
COMMUN. MATH. SCI. c© 2018 Alex T. Lin, Yat T. Chow and Stanley J. Osher

Vol. 16, No. 7, pp. 1933–1973

A SPLITTING METHOD FOR OVERCOMING THE CURSE OF
DIMENSIONALITY IN HAMILTON-JACOBI EQUATIONS ARISING
FROM NONLINEAR OPTIMAL CONTROL AND DIFFERENTIAL
GAMES WITH APPLICATIONS TO TRAJECTORY GENERATION∗

ALEX TONG LIN† , YAT TIN CHOW‡ , AND STANLEY J. OSHER§

Abstract. Recent observations have bridged splitting methods arising from optimization, to the
Hopf and Lax formulas for Hamilton-Jacobi Equations. This has produced extremely fast algorithms
in computing solutions of these PDEs. More recent observations were made in generalizing the Hopf
and Lax formulas to state-and-time-dependent cases. In this article, we apply a new splitting method
based on the Primal Dual Hybrid Gradient algorithm (a.k.a. Chambolle-Pock) to nonlinear optimal
control and differential games problems, based on techniques from the derivation of the new Hopf and
Lax formulas, which allow us to compute solutions at specified points directly, i.e. without the use of
grids in space. This algorithm also allows us to create trajectories directly. Thus we are able to lift the
curse of dimensionality a bit, and therefore compute solutions in much higher dimensions than before.
And in our numerical experiments, we actually observe that our computations scale polynomially in
time. Furthermore, this new algorithm is embarrassingly parallelizable.
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1. Introduction
Hamilton-Jacobi equations (HJE) are crucial in solving and analyzing problems aris-

ing from optimal control, differential games, dynamical systems, calculus of variations,
quantum mechanics, and the list goes on [18,33].

Most methods to compute HJE use grids and finite-difference discretization. Some
of these methods use ENO/WENO-type methods [35], and others use Dijkstra-type
methods [11] such as fast marching [44] and fast sweeping [43]. But due to their use
of grids, they suffer from the curse of dimensionality, i.e. they do not scale well with
increases in dimension in the space variable, i.e. they generally scale exponentially.

In past years, there has been an effort to mitigate the effects of dimensionality on
computations of HJE. Some recent attempts to solve Hamilton-Jacobi equations use
methods from low rank tensor representations [25], or methods based on alternating
least squares [42], or methods by sparse grids [28], or methods using pseudospectral [41]
and iterative methods [27]. There have also been attempts to mitigate the curse of
dimensionality which have been motivated by reachability [1, 31]. In this work, we
examine and advertize the effectiveness of splitting to solve Hamilton-Jacobi equations
and to directly compute optimal trajectories.

We note that splitting for optimal control problems was used by [32] (2013), where
they applied it to cost functionals with a quadratic and convex term. In terms of
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Hamilton-Jacobi equations, Kirchner et al. [30] (2018) have effectively applied PDHG
[14, 48] (a.k.a. Chambolle-Pock [3]) to Hamilton-Jacobi equations arising from linear
optimal control problems. They applied splitting to the Hopf formula to compute HJE
for bounded input, high-dimensional linear control problems. Another main feature of
their methods is that they are able to directly generate optimal trajectories by making
use of the the closed-form solution to linear ODEs. See also previous work by Kirchner
et al. [29] where they apply the Hopf formula to differential games problems, which
resulted in complex “teaming” behavior even under linearized pursuit-evasion models.

In this current paper, we have worked in parallel with the above authors and have
also applied splitting to Hamilton-Jacobi equations arising from nonlinear problems.
Our volunteered method has some nice properties: (1) relatively quick computations of
solutions in high dimensions (see Section 6.4, although one can easily extend to 100 di-
mensions for example, and also see Section 6.1.3 where we observe a linear relationship
between computation time and dimension), especially when we include parallelization,
the method is embarrassingly parallelizable [23], (2) the ability to directly generate op-
timal trajectories of the optimal control/differential games problems, (3) the ability to
compute problems with nonlinear ODE dynamics, (4) the ability to compute solutions
for nonconvex and nonsmooth Hamiltonians and initial conditions, (5) the ease of par-
allelization of our algorithm to compute solutions to HJE, i.e. each core can use the
algorithm to compute the solution at a point, so given N cores we can compute so-
lutions of the HJE at N points simultaneously, and (6) the ease of parallelization to
directly compute trajectories, i.e. in our discretization of the time, we can parallelize
by assigning each computational core a point in the time discretization.

Our work lies in using the techniques used to derive the generalized Hopf and Lax
formulas introduced by Y.T. Chow et al. [8], which generalize to the state-and-time-
dependent cases (note in the literature that the classical Lax formula is sometimes
called the Hopf-Lax formula). See also previous work from the same authors, [6, 7],
and also [9, 10] where they provide fast algorithms under convexity assumptions. To
perform the optimization, we use a new splitting method that is based on the Primal
Dual Hybrid Gradient (PDHG) method (a.k.a. Chambolle-Pock), which we conjecture
to both converge to a local minimum for most well-behaved problems, and which we
conjecture to also approximate the solution. To do this, we discretize the optimal control
problem and the differential games problem in time, a technique inspired by [32] and [8].
This new splitting method has been experimentally seen (Section 6) to be faster than
the using coordinate-descent in most cases, which the authors in [8] use to compute the
solutions.

As far as the authors know, the use of splitting as applied to minimax differential
games problems, mainly on the state-and-time dependent Equations (4.6) and (4.7), is
new. In this case, we seem to be able to compute HJE with nonconvex Hamiltonians
and nonconvex initial data (Section 6.3.3), although they do have the structure of being
convex-concave.

The paper is organized as follows:

• Section 2 gives brief overviews of Hamilton-Jacobi equations and its intimate
connections to optimal control (Section 2.1) and differential games (Section 2.2).

• Section 3 gives a brief overview of splitting methods from optimization, focusing
on ADMM (Section 3.1) and PDHG (Section 3.2).

• Section 4 presents the generalized Lax and Hopf formulas for optimal control
and differential games that were conjectured by [8]. We also go through its
discretization in Section 4.1, which is the basis of our algorithm.
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• Section 5 presents the main algorithms.

• Section 6 presents various computational examples.

• Section 7 ends with a brief conclusion, and a discussion on future work.

• The appendix gives a more in-depth explanation on how to use the algorithms.

2. Hamilton-Jacobi equations and its connection to optimal control and
differential games

2.1. Hamilton-Jacobi equations and optimal control. Most of our expo-
sition on optimal control will follow [17], and also [16] (Chapter 10).

The goal of optimal control theory is to find a control policy that will drive a system
while optimizing a criterion. Given an initial point x∈R

n and an initial time t∈ [0,T ],
where T is some fixed end-point time, the system will obey an ODE{

ẋ(s)= f(x(s),α(s),s), t<s<T
x(t)=x

where f : (Rn×A×R)→R, where A⊆R
m. We call x the state, and α the control. And

the functional we want to optimize is Jx,t :A→R where

Jx,t[α] ..=g(x(T ))+

∫ T

t

L(x(s),α(s),s)ds. (2.1)

and where A ..={α : [t,T ]→A} is some admissible control set, and g :Rn→R and L :
(Rn×A×R)→R. We can either minimize the above functional, in which we call it a
cost, or we can maximize it, in which we call it a payoff. For our exposition, we will
choose to minimize Jx,t[·], so it will be a cost. Then we define the value function

ϕ(x,t)= min
α(·)∈A

Jx,t[α]. (2.2)

Under some mild conditions on f, g, and L, this value function will satisfy the terminal-
valued Hamilton-Jacobi PDE (HJ PDE){

∂tϕ(x,t)+H(x,∇xϕ(x,t),t) = 0, (x,t)∈R
n×(0,T )

ϕ(x,T ) = g(x).

where H(x,p,t)=mina∈A{〈f(x,a,t),p〉+L(x,a,t)}.
To get an initial-valued PDE, we can make a change of variables t→T − t. Or

equivalently we can reformulate the optimal control problem “backwards in time” so
that we have {

ẋ(s)= f(x(s),α(s),s), 0<s<t
x(t)=x

and

Jx,t[α] ..=g(x(0))+

∫ t

0

L(x(s),α(s),s)ds.

Then our ϕ(x,t)=minα(·)∈AJx,t[α] will satisfy an initial-valued HJ PDE with
H(x,p,t)=maxa∈A{〈f(x,a,t),p〉−L(x,a,t)}. Note that if f=a, then this form of the
Hamiltonian expresses H as the convex conjugate [36] of L.
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If we think from a physical perspective in which time moves forward, the first
formulation feels more comfortable. If we comes from the fields of PDE or mathematical
optimization, the latter formulation will feel more comfortable.

So how does having a HJ PDE help us synthesize an optimal control? Using the
first formulation as it feels more physically intuitive, we can heuristically argue that
given an inital time t∈ (0,T ] and a state x∈R

n, we consider the optimal ODE{
ẋ∗(s)= f(x∗(s),α∗(s),s), t<s<T
x∗(t)=x

where at each time s∈ (0,T ), we choose the value of α∗(s) to be such that

〈f(x∗(s),α∗(s),s),∂xϕ(x∗(s),s)〉+L(x∗(s),α∗(s),s)
=min

a∈A
{〈f(x∗(s),a,s),∂xϕ(x∗(s)〉+L)(x∗(s),a,s)}

=H(x∗(s),∂xϕ(x∗(s),s),s).

We call α∗(·) defined in this way as the feedback control, and this can be obtained from
∇xϕ (see Section 10.3.3 of [16]). This is also related to Pontryagin’s maximum principle
(Chapter 4 of [17]).

Note that for the case H(x,p,t)=H(p), we have available the (classical) Hopf and
Lax formulas which are expressions for the solutions ϕ(x,t) of the HJ PDE:

When the Hamiltonian H(p) is convex and the initial data g is (uniformly) Lipschitz
continuous, then we have the Lax formula:

ϕ(x,t)= min
y∈Rn

{
g(y)+ tH∗

(
x−y

t

)}
where H∗(x)=maxv∈A{〈v,x〉−H(v)} is the convex conjugate of L.

And if the initial data g is (uniformly) Lipschitz continuous and convex, and H is
continuous, then we have the Hopf formula,

ϕ(x,t)= sup
y∈Rn

{−g∗(y)+〈y,x〉− tH(y)}=(g∗(y)+ tH(y))
∗

(2.3)

where g∗ is the convex conjugate of g. Note the last equality implies the solution is
convex in x. We note again that the argument minimum of the above expression is in
fact ∇xϕ(x,t).

2.2. Hamilton-Jacobi equations and differential games. Our exposition
of differential games will follow [17] (Chapter 6), but also see [26, 47]. In the field of
differential games, we restrict our exposition to two-person, zero-sum differential games.
Let an initial point x∈R

n and an initial time t∈ [0,T ] be given, where T is some fixed
endpoint time. A two-person, zero-sum differential game will have the dynamics,{

ẋ(s)= f(x(s),α(s),β(s),s), t<s<T
x(t)=x

where f : (Rn×A×B×R)→R, and where A⊆R
m and B⊆R

�. The control α is the
control for player I, and the control β is the control for player II. The functional will
be Jx,t :A(t)×B(t)→R where

Jx,t[α,β] ..=g(x(T ))+

∫ T

t

L(x(s),α(s),β(s),s)ds. (2.4)
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and where A(t) ..={α : [t,T ]→A} and B(t) ..={β : [t,T ]→B} are admissible control sets,
and g :Rn→R and L : (Rn×A×B×R)→R.

In order to model that at each time, neither player has knowledge of the other’s
future moves, we use a concept of strategy that was used by Varaiya [45] as well as Elliot
and Kalton [13]. This idea allows us to model that each player will select a control in
response to all possible controls the opponent can select.

A strategy for player I is a mapping Φ :B(t)→A(t) such that for all times s∈ [t,T ]

τ ∈ [t,s], β(τ)≡ β̂(τ) implies Φ[β](τ)≡Φ[β̂](τ).

