied in [38] and in [13]. Recently,
several specific schemes have been employed to deal with the minimization of a misfit
functional endowed with a total-variation regularization: along this line we mention
the Levenberg-Marquardt and Landweber algorithms in [5], the augmented Lagrangian
approach in [17] and the regularized level set technique in [15]. Finally, the phase-field
approach has been explored for the linear inverse conductivity problem e.g in [37] and
recently in [20].

Concerning inverse problems related to nonlinear PDEs, only a few theoretical re-
sults and numerical strategies are available, especially regarding the electrophysiological
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problem of interest. We remark that the level-set method has been implemented for
the reconstruction of extended inclusions in the nonlinear problem of cardiac electro-
physiology (see [34] and [16]), by evaluating the sensitivity of the cost functional with
respect to a selected set of parameters involved in the full discretization of the shape
of the inclusion. In [10], the authors, taking advantage from the results obtained in [8],
proposed a reconstruction algorithm for the nonlinear problem (1.1) based on topo-
logical optimization, where a suitable quadratic functional is minimized to detect the
position of small inclusions separated from the boundary. In [7], the results obtained
in [10] and [8] have been extended to the time-dependent monodomain equation under
the same assumptions.

In this paper we propose a reconstruction algorithm of inclusions of arbitrary shape
and position by relying on the minimization of a suitable functional, enhanced with
a perimeter penalization term, and by following a relaxation strategy relying on the
phase-field approach. The outline of the paper is as follows. In Section 2 we introduce
the optimization problem together with its phase-field regularization, discussing well-
posedness, Γ-convergence of the relaxed functional to the original one, and the derivation
of necessary optimality conditions associated with the phase-field minimization problem.
In Section 3 we propose an iterative reconstruction algorithm allowing for the numerical
approximation of the solution and prove its convergence properties. The power of this
approach is twofold. On the one hand it allows to consider conductivity inclusions of
arbitrary shape and position, which is the case of interest for our application and on
the other it leads to good reconstructions as shown in the numerical experiments in
Section 4. Finally, in Section 5 we compare our technique with a shape optimization
based approach. After showing that the optimality conditions derived for the relaxed
problem converge to those corresponding to the sharp interface one, we show numerical
results obtained by applying both the algorithms on the same benchmark cases.

2. Minimization problem
In this section, we give a rigorous formulation both of the direct and of the inverse

problem under investigation. The analysis of the well-posedness of the direct problem
is reported in detail, and consists of an extension of the results previously obtained
in [8]. The inverse problem is instead associated with a constraint minimization problem
for which we introduce a regularization and relaxation strategy in order to overcome
instability and to allow the implementation of a reconstruction algorithm.

We formulate the problems (1.1) and (1.2) in terms of the indicator function of the
inclusion, u=χω. We assume an a priori hypothesis on the inclusion, namely that it is
a subset of Ω of finite perimeter: u belongs to BV (Ω)={v∈L1(Ω) : TV (v)<∞}, with

TV (v)=sup

{∫
Ω

vdiv(φ); φ∈C1
0 (Ω;R

2), ‖φ‖L∞ ≤1

}
,

endowed with the norm ‖·‖BV =‖·‖L1 +TV (·). Moreover, we formulate particular re-
strictions on the inclusion and on the source f .

Assumption 2.1. Given a positive number d0 we assume that

u∈X0,1={v∈BV (Ω) :v(x)∈{0,1} a.e. in Ω ,u=0 a.e. in Ωd0 }, (2.1)

where Ωd0 ={x s.t. dist(x,∂Ω)≤d0}.
This also entails that the inclusion is well separated from the boundary ∂Ω. More-

over,
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Assumption 2.2. Given a positive constant m, we require

f ≥m a.e. in Ω. (2.2)

The weak formulation of the direct problem (1.1) in terms of u reads: find y in H1(Ω)
s.t., ∀ϕ∈H1(Ω), ∫

Ω

a(u)∇y∇ϕ+

∫
Ω

b(u)y3ϕ=

∫
Ω

fϕ, (2.3)

being a(u)=1−(1−k)u and b(u)=1−u. Define S :X0,1→H1(Ω) the solution map:
for all u∈X0,1, S(u)=y is the solution to problem (2.3) with indicator function u; the
inverse problem consists of:

find u∈X0,1 s.t. S(u)|∂Ω=ymeas. (2.4)

In the proof of various propositions, we have to make use of the following generalized
Poincaré inequality:

Lemma 2.1. ∃C>0,C=C(Ω,d0) s.t., ∀w∈H1(Ω),

‖w‖2H1(Ω)≤C
(
‖∇w‖2L2(Ω)+‖w‖

2
L2(Ωd0 )

)
. (2.5)

The proof of the Lemma 2.1 is given in the Appendix of [8] and easily follows from
Theorem 8.11 in [33].

Thanks to Lemma 2.1, we can prove the following well-posedness result for the
direct problem.

Proposition 2.1. Consider f ∈
(
H1(Ω)

)∗
and a function u∈X0,1. Then there exists

a unique solution S(u)∈H1(Ω) of∫
Ω

a(u)∇S(u) ·∇v+

∫
Ω

b(u)S(u)3v=

∫
Ω

fv ∀v∈H1(Ω),

where a(u)=1−(1−k)u and b(u)=1−u.

Proof. The proof is analogous to the analysis performed in [8, Theorem 4.1], but
generalises that result to the case of inclusions of finite perimeter. The strategy consists
in applying the Minty-Browder theorem on the direct operator T :H1(Ω)→

(
H1(Ω)

)∗
s.t.

〈T (S),v〉∗=
∫
Ω

a(u)∇S ·∇v+

∫
Ω

b(u)S3v,

which shows to be continuous, coercive and strictly monotone. In particular

• Local Lipschitz continuity:

|〈T (S)−T (S0),v〉∗|=
∣∣∣∣
∫
Ω

a(u)∇(S−S0) ·∇v+

∫
Ω

b(u)(S−S0)qv

∣∣∣∣
≤‖∇(S−S0)‖L2‖∇v‖L2 +‖S−S0‖L6‖q‖L3‖v‖L2 ,

(with q=S2+SS0+S2
0). If S and S0 belong to a bounded subset of H1(Ω),

then (thanks to the Sobolev embedding of H1(Ω) in L6(Ω)) we can assess that
‖q‖L3 ≤M and moreover ∃K=K(u)>0 s.t.

|〈T (S)−T (S0),v〉∗|≤K‖S−S0‖H1‖v‖H1 ∀v∈H1(Ω).
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• Coercivity: We show that 〈T (S),S〉∗→+∞ as ‖S‖H1(Ω)→+∞. Since u=0

a.e. in Ωd0 , b(u)≥χΩd0 , the indicator function of Ωd0 . Then,

〈T (S),S〉∗≥k

∫
Ω

|∇S|2+
∫
Ωd0

S4≥k‖∇S‖2L2(Ω)+
1

|Ω| ‖S‖
4
L2(Ωd0 )

=k
(
‖∇S‖2L2(Ω)+‖S‖

2
L2(Ωd0 )

)
+R,

where R= 1
|Ω|‖S‖

4
L2(Ωd0 )−k‖S‖2L2(Ωd0 ) can be bounded by below independently

of S: R≥−k2|Ω|
4 . Together with Poincaré’s inequality in Lemma 2.1, we con-

clude that

〈T (S),S〉∗≥
k

C
‖S‖2H1(Ω)−

k2|Ω|
4

.

• (Strict) monotonicity: We claim that 〈T (S)−T (R),S−R〉∗≥0 and 〈T (S)−
T (R),S−R〉∗=0⇔S=R. Indeed,

〈T (S)−T (R),S−R〉∗≥
∫
Ω

k|∇(S−R)|2+
∫
Ωd0

(S2+SR+R2)(S−R)2≥0.

Moreover, since S2+SR+R2≥ 1
4 (S−R)2,

〈T (S)−T (R),S−R〉∗=0⇒‖∇(S−R)‖L2(Ω)=0 and

∫
Ωd0

(S−R)4=0,

and from the latter equality it follows that S=R a.e. in Ωd0 , hence also
‖S−R‖L2(Ωd0 )=0, and via Lemma 2.1 ‖S−R‖H1(Ω)=0.

It is possible to prove additional properties of the solution S(u) of the direct prob-
lem. In particular, we provide a uniform bound on ‖S(u)‖H1(Ω) independent of u.

Proposition 2.2. There exists a constant C=C(Ω,d0,k) s.t., ∀u∈X0,1,

‖S(u)‖H1(Ω)≤C
(
‖f‖L2(Ω)+‖f‖

3
L2(Ω)

)
. (2.6)

This can be proved as in [8, Proposition 4.1], where we take advantage of the bound

‖S(u)‖4L2(Ωd0 )≤|Ωd0 |
∫
Ωd0

S(u)4≤|Ω|
∫
Ω

b(u)S(u)4,

and hence the constant appearing in (2.6) only depends on Ω, d0, k.
Moreover, we prove a Hölder regularity result on S(u):

Proposition 2.3. Let S(u) be the solution of (2.3) associated to u∈X0,1 and let
f ∈L2(Ω). Then, S(u)∈Cα(Ω̄) and

‖S(u)‖Cα(Ω̄)≤C(Ω,k,‖f‖L2(Ω),d0).

Proof. The proof is analogous to the one in [8]. An application of [26, Theorem
8.24] ensures that

∀Ω′⊂⊂Ω, ‖S(u)‖Cα(Ω′)≤C
(
‖S(u)‖L2(Ω)+‖S(u)‖

3
L6(Ω)+‖f‖L2(Ω)

)
≤C,
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where C=C(Ω′,k,‖f‖L2(Ω)). By taking Ω′⊃Ωd0 , since the conductivity is constant in
Ωd0 and the normal derivative on the boundary is zero, we can apply standard regularity
results up to the boundary, obtaining:

‖S(u)‖Cα(Ω)≤C=C(Ω,d0,k,‖f‖L2(Ω)).

Finally, we prove an estimate which occurs many times in the proof of various
results.

Proposition 2.4. Suppose that f ∈L2(Ω) s.t. f ≥m>0 a.e. in Ω. Consider S(u) to
be the solution of problem (2.3) associated with u∈X0,1. Then, S(u)≥m1/3.

The proof is an immediate consequence of the following Lemma:

Lemma 2.2. Let S1 and S2 be a sub- and supersolution of (2.3) with u∈X0,1, namely
S1,S2∈H1(Ω) s.t., ∀ϕ∈H1(Ω), ϕ≥0 a.e., it holds:∫

Ω

a(u)∇S1 ·∇ϕ+

∫
Ω

b(u)S3
1ϕ−

∫
Ω

fϕ≤0, (2.7)∫
Ω

a(u)∇S2 ·∇ϕ+

∫
Ω

b(u)S3
2ϕ−

∫
Ω

fϕ≥0. (2.8)

Then, S1≤S2 a.e. in Ω.

Proof. Subtract the Equations (2.8) – (2.7) and define W =S2−S1: it holds that
∀ϕ∈H1(Ω), ϕ≥0 a.e., ∫

Ω

a(u)∇W ·∇ϕ+

∫
Ω

b(u)QWϕ≥0,

where Q=(S2
1 +S1S2+S2

2)≥0. Take ϕ=W−, the negative part of W . We remark that
W+=max{0,W}, W−=max{0,−W}, W =W+−W−; moreover W+,W−∈H1(Ω),
W+W−=0, and in view of [24, Theorem 4.4] we refer to ∇W− as the gradient of the
negative part W− or equivalently as the vector of the negative parts of the components
of ∇W . Thus, it holds that∫

Ω

a(u)∇W− ·∇W−+

∫
Ω

b(u)Q(W−)2≤0,

which implies that S2≥S1 a.e. Indeed, k‖∇W−‖L2(Ω)≤0 implies ∇W−=0 a.e. in Ω;

moreover, both S1 and S2 are continuous, and hence also W and W−, which entails
W−= c, c≥0 by definition. In order to guarantee that W−=max{0,−W}= c is con-
tinuous, either c=0 or W =−c<0 in Ω. The latter case, though, would imply that

S2=S1−c and, by simple computation, Q=3S2
1−3cS1+c2≥ c2

4 , which is incompatible
with

∫
Ω
b(u)Q(W−)2≤0. Hence W−=0, and so W =W+≥0.

Proof. (Proof of Proposition 2.4.) Taking S2=S(u) and S1=m1/3 (which is a
subsolution since b(u)m−f ≤0), we obtain the uniform bound S(u)≥m1/3.

Remark 2.1. We could extend all the previous results to a class of more general
functions f , namely f not vanishing in Ωd0 , but that would entail that the lower bound
in Proposition 2.4 might depend on u. On the other hand, when applying the previous
estimates in the proofs of following results (in particular, Propositions 2.5, 2.10, 5.1 and
Lemma 3.1), we always invoke Proposition 2.4 on a fixed indicator function u.
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The crucial property satisfied by the solution map is the continuity with respect to
the L1 norm, which requires an accurate treatment due to the nonlinearity of the direct
problem.

Proposition 2.5. Let f ∈L2(Ω) satisfy Assumption (2.2). If {un}⊂X0,1 s.t. un
L1

−−→
u∈X0,1, then S(un)|∂Ω

L2(∂Ω)−−−−−→S(u)|∂Ω.
Proof. Define wn=S(un)−S(u); then, subtracting (2.3) evaluated at un and the

same evaluated at u; wn is the solution of:∫
Ω

a(un)∇wn∇ϕ+

∫
Ω

b(un)qnwnϕ=

∫
Ω

(1−k)(un−u)∇S(u)∇ϕ−
∫
Ω

(un−u)S(u)3ϕ,

(2.9)
where qn=S(un)

2+S(un)S(u)+S(u)2. Considering ϕ=wn and taking advantage of
the fact that a(un)≥k and (by simple computation) qn≥ 3

4S(u)
2, we can show, via the

Cauchy-Schwarz inequality, that

k‖∇wn‖2L2(Ω)+
3

4

∫
Ω

b(un)S(u)
2w2

n≤(1−k)‖(un−u)∇S(u)‖L2(Ω)‖∇wn‖L2(Ω)

+
∥∥(un−u)S(u)3

∥∥
L2(Ω)

‖wn‖L2(Ω).

We remark that (un−u)S(u)3∈L2(Ω) since S(u)∈H1(Ω)⊂⊂L6(Ω). Moreover, as
b(un)≥χΩd0 and using Proposition 2.4,

k‖∇wn‖2L2(Ω)+
3

4

∫
Ωd0

m2/3w2
n≤(1−k)‖(un−u)∇S(u)‖L2(Ω)‖∇wn‖L2(Ω)

+
∥∥(un−u)S(u)3

∥∥
L2(Ω)

‖wn‖L2(Ω),

from which we deduce

k‖∇wn‖2L2(Ω)+
3

4
m2/3‖wn‖2L2(Ωd0 )≤ (q1+q2)‖wn‖H1(Ω),

where q1=‖(un−u)∇S(u)‖L2(Ω) and q2=
∥∥(un−u)S(u)3

∥∥
L2(Ω)

, which implies, thanks

to the Poincaré inequality in Lemma 2.1,

‖wn‖H1(Ω)≤C(q1+q2),

with C=C(d0,Ω,m,k). Consider

q1=

(∫
Ω

(un−u)2|∇S(u)|2
) 1

2

;

since un
L1

−−→u, then (up to a subsequence) un→u pointwise almost everywhere. Thus
also the integrand (un−u)2|∇S(u)|2 converges to 0. Moreover, |un−u|≤1, hence ∀n
(un−u)2|∇S(u)|2≤|∇S(u)|2∈L1(Ω), and thanks to Lebesgue convergence theorem, we

conclude that q1→0. Analogously, q2→0 and eventually ‖wn‖H1(Ω)→0, i.e. S(un)
H1

−−→

S(u) and by the trace inequality also S(un)|∂Ω
L2(∂Ω)−−−−−→S(u)|∂Ω.

Remark 2.2. X0,1, being a closed subspace of the Banach space BV (Ω), is compact
with respect to its weak topology; moreover, the weak BV convergence implies the strong
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L1 convergence, and in view of Proposition 2.5 we can assess that the map F = τ ◦S, τ
being the trace operator in H1(Ω), is compact from X0,1 to L2(∂Ω). It is immediate
to conclude that, if the inverse F−1 exists, it cannot be continuous: hence, the inverse
problem (2.4) is ill-posed.

We now introduce the following constraint optimization problem:

argmin
u∈X0,1

J(u); J(u)=
1

2
‖S(u)−ymeas‖2L2(∂Ω), (2.10)

which shares the same property of non-stability and (possibly) non-uniqueness as prob-
lem (2.4). Nevertheless, a well-known strategy to recover well-posedness for problem
(2.10) is to introduce a Tikhonov regularization term in the functional to minimize, e.g.
a penalization term for the perimeter of the inclusion. The regularized problem reads:

argmin
u∈X0,1

Jreg(u); Jreg(u)=
1

2
‖S(u)−ymeas‖2L2(∂Ω)+αTV (u), (2.11)

For the regularized problem (2.11), it is possible to prove several desirable properties:

• for every α>0 there exists at least one solution to (2.11) (existence);

• small perturbations on the data ymeas in L2(∂Ω)-norm imply small perturbation
on the solutions of (2.11) in BV -intermediate convergence (stability);

• the sequence of solutions of problem (2.11) associated with the regularization
parameters {αk} (s.t. αk→0) converges in the BV -intermediate convergence
to a minimum-variation solution of problem (2.10).

We point out that a sequence {un}⊂BV (Ω) converges to u∈BV (Ω) in the sense of the

intermediate convergence iff un
L1

−−→u and TV (un)→TV (u). The proof of the previous
properties follows from a careful application of the results in [23, Chapter 10], taking
into account that BV (Ω) is a non-reflexive Banach space.