The Φ[β] models player I’s response to player II selecting β. We similarly define a
strategy Ψ :A(t)→B(t) for player II:

τ ∈ [t,s], α(τ)≡ α̂(τ) implies Ψ[α](τ)≡Ψ[α̂](τ)

and Ψ[α] models player II’s response to player I selecting α.
Letting A(t) and B(t) be the set of strategies for player I and player II, respectively,

then we define the lower value function as

ϕ−(x,t)= inf
Ψ[·]∈B(t)

sup
α(·)∈A(t)

Jx,t[α,Ψ[α]] (2.5)

and the upper value function as

ϕ+(x,t)= sup
Φ[·]∈A(t)

inf
β(·)∈B(t)

Jx,t[Φ[β],β]. (2.6)

Note that we always have ϕ−(x,t)≤ϕ+(x,t) for all x∈R
n and t∈ [0,T ]. For the proof,

see [18].
These value functions satisfy the terminal-valued HJ PDEs{

∂tϕ
−(x,t)+maxa∈Aminb∈B {〈f(x,a,b,t),∇xϕ

−(x,t)〉+L(x,a,b,t)}=0
ϕ−(x,T )=g(x)

and {
∂tϕ

+(x,t)+minb∈Bmaxa∈A{〈f(x,a,b,t),∇xϕ
+(x,t)〉+L(x,a,b,t)}=0

ϕ+(x,T )=g(x)

where we have the lower PDE Hamiltonian

H−(x,p,t)=max
a∈A

min
b∈B

{〈f(x,a,b,t),p〉+L(x,a,b,t)}

and the upper PDE Hamiltonian

H+(x,p,t)=min
b∈B

max
a∈A

{〈f(x,a,b,t),p〉+L(x,a,b,t)}

In general, we have

max
a∈A

min
b∈B

{〈f(x,a,b,t),p〉+L(x,a,b,t)}≤min
b∈B

max
a∈A

{〈f(x,a,b,t),p〉+L(x,a,b,t)}

and in most cases the inequality is strict, and thus the lower and upper value functions
are different. But when the above is an equality, then the game is said to satisfy the
minimax conditions, also called Isaac’s condition, and we have ϕ−=ϕ+, and we say the
game has value.

Our examples will focus on differential games which satisfy the minimax condition,
and will thus have value.

In differential games, we usually run into nonconvex Hamiltonians, so it is the Hopf
formula (2.3) that is used the most.
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3. Splitting algorithms from optimization
Here we review a couple of splitting algorithms from optimization.

3.1. ADMM (Alternating method of multipliers). ADMM [2], which is
also known as Split-Bregman [21], is an optimization method to solve problems of the
following form:

min
x,z∈X

f(x)+g(z)

subject to Ax+Bz= c

where X is a finite-dimensional real vector space equipped with an inner product 〈·, ·〉,
and f :X→R and g :X→R are proper, convex, lower semicontinuous functions. We
also have that A and B are continuous linear operators (e.g. matrices), with c being a
fixed element in X. Now we form the augmented Lagrangian of the above problem:

Lρ(x,z,y)=f(x)+g(z)+〈y,Ax+Bz−c〉+ ρ

2
‖Ax+Bz−c‖22.

Then we alternately minimize:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk+1 =argminxLρ(x,z

k,yk)

zk+1 =argminzLρ(x
k+1,z,yk)

yk+1 =yk+ρ(Axk+1+Bzk+1−c)

where in the last step we update the dual variable. Note that the argmin expressions are
frequently precisely the proximal operator [36] of a (not necessarily convex) function.
The proximal operator is defined as: Given f :Rn→R a proper l.s.c. function, not
necessarily convex, then,

(I+λ∂f)−1(v) ..=argmin
x

{
f(x)+

1

2λ
‖x−v‖22

}
. (3.1)

The proximal of f with step-size λ is also denoted proxλf (·).
3.2. PDHG (Primal-dual hybrid gradient). The PDHG algorithm [14,48],

which also goes by the name Chambolle-Pock [3], attempts to solve problems of the
form

min
x∈X

f(Ax)+g(x)

where we make similar assumptions on X, f , g, and A as we did for ADMM. PDHG
takes the Lagrangian dual formulation of the above problem and seeks to find a saddle
point of the following problem:

min
x∈X

max
y∈Y

〈Ax,y〉+g(x)−f∗(y)

where f∗(y)=supx∈X {〈x,y〉−f(y)} is the convex conjugate of f . PDHG is also an
alternating minimization technique that makes use of proximal operators. The updates
are: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yk+1 =(I+σ∂f∗)−1(yk+σAx̄k)

xk+1 =(I+τ∂g)−1(xk−σA∗yk+1)

x̄k+1 =xk+1+θ(xk+1−xk).
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where σ,τ >0 are such that στ‖A‖2<1, and θ∈ [0,1], although θ=1 seems to work best
in practice.

4. The generalized Lax and Hopf formulas
A recent result by Y.T. Chow et al. [8] gives a conjectured generalization to the

Lax and Hopf formulas. Given a Hamilton-Jacobi equation,{
∂tϕ+H(x,∇xϕ(x,t),t) = 0, in R

d×(0,∞),
ϕ(x,0) = g(x).

we have that when H(x,p,t) is smooth, and convex with respect to p, and possibly
under some more mild conditions, we have

ϕ(x,t)= min
v∈Rd

{
g(x(0))+

∫ t

0

p(s) ·∇pH(x(s),p(s),s)−H(x(s),p(s),s)ds

}

where

⎧⎪⎪⎨⎪⎪⎩
ẋ(s) =∇pH(x(s),p(s))
ṗ(s) =−∇xH(x(s),p(s))
x(t) =x
p(t) =v

where x and p are the characteristics of the PDE. The expression in the bottom braces
are ODEs which x(·) and p(·) satisfy.

And when we move the convexity onto g, i.e. when H(x,p,t) is smooth and g is
convex, then

ϕ(x,t)= sup
v∈Rd

{
−g�(p(0))+x ·v+

∫ t

0

x(s) ·∇xH(x(s),p(s),s)−H(x(s),p(s),s)ds

}

where

⎧⎪⎪⎨⎪⎪⎩
ẋ(s) =∇pH(x(s),p(s))
ṗ(s) =−∇xH(x(s),p(s))
x(t) =x
p(t) =v.

Chow et al. used coordinate descent with multiple initial guesses to perform the
optimization. They do this by first making an initial guess for v∈R

d, then they compute
the ODEs, and then compute the value of the objective, i.e. the first lines of the two
formulas. Then they re-adjust one coordinate v∈R

d and repeat. Details can be found
in their paper [8].

4.1. Discretizing the generalized Lax and Hopf formulas for optimal con-
trol. In order to derive the generalized Lax and Hopf formulas, we can first discretize
the value function of the optimal control problem (2.1) and (2.2). Before we begin, we
note that we are merely making formal calculations, much in the spirit of E. Hopf in his
seminal paper where he derived the classical Hopf formula [24]. This is the procedure
followed in [8]: We have that the value function equals

ϕ(x,t)= min
x(·),u(·)

{
g(x(0))+

∫ t

0

L(x(s),u(s),s)ds

}
where x(·) and u(s) satisfy the ODE{

ẋ(s)= f(x(s),u(s),s), 0<s<t
x(t)=x
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Two notes: (1) we are formulating our optimal control problem “backwards in time”
so that we end up with an initial-valued HJ PDE, and (2) here (x,t) are fixed points
where we want to compute the HJE.

We discretize the time domain such that

0<s1<s2< · · ·<sN = t,

and we set xj =x(sj) and uj =u(sj). Note that in our numerical examples, we make a
uniform discretization of the time domain.

Now we use the backward Euler discretization of the ODE and set xN =x to obtain
the optimization problem

min
{xj}N

j=0,{uj}N
j=1

⎧⎨⎩g(x0)+δ

N∑
j=1

L(xj ,uj ,sj) | {xj−xj−1= δf(xj ,uj ,sj)}Nj=1 ,xN =x

⎫⎬⎭ .

As is usual in constrained optimization problems, we compute the Lagrangian function
(i.e. Lagrange multipliers) to get:

g(x0)+δ

N∑
j=1

L(xj ,uj ,sj)+

N∑
j=1

〈pj ,xj−xj−1−δf(xj ,uj ,sj)〉+〈pN ,x−xN 〉 . (4.1)

Note that the constraint xN =x is trivially unneeded in the Lagrangian function. Then
we minimize over {xj}Nj=0 and {uj}Nj=1, while maximizing over {pj}Nj=1 to obtain the
expression,

max
{pj}N

j=1

min
{xj}N−1

j=0

min
{uj}N

j=1

⎧⎨⎩g(x0)+δ

N∑
j=1

L(xj ,uj ,sj)

+

N∑
j=1

〈pj ,xj−xj−1−δf(xj ,uj ,sj)〉+〈pN ,x−xN 〉
⎫⎬⎭ .

After moving the minimum over {uj}Nj=1 inside, we get

max
{pj}N

j=1

min
{xk}N

j=0

⎧⎨⎩g(x0)+

N∑
j=1

〈pj ,xj−xj−1〉+〈pN ,x−xN 〉

+δ

N∑
j=1

min
uj

{L(xj ,uj ,sj)−〈pj ,f(xj ,uj ,sj)〉}
⎫⎬⎭

= max
{pj}N

j=1

min
{xk}N

j=0

⎧⎨⎩g(x0)+

N∑
j=1

〈pj ,xj−xj−1〉+〈pN ,x−xN 〉−δ

N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭ .

After the above step, we have now been able to remove a numerical optimization in u
by using the definition of the Hamiltonian. This considerably simplifies the problem,
and reduces the dimensionality of the optimization.

We note that we need pN =0 in order for the maximization/minimization to not be
infinite. And thus, we can remove the minimization with respect to xN and we get

ϕ(x,t)≈ max
{pj}N

j=1

min
{xj}N

j=0

⎧⎨⎩g(x0)+

N∑
j=1

〈pj ,xj−xj−1〉−δ

N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭ . (4.2)
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We can do a similar analysis using the forward Euler discretization to obtain,

ϕ(x,t)≈ max
{pj}N−1

j=0

min
{xj}N−1

j=0

⎧⎨⎩g(x0)+

N−1∑
j=0

〈pj ,xj+1−xj〉−δ

N−1∑
j=0

H(xj ,pj ,sj)

⎫⎬⎭ (4.3)

but this latter expression has the disadvantage of coupling the g and H with respect to
x0, as they both depend on x0. Although this could actually be an advantage as one
may have H acting as a regularizer to g.

In order to obtain the discretized version of the generalized Hopf formula, we start
with the Lax formula with backward Euler (4.2), and use the linear term 〈p1,x0〉 and
compute the convex conjugate; the calculation goes as follows:

max
{pj}N

j=1

min
{xj}N

j=0

⎧⎨⎩g(x0)+
N−1∑
j=1

〈pj ,xj−xj−1〉−δ
N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭
= max

{pj}N
j=1

min
{xj}N

j=1

{
min
x0

{g(x0)−〈p1,x0〉}+〈p1,x1〉

+

N−1∑
j=2

〈pj ,xj−xj−1〉−δ

N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭
= max

{pj}N
j=1

min
{xj}N

j=1

⎧⎨⎩−g∗(p1)+〈p1,x1〉+
N−1∑
j=2

〈pj ,xj−xj−1〉−δ

N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭
= max

{pj}N
j=1

min
{xj}N

j=1

⎧⎨⎩−g∗(p1)+〈pN ,x〉+
N−1∑
j=1

〈pj−pj+1,xj〉−δ

N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭
where in the last equality, we performed a summation-by-parts and also used xN =x.
So we have the discretized version of the Hopf formula:

ϕ(x,t)≈ max
{pj}N

j=1

min
{xj}N

j=1

⎧⎨⎩−g∗(p1)+〈pN ,x〉+
N−1∑
j=1

〈pj−pj+1,xj〉−δ

N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭ .

(4.4)

Note that it is a bit harder to perform the optimization when we approximate the ODE
dynamics with forward Euler because we then must compute the convex conjugate of
the sum g(·)+H(·,p0,s0), which can be more complicated.