According to the stated results, a good approximation of a minimum-variation so-
lution of the inverse problem (2.4) can be achieved by solving the regularized constraint
minimization problem (2.11) with a sufficiently small parameter α>0. Although the
stability of the problem is guaranteed, its numerical solution may raise difficulties,
namely the non-convexity both of the functional Jreg and of the space X0,1, as well as
the non-differentiability of the functional. To overcome these difficulties, in this work
we propose a phase-field relaxation of the optimization problem (2.11) inspired by [20],
with the additional difficulty of the nonlinearity of the direct problem. The relaxation
strategy consists in defining a minimization problem in a space of more regular func-
tions, associated to a differentiable cost functional (which in our case is achieved by
replacing the total variation term with a Modica-Mortola functional, representing a
Ginzburg-Landau energy).

Consider u∈K={v∈H1(Ω) : 0≤v≤1 a.e. in Ω, v=0 a.e. in Ωd0} and, for every
ε>0, introduce the optimization problem:

argmin
u∈K

Jε(u); Jε(u)=
1

2
‖S(u)−ymeas‖2L2(∂Ω)+α

∫
Ω

(
ε|∇u|2+ 1

ε
u(1−u)

)
. (2.12)

The well-posedness result for the direct problem in Proposition 2.1, together with the
additional stability and regularity results can be easily extended to the case u∈K. In
the next two propositions, we prove existence and stability of the solutions of the relaxed
minimization problem (2.12) for fixed ε.
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Proposition 2.6. For every fixed ε>0, the minimization problem (2.12) has a
solution uε∈K.

Proof. Fix ε>0 and consider a minimizing sequence for the functional Jε, {uk}⊂K
(we omit the dependence of uk on ε). By definition of minimizing sequence, Jε(uk)≤M

independently of k, which implies that ‖∇uk‖2L2(Ω) is also bounded. Moreover, with

uk ∈K, 0≤uk≤1 a.e., thus ‖uk‖L2(Ω) and ‖uk‖H1(Ω) are bounded independently of k.

Thanks to weak compactness of H1, there exist uε∈H1(Ω) and a subsequence {ukn
} s.t.

ukn

H1

−−⇀uε, hence ukn

L2

−−→uε. The strong L2 convergence implies (up to a subsequence)
pointwise convergence a.e., which allows to conclude (together with the Lebesgue’s
dominated convergence theorem, since ukn

(1−ukn
)≤1/2) that∫

Ω

ukn(1−ukn)→
∫
Ω

uε(1−uε).

Moreover, by the lower semicontinuity of the H1 norm with respect to the weak con-
vergence, and by the compact embedding in L2,

‖uε‖2H1(Ω)≤ liminf
n

‖ukn‖2H1(Ω)

‖uε‖2L2(Ω)+‖∇uε‖2L2(Ω)≤ lim
n
‖ukn‖2L2(Ω)+liminf

n
‖∇ukn‖2L2(Ω)

‖∇uε‖2L2(Ω)≤ liminf
n

‖∇ukn
‖2L2(Ω).

Moreover, using the continuity of the solution map S with respect to the L1 convergence,
we can conclude that

Jε(uε)≤ liminf
n

Jε(ukn
).

Finally, by pointwise convergence, 0≤uε≤1 a.e. and uε=0 a.e. in Ωd0 , hence uε is a
minimum of Jε in K.
Proposition 2.7. Fix α,ε>0 and consider a sequence {yk}⊂L2(∂Ω) such that

yk
L2(∂Ω)−−−−−→ymeas. For each k, let uk

ε be a solution of (2.12), where ymeas is replaced by

yk. Then, up to a subsequence, uk
ε

H1

−−→uε, where uε is a solution of (2.12).

Proof. Consider a solution u∗ of (2.12): by definition of uk
ε , it holds

1

2

∥∥S(uk
ε)−yk

∥∥2
L2(∂Ω)

+αε
∥∥∇uk

ε

∥∥2
L2(Ω)

+
α

ε

∫
Ω

uk
ε(1−uk

ε)

≤1

2

∥∥S(u∗)−yk
∥∥2
L2(∂Ω)

+αε‖∇u∗‖2L2(Ω)+
α

ε

∫
Ω

u∗(1−u∗)

≤1

2

∥∥ymeas−yk
∥∥2
L2(∂Ω)

+
1

2
Jε(u

∗).

Hence
∥∥∇uk

ε

∥∥
L2(Ω)

is bounded independently of k, and so is
∥∥uk

ε

∥∥
L2(Ω)

(since uk
ε ∈K).

This implies that, up to a subsequence, uk
ε

H1

−−⇀uε∈H1(Ω), from which it follows that

uk
ε

L2

−−→uε and in particular S(uk
ε)

H1

−−→S(uε) (thanks to Proposition 2.5) and uk
ε→uε

almost everywhere in Ω, and by Lebesgue’s convergence theorem also
∫
Ω
uk
ε(1−uk

ε)→
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∫
Ω
uε(1−uε). Finally, by lower semicontinuity of the H1 norm with respect to the weak

convergence, we conclude that

Jε(uε)≤ liminf
k

(
1

2

∥∥S(uk
ε)−yk

∥∥2
L2(∂Ω)

+αε
∥∥∇uk

ε

∥∥2
L2(Ω)

+
α

ε

∫
Ω

uk
ε(1−uk

ε)

)

≤Jε(u
∗)+

1

2
lim
k

∥∥ymeas−yk
∥∥2
L2(∂Ω)

,

hence Jε(uε)=Jε(u
∗) and uε is a solution of (2.12). Moreover, this implies that

‖∇uε‖L2(Ω)=limk

∥∥∇uk
ε

∥∥
L2(Ω)

; and since H1 is an Hilbert space, together with the

weak convergence, this implies that uk
ε

H1

−−→uε.

The asymptotic behaviour of the phase-field relaxation when ε→0 is reported in
the next two propositions and is related to the notion of Γ-convergence.

Proposition 2.8. Consider the space X of the Lebesgue-measurable functions over
Ω endowed with the L1(Ω) norm and the following extension of the cost functionals on
X

J̃ =

{
Jreg(u) if u∈X0,1

∞ otherwise,
J̃ε=

{
Jε(u) if u∈K
∞ otherwise.

Then, the functionals J̃εk associated with {εk} s.t. εk→0 converge to J̃ in X in the
sense of the Γ−convergence.

The proof can be obtained by adapting the one of [20, Theorem 6.1]. Moreover, from
the compactness result in [6, Proposition 4.1] and by the definition of Γ-convergence, it
is easy to prove the following convergence result for the solutions of (2.12).

Proposition 2.9. Consider a sequence {εk} s.t. εk→0 and let {uεk} be the sequence
of the respective minimizers of the functionals {Jεk}. Then, there exists a subsequence,
still denoted as {εk} and a function u∈X0,1 such that uεk→u in L1 and u is a solution
of (2.11).

2.1. Optimality conditions. We can now provide an expression for the opti-
mality condition associated with the minimization problem (2.12), which is formulated
as a variational inequality involving the Fréchet derivative of Jε.

Proposition 2.10. Consider the solution map S :K→H1(Ω) and let f ∈L2(Ω) satisfy
Assumption (2.2): for every ε>0, the operators S and Jε are Fréchet-differentiable on
K⊂L∞(Ω)∩H1(Ω) and a minimizer uε of Jε satisfies the variational inequality:

J ′
ε(uε)[v−uε]≥0 ∀v∈K, (2.13)

with

J ′
ε(u)[ϑ]=

∫
Ω

(1−k)ϑ∇S(u) ·∇p+

∫
Ω

ϑS(u)3p+2αε

∫
Ω

∇u ·∇ϑ+
α

ε

∫
Ω

(1−2u)ϑ; (2.14)

where ϑ∈K−u={v s.t. u+v∈K} and p is the solution of the adjoint problem:∫
Ω

a(u)∇p ·∇ψ+

∫
Ω

3b(u)S(u)2pψ=

∫
∂Ω

(S(u)−ymeas)ψ ∀ψ∈H1(Ω). (2.15)
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Proof. First of all we need to prove that S is Fréchet differentiable in L∞(Ω): in
particular, we claim that for ϑ∈L∞(Ω)∩(K−u) it holds that S′(u)[ϑ]=S∗, where S∗
is the solution in H1(Ω) of∫

Ω

a(u)∇S∗∇ϕ+

∫
Ω

b(u)3S(u)2S∗ϕ=

∫
Ω

(1−k)ϑ∇S∇ϕ+

∫
Ω

ϑS(u)3ϕ ∀ϕ∈H1(Ω),

(2.16)
namely, that

‖S(u+ϑ)−S(u)−S∗‖H1(Ω)=o(‖ϑ‖L∞(Ω)). (2.17)

First we show that if ϑ∈L∞(Ω)∩(K−u), then ‖S(u+ϑ)−S(u)‖H1(Ω)≤C‖ϑ‖L∞(Ω).

Indeed, the difference w=S(u+ϑ)−S(u) satisfies∫
Ω

a(u+ϑ)∇w∇ϕ+

∫
Ω

b(u+ϑ)qwϕ=−
∫
Ω

(a(u+ϑ)−a(u))∇S(u)∇ϕ

−
∫
Ω

(b(u+ϑ)−b(u))S(u)3ϕ ∀ϕ∈H1(Ω),

(2.18)
with q=S(u+ϑ)2+S(u)S(u+ϑ)+S(u)2. Substituting a(u+ϑ)−a(u)=−(1−k)ϑ and
b(u+ϑ)−b(u)=−ϑ, and taking ϕ=w in (2.18), as in the proof of Proposition 2.5, we
obtain

k‖∇w‖2L2 +
3

4

∫
Ω

b(u+ϑ)S(u)2w2≤‖ϑ‖L∞‖∇S(u)‖L2‖∇w‖L2 +
∥∥S(u)3∥∥

L2‖w‖L2‖ϑ‖L∞

and again by Proposition 2.4

k‖∇w‖2L2 +
3

4
m2/3‖w‖2L2(Ωd0 )≤‖ϑ‖L∞‖∇S(u)‖L2‖∇w‖L2 +‖ϑ‖L∞

∥∥S(u)3∥∥
L2‖w‖L2 .

By (2.5) and the Sobolev inequality, eventually

‖w‖2H1(Ω)≤C‖S(u)‖H1(Ω)‖w‖H1(Ω)‖ϑ‖L∞ ,

hence ‖S(u+ϑ)−S(u)‖H1(Ω)=O(‖ϑ‖L∞(Ω)).

Take now (2.18) and subtract (2.16). Define r=S(u+ϑ)−S(u)−S∗: it holds that∫
Ω

a(u)∇r∇ϕ+

∫
Ω

b(u)3S(u)2rϕ=

∫
Ω

(a(u+ϑ)−a(u))∇w ·∇ϕ

+

∫
Ω

(b(u+ϑ)q−3b(u)S(u)2)wϕ ∀ϕ∈H1(Ω).

The second integral in the latter sum can be split as follows:∫
Ω

(b(u+ϑ)q−3b(u)S(u)2)wϕ=

∫
Ω

(b(u+ϑ)−b(u))qwϕ+

∫
Ω

(q−3S(u)2)b(u)wϕ,

and in particular q−3S(u)2=S(u+ϑ)2+S(u+ϑ)S(u)−2S(u)2=hw, where h=S(u+
ϑ)+2S(u)∈H1(Ω). Hence, choosing ϕ= r and exploiting again Proposition 2.4, the
Poincaré inequality in Lemma 2.1 and the Hölder inequality:

1

C
‖r‖2H1 ≤k‖∇r‖2L2 +m2/3‖r‖L2(Ωd0 )≤ (1−k)‖ϑ‖L∞‖∇w‖L2‖∇r‖L2

+‖ϑ‖L∞‖q‖L4‖w‖L2‖r‖L4 +‖h‖L4‖w‖2L4‖r‖L4

≤
(
(1−k)‖ϑ‖L∞‖w‖H1 +‖q‖H1‖ϑ‖L∞‖w‖H1 +‖h‖H1‖w‖2H1

)
‖r‖H1 .
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It follows eventually that ‖r‖H1(Ω)≤C‖ϑ‖2L∞ =o(‖ϑ‖L∞), which guarantees that S∗=
S′(u)[ϑ].

The last step is to provide an expression of the Fréchet derivative of Jε. Exploiting
the fact that S is differentiable, we can compute the expression of J ′

ε(u) through the
chain rule:

J ′
ε(u)[ϑ]=

∫
∂Ω

(S(u)−y0)S
′(u)[ϑ]+α

∫
Ω

(
2ε∇u∇ϑ+

1

ε
(1−2u)ϑ

)
. (2.19)

Finally, thanks to the expression of the adjoint problem,∫
∂Ω

(S(u)−y0)S
′(u)[ϑ]=

∫
∂Ω

(S(u)−y0)S∗=
∫
Ω

a(u)∇p ·∇S∗+
∫
Ω

3S(u)2pS∗=

(by definition of S∗)=
∫
Ω

(1−k)ϑ∇S(u) ·∇p+

∫
Ω

ϑS(u)3p,

and hence:

J ′
ε(u)[ϑ]=

∫
Ω

(1−k)ϑ∇S(u) ·∇p+

∫
Ω

ϑS(u)3p+α

∫
Ω

(
2ε∇u ·∇ϑ+

1

ε
(1−2u)ϑ

)
.

Finally, it is a standard argument that Jε being a continuous and Fréchet differentiable
functional on a convex subset K of the Banach space H1(Ω), the optimality conditions
for the optimization problem (2.12) are expressed by the variational inequality (2.13).

3. Discretization and reconstruction algorithm
For a fixed ε>0, we now introduce a finite element formulation of problem (2.12)

in order to define a numerical reconstruction algorithm and compute an approximated
solution of the inverse problem.

In what follows, we consider Ω to be polygonal, in order to avoid a discretization
error involving the geometry of the domain. Let Th be a shape regular triangulation of
Ω and define Vh⊂H1(Ω):

Vh={vh∈C(Ω̄),vh|K ∈P1(K) ∀K ∈Th}; Kh=Vh∩K.
For every fixed h>0, we define the solution map Sh :K→Vh, where Sh(u) solves∫

Ω

a(u)∇Sh(u)∇vh+

∫
Ω

b(u)Sh(u)
3vh=

∫
Ω

fvh ∀vh∈Vh.

3.1. Convergence analysis as h→0. The present section is devoted to the
numerical analysis of the discretized problem: the convergence of the approximated
solution of the direct problem is studied, taking into account the difficulties implied
by the nonlinear term. Moreover, the existence and convergence of minimizers of the
discrete cost functional is analysed. The following result, which is preliminary for the
proof of the convergence of the approximated solutions to the exact one, can be proved
by resorting to the techniques of [18, Theorem 2.1].

Lemma 3.1. Let f ∈L2(Ω) satisfy Assumption (2.2); then, for every u∈K, Sh(u)→
S(u) strongly in H1(Ω).

Proof. As in the proof of Proposition 2.1, for a fixed u∈K we define the operator
T :H1(Ω)→ (H1(Ω))∗ such that

〈T (y),ϕ〉=
∫
Ω

a(u)∇y∇ϕ+

∫
Ω

b(u)y3ϕ;
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then yh=Sh(u) and y=S(u) are respectively the solutions of the equations

〈T (yh),ϕh〉=
∫
Ω

fϕh ∀ϕh∈Vh; 〈T (y),ϕ〉=
∫
Ω

fϕ ∀ϕ∈H1(Ω). (3.1)

The ellipticity of the operator T follows from Lemma 2.1 and Proposition 2.4, indeed:

〈T (yh)−T (y),yh−y〉=
∫
Ω

a(u)|∇(yh−y)|2+
∫
Ω

b(u)(yh−y)2(y2h+yhy+y2)

≥k‖∇(yh−y)‖2L2(Ω)+
3

4
m2/3‖yh−y‖2L2(Ωd0 )≥C‖yh−y‖2H1(Ω),

where C=C(k,m,Ω,d0) is independent of h. Consider now an arbitrary wh∈Vh and
exploit the orthogonality 〈T (yh)−T (y),ϕh〉=0 ∀ϕh∈Vh, which follows from (3.1).

C‖yh−y‖2H1 ≤〈T (yh)−T (y),yh−y〉= 〈T (yh)−T (y),wh−y〉
≤K‖wh−y‖H1‖yh−y‖H1 ,

where K is the Lipschitz constant of T (see Proposition 2.1). We point out that, in
view of Proposition 2.2, the constant K does not depend either on u or on h, but only
on ‖f‖L2(Ω),Ω,d0,k. Hence:

‖yh−y‖H1 ≤
K

C
‖wh−y‖H1 ,

and since the latter inequality holds for each wh∈H1(Ω), it holds:

‖yh−y‖H1(Ω)≤
K

C
inf

wh∈Vh

‖wh−y‖H1(Ω),

and the thesis follows from the interpolation estimates of H1(Ω) functions in Vh.

The convergence of the solution of the discrete direct problem to the continuous
one is an immediate consequence of Lemma 3.1 and of the continuity of the map Sh in
the space Vh, which can be assessed analogously to the proof of Proposition 2.5.

Proposition 3.1. Let {hk},{uk} be two sequences such that hk→0, uk ∈Khk
and

uk
L1

−−→u∈K. Then Shk
(uk)

H1

−−→S(u).

Define the discrete cost functional, Jε,h :Kh→R

Jε,h(uh)=
1

2
‖Sh(uh)−ymeas,h‖2L2(∂Ω)+α

∫
Ω

(
ε|∇uh|2+

1

ε
uh(1−uh)

)
, (3.2)

with ymeas,h being the L2(Ω)-projection of the boundary datum ymeas in the space of
the traces of Vh functions. The existence of minimizers of the discrete functionals Jε,h
is stated in the following proposition, together with an asymptotic analysis as h→0.
Taking advantage of Proposition 3.1, the proof is analogous to the one of [20, Theorem
3.2].

Proposition 3.2. For each h>0, there exists uh∈Kh such that Jε,h(uh)=
minvh∈Kh

Jε,h(vh). Every sequence {uhk
} s.t. limk→∞hk=0 admits a subsequence that

converges in H1(Ω) to a minimum of the cost functional Jε.
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The strategy we adopt in order to minimize the discrete cost functional Jε,h is to
search for a function uh satisfying discrete optimality conditions, which can be obtained
as in Section 2.1:

J ′
ε,h(uh)[vh−uh]≥0 ∀vh∈Kh (3.3)

where for each θh∈Kh−uh :={θh=vh−uh; vh∈Kh} it holds:

J ′
ε,h(uh)[ϑh]=

∫
Ω

(1−k)ϑh∇Sh(uh) ·∇ph+

∫
Ω

ϑhSh(uh)
3ph+2αε

∫
Ω

∇uh ·∇ϑh

+
α

ε

∫
Ω

(1−2uh)ϑh,

(3.4)

where ph is the solution in Vh of the adjoint problem (2.15) associated with uh.