4.2. Discretizing the generalized Lax and Hopf formulas for differential
games. Again following the procedure of [8], we have a conjectured generalization
to the Lax and Hopf formulas for differential games, which we will discretize. Before
we give the calculation, we qualify that, in the spirit of E. Hopf when he computed the
Hopf formula in his seminal paper [24], these calculations are merely formal:

Given a two-person, zero-sum differential game with value (i.e., it satisfies the Isaacs
condition so that the minmax Hamiltonian and maxmin Hamilton are equal, see Section
2.2), with given x∈R

d1 and y∈R
d2 , and t∈ (0,∞), and with dynamics⎧⎪⎪⎨⎪⎪⎩

(
ẋ(s)
ẏ(s)

)
=

(
f1(x(s),y(s),α(s),β(s),s)
f2(x(s),y(s),α(s),β(s),s)

)
0<s<t(

x(t)
y(t)

)
=

(
x
y

)
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we have that the value function satisfies

ϕ(x,y,t)= inf
α(·),x(·)

sup
β(·),y(·)

{
g(x(0),y(0))+

∫ t

0

L(x(s),y(s),α(s),β(s),s)ds

}
. (4.5)

Now, we discretize in time and approximate the ODE with backward Euler, and a
formal computation gives us,

ϕ(x,y,t)≈ min
{αk}N

k=1{xk}N
k=0

max
{βk}N

k=1,{yk}N
k=0

{
g(x0,y0)+δ

N∑
k=1

L(xk,yk,αk,βk,sk)

}

such that

⎧⎪⎪⎨⎪⎪⎩
(
xk−xk−1

yk−yk−1

)
=

(
f1(xk,yk,αk,βk,sk)
f2(xk,yk,αk,βk,sk)

)
, k=1, . . . ,N(

xN

yN

)
=

(
x
y

)
.

It is at this point that we want to form the Lagrangian. The only trouble is that the
concept of a “Lagrangian” for minimax problems (a.k.a. saddle-point problems) has
not been well-examined. But in a paper by [12] (and also in [37]), the authors have a
version of a Lagrangian for minimax problems, which we apply to our problem to get,

g(x0,y0)+δ

N∑
j=1

L(xj ,yj ,αj ,βj ,sj)+

N∑
j=1

〈pj ,xj−xj−1−δf1(xj ,yj ,αj ,βj ,sj)〉

+

N∑
j=1

〈−qj ,yj−yj−1−δf2(xj ,yj ,αj ,βj ,sj)〉 .

Then we take the minmax to obtain

min
{αj}N

j=1,{xj}N
j=0

max
{βj}N

j=1,{yj}N
j=0

⎧⎨⎩g(x0,y0)+δ

N∑
j=1

L(xj ,yj ,αj ,βj ,sj)

+
N∑
j=1

〈pj ,xj−xj−1−δf1(xj ,yj ,αj ,βj ,sj)〉

+

N∑
j=1

〈−qj ,yj−yj−1−δf2(xj ,yj ,αj ,βj ,sj)〉
⎫⎬⎭

= min
{xj}N

j=0

max
{yj}N

j=0

{g(x0,y0)

+δ

N∑
j=1

min
αj

max
βj

{
L(xj ,yj ,αj ,βj ,sj)−

〈(
pj
−qj

)
,

(
f1(xj ,yj ,αj ,βj ,sj)
f2(xj ,yj ,αj ,βj ,sj)

)〉}

+
N∑
j=1

〈pj ,xj−xj−1〉+
N∑
j=1

〈−qj ,yj−yj−1〉
⎫⎬⎭

= min
{xj}N

j=0

max
{yj}N

j=0

⎧⎨⎩g(x0,y0)−δ

N∑
j=1

H(xj ,yj ,pj ,−qj ,sj)
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+

N∑
j=1

〈pj ,xj−xj−1〉+
N∑
j=1

〈−qj ,yj−yj−1〉
⎫⎬⎭ .

Now we maximize over {pj}Nj=1 and minimize over {qj}Nj=1 to obtain,

ϕ(x,y,t)≈ min
{qj}N

j=1

max
{pj}N

j=1

min
{xj}N

j=0

max
{yj}N

j=0

⎧⎨⎩g(x0,y0)−δ

N∑
j=1

H(xj ,yj ,pj ,−qj ,sj)

+

N∑
j=1

〈pj ,xj−xj−1〉+
N∑
j=1

〈−qj ,yj−yj−1〉
⎫⎬⎭

and after organizing a bit, we get,

ϕ(x,y,t)≈ min
{qj}N

j=1

max
{pj}N

j=1

min
{xj}N

j=0

max
{yj}N

j=0

⎧⎨⎩g(x0,y0)+

N∑
j=1

〈(
pj
−qj

)
,

(
xj−xj−1

yj−yj−1

)〉

−δ
N∑
j=1

H(xj ,yj ,pj ,−qj ,sj)

⎫⎬⎭ . (4.6)

The authors in [12] apply their method to convex-concave differential games, which
we also do in Section 6 (see also Section 6.3.3 where we have convex-concave initial
conditions).

Note: If we can split g(x,y)=e(x)+h(y), and if e is convex and h is concave, then
we may take advantage of e∗, the convex conjugate of e, and h∗, the concave conjugate
of h (the formula for the concave conjugate is the same as the convex-conjugate, but
you change the sup to an inf) [38], in order to have an analogous Hopf formula:

ϕ(x,y,t)≈ min
{qj}N

j=1

max
{pj}N

j=1

min
{xj}N

j=1

max
{yj}N

j=1

{
−e∗(p1)−h∗(−q1)+

〈(
pN
−qN

)
,

(
x
y

)〉

+
N−1∑
j=1

〈(
pj−pj+1

−(qj−qj+1)

)
,

(
xj

yj

)〉
−δ

N∑
j=1

H(xj ,yj ,pj ,−qj ,sj)

⎫⎬⎭ . (4.7)

In some ways the function e∗(p)+h∗(q) may perhaps be called the convex-concave
conjugate for the convex-concave function g(x,y).

Remark 4.1. The authors in [12] state that this “minimax Lagrangian”, even in the
simplest formulation given in their work, is new.

4.3. The advantage of the Hamiltonian for optimization. There is tremen-
dous advantage in having a Hamiltonian. This is because if we want to instead perform
optimization of the value function directly, we will be solving for the controls and this
requires a constrained optimization technique.

The miraculous advantage of having a Hamiltonian for optimization purposes is it
encodes information from both the running cost function L, as well as the dynamics
ẋ(s)= f(x(s),u(s),s). Thus we are now free to perform unconstrained optimization.
Instead, if we solve for the value function (2.1) and (2.2) directly, then we need to
perform constrained optimization.

Another key additional advantage is that we lower the dimension of the numerical
optimization by analytically minimizing over u, and conjuring the Hamiltonian.
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4.4. Situations where we don’t have a closed-form for the Hamiltonian.
Our algorithm currently computes HJ PDEs when we have closed-form expressions of the
Hamiltonian H. When this is not the case, then our algorithm will require analytically
approximating the Hamiltonian. And computing the proximal of these examples will
require some thought. These situations will be examined in future work.

5. The main algorithm: splitting for Hamilton-Jacobi equations

5.1. Splitting for HJE arising from optimal control. Before discussing the
algorithms, we note that we do not yet have a proof of convergence nor approximation.
This is currently a work-in-progress. But as shown in our numerical results (Section 6),
these algorithms seem to agree with classical methods used to solve Hamilton-Jacobi
equations.

Taking the Lax formula with backward Euler (4.2) as an expository example, we
can organize our problem to look similar to a primal-dual formulation which is attacked
by splitting using PDHG. We stack variables and let

• x̃=(x0,x1, . . . ,xN ), and similarly for p̃ and s̃,

• G̃(x̃)=g(x0),

• H̃δ(x̃, p̃, s̃)= δ
∑N

k=1H(xk,uk,sk),

• D be the difference matrix such that 〈p̃,Dx̃〉=∑N−1
j=1 〈pj ,xj−xj−1〉

then our problem looks like:

max
{pj}N

j=1

min
{xj}N

j=0

G̃(x̃)+〈p̃,Dx̃〉+H̃δ(x̃, p̃, s̃).

This looks similar to the problem that is attacked by PDHG, except for a couple of
differences:

• PDHG solves a saddle point problem where the H̃δ(x̃, p̃, s̃) term does not depend
on x̃ (nor s̃).

• In PDHG, the H̃δ term is the convex conjugate of some function we want to
minimize. But in our case, we have

H(x,p,s)=max
u

{〈f(x,u,s),p〉−L(x,u,s)}

and f(x,u,s) does not even have to be linear. So in some ways, H is a “gener-
alized convex conjugate”.

But we perform an alternating minimization technique similar to PDHG and we arrive
at our main algorithm for optimal control:

For the Lax formula with backward Euler: Given an x∈R
d and some time t∈

(0,∞), we set δ>0 small and let the time-grid size be N =1+ t/δ (we set N = t/δ for
Hopf). Then we randomly initialize x̃=(x0,x1, . . . ,xN ) but let xN =x, and we randomly
initialize p̃=(p0,p1, . . . ,pN ) but let p0≡0 as it is not minimized over, but used for
computational accounting. And we let z̃= x̃. Then our algorithm follows the pattern of
alternating optimization with quadratic penalty:⎧⎪⎪⎨⎪⎪⎩

p̃k+1=argmaxp̃

{
G̃(x̃k)−H̃δ(x̃

k, p̃, s̃)− 1
2σ‖p̃−(p̃k+Dz̃k)‖22

}
x̃k+1=argminx̃

{
G̃(x̃)−H̃δ(x̃, p̃

k+1, s̃)+ 1
2τ ‖x̃−(x̃k−DT p̃k+1)‖22

}
z̃k+1= x̃k+1+θ(x̃k+1− x̃k).
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where σ,τ >0 are step-sizes with στ‖D‖2<1 and θ∈ [0,1] (as suggested in [3]). In our
numerical experiments, θ=1 was frequently the best choice and also in practice, we
would change the arg max into an arg min. So we have Algorithm 1.

Algorithm 1 Splitting for HJE for optimal control, Lax with backward Euler

Given: xtarget∈R
d and time t∈ (0,∞).

Initialize: δ>0 and set N =1+ t/δ. And randomly initialize x̃0 and p̃0, but with
x0
N ≡xtarget. And set z̃0= x̃0. Also choose σ,τ such that στ‖D‖2<1 and θ∈ [0,1].

while tolerance criteria large do

p̃k+1=argminp̃

{
−G̃(x̃k)+H̃δ(x̃

k, p̃, s̃)+ 1
2σ‖p̃−(p̃k+σDz̃k)‖22

}
x̃k+1=argminx̃

{
G̃(x̃)−H̃δ(x̃, p̃

k+1, s̃)+ 1
2τ ‖x̃−(x̃k−τDT p̃k+1)‖22

}
z̃k+1= x̃k+1+θ(x̃k+1− x̃k)

end while
fval=g(x0)+

∑N
j=1 〈pj ,xj−xj−1〉−δ

∑N
j=1H(xj ,uj ,sj)

return fval

And a similar algorithm will be obtained when we use a forward Euler discretization
Equation (4.3) for the ODE dynamics. We can obtain better accuracy if we average the
backward Euler and forward Euler approximations for the ODEs, which is reminiscent of
the trapezoidal approximation having better accuracy as it is the average of the forward
and backward Euler.

We also have the Hopf formulation: Let,

• G̃∗(p̃)=(g∗(p1),0, . . . ,0), and

• letD be the difference matrix such that 〈Dp̃,x̃〉= 〈pN ,x〉+∑N−1
k=1 〈pk−pk+1,xk〉

(so this one differs from Algorithm 1 as it acts on p̃)

then we have Algorithm 2.

Algorithm 2 Splitting for HJE for optimal control, Hopf (with backward Euler)

Given: xtarget∈R
d and time t∈ (0,∞).

Initialize: δ>0 and set N = t/δ. And randomly initialize x̃0 and p̃0, but with x0
N ≡

xtarget. And set z̃0= x̃0. Also choose σ,τ such that στ‖D‖2<1 and θ∈ [0,1].
while tolerance criteria large do

p̃k+1=argminp̃

{
G̃∗(p̃k)+H̃δ(x̃

k, p̃, s̃)+ 1
2σ‖p̃−(p̃k+σDT z̃k)‖22

}
x̃k+1=argminx̃

{
−G̃∗(p̃)−H̃δ(x̃, p̃

k+1, s̃)+ 1
2τ ‖x̃−(x̃k−τDp̃k+1)‖22

}
z̃k+1= x̃k+1+θ(x̃k+1− x̃k)

end while
fval=−g∗(p1)+〈pN ,xtarget〉+

∑N−1
j=1 〈pj−pj+1,xj〉−δ

∑N
j=1H(xj ,pj ,sj)

return fval

5.1.1. When to use the Hopf formula. We make the observation that the
Lax formula is suitable (i.e. converges) when we have a convex Hamiltonian in p which
is also bounded below in p (or satisfies a coercivity condition, see [16]); if we want a
convex Hamiltonian that is not bounded in p, then we must use Hopf in this case.

See Section 5.3 on how to perform the argmin/argmax in each iteration.
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5.2. Splitting for HJE arising from differential games. For differential
games, we use a similar algorithm to the optimal control case. We take the discretized
version of the cost function (4.5) and perform an alternating minimization technique
inspired by PDHG, but applied to minimax problems. Using the same notation as in
Algorithm 1 and Algorithm 2, and the same D matrix as in Algorithm 1, we have the
algorithm for differential games in Algorithm 3.

Algorithm 3 Splitting for HJE for differential games, Lax

Given: (xtarget,ytarget)∈R
d and time t∈ (0,∞).

Initialize: δ>0 and set N =1+ t/δ. And randomly set x̃0, ỹ0, p̃0, and q̃0, but with
x0
N ≡xtarget and y0N ≡ytarget. And set (¯̃x0, ¯̃y0)=(x̃0, ỹ0). Also choose σ,τ such that

στ‖D‖2<1 and θ∈ [0,1].
while tolerance criteria large do

p̃k+1=argmaxp̃

{
G̃(x̃k, ỹk)−H̃δ(x̃

k, ỹk, p̃,−q̃k, s̃k)− 1
2σ‖p̃−(p̃k+σD ¯̃xk)‖22

}
q̃k+1=argminq̃

{
G̃(x̃k, ỹk)−H̃δ(x̃

k, ỹk, p̃k+1,−q̃, s̃k)+ 1
2σ‖q̃−(q̃k+σD ¯̃yk)‖22

}
x̃k+1=argminx̃

{
G̃(x̃, ỹk)−H̃δ(x̃, ỹ

k, p̃k+1,−q̃k+1, s̃k)+ 1
2τ ‖x̃−(x̃k−τDT p̃k+1)‖22

}
ỹk+1=argmaxỹ

{
G̃(x̃k+1, ỹ)−H̃δ(x̃

k+1, ỹ, p̃k+1,−q̃k+1, s̃k)

− 1
2τ ‖ỹ−(ỹk−τDT q̃k+1)‖22

}(
¯̃xk+1

¯̃yk+1

)
=

(
x̃k+1

ỹk+1

)
+θ

((
x̃k+1

ỹk+1

)
−
(
x̃k

ỹk

))
.

end while

fval=g(x0,y0)+
∑N

j=1

〈(
pj
−qj

)
,

(
xj−xj−1

yj−yj−1

)〉
−δ
∑N

j=1H(xj ,yj ,pj ,−qj ,sj)

return fval

If we have G̃(x,y)= Ẽ(x)+H̃(y) where E is convex and H is concave, then we
may make use of convex-conjugates and concave-conjugates (see (4.7)) to obtain an
analogous Hopf formula as in Algorithm 2, but for differential games. Here D is the
same difference matrix as in the Hopf case, Algorithm 2. This is Algorithm 4.

5.3. Remarks on how to perform the argmin/argmax in each iteration.
In each iteration for the above algorithms, we have an optimization problem when

updating x̃k+1 (ỹk+1) or p̃k+1 (q̃k+1). In some of our experiments, the optimization
turned into a closed-form proximal expression (mainly when updating p̃k+1/q̃k+1, or we
were able to make use of one step of gradient descent of the objective (mainly when
updating x̃k+1 or ỹk+1 or when G̃=g is involved). As an example, one way to update
the Lax formula for optimal control (Algorithm 1) using a backward Euler discretization
is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p̃k+1 =proxσH̃δ(¯̃xk,·)(p̃

k+σD ¯̃xk)

x̃k+1 = x̃k−τDT p̃k+1−τ∇x̃G̃(x̃k)+τ∇x̃H̃δ(x̃
k, p̃k+1, s̃)

¯̃xk+1 = x̃k+1+θ(x̃k+1− x̃k).
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Algorithm 4 Splitting for HJE for differential games, Hopf (for separable convex-
concave initial conditions)

Given: (xtarget,ytarget)∈R
d and time t∈ (0,∞).

Initialize: δ>0 and set N = t/δ. And randomly set x̃0, ỹ0, p̃0, and q̃0, but with
x0
N ≡xtarget and y0N ≡ytarget. And set (¯̃x0, ¯̃y0)=(x̃0, ỹ0). Also choose σ,τ such that

στ‖D‖2<1 and θ∈ [0,1].
while tolerance criteria large do

p̃k+1=argmaxp̃

{
−Ẽ∗(p1)−H̃∗(−q1)−H̃δ(x̃

k, ỹk, p̃,−q̃k, s̃k)

− 1
2σ‖p̃−(p̃k+σDT ¯̃xk)‖22

}
q̃k+1=argminq̃

{
−Ẽ∗(p1)−H̃∗(−q1)−H̃δ(x̃

k, ỹk, p̃k+1,−q̃, s̃k)

+ 1
2σ‖q̃−(q̃k+σDT ¯̃yk)‖22

}
x̃k+1=argminx̃

{
−Ẽ∗(p1)−H̃∗(−q1)−H̃δ(x̃, ỹ

k, p̃k+1,−q̃k+1, s̃k)

+ 1
2τ ‖x̃−(x̃k−τDp̃k+1)‖22

}
ỹk+1=argmaxỹ

{
−Ẽ∗(p1)−H̃∗(−q1)−H̃δ(x̃

k+1, ỹ, p̃k+1,−q̃k+1, s̃k)

− 1
2τ ‖ỹ−(ỹk−τDq̃k+1)‖22

}(
¯̃xk+1

¯̃yk+1

)
=

(
x̃k+1

ỹk+1

)
+θ

((
x̃k+1

ỹk+1

)
−
(
x̃k

ỹk

))
.

end while

fval=−e∗(p1)−h∗(−q1)+

〈(
pN
−qN

)
,

(
x
y

)〉
+
∑N−1

j=1

〈(
pj−pj+1

−(qj−qj+1)

)
,

(
xj

yj

)〉
−

δ
∑N

j=1H(xj ,yj ,pj ,−qj ,sj)
return fval

and one way to update the Hopf formula for optimal control (Algorithm 2) is,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p̃k+1 =proxσH̃δ(¯̃xk,·)(p̃

k+σD ¯̃xk−σ∇g∗(p1))

x̃k+1 = x̃k−τDT p̃k+1+τ∇x̃H̃δ(x̃
k, p̃k+1)

¯̃xk+1 = x̃k+1+θ(x̃k+1− x̃k).

where we see the update for p̃k+1 is a proximal gradient update [36] (Section 4.2).
There are many combinations we can use, but the intuition is to take a gradient

step on the smooth part (usually the x part), and a proximal step on the non-smooth
part (usually the p part). And if we have a sum of a smooth part and a non-smooth
part, we can mix a gradient step with a proximal step (i.e. a proximal gradient step) as
we have done above.

Currently, we do not have a theory of convergence, but these algorithms work
experimentally. This will be left for future work.

5.4. Computation of characteristic curves/optimal trajectories. A ben-
efit from the new algorithm is that alongside computing solutions at each point, it also
allows us to directly compute trajectories/characteristic curves of the Hamilton-Jacobi
equation at each point. In fact, our algorithm is a hybrid of the direct collocation method
(a direct method) [46] and Pontryagin’s maximum principle (an indirect method) [22].

We give some examples of characteristic curves/optimal trajectories in our numerical
results (Section 6).
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5.5. The advantage of splitting over coordinate descent. The advantage
of these methods over coordinate descent used previously in Chow et. al. [8] is not
only its speed, but it also does not seem to require as many multiple initial guesses for
nonconvex optimization. In our numerical experiments in Section 6, we only used a
single initial guess in all our examples. And for most examples in our experiments in
Section 6, it only requires one guess.

It also has the advantage that one can apply the method to non-smooth problems,
as opposed to coordinate-descent, where one takes numerical gradients.

And practically, splitting is more straightforward to implement than coordinate
descent, where we would require divided differences to numerically compute the gradi-
ents, and we also have available to us the multitude of splitting techniques from the
optimization literature, such as ADMM and Douglas-Rachford splitting to name a few.

5.6. A remark on the connection between Hamilton-Jacobi equations and
optimization, and the implications on future optimization methods. The
relationships between Hamilton-Jacobi equations and optimization have been noted in
the literature [39,40]. More recently, there has been a connection between deep learning
optimization and HJE [5]. More concretely, there is a straight-forward connection be-
tween Hamilton-Jacobi equations and the proximal operator (which can be interpreted
as implicit gradient descent):

Given a function f(·), the proximal operator of f is

(I+λ∂f)−1(v) ..=argmin
x

{
f(x)+

1

2λ
‖x−v‖22

}
.

If we change the argminx into a minx, then we get the familiar Lax (a.k.a. Hopf-Lax)
formula for the Hamilton-Jacobi equation with H(x)= 1

2‖x‖22, and for t=λ. So in this
way, the generalized Lax and Hopf formulas can be viewed as a generalization of the
proximal operator.

Also, the proximal operator, i.e. the argminx operator, is featured heavily in our
algorithms. In classical PDHG, the primal variable x and the dual variable p are de-
coupled. But for our algorithms, the coupling is in the form of a state-dependent
Hamiltonian. This coupling of the primal and dual variables can have implications on
future optimization methods, as we can then attempt various coupling functions, i.e.
Hamiltonians, and examine their effectiveness in general optimization techniques.

We also reiterate that our algorithms have been able to perform nonconvex optimiza-
tion without as many multiple initial guesses as in other algorithms such as coordinate
descent. In fact, in all our examples in Section 6, we only used a single initial guess. So
we feel a deeper theoretical examination of these algorithms will likely be beneficial to
the theory and literature of nonconvex optimization methods.

6. Numerical results
Here we present numerical examples using our algorithm. The computations were

run on a laptop with an Intel i7-4900MQ 2.90GHz×4 Haswell Core processor, of which
only one core processor was utilized for computations. The computations for the Eikonal
equation and the difference of norms were computed in C++, while the (unnamed)
Isaacs example and the quadcopter were computed in MATLAB, version R2017b.

For initializations, we initialized x̃0=(x0
0,x

0
1, . . . ,x

0
N ) to be such that each x0

i

(for i=0, . . . ,N−1) is a random point close to xtarget, and we let x0
N ≡xtarget. In

particular, for x̃0 each coordinate, except for x0
N , was randomly initialized so that

‖x̃0−(xtarget,xtarget, . . . ,xtarget)‖∞≤0.1. We chose p̃0 to be a random vector close to
the origin so that ‖p̃0−0‖∞≤0.1.
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We chose θ=1 in all cases.
The PDHG step-sizes σ and τ , and the time-step size δ all varied for each example.
The error tolerance for all optimal control examples were chosen such that pri-

mal and dual variables satisfy ‖xk+1−xk‖22<10−8 and ‖pk+1−pk‖22<10−8. The er-
ror tolerance for all the differential games examples were also similarly ‖(xk+1,yk+1)−
(xk,yk)‖22<10−8 and ‖(pk+1,qk+1)−(pk,qk)‖22<10−8, although we had to slightly mod-
ify our stopping criteria here.

For the difference of norms example, if the algorithm reached some max count, then
we would examine the value function and stop the algorithm when the value of the value
function for consecutive iterations reached a difference below some tolerance.

For the (unnamed) Isaacs example with fully convex initial conditions, we chose the
error to be such that the relative error of the value function of consecutive iterations
was less than 10−6, i.e.

∥∥∥ fvalk+1−fvalk

min(‖fvalk+1‖,1)

∥∥∥<10−6. This example turned out to be the

harshest on our algorithm.
In all cases, when we derive the Hamiltonian, we are starting from an optimal

control with a terminal condition and solving “backwards in time” (see Section 2.1) as
this naturally gives us an initial-valued Hamilton-Jacobi PDE.

6.1. State-and-time-dependent Eikonal equation (Optimal control).

6.1.1. Brief background on Eikonal equations. The state-dependent
Eikonal equations are HJE with Hamiltonians,

H+(x,p)= c(x)‖p‖, H−=−c(x)‖p‖
where c(x)>0 and ‖·‖ is any norm; in our examples we take the Euclidean norm.
We also test a state-and-time-dependent equation of Eikonal type, where H(x,p,t)=
c(x− t)‖p‖.

They arise from optimal control problems that have dynamics

f(x,u)= c(x)u, with ‖u‖≤1 and c(x) 
=0 for all x

and with cost-functional

J [u]=g(x(0))+

∫ t

0

I≤1(u(s))ds

where I≤1(·) is the indicator function of the unit ball in R
n, i.e. 0 for all points within

the unit ball including the boundary, and +∞ for all points outside.
This is a nonlinear optimal control example due to the presence of c(x). Also, our

algorithm is performing nonconvex optimization (due to the presence of c(x), but also
in our negative Eikonal equation example where we are performing minimization with
a −g(x) term where g is quadratic).