It is finally possible to demonstrate the convergence of critical points of the discrete
functionals Jε,h (i.e., functions in Kh satisfying (3.3)) to a critical point of the continuous
one, Jε. The proof can be adapted from the one of [20, Theorem 3.2].

Proposition 3.3. Consider a sequence {hk} s.t. hk→0 and for every k, denote as uk,
a solution of the discrete variational inequality (3.3). Then there exists a subsequence
of {uk} that converges a.e and in H1(Ω) to a solution u of the continuous variational
inequality (2.14)

3.2. Reconstruction algorithm: a parabolic obstacle problem approach.
The necessary optimality conditions that have been stated in Proposition 2.10, together
with the expression of the Fréchet derivative of the cost functional reported in (2.14),
allow to define a parabolic obstacle problem, which consists of a very common strategy
of searching for a solution of optimization problems in a phase-field approach. In this
section we give a continuous formulation of the problem, and provide a formal proof of
its desired properties. We then introduce a numerical discretization of the problem and
rigorously prove the main convergence results.

The core of the proposed approach is to rely on a parabolic problem whose solution
u(·,t) converges, as the fictitious time variable tends to +∞, to an asymptotic state u∞
satisfying the continuous optimality conditions (2.14). The problem can be formulated
as follows, for a fixed ε>0: let u be the solution of

⎧⎨
⎩
∫
Ω

∂tu(v−u)+J ′
ε(u)[v−u]≥0 ∀v∈K, t∈ (0,+∞)

u(·,0)=u0∈K.
(3.5)

The theoretical analysis of the latter problem is beyond the purposes of this work, and
would require to deal with the severe nonlinearity of the expression of J ′

ε(u); conse-
quently, we provide a complete discretization of the parabolic obstacle problem and
assess its convergence properties. This is performed by setting (3.5) in the discrete
spaces Kh and Vh, and by considering a semi-implicit one-step scheme for the time up-
dating, as in [20]: i.e., by treating explicitly the nonlinear terms and implicitly the linear
ones. We obtain that the approximate solution {un

h}n∈N⊂Vh, u
n
h≈u(·,tn) is computed
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as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0
h=u0∈Kh (a prescribed initial datum)

un+1
h ∈Kh :

∫
Ω

(un+1
h −un

h)(vh−un+1
h )+τn

∫
Ω

(1−k)∇Sh(u
n
h) ·∇pnh(vh−un+1

h )

+τn

∫
Ω

Sh(u
n
h)

3pnh(vh−un+1
h )+2τnαε

∫
Ω

∇un+1
h ·∇(vh−un+1

h )

+τnα
1

ε

∫
Ω

(1−2un
h)(vh−un+1

h )≥0 ∀vh∈Kh, n=0,1, . . .

(3.6)

The following preliminary result is necessary for the proof of the convergence of the
algorithm:

Lemma 3.2. For each n>0, there exists a positive constant Bn=
Bn(Ω,h,k,‖pnh‖H1 ,‖ynh‖H1 ,

∥∥yn+1
h

∥∥
H1) such that, provided that τn≤Bn, it holds that:

∥∥un+1
h −un

h

∥∥2
L2 +Jε,h(u

n+1
h )≤Jε,h(u

n
h) n>0. (3.7)

Proof. In the expression of the discrete parabolic obstacle problem (3.6), consider
vh=un

h: via simple computation, we can point out that

1

τn

∥∥un+1
h −un

h

∥∥2
L2 +J(un+1

h )−J(un
h)+αε

∥∥∇(un+1
h −un

h)
∥∥2
L2 +

α

ε

∥∥un+1
h −un

h

∥∥2
L2

≤
∫
Ω

(
a(un+1

h )−a(un
h)
)
∇ynh∇pnh+

∫
Ω

(
b(un+1

h )−b(un
h)
)
(ynh)

3pnh

+
1

2

∥∥yn+1
h −ynh

∥∥2
L2(∂Ω)

+

∫
∂Ω

(yn+1
h −ynh)(y

n+1
h −ymeas,h),

where ynh =Sh(u
n
h) and yn+1

h =Sh(u
n+1
h ). Moreover, by the expression of the adjoint

problem,

RHS=
1

2

∥∥yn+1
h −ynh

∥∥2
L2(∂Ω)

+ I + II ,

where

I =

∫
Ω

(
a(un+1

h )−a(un
h)
)
∇ynh ·∇pnh+

∫
Ω

a(un
h)∇pnh ·∇(yn+1

h −ynh)

=

∫
Ω

(
a(un

h)−a(un+1
h )

)
∇(yn+1

h −ynh) ·∇pnh+

∫
Ω

a(un+1
h )∇yn+1

h ·∇pnh

−
∫
Ω

a(un
h)∇ynh ·∇pnh;

II =

∫
Ω

(
b(un+1

h )−b(un
h)
)
(ynh)

3pnh+3

∫
Ω

b(un
h)(y

n
h)

2pnh(y
n+1
h −ynh)=

=

∫
Ω

b(un+1
h )

(
(ynh)

3−(yn+1
h )3

)
pnh+3

∫
Ω

b(un
h)(y

n
h)

2pnh(y
n+1
h −ynh)

+

∫
Ω

b(un+1
h )(yn+1

h )3pnh−
∫
Ω

b(un
h)(y

n
h)

3pnh =
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(by the expansion (yn+1
h )3=

(
ynh +(yn+1

h −ynh)
)3
)

=3

∫
Ω

(
b(un

h)−b(un+1
h )

)
(ynh)

2pnh(y
n+1
h −ynh)−3

∫
Ω

b(un+1
h )(ynh)p

n
h(y

n+1
h −ynh)

2

−
∫
Ω

b(un+1
h )pnh(y

n+1
h −ynh)

3+

∫
Ω

b(un+1
h )(yn+1

h )3pnh−
∫
Ω

b(un
h)(y

n
h)

3pnh.

Collecting the terms and taking advantage of the expression of the direct problem, we
conclude that

RHS=
1

2

∥∥yn+1
h −ynh

∥∥2
L2(∂Ω)

+

∫
Ω

(
a(un

h)−a(un+1
h )

)
∇(yn+1

h −ynh) ·∇pnh

+3

∫
Ω

(
b(un

h)−b(un+1
h )

)
(ynh)

2pnh(y
n+1
h −ynh)

−3

∫
Ω

b(un+1
h )(ynh)p

n
h(y

n+1
h −ynh)

2−
∫
Ω

b(un+1
h )pnh(y

n+1
h −ynh)

3.

We now employ the Cauchy-Schwarz inequality and the regularity of the solutions of
the discrete direct and adjoint problems (in particular the equivalence of the W 1,∞ and
H1 norm in Vh: ‖uh‖W 1,∞ ≤C1‖uh‖H1 , C1=C1(Ω,h)):

RHS≤C2

∥∥un+1
h −un

h

∥∥
L2

∥∥yn+1
h −ynh

∥∥
H1 +C3

∥∥yn+1
h −ynh

∥∥2
H1

with C2=(1−k)C1‖pnh‖H1 +C1‖ynh‖H1‖pnh‖H1 and C3=3C2
1‖ynh‖H1

‖pnh‖H1
+

C3
1‖pnh‖H1

(‖ynh‖H1
+
∥∥yn+1

h

∥∥
H1

)+ 1
2C

2
tr, with Ctr being the constant of the trace

inequality in H1(Ω). Eventually, similar to the computation included in the proof of
Proposition 2.10, one can assess that∥∥yn+1

h −ynh
∥∥
H1 ≤C4

∥∥un+1
h −un

h

∥∥
L2 ,

with C4=C4(k,C1,‖ynh‖H1 ,Ω). Hence, we can conclude that there exists a positive
constant Cn=C2C4+C3C

2
4 such that

1

τn

∥∥un+1
h −un

h

∥∥2
L2 +J(un+1

h )−J(un
h)≤Cn

∥∥un+1
h −un

h

∥∥2
L2 ,

and choosing τn<Bn :=
1

1+Cn
we can conclude the thesis.

We are finally able to prove the following convergence result for the fully discretized
parabolic obstacle problem:

Proposition 3.4. Consider a starting point u0
h∈Kh. Then, there exists a collection

of timesteps {τn} s.t. 0<γ≤ τn≤Bn ∀n>0. Corresponding to {τn}, the sequence {un
h}

generated by (3.6) has a converging subsequence (which we still denote with un
h) such

that un
h

W 1,∞
−−−−→uh∈Vh, which satisfies the discrete optimality conditions (3.3).