The Eikonal equation features heavily in the level set method [33, 34], which has
made wide-ranging contributions in many fields.

Note the optimization in solving negative Eikonal equation can be obtained by
examining the positive Eikonal equation. This is actually a general phenomenon of
Hamiltonians that obey H(x,−p,t)=H(x,p,t). This is because if ϕ solves a HJE with
initial data g and Hamiltonian such that H(x,−p,t)=H(x,p,t), then examining −ϕ,{

(−ϕ)t+H(x,∇(−ϕ),t) =0
(−ϕ)(x,0) =−g(x)

}
⇔

{
ϕt−H(x,∇ϕ,t) =0

ϕ(x,0) =g(x)

}
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so we see −ϕ solves the positive Eikonal equation with initial data −g if and only if ϕ
solve the negative Eikonal equation with initial data g. And note that both are viscosity
solutions as this computation still holds when we compute the viscous version of the
HJE [16] (Section 10.1).

6.1.2. Implementation details for the Eikonal equation. Here we take

c(x)=1+3exp(−4‖x−(1,1,0, . . . ,0)‖22),

which is a positive bump function. The initial condition of our HJE PDE is

g(x)=−1/2+(1/2)
〈
A−1x,x

〉
, A=diag(2.52,1,0.52, . . . ,0.52).

We used the Lax version of our algorithm, Algorithm 1, for all cases in this section.
For the x̃k+1-update, we took one step of gradient descent. And for the p̃k+1 update, we
took the proximal of the �2-norm (a.k.a. the shrink2 operator); in general the shrink
operator can be defined for any positively homogenous of degree 1 convex function
ϕ. For the �-1 norm, we have that the shrink1 operator (in R

n) can be computed
coordinate-wise and the i-th coordinate satisfies,

(shrink1(x,λ))i=

⎧⎨⎩
xi−λ if xi>λ
0 if |xi|≤λ
xi+λ if xi<−λ

and the shrink2 operator also can be computed coordinate-wise and the i-th coordinate
satisfies

(shrink2(x,λ))i=

{ x
‖x‖2

max(‖x‖2−λ,0) if x 
=0

0 if x=0.

For the negative Eikonal equation, since in our implementation we computed a
positive Eikonal equation with initial data −g and then took the negative, we were able
to compute the proximal of the concave quadratic −g. We call this taking the stretch
operator of g (see [6], Section 4.2.2).

For these Eikonal equations, we chose a time step-size of δ=0.02, and we computed
in a [−3,3]2 grid with a mesh size of 0.1 on each axis.

For the positive Eikonal Equation (fig. 6.1), we chose a PDHG step-size that de-
pended on the norm of ∇c(x). If ‖∇c(x)‖2>0.001, then we took σ=50 or else we took
σ=0.5. And we always took τ =0.25/σ (the 0.25 comes from ‖D‖2=2−ε for some
small ε>0, and requiring στ <1/‖D‖2). To compute the times t=0.1, 0.2, 0.3, and 0.4,
the computation time averaged to 4.39×10−4 seconds per point in C++.

For the negative Eikonal Equation (fig. 6.2), we chose a PDHG step-size of σ=100
and τ =0.25/σ. We picked θ=1 for all cases. For t=0.1, 0.2, 0.3, 0.4, and 0.5, the
computation time averaged to 0.0024 seconds per point in C++.

For the negative Eikonal equation in 10 dimensions (fig. 6.3), we computed a 2-
dimensional slice in [−3,3]× [−3,3]×{0}×···×{0}. The time step-size was again δ=
0.02 and we chose σ=100, and τ =0.25/σ. For t=0.1, 0.2, 0.3, and 0.4 (0.5 had no
level sets) the computation time averaged to 0.004 seconds per point in C++.

We also computed a state-and-time-dependent Eikonal Equation (fig. 6.4) where
H(x,p,t)= c(x− t(−1,1))‖p‖2. Here in our specific example, c(x− t(−1,1)) represents
a bump function moving diagonally in the (−1,1) direction as t increases. The time
step-size were the same as in the positive Eikonal case which is reasonably expected
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because we took the positive Eikonal case and modified it. The computational time for
t=0.1, 0.2, 0.3, and 0.4 averaged to 5.012×10−4 seconds per point in C++.

In these examples, we achieved a speedup of about ten times over coordinate descent
used by Chow et. al. [8], and only one initial guess was used. In low dimensions, this
problem can be solved with SQP (Sequential Quadratic Programming) on the value
function, or using Lax-Friedrichs. We use these methods to check our accuracy and
they agree to within 10−4 for each point (x,t) when using SQP.

We observe that the two different Eikonal equations required vastly different step-
sizes and it is worth examining how to choose step-sizes in a future work. We speculate
that the step-sizes may act as CFL conditions. This is a further point of study.

Comparing coordinate descent to our algorithm in MATLAB, we achieve about an
8-10 times speedup used in [8].

The figures 6.1, 6.2, and 6.3, and 6.4 show the zero level sets of the HJE solution.
In Algorithm 5, we give an explicit example of how we performed our algorithm on

the negative Eikonal equation.

Algorithm 5 Splitting for the negative Eikonal equation with convex initial data g
(note: below we are actually solving the equivalent problem of the positive Eikonal
equation with concave initial data −g)

Given: xtarget∈R
d and time t∈ (0,∞).

while (‖x̃k+1− x̃k‖22> tol or ‖p̃k+1− p̃k‖22> tol) and (count<max count) do
for j=1 to N do

pk+1
j =shrink2(p

k
j +σ(zkj −zkj−1),σδc(x

k)) (proximal)
end for

for j=0 do
xk+1
0 =xk

0−τ(pk+1
0︸︷︷︸
=0

−pk+1
1 )−τ(∇(−g))(xk

0) (gradient descent)

end for
for j=1 to N−1 do
xk+1
j =xk

j −τ(pk+1
j −pk+1

j−1)−τ(−δ(∇c)(xk
j )‖pk+1

j ‖2) (gradient descent)
end for

for j=0 to N do
zk+1
j =xk+1

j +θ(xk+1
j −xk

j ) (extrapolation step)
end for

end while

fval=−g(x0)+
∑N

j=1 〈pj ,xj−xj−1〉−δ
∑N

j=1 c(xj)‖pj‖2
return fval

6.1.3. Dimensional scaling of the negative Eikonal equation. Here we
examine how Algorithm 1 scales with dimension. We compute the negative Eikonal
equation with the same speed c and initial data g as above, and with δ=0.02 and
σ=100 and τ =0.25/σ. We computed in a 2-dimensional slice [−3,3]2×{0}d−2, and
we computed from d=10 to d=2000 dimensions. We performed our analysis at time
t=0.2.
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Fig. 6.1. Eikonal equation with H+(x,p)= c(x)‖p‖2, in two spatial dimensions. This plot shows
the zero level sets of the HJE solution for t=0.1,0.2,0.3,0.4. We observe that the zero level sets move
outward as time increases. The left figure is computed using our new algorithm, while the right figure
is computed using the conventional Lax-Friedrichs method.

Fig. 6.2. Eikonal equation with H−(x,p)=−c(x)‖p‖2, in two spatial dimensions. This plot shows
the zero level sets of the HJE solution for t=0.1,0.2,0.3,0.4. We observe that the zero level sets move
inward as time increases. Left is computed with our new algorithm, while the right is computed using
the conventional Lax-Friedrichs method.

We chose this particular example as this is a nonlinear optimal control problem that
requires us to optimize a nonconvex problem.

We used least-squares to fit both a linear function as well as a quadratic function.
The coefficients were

lin(d)=(1.14×10−4)d+0.0021,

quad(d)=(−5.99×10−9)d2+(1.27×10−4)d−0.00195

As we can see from the equations of the fit, and from fig. 6.5, the quadratic fit has an
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Fig. 6.3. Eikonal equation with H−(x,p)=−c(x)‖p‖2, in ten spatial dimensions. This plot shows
the zero level sets of the HJE solution for t=0.1,0.2,0.3,0.4. We observe that the zero level sets move
inward as time increases.

Fig. 6.4. Eikonal equation with H(x,p)= c(x− t(−1,1))‖p‖2. This plot shows the zero level sets
of the HJE solution for t=0.1,0.2,0.3,0.4. We observe that there is a similarity to the positive Eikonal
case, but the “bump” is more sheared to the left.

extremely small quadratic coefficient. Figure 6.5 shows the plot with the linear fit. This
computation was done in C++.

We predict that for general problems, the scaling will be polynomial in time.

6.2. Difference of norms (differential games).

6.2.1. From differential games to HJE for the difference of norms. The
state-dependent HJE for the difference of norms case arises from the following differen-
tial games problem: Given x∈R

d1 and y∈R
d2 , and some t>0, we have the following
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Fig. 6.5. How our algorithm scales with dimension for the negative Eikonal equation at time
t=0.2. This is a nonlinear optimal control problem, and the optimization requires us to perform
nonconvex optimization. The plot shows a linear fit.

dynamics ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ẋ(s)
˙y(s)

)
=

(
c1(x(s),y(s))α(s)
c2(x(s),y(s))β(s)

)
, 0≤s≤ t

(
x(t)
y(t)

)
=

(
x
y

)
α(s)‖≤1,‖β(s)‖≤1, for all s,

and c1,c2 are positive functions.

And the cost function is

Jx,t[α,β]=g(x(0),y(0))+

∫ t

0

I≤1(α(s))−I≤1(β(s))ds

where I≤1(·) is the indicator function of the unit-ball, i.e. it equals 0 for points inside
and on the unit-ball, and +∞ for points outside. Our value function is then

ϕ(x,y,t)= inf
α,‖α‖≤1

sup
β,‖β‖≤1

Jx,t[α,β].

Then our Hamiltonian becomes,

H(x,y,p,q)=max
α

min
β

{〈(
c1(x,y)α
c2(x,y)β

)
,

(
p
q

)〉
−(I≤1(α)−I≤1(β))

}
=max

α
{〈c1(x,y)α,p1〉−I≤1(α)}+min

β
{〈c2(x,y)β,q〉+I≤1(β)}

= c1(x,y)‖p‖2−c2(x,y)‖q‖2.
In this case, we have nonlinear dynamics, as well as nonconvex Hamiltonian.
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6.2.2. Implementation details for the difference of norms. Here we take,

c1(x)=1+3exp(−4‖x−(1,1,0, . . . ,0)‖22), c2(x)= c1(−x),

and the initial condition is

g(x)=−1/2+(1/2)
〈
A−1x,x

〉
, A=diag(2.52,1,0.52, . . . ,0.52).

which is the same initial condition as in our Eikonal equation example above (Sec-
tion 6.1.2).

For the 2-dimensional case, we used the Hamiltonian,

H(x1,x2,p1,p2)= c(x1,x2)‖p1‖2−c(−x1,−x2)‖p2‖2
and for the 7-dimensional case, we used,

H(x1,x2, . . . ,x7,p1,p(2,...,7))= c(x1, . . . ,x7)‖p1‖2−c(−x1, . . . ,−x7)‖p(2,...,7)‖2.

where p(2,...,7)=(p2,p3, . . . ,p7).
We compute our solutions in 2 and 7 dimensions. We compute the 2-dimensional

case in a [−3,3]2 grid, and we compute the 7-dimensional case in the two dimensional
slice [−3,3]2×{0}×···×{0}. And we used Algorithm 3.

For the p̃k+1-update, we used the proximal of the �2-norm (a.k.a. the shrink2
operator), and for the x̃k+1-update, we used one step of gradient descent.

We took the time-step as δ=0.02, and we took the PDHG steps σ=50, and τ =
0.25/σ. The 0.25 comes from the fact that the PDHG algorithm requires στ‖D‖22<1,
and ‖D‖2=2−ε, for some small ε>0.

The computation was done with a mesh size of 1/12≈0.08333 in each axis. For
the 2-dimensional case, the computation averaged out to 0.0135 seconds per point in
C++, and for the 7-dimensional case the computation averaged out to 0.01587 seconds
per point in C++. If we compared the algorithms in MATLAB on the same computer,
we achieved a 10-20 times speedup compared to coordinate descent used previously by
Chow et al. [8]. In order to compare the accuracy of the solution, we present our method
compared with the Lax-Friedrichs method for solving the Hamilton-Jacobi equation in
fig. 6.6. Our method for the 7-dimensional case is shown in fig. 6.7.

We note that at certain points, the trajectories would oscillate a little for larger
times which may be due to the non-convexity and the non-unique optimal trajectories.
So when a maximum count was reached, we would raise σ by 20, and we would also
readjust τ =0.25/σ. We do not recommend choosing a high σ at all points, or else the
algorithm would result in incorrect solutions. If the convergence was not fast enough,
after some maximum count, we would switch our convergence criteria to the value
function, as the error (between consecutive iterations) seemed to converge to zero. The
procedure of raising the σ is reminiscent of CFL conditions for finite-difference schemes,
and we are examining how best to choose the PDHG step-sizes σ and τ . The best σ
and τ to choose seem to be dependent on the point at which we are computing.
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Fig. 6.6. The difference of norms HJE in two spatial dimensions. This plot shows the zero level
sets of the HJE solution for t=0.1,0.2,0.3. We observe that the zero level sets move inward as time
increases. Left is computed with our new algorithm, while the right is computed using the conventional
Lax-Friedrichs method. Note that there is an anomaly at the top-right of Lax-Friedrich computation.
And there is also more of a corner in the bottom-left of the solution computed by the new method.
This may be a result of the true solution, and which does not appear in the Lax-Friedrichs solution as
it tends to smooth out solutions.

Fig. 6.7. The difference of norms HJE in seven spatial dimensions. This plot shows the zero level
sets of the HJE solution for t=0.1,0.2,0.3.

6.3. An (unnamed) example from Isaacs (differential games).

6.3.1. From differential games to HJE for an unnamed example from
Isaacs. We now examine a modified version of a differential game, obtained from [15]
(Example 6.3), in which it is named “an unnamed example of Isaacs”; the original source
is found in Isaac’s seminal work [26] (Example 8.4.3). The dynamics are as follows:{

ẋ(s) =2β+sin(α)
ẏ(x) =−c(x,y)+cos(α)
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Fig. 6.8. The zero level-sets for the HJE from an unnamed example of Isaacs. The times we
computed were t=0.025, 0.05, 0.075, and 0.1. The left figure is the result of our algorithm, while
the right figure is the result of Lax-Friedrichs. Here we see that this example is our harshest critic.
But this is not surprising because the initial condition is a fully convex function, whereas we’d rather
have it to be convex-concave. Also the Hamiltonian is not bounded below with respect to q which is an
assumption of the Hopf formula. Neverthless our algorithm is still able to achieve a result similar to
Lax-Friedrichs, which might actually be the surprising part. We also note that we only used one initial
guess here, but using multiple initial guesses (around 5) smooths out the curves.

where 0≤α≤2π and −1≤β≤1. These dynamics are nonlinear. We take the cost-
functional as,

J [α,β]=g(x(0),y(0))+

∫ t

0

1ds

and the value function seeks to maximize with respect to α∈ [0,2π], and minimize with
respect to β∈ [−1,1]. Then our Hamiltonian is,

H(x,y,p,q)= min
α,α∈[0,2π]

max
β,β∈[−1,1]

{〈(
2β+sin(α)

−c(x,y)+cos(α)

)
,

(
p
q

)〉
−1

}
= min

α,α∈[0,2π]
max

β,β∈[−1,1]
{2βp−c(x,y)q+psin(α)+qcos(α)−1}

=−c(x,y)q+2|p|−
√
p2+q2−1.

This Hamiltonian is nonconvex and the dynamics are nonlinear.

6.3.2. Implementation details for the (unnamed) example from Isaacs
with fully convex initial conditions. We take

c(x)=2(1+3exp(−4‖x−(1,1,0, . . . ,0)‖22)), (6.1)

which is a positive bump function. The initial condition of our HJE PDE is

g(x)=−1/2+(1/2)
〈
A−1x,x

〉
, A=diag(2.52,1,0.52, . . . ,0.52).

This example is perhaps the harshest on our algorithm and turns out to be slower
than coordinate descent, but in many ways this is not surprising. This is because this
problem is highly nonconvex and the g(x,y) that we use is a convex function – ideally we



1958 A SPLITTING METHOD FOR HAMILTON-JACOBI EQUATIONS

would like it to be a convex-concave function which would be suitable for saddle-point
problems. Not only that, but our Hamiltonian is not bounded below with respect to q,
and the Hopf formula requires this assumption.

Nevertheless, we show this example in order to advertise the generality of our al-
gorithm. It might actually be surprising that our algorithm gives a solution that looks
like the Lax-Friedrichs solution. We also note that we only used one initial guess, and
in our experiments, using around 5 initial guesses smooths out the solution.

We use Algorithm 3, but modified so we can utilize the convex portion of g (see the
last paragraph of Section 5.2). We compute our solutions in a 2-dimensional [−3,3]2

grid. The p̃k+1-update utilizes a combination of gradient descent for the q, and the
shrink2 operator for the p. The x̃k+1-update uses one step of gradient descent.

We took the time-step as δ=0.005, and we took the PDHG steps as σ=20, and τ =
0.25/σ, where the 0.25 comes from the PDHG condition that στ‖D‖22<1, and ‖D‖2=
2−ε for some small ε>0.

As in the difference of norms example, we did have some points that were slower
to converge. We alleviated this problem by rerunning the algorithm at the same point
(without changeing σ or τ) if we reached some maximum count, and sometimes took
the solution if the maximum count was reached anyway.

The computational time on a [−3,3]2 grid of mesh size 1/12≈0.0833 for each axis,
averaged out to 0.412 seconds per point in MATLAB.

In this example, using Algorithm 3 was slower than coordinate descent where it
averaged to 0.133 seconds per point, and so we recommend using coordinate descent in
this case.

Figure 6.8 gives the result of our algorithm.

6.3.3. Implementation details for the (unnamed) example from Isaacs
with convex-concave initial conditions. We take c(x) to be the same as in the
fully convex initial conditions (see Equation (6.1)). The initial condition of our HJE
PDE is

g(x1,x2)=−1/2+(1/2)(((2.5)x1)
2−(x2)

2
).

Here we have convex-concave initial conditions, and our algorithm works well. This
is an example of a convex-concave game, in which [12] have also applied their method
to linear differential games.

We use Algorithm 4, and as in all other examples here, we only have one initial
guess. We compute our solutions in a 2-dimensional [−3,3]2 grid. The p̃k+1-update
utilizes a combination of gradient descent for the q, and the shrink2 operator the p.
The x̃k+1-update uses one step of gradient descent.

We took the time-step as δ=0.005, and we took the PDHG steps as σ=2 for
t=0.025, 0.05, 0.075, and σ=10 for t=0.1. We always chose τ =0.25/σ, where the
0.25 comes from the PDHG condition that στ‖D‖22<1, and ‖D‖2=2−ε for some small
ε>0.

We computed this example in a [−3,3]2 grid with mesh size 1/12≈0.0833 for each
axis. The computational time averaged to 0.125 seconds per point.

As in the difference of norms example, we did have some points that were slower
to converge. We alleviated this problem by rerunning the algorithm at the same point
(without changing σ or τ) if we reached some maximum count, and sometimes took the
solution if the maximum count was reached anyway.

Figure 6.9 gives the result of our algorithm.
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Fig. 6.9. The zero level-sets for the HJE from an (unnamed) example of Isaacs with convex-
concave initial conditions. The times we computed were t=0.025, 0.05, 0.075, and 0.1. The left figure
is the result of our algorithm, while the right figure is the result of Lax-Friedrichs.

6.4. Quadcopter (a.k.a. Quadrotor or Quad rotorcraft) (optimal con-
trol).

6.4.1. From optimal control to HJE for the quadcopter. A quadcopter
is a multirotor helicopter that utilizes four rotors to propel itself across space. The
dynamics of a quadcopter [19] are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẍ = u
m (sin(ϕ)sin(ψ)+cos(ϕ)cos(ψ)sin(θ))

ÿ = u
m (−cos(ψ)sin(ϕ)+cos(ϕ)sin(θ)sin(ψ))

z̈ = u
m cos(θ)cos(ϕ)−g

ψ̈ = τ̃ψ
θ̈ = τ̃θ
ϕ̈ = τ̃ϕ

where (x,y,z) is the position of the quadcopter in space, and (ψ,θ,ϕ) is the angular
orientation of the quadcopter (a.k.a. Euler angles). The above second-order system
turns into the first-order system,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =x2

ẏ1 =y2
ż1 = z2
ψ̇1 =ψ2

θ̇1 =θ2
ϕ̇1 =ϕ2

ẋ2 = u
m (sin(ϕ1)sin(ψ1)+cos(ϕ1)cos(ψ1)sin(θ1))

ẏ2 = u
m (−cos(ψ1)sin(ϕ1)+cos(ϕ1)sin(θ1)sin(ψ1))

ż2 = u
m cos(θ1)cos(ϕ1)−g

ψ̇2 = τ̃ψ
θ̇2 = τ̃θ
ϕ̇2 = τ̃ϕ

and so the right-side becomes our f(x,α). Here the controls are the variables u, τ̃ψ, τ̃θ,
τ̃ϕ.
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This is a 12-dimensional, nonlinear, optimal control problem.
Denoting x=(x1,y1,z1,ψ1,θ1,ϕ1,x2,y2,z2,ψ2,θ2,ϕ2), then our cost-functional is,

J [u,τ̃ψ, τ̃θ, τ̃ϕ]=g(x(0))+

∫ t

0

2+‖(u(s), τ̃ψ(s), τ̃θ(s), τ̃ϕ(s))‖22ds (6.2)

where this cost functional was chosen to follow [42] and [25]. Therefore, our Hamiltonian
becomes,

H(x,p,t)= max
u,τ̃ψ ,τ̃θ,τ̃ϕ

⎧⎨
⎩

⎡
⎣
x2
y2
z2

⎤
⎦ ·

⎡
⎣
p1
p2
p3

⎤
⎦+

⎡
⎣
ψ2

θ2
ϕ2

⎤
⎦ ·

⎡
⎣
p4
p5
p6

⎤
⎦

+
u

m

⎡
⎣

sin(ϕ1)sin(ψ1)+cos(ϕ1)cos(ψ1)sin(θ1)
−cos(ψ1)sin(ϕ1)+cos(ϕ1)sin(θ1)sin(ψ1)

cos(θ1)cos(ϕ1)

⎤
⎦ ·

⎡
⎣
p7
p8
p9

⎤
⎦−p9g+

⎡
⎣
τ̃ψ
τ̃θ
τ̃ϕ

⎤
⎦ ·

⎡
⎣
p10
p11
p12

⎤
⎦

−2−||u||2−||τ̃ψ||2−||τ̃θ||2−||τ̃ϕ||2
}

=

⎡
⎣
x2
y2
z2

⎤
⎦ ·

⎡
⎣
p1
p2
p3

⎤
⎦+

⎡
⎣
ψ2

θ2
ϕ2

⎤
⎦ ·

⎡
⎣
p4
p5
p6

⎤
⎦

+
1

4m

∥∥∥∥∥∥

⎡
⎣

sin(ϕ1)sin(ψ1)+cos(ϕ1)cos(ψ1)sin(θ1)
−cos(ψ1)sin(ϕ1)+cos(ϕ1)sin(θ1)sin(ψ1)

cos(θ1)cos(ϕ1)

⎤
⎦ ·

⎡
⎣
p7
p8
p9

⎤
⎦
∥∥∥∥∥∥

2

−p9g+ 1

4
‖p10‖2+ 1

4
‖p11‖2+ 1

4
‖p12‖2−2.

Fig. 6.10. Here we compute the zero level-sets for the HJE arising from the quadcopter. The
x-axis is the x1-position of the quadcopter, and the y-axis is the angular position in the ψ1 coordinate.
The zero level-sets are computed for t=0.025, 0.05, and 0.075. This is a 12-dimensional, nonlinear
optimal control problem.
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Fig. 6.11. Here we compute the characteristic curves/optimal trajec-
tories for the quadcopter. We are computing at the terminal point x=
(0.36,−0.62,−0.06,0.23,0.85,−0.66,0.72,−0.45,0.15,−0.75,0.04,−0.83) and we are computing at
the terminal time t=6 seconds. A plot of the trajectories computed using a different algorithm – SQP
– looks identical.

6.4.2. Implementation details for the quadcopter. Here we have,

g(x)=−1/2+(1/2)
〈
A−1x,x

〉
, A=diag(0.2,1,1, . . . ,1).