Proof. Consider a generic collection of timesteps τ̃n satisfying τ̃n≤Bn ∀n>0.
Hence, by Lemma 3.2,

∞∑
n=0

∥∥un+1
h −un

h

∥∥2
L2 ≤Jε,h(u

0
h) and sup

n
Jε,h(u

n
h)≤Jε,h(u

0
h)

which implies that
∥∥un+1

h −un
h

∥∥
L2→0 and hence un

h is bounded in H1(Ω), and this

implies that {ynh} and {pnh} are also bounded in H1(Ω). According to the definition
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of the constants Cn and Bn reported in the proof of Lemma 3.2, this entails that there
exists a constant M>0 such that Cn≤M ∀n>0, and equivalently there exists a positive
constant γ s.t. γ≤Bn. Hence, it is possible to choose, for each n>0, γ≤ τn≤Bn.
Eventually, we conclude that there exists uh∈Kh such that, up to a subsequence, un

h→
uh a.e. and in W 1,∞(Ω) (and ynh→yh :=Sh(uh), p

n
h→ph in H1 and in W 1,∞ as well,

as in the discrete space Vh the L∞ norm is equivalent to the L2(Ω)). We exploit the
expression of the discrete parabolic obstacle problem (3.6) to show that∫

Ω

(1−k)∇ynh ·∇pnh(vh−un+1
h )+

∫
Ω

(ynh)
3pnh(vh−un+1

h )+2αε

∫
Ω

∇un+1
h ·∇(vh−un+1

h )

+α
1

ε

∫
Ω

(1−2un
h)(vh−un+1

h )≥− 1

τn

∫
Ω

(un+1
h −un

h)(vh−un+1
h ) ∀vh∈Kh,

and since - 1
τn

>− 1
γ ∀n, when taking the limit as n→∞, the right-hand side converges

to 0, which entails that uh satisfies the discrete optimality conditions (3.3).

In order to solve (3.6) we resort to the primal-dual active set method (PDAS),
introduced in [11]. Thus, the final formulation of the reconstruction algorithm is the
following:

Algorithm 1 Solution of the discrete parabolic obstacle problem

1: Set n=0 and u0
h=u0, the initial guess for the inclusion

2: while
∥∥un

h−un−1
h

∥∥
L∞(Ω)

>tolPOP do

3: solve the direct problem (2.3) with u=un
h

4: solve the adjoint problem (2.15) with u=un
h

5: compute un+1 solving (3.6) via PDAS algorithm
6: update n=n+1;
7: end while
8: return un

h

Remark 3.1. It is a common practice to increase the performance of a reconstruction
algorithm by taking advantage of multiple measurements. In this context, it is possi-
ble to suppose the knowledge of Nf different measurements of the electric potential on
the boundary, ymeas,j j=1, · · · ,Nf , associated with different source terms fj . There-
fore, instead of tackling the optimization of the mismatch functional J as in (2.10), it

is possible to introduce the averaged cost functional JTOT (u)= 1
Nf

∑Nf

j=1J
j(u), where

Jj(u)= 1
2‖Sj(u)−ymeas,j‖2L2(∂Ω), with Sj(u) being the solution of the direct problem

(2.3) with source term f =fj . The process of regularization, relaxation and compu-
tation of the optimality conditions is exactly the same as for J , and yields the same
reconstruction algorithm as in Algorithm 1, where, at each timestep the solution of Nf

direct and adjoint problem must be computed.

4. Numerical results
In this section we report various results obtained by applying Algorithm 1. In all

the numerical experiments, we consider Ω=(−1,1)2 and we introduce a uniform and
shape regular tessellation Th of triangles. Due to the lack of experimental measures of
the boundary datum ymeas, we make use of synthetic data, i.e., we simulate the direct
problem via the finite element method, considering the presence of an ischemic region of
prescribed geometry, and extract the value on the boundary of the domain. In order to



1992 DETECTION OF INCLUSIONS IN A SEMILINEAR ELLIPTIC PROBLEM

avoid incurring an inverse crime (i.e. the performance of the reconstruction algorithm
is improved by the fact that the exact data is synthetically generated with the same
numerical scheme as that adopted in the algorithm), we introduce a more refined mesh
T ex
h on which the exact problem is solved, and interpolate the resulting datum ymeas

on the mesh Th.
In the following test cases, we apply Algorithm 1 for the reconstructed inclusions of

different geometries, in order to investigate the effectiveness of the introduced strategy.
We use the same computational mesh Th (mesh size h=0.04, nearly 6000 elements)
for the numerical solution of the boundary value problems involved in the procedure,
except for the generation of each synthetic data which is performed on different finer
meshes T ex

h . According to Remark 3.1, we make use of Nf =2 different measurements,
associated with the source terms f1(x,y)=x and f2(x,y)=y. The main parameters for
all the simulations lie in the ranges reported in Table 4.1. We make use of the same
relationship between ε and τ as in [20]. The initial guess for each simulation is u0≡0.

α ε τ tolPOP

10−4÷10−3 1/(8π) (0.01÷0.1)/ε 10−4

Table 4.1: Range of the main parameters.

In Figure 4.1 we report some of the iterations of Algorithm 1 for the reconstruction
of a circular inclusion (α=0.0001, τ =0.01/ε). The boundary ∂ω is marked with a
black line, which is superimposed on the contour plot of the approximation of the in-
dicator function un

h at different timesteps n. The algorithm converged after Ntot=568
iterations, corresponding to a final (fictitious) time Ttot=1427.54. In Figure 4.2 we

(a) n=30 (b) n=90 (c) n=568

Fig. 4.1: Reconstruction of a circular inclusion: successive iterations.

investigate the effectiveness of the algorithm to reconstruct inclusions of rather compli-
cated geometry. For each test case, we show the contour plot of the final iteration of the
reconstruction (the total number of iterations N and the final time T are reported in the
caption), and the boundary of the exact inclusion is overlaid in a black line. Moreover,
each result is equipped with the graphic (in semilogarithmic scale) of the evolution of

the cost functional Jε, split into the components JPDE(u)=
1
2‖S(u)−ymeas‖2L2(∂Ω) and

Jregularization(u)=αε‖∇u‖2L2(Ω)+
α
ε

∫
Ω
u(1−u). The reported results consist of approx-

imations of minimizers of Jε in K: they are smooth functions and range between 0 and
1. They show large regions in which they attain the limit values 0 and 1, and a region
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(a) Ntot=3491, Ttot=3509.54,
α=0.001, τ =0.02/ε

(b) Ntot=1537, Ttot=772.58,
α=0.0001, τ =0.02/ε

(c) Ntot=4670, Ttot=2347.40,
α=0.0001, τ =0.02/ε

(d) Ellipse: evolution of Jε (e) Rectangle: evolution of Jε (f) Two circles: evolution of Jε

Fig. 4.2: Reconstruction of various inclusions.

of diffuse interface between them, whose thickness is about ε/2. As Figures 4.1 and 4.2
show, the algorithm is able to reconstruct inclusions of rather complicated geometry.
The identification of a smooth inclusion is performed with higher precision, whereas it
seems that the accuracy is low in presence of sharp corners. We point out that we do
not need to have any a priori knowledge on the topology of the inclusion ω, i.e., the
number of connected components is correctly identified.

We now assess that the final result of the reconstruction is independent of the ini-
tial guess imposed as a starting point of the parabolic obstacle problem. In Figure 4.3
we compare the behaviour of the algorithm applied to the reconstruction of a circular
inclusion (the same as in Figure 4.1), where we impose a different initial datum with
respect to the constant zero function. In the first experiment, we start from an initial
datum which is the indicator function of an arbitrarily chosen region. In the second
one, we impose as a starting point the indicator function of a sublevel of the topological
gradient of the cost functional J . As investigated in [10], the topological gradient is a
powerful tool for the detection of small-size inclusions, which yield a small perturbation
in the cost functional with respect to the background (unperturbed) case. The position
of a small inclusion is easily identified by searching for the point where the topological
gradient of J attains its (negative) minimum. As the information given by the topo-
logical gradient G has shown to be useful even in the case of large-size inclusions (see,
e.g., [7,14]), we take advantage of it by computing G (see Theorem 3.1 in [10]), setting
a threshold Gthr and defining u0=χ{G≤Gthr}. The results reported in Figure 4.3 show
the starting point of the algorithm, an intermediate iteration and the final reconstruc-
tion. In both cases we set α=0.001, ε=1/(8π) and τ =0.1/ε. We underline that the
result in each case is similar to the one depicted in Figure 4.1, but through the second
strategy it was possible to perform a smaller number of iterations.
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(a) Initial guess: arbitrary (b) Intermediate: n=60 (c) Final: Ntot=661,
Ttot=1661.27

(d) Initial guess: topological (e) Intermediate: n=50 (f) Final: Ntot=489,
Ttot=1228.99

Fig. 4.3: Reconstruction of a circular inclusion with different initial conditions.

(a) p=0.01; Ntot=430 (b) p=0.05; Ntot=503 (c) p=0.1; Ntot=1120

Fig. 4.4: Reconstruction of an elliptical inclusion with noisy measurements.

We finally verify the stability result obtained in Proposition 2.7, by testing the
reconstruction algorithm when the measured boundary data are perturbed by a small
amount of noise. In particular, we consider yp=ymeas+pη, η being a Gaussian random
variable with null mean and standard deviation equal to maxΩymeas−minΩymeas and
p∈ [0,1] being the noise level. In Figure 4.4 we report the final results of the recon-
struction algorithm when applied to the boundary measurements related to an elliptical
inclusion perturbed with different noise levels. For each simulation, we fix α=0.001 and
ε= 1

8π .