In this case, we use the algorithm based on the generalized Hopf formula, Algorithm 2.

We compute our solutions in a two dimensional slice of R12:

[−1,1]×{0}×{0}× [−1,1]×{0}×{0}×{0}×{0}×{0}×{0}×{0}×{0},

i.e. we vary the x-coordinate, as well as the x-velocity-coordinate. Recall that the order
of the coordinates are: x=(x1,y1,z1,ψ1,θ1,ϕ1,x2,y2,z2,ψ2,θ2,ϕ2).

For both the p̃k+1-update and the x̃k+1-update, we used gradient descent, except for
the update involving g∗(p1), where we did a proximal-gradient step, i.e. we performed
a gradient descent, ignoring g∗, and then we fed the result into proxσ(g∗)(·). This can
be seen as a proximal-gradient step [36] (Section 4.2).
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Fig. 6.12. We plot the (x,y,z) coordinates of the quadcopter to give a plot of the trajectory of the
quadcopter in 3D space.

In this example, we chose as time-step size δ=0.005, and we chose times t=
0.025,0.05,0.075. For the PDHG step-sizes, we chose σ=5, and τ =0.25/τ , where as
stated above, the 0.25 comes from the PDHG requirement στ‖D‖22<1, and ‖D‖2=2−ε,
for some small ε>0.

The computation was done on a [−1,1]2 grid, with mesh size 0.01 in each axis. The
computational time averaged to 0.0733 seconds per point in MATLAB.

In this case, not only are we able to compute level-sets of the HJE, but we are also
able to take advantage of the characteristic curve/optimal trajectory generation that is
freely offered by our algorithm.

To generate the curves/trajectories, we took a randomly-generated terminal point,
which was exactly

xtarget=(0.36,−0.62,−0.06,0.23,0.85,−0.66,0.72,−0.45,0.15,−0.75,0.04,−0.83)

and we computed up to t=6 seconds. We chose a time-step of δ=0.05, and we chose
σ=11 (and τ =0.24/σ (as opposed to 0.25 as the latter will not converge). This took
about 24s to compute in MATLAB. We verified our result by directly minimizing a
discretized version of (6.2) (see also Section 4.1 on how we discretized), which is a direct
collocation method [46]. We performed the optimization using a standard MATLAB
minimization solver (fmincon with the SQP algorithm), and this agreed with our results.
The solver took 133-347s to compute the trajectories, depending on the accuracy criteria,
and we note that fmincon converges to our splitting result the longer we let the algorithm
run. So in this case, 5-10+ times speedup is achieved. Computing trajectories at other
points have found around an 8-10+ speedups.

Figure 6.10 gives the zero level-sets of the HJE, and fig. 6.11 gives the result of
computing the curves/trajectories. Figure 6.12 plots the x, y, and z positions of the
quadcopter as it moves through time.

7. Discussion and future work
In this paper, we have presented a splitting method to compute solutions to general

(i.e. convex and nonconvex) Hamilton-Jacobi equations which arise from general (i.e.
linear and nonlinear) optimal control problems and general differential games problems.
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Some nice properties of our algorithm include: (1) relatively fast computation of
solutions in high-dimensions, especially when we parallelize the algorithm, which is
embarrassingly parallelizable [23] (2) it can generate optimal trajectories of the optimal
control/differential games problems, (3) it can compute problems with non-linear ODEs,
(4) it can compute solutions for nonconvex Hamiltonians, (5) and the algorithm is
embarrassingly parallelizable, i.e. each core can use the algorithm to compute the
solution at a point, so given N cores we can compute solutions of the HJE at N points
simultaneously.

Splitting applied to optimal control problems has been used by [32] where they
apply it to cost functionals having a quadratic and convex term. In terms of Hamilton-
Jacobi equations, the authors in Kirchner et al. [30] (2018) effectively applied it to
Hamilton-Jacobi equations arising from linear optimal control problems by using the
Hopf formula. They make use of the Hopf formula and the closed-form solution to linear
ODEs to not only solve HJE, but to also directly compute optimal trajectories in high-
dimensional systems. The authors of this current paper have been working in parallel
and also applied splitting to HJE and trajectory generation for nonlinear optimal control
problems and minimax differential games.

On a related note, see also previous work by Kirchner et al. [29] where they apply
the Hopf formula to differential games and show that complex “teaming” behavior can
arise, even with linearized pursuit-evasion models.

As far as we know, the idea to use splitting for differential games problem for the
discretization in Equations (4.6) and (4.7) is new. We believe it is worth examining
if this PDHG-inspired method to solve minimax/saddle-point problems may apply to
more general minimax/saddle-point optimization problems.

The proof of convergence and the proof of approximation for our algorithm is still a
work-in-progress. But it seems to be that for the examples in Section 6, we get relatively
the correct answer, and our algorithm seems to scale linearly with dimension for even a
nonlinear optimal control problem requiring nonconvex optimization (see Section 6.1.3).

We also believe that due to the deep connection between Hamilton-Jacobi equations
and optimization methods (Section 5.6), it is worthwhile to examine why our algorithm
works. Not only that, but for our examples in Section 6, we were able to perform non-
convex optimization with only a single initial guess, whereas coordinate descent required
multiple. The authors also believe it is worth examining the algorithms – Algorithm 3
and Algorithm 4 – as the computation of minimax differential games problems using a
splitting method seems new. In essence, it may be possible to generalize these algorithms
to apply to general minimax/saddle-point problems with continuous constraints.

Some improvements to our algorithm for differential games problems (Algorithm 3
and Algorithm 4) can be foreseen:

(1) We have found speedups to our algorithm when we use acceleration methods [3, 4]

(2) One may be able to devise a more sophisticated stopping criteria as that in Kirchner
et al. [30], where they apply a step-size-dependent stopping criteria based on the
work by [20].

(3) We would also like to utilize higher-order approximations for the ODE and integral
when discretizing the value functions of the optimal control or differential games
problems. We note that for the Lax discretizations (Algorithm 1 and Algorithm 3),
one can average the forward and backward Euler approximations to obtain higher
accuracy, analogous to how the trapezoidal approximation is the average of the two.

(4) And we believe we might be able to make use of having a closed-form solution,
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or an approximate solution, for computing the characteristic curves, i.e. closed
form solutions to d

dtx(s)=Hp(x(s),p(s),s) and d
dtp(s)=−Hx(x(s),p(s),s), much

as in [30], where they make use of having a closed-form solution to linear differential
equations by utilizing the exponential operator.

(5) There could be an advantage in combining the splitting method with pseudo-spectral
methods [41].

(6) In the algorithms for differential equations – Algorithm 3 and Algorithm 4, we are
solving a saddle-point problem using gradients. We might obtain faster convergence
if we used a Hessian-inspired method, such as split form of BFGS.

(7) Expanding our algorithm so that we may compute with Hamiltonians that do not
come in closed-form expressions.

Acknowledgements. We give our deepest thanks to Matthew R. Kirchner and
Gary Hewer for their enlightening discussions and suggested edits during this work.
They provided us with a wealth of information on the history of the subject and existing
methods, as well as important problems. And they were generous in giving suggestions
on future directions.

Appendix. A practical tutorial for implementation purposes.

8.1. Optimal control. Suppose we want to compute the Hamilton-Jacobi
equations associated to the following optimal control problem:

ϕ(x,t)= min
x(·),u(·)

{
g(x(0))+

∫ t

0

L(x(s),u(s),s)ds

}
(8.1)

where x(·) and u(s) satisfy the ODE{
ẋ(s)= f(x(s),u(s),s), 0<s<t
x(t)=x.

(8.2)

Here (x,t)∈R
n× [0,∞) are fixed, and is the point that we want to compute the HJE

solution ϕ.
Then we can use Algorithm 1 or Algorithm 2, which we describe in more detail

below.

8.1.1. Practical tutorial for Algorithm 1. If we want to use the discretized
Lax formula (with a backward Euler discretization of the ODE dynamics), then:

(1) Discretize the time domain:

0=s0<s1<s2< · · ·<sN−1<sN = t.

In our numerical experiments, we chose a uniform discretization of size δ ..= t/N .

(2) Approximate (8.2) using backward Euler, and also discretize (8.1) to obtain (as in
(4.2)),

ϕ(x,t)≈ max
{pj}N

j=1

min
{xj}N

j=0

⎧⎨⎩g(x0)+

N∑
j=1

〈pj ,xj−xj−1〉−δ

N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭
where xj =x(sj), and pj =p(xj). Let us denote x=xtarget to clarify notation.

(3) Initialize:
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(a) Choose δ>0, set N = t/δ (although note that since we are using the zero-th
time-step, we are updating N+1 points).

(b) Randomly initialize x̃0 ..=(x0
0,x

0
1, . . . ,x

0
N−1,x

0
N ), but with x0

N ≡xtarget.

(c) Randomly initialize p̃0 ..=(p00,p
0
1, . . . ,p

0
N−1,p

0
N ), but with p00≡0, as we won’t be

updating p00; it is only there for computational accounting.

(d) Set z̃0 ..=(z00 ,z
0
1 , . . . ,z

0
N )=(x0

0,x
0
1, . . . ,x

0
N−1,x

0
N ).

(e) Choose σ,τ such that στ <1/‖D‖22=0.25 and θ∈ [0,1] (we suggest θ=1).

(f) Choose some tolerance tol>0 small.

(4) Set

D=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 0
−I I 0 0 · · · 0 0
0 −I I 0 · · · 0 0
...

...
...
...
. . .

...
...

0 0 0 0 · · · 0 I
0 0 0 0 · · · 0 −I

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where 0 is a (dim×dim) zero matrix, where dim is the size of the space variable,
and I is the (dim×dim) identity matrix.
Note that in the algorithm, we can replace (Dz̃k)j = zkj −zkj−1, and similarly with

(DT p̃k)j =pkj −pkj+1, so we can save time by not performing a full matrix multipli-
cation.

(5) Then perform the algorithm found in Algorithm 6.

8.1.2. Practical tutorial for Algorithm 2. If we want to use the discretized
Hopf formula, then:

(1) Discretize the time domain:

0=s0<s1<s2< · · ·<sN−1<sN = t.

In our numerical experiments, we chose a uniform discretization of size δ ..= t/N .

(2) Approximate (8.2) using backward Euler, and also discretize (8.1) to obtain (as in
(4.4)),

ϕ(x,t)≈ max
{pj}N

j=1

min
{xj}N

j=1

⎧⎨⎩−g∗(p1)+〈pN ,x〉+
N−1∑
j=1

〈pj−pj+1,xj〉

−δ

N∑
j=1

H(xj ,pj ,sj)

⎫⎬⎭
where xj =x(sj), and pj =p(xj). Let us denote x=xtarget to clarify notation.

(3) Initialize:

(a) Choose δ>0, set N = t/δ.

(b) Randomly initialize x̃0 ..=(x0
1, . . . ,x

0
N−1,x

0
N ), but with x0

N ≡xtarget.

(c) Randomly initialize p̃0 ..=(p01, . . . ,p
0
N−1,p

0
N ).

(d) Set z̃0 ..=(z01 , . . . ,z
0
N )=(x0

1, . . . ,x
0
N−1,x

0
N ).
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Algorithm 6 Practical tutorial for the Lax formula with backward Euler, for optimal
control

Given: xtarget∈R
d and time t∈ (0,∞).

while (‖x̃k+1− x̃k‖22> tol or ‖p̃k+1− p̃k‖22> tol) and (count<max count) do
for j=1 to N do

pk+1
j =argminp

{
δH(xk

j ,p,sj)+
1
2σ‖p−(pkj +σ(Dz̃k)j)‖22

}
end for

for j=0 do
xk+1
0 =argminx

{
g(x)+ 1

2τ ‖x−(xk
0−τ(DT p̃k)0)‖22

}
(note pk0 =0)

end for
for j=1 to N−1 do
xk+1
j =argminx

{−δH(x,pk+1
j ,sj)+

1
2τ ‖x−(xk

j −τ(DT p̃k)j)‖22
}

end for

for j=0 to N do
zk+1
j =xk+1

j +θ(xk+1
j −xk

j )
end for

end while

fval=g(x0)+
∑N

j=1 〈pj ,xj−xj−1〉−δ
∑N

j=1H(xj ,pj ,sj)
return fval

(e) Choose σ,τ such that στ <1/‖D‖22=0.25 and θ∈ [0,1] (we suggest θ=1).

(f) Choose some tolerance tol>0 small.