In Figure 4.5, we investigate the effect of the regularization parameter α on the
reconstruction from noisy data, fixing p=0.1. We observe that a higher value of α
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may help in filtering the information coming from the noise, avoiding spoiling of the
reconstruction, although it might result in an overall loss of precision.

(a) α=0.001; Ntot=1120 (b) α=0.003; Ntot=751 (c) α=0.01; Ntot=462

Fig. 4.5: Reconstruction of an elliptical inclusion with noisy measurements.

5. Comparison with the shape derivative approach
In the previous sections, we have analyzed in detail the phase-field relaxation of the

minimization problem expressed in (2.11). We now aim at describing the relationship
between this method and a shape derivative based approach, which consists of updating
the shape of the inclusion to be reconstructed by perturbing its boundary along the
directions of the vector field which causes the greatest descent of the cost functional.
Such a direction can be deduced by computing the shape derivative of the functional
itself. In this section, we first theoretically investigate the relationship between the
shape derivative of the cost functional Jreg and the Fréchet derivative of Jε and then
report a comparison between the numerical results of the two algorithms in a set of
benchmark cases.

5.1. Sharp interface limit of the optimality conditions. In order to study
the relationship between the optimality conditions in the phase-field approach and the
ones derived in the sharp case, we follow an analogous approach as in [12]. First of
all, in Proposition 5.1 we introduce the necessary optimality condition for the sharp
problem (2.11), taking advantage of the computation of the material derivative of the
cost functional. We then define in Proposition 5.3 similar optimality conditions for
the relaxed problem (2.12), which are related but not equivalent to the ones stated in
(2.13) and (2.14) through the Fréchet derivative. In Proposition 5.4 we finally assess
the convergence of the phase-field optimality condition to the sharp one when ε→0.

For the sake of simplicity, in this section we will refer to Jreg as J . Consider the
minimization problem (as in (2.11)):

argmin
u∈X0,1

J(u); J(u)=
1

2
‖S(u)−ymeas‖2L2(∂Ω)+αTV (u). (5.1)

Since u∈X0,1 implies that u=χω, with ω being a finite-perimeter subset of Ω, we can
perturb u by means of a vector field φt :Ω→R

2, φt(x)=x+ tV (x), being

V ∈C1(Ω) s.t. V (x)=0 in Ωd0 ={x∈Ω s.t. dist(x,∂Ω)≤d0}. (5.2)

Consider the family of functions {ut}: ut=u◦φ−1
t : we can compute the shape derivative

of the functional J in u along the direction V (see [21]) as

DJ(u)[V ] := lim
t→0

J(ut)−J(u)

t
, (5.3)
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where J(ut) is the cost functional evaluated in the deformed domain Ωt=φt(Ω) but,
according to (5.2), Ωt and Ω are the same set, thus we do not adopt a different notation.
We prove the following result:

Proposition 5.1. If u is a solution of (5.1) and f ∈L2(Ω) satisfies Assumption
(2.2), then

DJ(u)[V ]=0 for all the smooth vector fields V . (5.4)

The shape derivative is given by:

DJ(u)[V ]=

∫
∂Ω

(S(u)−ymeas)Ṡ(u)[V ]+

∫
Ω

(divV −DV ν ·ν)d|Du|, (5.5)

where d|Du|= δ∂ωdx, ν is the generalized unit normal vector (see [27]) and Ṡ(u)[V ]=: Ṡ,
the material derivative of the solution map, solves∫

Ω

a(u)∇Ṡ ·∇v+

∫
Ω

b(u)3S(u)2Ṡv=−
∫
Ω

a(u)A∇S(u) ·∇v−
∫
Ω

b(u)S(u)3vdivV+∫
Ω

div(fV )v ∀v∈H1(Ω),

(5.6)
where A=divV −(DV +DV T ).

Proof. We start by deriving the formula of the material derivative of the solution
map. Define S0=S(u) and St :Ω→R, St=S(ut)◦φt. Then, applying the change of
variables induced by the map φt, it holds that∫

Ω

a(u)A(t)∇St ·∇v+

∫
Ω

b(u)S3
t v|detDφt|=

∫
Ω

(f ·φt)v|detDφt| ∀v∈H1(Ω), (5.7)

where A(t)=Dφ−T
t Dφ−1

t |detDφt|. By computation,

d

dt
A(t)=A=(divV )I−(DV t+DV ) and

d

dt
|detDφt|=divV.

Subtract (2.3) from (5.7) and divide by t: then wt=
St−S0

t is the solution of∫
Ω

a(u)A(t)∇wt ·∇v+

∫
Ω

b(u)qtwtv|det(Dφt)|=−
∫
Ω

a(u)
A(t)−I

t
∇S0 ·∇v

−
∫
Ω

|det(Dφt)|−1

t
b(u)S3

0v+

∫
Ω

1

t
(f ◦φt)v|det(Dφt)|−

∫
Ω

1

t
fv

(5.8)

∀v∈H1(Ω), where the norm of the right-hand side in the dual space ofH1(Ω) is bounded
by ∥∥∥∥A−I

t

∥∥∥∥
L∞(Ω)

‖S0‖H1(Ω)+

∥∥∥∥ |det(Dφt)|−1

t

∥∥∥∥
L∞(Ω)

‖S0‖H1(Ω)

+

∥∥∥∥ |det(Dφt)|−1

t

∥∥∥∥
L∞(Ω)

‖f‖L2(Ω)+C(‖V ‖C(Ω))‖f‖H1(Ω)≤CF ,

with CF independent of t. Moreover, the matrix A(t) is symmetric positive definite:

(A(t)y) ·y≥ 1
2‖y‖

2 ∀y∈R2,∀t. Together with the property that qt=u2
t +utu+u2≥ 3

4u
2,

and thanks to Proposition 2.4 and to the Poincaré inequality in Lemma 2.1,

‖wt‖2H1 ≤C

(
k‖∇wt‖2L2 +

3

4
m2/3‖wt‖2L2(Ωd0 )

)
≤CF ‖wt‖H1 .
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Thus, ‖wt‖H1 is bounded independently of t, from which it follows that ‖St−S0‖H1(Ω)≤
Ct and that every sequence {wn}={wtn , tn→0} is bounded in H1(Ω), thus wt

H1

−−⇀w∈
H1(Ω). We aim at proving that w is also the limit of wt in the strong convergence,
which entails that

Ṡ(u)[V ] := lim
t→0

St−S0

t
=w.

First of all, we show that w is the solution of problem (5.6). It follows from (5.8), since
qtwt=

1
t (S

3
t −S3

0)=
1
t ((S0+ twt)

3−S3
0)=3S2

0wt+3tS0w
2
t + t2w3

t , that∫
Ω

a(u)A(t)∇wt ·∇v+

∫
Ω

b(u)3S2
0wtv|detDφt|=−

∫
Ω

a(u)
A(t)−I

t
∇S0 ·∇v

−
∫
Ω

|detDφt|−1

t
b(u)S3

0v−
∫
Ω

b(u)3tS0w
2
t v|detDφt|−

∫
Ω

b(u)t2w3
t v|detDφt|

+

∫
Ω

(f ◦φt)
|detDφt|−1

t
v−

∫
Ω

(f ◦φt)−f

t
v ∀v∈H1(Ω). (5.9)

Taking the limit as t→0 and by the weak convergence of wt in H1, we recover the

same expression as in (5.6). One may eventually show that wt
H1

−−→w. In order to do
this we start by proving that∫

Ω

a(u)A(t)|∇wt|2+
∫
Ω

b(u)|detDφt|3S2
0w

2
t →

∫
Ω

a(u)|∇w|2+
∫
Ω

b(u)3S2
0w

2. (5.10)

Indeed, take (5.9) and substitute v=wt: using the weak convergence of wt in the right-
hand side, we obtain that∫

Ω

a(u)A(t)|∇wt|2+
∫
Ω

b(u)|detDφt|3S2
0w

2
t →−

∫
Ω

a(u)A∇S0 ·∇w−
∫
Ω

divV b(u)S3
0w

+

∫
Ω

fw divV −
∫
Ω

∇f ·V w
(5.6)
=

∫
Ω

a(u)|∇w|2+
∫
Ω

b(u)3S2
0w

2.

We then compute:∫
Ω

a(u)A(t)|∇(wt−w)|2+
∫
Ω

b(u)3S2
0(wt−w)2|detDφt|

=

∫
Ω

a(u)A(t)|∇wt|2+
∫
Ω

a(u)A(t)|∇w|2−2

∫
Ω

a(u)A(t)∇wt ·∇w

+

∫
Ω

b(u)3S2
0w

2
t |detDφt|+

∫
Ω

b(u)3S2
0w

2|detDφt|−2

∫
Ω

b(u)3S2
0wtw|detDφt|. (5.11)

Using (5.10), the convergence of A to I and of |detDφt| to 1, and the fact that

wt
H1

−−⇀w, we derive that∫
Ω

a(u)|∇(wt−w)|2+
∫
Ω

b(u)3S2
0(wt−w)2→0

A combination of the Proposition 2.4 and of the Poincaré inequality in Lemma 2.1 allows
to also conclude that ‖wt−w‖H1→0.
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We now prove the necessary optimality conditions for the optimization problem
(5.1). The derivative of the quadratic part of the cost functional J can be easily com-
puted by means of the material derivative of the solution map:

lim
t→0

1

2

∫
∂Ω

(S(ut)−ymeas)
2|det(Dφt)|−(S0−ymeas)

2

t
(since S(ut)=St on ∂Ω)

=lim
t→0

1

2

∫
∂Ω

(St−ymeas)
2 |det(Dφt)|−1

t
+ lim

t→0

1

2

∫
∂Ω

(St−ymeas)
2−(S0−ymeas)

2

t

=
1

2

∫
∂Ω

(S0−ymeas)
2divV +

∫
∂Ω

Ṡ(u)[V ](S0−ymeas), (5.12)

and the first integral in the latter expression vanishes since V =0 on Ωd0 . On the
other hand, using Lemma 10.1 of [27] and the remark 10.2, we recover the expression
for the derivative of the total variation of u, which is the same as in (5.5).

The optimality conditions reported in (5.4) are, to the best of our knowledge, the
most general result which can be obtained in this case, i.e. by simply assuming that
u=χω and ω is a set of finite perimeter. We point out that, assuming more a priori
information on u, it is possible to recover from (5.5) the expression of the shape derivative
of the cost functional J . The following proposition can be rigorously proved by means
of an argument similar to the one used in [2], except for the derivative of the perimeter
penalization, which can be found in Section 9.4.3 in [21].

Proposition 5.2. Suppose that ω⊂Ω is open, connected, well separated from the
boundary ∂Ω and regular (at least of class C2), and u=χω. Then, the expression of the
shape derivative of the cost functional J along a smooth vector field V is:

DJ(u)[V ]=

∫
∂ω

[
(1−k)

(
∇τS(u) ·∇τw+

1

k
∇νS(u)

e ·∇νw
e

)
+S(u)3w+H

]
V ·ν,
(5.13)

where w is the solution of the adjoint problem (see (2.15)). The gradients ∇S(u) and ∇w
are decomposed in the normal and tangential components with respect to the boundary
∂ω, and due to the transmission condition of the direct problem their normal components
are discontinuos across ∂ω: the value assumed in Ω\ω is marked as ∇νS(u)

e. The term
H is instead the curvature of the boundary.

For the sake of completeness, we point out that the latter result can be easily gen-
eralized to the case in which ω is the union of Nc disjoint, well-separated components,
each of them satisfying the expressed hypotheses. Thanks to the results recently ob-
tained in [9], we expect formula (5.13) to also be valid under milder assumptions, in
particular for polygons.

We aim at demonstrating that the expression of the shape derivative reported in
(5.4) is the limit, as ε→0, of the shape derivative of the relaxed cost functional Jε
(defined as in (5.3), replacing u by uε and J by Jε). In order to accomplish this result,
we need to introduce necessary optimality conditions for the relaxed problem (2.12),
which are different from the ones reported in Proposition 2.10 and can be derived by
the same technique as in Proposition 5.1 as shown in the following result.

Proposition 5.3. If uε is a solution of (2.12), then

DJε(uε)[V ]=0 for all the smooth vector fields V , (5.14)
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The expression of the derivative is given by:

DJε(uε)[V ]=

∫
∂Ω

(S(uε)−ymeas)Ṡ(uε)[V ]+αε

∫
Ω

|∇uε|2divV

−2αε

∫
Ω

DV∇uε ·∇uε+
α

ε

∫
Ω

uε(1−uε)divV (5.15)

where Ṡ(uε)[V ] solves the same problem as in (5.6), replacing u with uε.

Proof. The same strategy as in the proof of Proposition 5.1 can be adapted to
compute Ṡ(uε)[V ] and the derivative of the first term of the cost functional. We now
derive with the same computational rules the relaxed penalization term. Recall

Fε(uε)=αε

∫
Ω

|∇uε|2+
α

ε

∫
Ω

ψ(uε),

being ψ :R→R, ψ(x)=x(1−x). After the deformation from uε to uε ◦φ−1
t and applying

the change of variables induced by φt,

Fε(uε ◦φ−1
t )=αε

∫
Ω

A(t)∇uε ·∇uε+
α

ε

∫
Ω

ψ◦uε ◦φ−1
t .

Hence,

Ḟε(uε)[V ]= lim
t→0

Fε(uε ◦φ−1
t )−Fε(uε)

t
=αε

∫
Ω

A∇uε ·∇uε+αε
α

ε

∫
Ω

ψ(uε)divV

=αε

∫
Ω

|∇uε|2divV −αε

∫
Ω

(DV +DV T )∇uε ·∇uε+
α

ε

∫
Ω

uε(1−uε)divV,

which is the same expression as in (5.15), since DV T∇v ·∇v=DV∇v ·∇v.

We point out that the optimality conditions deduced in the latter proposition are
not equivalent to the ones expressed in Proposition 2.10 via the Fréchet derivative of
Jε. Nevertheless, if uε satisfies (2.13)-(2.14), then it also satisfies (5.14) (it is sufficient
to consider in (2.13) v=uε ◦φ−1

t , which belongs to K thanks to the regularity of V ),
whereas the contrary is not valid in general. In particular, due to the regularity of the
perturbation fields V , the optimality conditions (5.14) do not take into account possible
topological changes of the inclusion: for example, the number of connected components
of ω cannot change. We remark that this holds also for the optimality conditions (5.4) for
the sharp problem, and consists of a limitation for the effectiveness of the reconstruction
via a shape derivative approach: the initial guess of the reconstruction algorithm and
the exact inclusion must be diffeomorphic.

We are now able to show the sharp interface limit of the expression of the shape
derivative of the relaxed cost functional Jε as ε→0, which is done in the following
proposition.

Proposition 5.4. Consider a family ūε s.t. ūε∈K ∀ε>0 and ūε
L1

−−→ ū∈BV (Ω) as
ε→0. Then,

DJε(ūε)[V ]→DJ(ū)[V ] for every smooth vector field V .

Proof. We follow a similar argument as in the proof of [12, Theorem 21]. Thanks

to Proposition 2.5, ūε
L1

−−→ ū ⇒ S(ūε)
H1

−−→S(ū). Also Ṡ(ūε)[V ]
H1

−−→ Ṡ(ū)[V ]: the proof is
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done by subtracting the equations of Ṡ(ūε)[V ] and Ṡ(ū)[V ] and verifying that the norm
of their difference is controlled by the norm of S(ūε)−S(ū) in H1(Ω). Thanks to these
results, surely ∫

Ω

(S(uε)−ymeas)Ṡ(ūε)[V ]→
∫
Ω

(S(u)−ymeas)Ṡ(ū)[V ].

Eventually, the convergence

αε

∫
Ω

|∇ūε|2divV −2αε

∫
Ω

DV∇ūε ·∇ūε+
α

ε

∫
Ω

ūε(1− ūε)divV →
∫
Ω

(divV −DV ν ·ν)d|Dū|

is proved in [25], Theorem 4.2 (see also annotations in [12], proof of Theorem 21).

In particular, we point out that this implies, together with Proposition 2.9, that the
expression of the optimality condition for the phase-field problem converges, as ε→0,
to the one for the sharp case.

5.2. Comparison with the shape derivative algorithm. In this section, we
report some results of the application of the algorithm based on the shape derivative.
In the implementation, we take advantage of the finite element method to solve the
direct and adjoint problems and compute the shape gradient as in (5.13). We consider
an initial guess for the inclusion (in all the simulations reported, the initial guess is a
disc centered in the origin with radius 0.02) and discretize its boundary with a finite
number of points, which always coincide with vertices of the numerical mesh. We
iteratively perturb the inclusion by moving the boundary with a normal vector field
V which is the projection in the finite element space of the shape gradient reported
in (5.13) (see e.g. [22] for more details). After the descent direction is determined, a
backtracking scheme is implemented (see [36]), in order to guarantee the decrease of
the cost functional J at each iteration. As in the case of Algorithm 1, we start from
the initial guess u0≡0 and take advantage of Nf =2 measurements, associated with
the same source terms. The main parameters of this set of simulations are reported in
Table 5.1.

α maxstep tol
10−3 10 10−6

Table 5.1: Values of the main parameters.

In Figure 5.1 we report the results of the reconstruction with the shape gradient
algorithm compared to the ones of the parabolic obstacle problem (with ε= 1

16π and
with mesh adaptation). Each result is endowed with a plot of the evolution of the cost
functional throughout time (in particular, of JPDE(u)=

1
2‖S(u)−ymeas‖L2(∂Ω)).

The reconstruction achieved by the shape gradient algorithm is qualitatively as
accurate as the phase-field one. The first method is less expensive in terms of number
of iterations. Nevertheless, it requires a priori knowledge about the topology of the
unknown inclusion.
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(a) Shape gradient, evolution of
the cost functional

(b) Shape gradient, Ntot=1494 (c) Phase field, ε= 1
16π

, Ntot=
1869

(d) Shape gradient, evolution of
the cost functional

(e) Shape gradient, Ntot=301 (f) Phase field, ε= 1
16π

, Ntot=1503

Fig. 5.1: Shape gradient algorithm: result comparison.
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