(4) Set

D=

⎛⎜⎜⎜⎜⎜⎝
I −I 0 0 · · · 0 0
0 I −I 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −I
0 0 0 0 · · · 0 I

⎞⎟⎟⎟⎟⎟⎠
where 0 is a (dim×dim) zero matrix, where dim is the size of the space variable,
and I is the (dim×dim) identity matrix.

Note we can replace (DT z̃k)j = zkj −zkj−1 and (Dp̃k)j =pkj −pkj+1, so we can save
time by not performing a full matrix multiplication.
Also note that the D here is different than in Algorithm 1 and Algorithm 6.

(5) Then perform the algorithm found in Algorithm 7.

8.2. Differential games. Suppose we want to solve the differential games
problem with the following dynamics,⎧⎪⎪⎨⎪⎪⎩

(
ẋ(s)
ẏ(s))

)
=

(
f1(x(s),y(s),α(s),β(s),s)
f2(x(s),y(s),α(s),β(s),s)

)
0<s<t(

x(t)
y(t)

)
=

(
x
y

) (8.3)
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Algorithm 7 Practical tutorial for the Hopf formula, for optimal control

Given: xtarget∈R
d and time t∈ (0,∞).

while (‖x̃k+1− x̃k‖22> tol or ‖p̃k+1− p̃k‖22> tol) and (count<max count) do
for j=1 do
pk+1
j =argminp

{
g∗(p)+δH(xk

1 ,p,s1)+
1
2σ‖p−(pk1+σ(DT z̃k)1)‖22

}
end for
for j=2 to N do

pk+1
j =argminp

{
δH(xk

j ,p,sj)+
1
2σ‖p−(pkj +σ(DT z̃k)j)‖22

}
end for

for j=1 to N−1 do
xk+1
j =argminx

{−δH(x,pk+1
j ,sj)+

1
2τ ‖x−(xk

j −τ(Dp̃k)j)‖22
}

end for

for j=1 to N do
zk+1
j =xk+1

j +θ(xk+1
j −xk

j )
end for

end while

fval=−g∗(p1)+〈pN ,xtarget〉+
∑N−1

j=1 〈pj−pj+1,xj〉−δ
∑N

j=1H(xj ,pj ,sj)
return fval

and with the following value function,

ϕ(x,y,t)= inf
α(·),x(·)

sup
β(·),y(·)

{
g(x(0),y(0))+

∫ t

0

L(x(s),y(s),α(s),β(s),s)ds

}
. (8.4)

Then we can discretize the above equation and use Algorithm 3 and Algorithm 4, which
we describe in more detail below.

8.2.1. Practical tutorial for Algorithm 3. If we want to use the discretized
Lax formula for differential games (with a backward Euler discretization of the ODE
dynamics) (4.6), then:

(1) Discretize the time domain:

0=s0<s1<s2< · · ·<sN−1<sN = t.

In our numerical experiments, we chose a uniform discretization of size δ ..= t/N .

(2) Approximate (8.3) using backward Euler, and also discretize (8.4) to obtain (as in
(4.6)),

ϕ(x,y,t)≈ min
{qj}N

j=1

max
{pj}N

j=1

min
{xj}N

j=0

max
{yj}N

j=0

⎧⎨⎩g(x0,y0)+

N∑
j=1

〈(
pj
−qj

)
,

(
xj−xj−1

yj−yj−1

)〉

−δ

N∑
j=1

H(xj ,yj ,pj ,−qj ,sj)

⎫⎬⎭
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Algorithm 8 Practical tutorial for the Lax formula with backward Euler, for differential
games

Given: xtarget∈R
d and time t∈ (0,∞).

while (‖x̃k+1− x̃k‖22> tol or ‖p̃k+1− p̃k‖22> tol or ‖ỹk+1− ỹk‖22> tol or ‖q̃k+1−
q̃k‖22> tol) and (count<max count) do
for j=1 to N do

pk+1
j =argminp

{
δH(xk

j ,y
k
j ,p,−qkj ,sj)+

1
2σ‖p−(pkj +σ(Dz̃k)j)‖22

}
end for

for j=1 to N do
qk+1
j =argminq

{−δH(xk
j ,y

k
j ,p

k+1
j ,−q,sj)+

1
2σ‖q−(qkj +σ(Dw̃k)j)‖22

}
end for

for j=0 do
xk+1
0 =argminx

{
g(x,yk0 )+

1
2τ ‖x−(xk

0−τ(DT p̃k)0)‖22
}

end for
for j=1 to N−1 do
xk+1
j =argminx

{−δH(x,ykj ,p
k+1
j ,−qk+1

j ,sj)+
1
2τ ‖x−(xk

j −τ(DT p̃k)j)‖22
}

end for

for j=0 do
yk+1
0 =argminy

{−g(xk+1
0 ,y)+ 1

2τ ‖y−(yk0 −τ(DT q̃k)0)‖22
}

end for
for j=1 to N−1 do
yk+1
j =argminy

{−δH(xk+1
j ,y,pk+1

j ,−qk+1
j ,sj)+

1
2τ ‖y−(ykj −τ(DT q̃k)j)‖22

}
end for

for j=0 to N do
zk+1
j =xk+1

j +θ(xk+1
j −xk

j )

wk+1
j =yk+1

j +θ(yk+1
j −ykj )

end for
end while

fval=g(x0,y0)+
∑N

j=1

〈(
pj
−qj

)
,

(
xj−xj−1

yj−yj−1

)〉
−δ
∑N

j=1H(xj ,yj ,pj ,−qj ,sj)

return fval

where xj =x(sj), and similarly for yj , qj , and pj . Let us denote x=xtarget and
y=ytarget to clarify notation.

(3) Initialize:

1) Choose δ>0, set N = t/δ (although note that since we are using the zero-th
time-step, we are updating N+1 points).

2) Randomly initialize x̃0 ..=(x0
0,x

0
1, . . . ,x

0
N−1,x

0
N ), but with x0

N ≡xtarget, and simi-
larly for ỹ0.

3) Randomly initialize p̃0 ..=(p00,p
0
1, . . . ,p

0
N−1,p

0
N ), but with p00≡0, as we won’t be
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updating p00; it is only there for computational accounting. Do a similar initial-
ization for q̃0.

4) Set z̃0 ..=(z00 ,z
0
1 , . . . ,z

0
N )=(x0

0,x
0
1, . . . ,x

0
N−1,x

0
N ), and set w̃0 ..=(w0

0,w
0
1, . . . ,w

0
N )=

(y00 ,y
0
1 , . . . ,y

0
N−1,y

0
N ).

5) Choose σ,τ such that στ <1/‖D‖22=0.25 and θ∈ [0,1] (we suggest θ=1).

6) Choose some tolerance tol>0 small.

(4) Set

D=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 0
−I I 0 0 · · · 0 0
0 −I I 0 · · · 0 0
...

...
...
...
. . .

...
...

0 0 0 0 · · · 0 I
0 0 0 0 · · · 0 −I

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where 0 is a (dim×dim) zero matrix, where dim is the size of the space variable,
and I is the (dim×dim) identity matrix. Note that this is a very sparse matrix and
we take advantage of this.
Note that we can replace Dz̃k= zkj −zkj−1, and Dw̃k=wk

j −wk
j−1, and DT p̃k=

pkj −pkj+1, and DT q̃k= qkj −qkj+1, so we don’t have to perform the full matrix multi-
plication.

(5) Then perform the algorithm found in Algorithm 8.

8.2.2. Practical tutorial for Algorithm 4. If we want to use the discretized
Hopf formula for differential games (with a backward Euler discretization of the ODE
dynamics) (4.7), then:

(1) Discretize the time domain:

0=s0<s1<s2< · · ·<sN−1<sN = t.

In our numerical experiments, we chose a uniform discretization of size δ ..= t/N .

(2) Approximate (8.3) using backward Euler, and also discretize (8.4) to obtain (as in
(4.7)),

ϕ(x,y,t)≈ min
{qj}N

j=1

max
{pj}N

j=1

min
{xj}N

j=1

max
{yj}N

j=1

{
−e∗(p1)−h∗(−q1)+

〈(
pN
−qN

)
,

(
x
y

)〉

+

N−1∑
j=1

〈(
pj−pj+1

−(qj−qj+1)

)
,

(
xj

yj

)〉
−δ

N∑
j=1

H(xj ,yj ,pj ,−qj ,sj)

⎫⎬⎭
where xj =x(sj), and similarly for yj , qj , and pj . Let us denote x=xtarget and
y=ytarget to clarify notation.

(3) Initialize:
1) Choose δ>0, set N = t/δ.

2) Randomly initialize x̃0 ..=(x0
0,x

0
1, . . . ,x

0
N−1,x

0
N ), but with x0

N ≡xtarget, and simi-
larly for ỹ0.

3) Randomly initialize p̃0 ..=(p00,p
0
1, . . . ,p

0
N−1,p

0
N ), but with p00≡0, as we won’t be

updating p00; it is only there for computational accounting. Do the same initial-
ization for q̃0.
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Algorithm 9 Practical tutorial for the Hopf formula with backward Euler, for differ-
ential games

Given: xtarget∈R
d and time t∈ (0,∞).

while (‖x̃k+1− x̃k‖22> tol or ‖p̃k+1− p̃k‖22> tol or ‖ỹk+1− ỹk‖22> tol or ‖q̃k+1−
q̃k‖22> tol) and (count<max count) do
for j=1 do
pk+1
1 =argminp

{
e∗(p)+δH(xk

1 ,y
k
1 ,p,−qk1 ,s1)+

1
2σ‖p−(pk1+σ(DT z̃k)1)‖22

}
end for
for j=2 to N do

pk+1
j =argminp

{
δH(xk

j ,y
k
j ,p,−qkj ,sj)+

1
2σ‖p−(pkj +σ(DT z̃k)j)‖22

}
end for

for j=1 do
qk+1
1 =argminq

{−h∗(−q)−δH(xk
1 ,y

k
1 ,p

k+1
1 ,−q,s1)+

1
2σ‖q−(qk1 +σ(DT w̃k)1)‖22

}
end for
for j=2 to N do

qk+1
j =argminq

{−δH(xk
j ,y

k
j ,p

k+1
j ,−q,sj)+

1
2σ‖q−(qkj +σ(DT w̃k)j)‖22

}
end for

for j=1 to N−1 do
xk+1
j =argminx

{−δH(x,ykj ,p
k+1
j ,−qk+1

j ,sj)+
1
2τ ‖x−(xk

j −τ(Dp̃k)j)‖22
}

end for

for j=1 to N−1 do
yk+1
j =argminy

{−δH(xk+1
j ,y,pk+1

j ,−qk+1
j ,sj)+

1
2τ ‖y−(ykj −τ(Dq̃k)j)‖22

}
end for

for j=1 to N do
zk+1
j =xk+1

j +θ(xk+1
j −xk

j )

wk+1
j =yk+1

j +θ(yk+1
j −ykj )

end for
end while

fval=−e∗(p1)−h∗(−q1)+

〈(
pN
−qN

)
,

(
xtarget

ytarget

)〉
+
∑N−1

j=1

〈(
pj−pj+1

−(qj−qj+1)

)
,

(
xj

yj

)〉
−δ
∑N

j=1H(xj ,yj ,pj ,−qj ,sj)
return fval

4) Set z̃0 ..=(z00 ,z
0
1 , . . . ,z

0
N )=(x0

0,x
0
1, . . . ,x

0
N−1,x

0
N ), and set w̃0 ..=(w0

0,w
0
1, . . . ,w

0
N )=

(y00 ,y
0
1 , . . . ,y

0
N−1,y

0
N ).

5) Choose σ,τ such that στ <1/‖D‖22=0.25 and θ∈ [0,1] (we suggest θ=1).

6) Choose some tolerance tol>0 small.
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(4) Set

D=

⎛⎜⎜⎜⎜⎜⎝
I −I 0 0 · · · 0 0
0 I −I 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −I
0 0 0 0 · · · 0 I

⎞⎟⎟⎟⎟⎟⎠
where 0 is a (dim×dim) zero matrix, where dim is the size of the space variable,
and I is the (dim×dim) identity matrix. Note that this is a very sparse matrix and
we take advantage of this.
Also note that we can replace DT z̃k= zkj −zkj−1, and DT w̃k=wk

j −wk
j−1, and

Dp̃k=pkj −pkj+1, and Dq̃k= qkj −qkj+1, so we don’t have to perform the full matrix
multiplication.

(5) Then perform the algorithm found in Algorithm 9.
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