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CONVERGENCE TO STRATIFIED FLOW
FOR AN INVISCID 3D BOUSSINESQ SYSTEM∗

KLAUS WIDMAYER†

Abstract. We study the stability of special, stratified solutions of a 3D Boussinesq system de-
scribing an incompressible, inviscid 3D fluid with variable density (or temperature, depending on the
context) under the effect of a uni-directional gravitational force. The behavior is shown to depend on
the properties of an anisotropic dispersive operator with weak decay in time. However, the dispersive
decay also depends on the strength of the gravity in the system and on the profile of the stratified
solution, whose stability we study. We show that as the strength of the dispersion in the system tends
to infinity, the 3D system of equations tends to a stratified system of 2D Euler equations with stratified
density.
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1. Introduction

We study an incompressible, inviscid fluid u :R+×R3→R3 of variable density or
temperature (depending on the physical context) θ :R+×R3→R under the influence of
an external gravity force proportional to θ and acting in the third coordinate direction

~e3 =

 0
0
1

 of R3, described by Euler’s equation coupled to a continuity equation and

an equation of state (see e.g. [5, 11]):
∂tu+u ·∇u+∇p=ν∆u+κ2θ~e3,

∂tθ+u ·∇θ=µ∆θ,

divu= 0.

(1.1)

Here p :R+×R3→R is the fluid pressure, κ>0 is a gravitational constant and ν,µ>0
are viscosity parameters.

There is too vast a number of results regarding various aspects of this problem to
be surveyed here. We just point out that the question of global well-posedness of this
system remains a major open problem, so most of the work so far has focused on various
improvements over the standard local well-posedness theory (such as regularity criteria
in various settings [7,13], or blow-up conditions [12], to name but a few) or reductions to
a two-dimensional problem. For the latter, a much more comprehensive understanding
is available, including the construction of global solutions when ν 6= or µ 6= 0 ( [1,2,4,9]).

However, in the inviscid case (µ=ν= 0), which will be the focus of this note, the
question of global regularity is open, even for the two-dimensional problem, and only
local results regarding stability, well-posedness in various function spaces and blow-up
criteria (e.g. [6, 8, 10]) are known.

In the present article, we investigate the behavior near a special stratified solution:
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We perturb (1.1) around u= 0, θ=λ2z (λ>0) and thus obtain the system
∂tu+u ·∇u+∇p=ν∆u+κ2θ~e3,

∂tθ+u ·∇θ=µ∆θ−λ2u3,
divu= 0.

(1.2)

1.1. Inviscid flow and rescaling. In order to study the dispersive effects in
this system, we focus now on the case of vanishing viscosity, i.e. ν=µ= 0. It is natural1

for the energy estimates to rescale θ 7→T := κ
λθ in (1.2), which then becomes

∂tu+u ·∇u+∇p=σT~e3,

∂tT +u ·∇T =−σu3,
divu= 0,

(1.3)

with the new parameter σ :=κλ>0.
As will be shown later, this system incorporates dispersive effects, the strength of

which depends on the “dispersion parameter” σ.

1.2. Main theorem. We are interested here in the question of the dynamics
of (1.3) as the dispersion gets increasingly strong. More precisely, we study the limit
σ→∞. We will prove:

Theorem 1.1. Consider a solution (uσ,T σ)∈C([0,L],HN ) on a time interval [0,L]
to the initial value problem for (1.3),

∂tu
σ+uσ ·∇uσ+∇pσ =σTσ~e3,

∂tT
σ+uσ ·∇Tσ =−σuσ3 ,

divuσ = 0,

(uσ,T σ)(0) = (u0,T0),

(1.4)

satisfying

|(uσ,T σ)(t)|HN <∞ for t∈ [0,L] uniformly in σ, (1.5)

for some N ≥6. Assume also that |(u0,T0)|W 5,1 <∞.
Then the solution (uσ,T σ) :R+×R3→R4 can be decomposed into two pieces

uσ1
uσ2
uσ3
Tσ

=


vσ1
vσ2
0
0

+


wσ1
wσ2
wσ3
Tσ


with the property that as σ→∞, for any t∈ (0,L] we have the convergences

(wσ1 ,w
σ
2 ,w

σ
3 ,T

σ)(t)→0 in W 1,∞(R3)

and

(vσ1 ,v
σ
2 )(t)→ (ū1,ū2)(t) in L2(R3).

1see Section 2
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Here ū := (ū1,ū2) :R+×R3→R2 solves the system of two-dimensional2 incompressible
Euler equations 

∂tū+ ū ·∇hū+∇hp̄= 0,

divh(ū) = 0,

ū(0) = (P̄0(u0,T0))h,

(1.6)

where P̄0 projects onto functions such that divh(ū) = 0.3

The rest of this note is dedicated to the proof of this result. Before we outline its
main steps, we give a few remarks on the context and relevance of this result.

Rate of convergence. As the proof shows, the rate of convergence to the limiting
system is not uniform on the full time interval (0,L], but only away from the initial time
(i.e. for any ε>0 it is uniform on [ε,L]). More precisely, for times 0≤ t.σ−1 there is
a “boundary layer” where the bound for the dispersive decay is inconsequential – see
Remark 3.4 on page 1722.

Initial data of the limiting system (1.6). We note that the initial data for
the limiting system of stratified 2D Euler Equations (1.6) are just the relevant hori-
zontal components of those for the full system (1.4), the projection P̄0 ensuring that
divh(ū(0)) = 0.

In particular, this means that in the limit, there is no net effect from the dispersion
on the horizontal motion of the fluid.

Comparison to rotating fluids. We point out that the limiting system (1.6)
is a stratified system of 2D Euler equations, i.e. for any fixed x3∈R the velocity
ū(t,x1,x2,x3) solves a 2D Euler equation in the variables t,x1,x2.

This contrasts strongly with prior results on the Navier-Stokes-Coriolis system of a
rotating fluid: In the work of Chemin et al. [3] on a rotating 3D Navier-Stokes equation,
the Coriolis force introduces dispersion into the system. However, in the limit of infinite
dispersion (physically speaking, as the Rossby number tends to zero), one obtains a
purely two-dimensional system: the velocity is independent of x3∈R. This is also
known as columnar flow.

Scaling. If (u,T ) solves (1.3), then so does

(uλ,Tλ)(t,x) :=λ(u,T )(t,λ−1x).

The invariant spaces for this scaling are thus Ẇ s,p(R3) for s= 1+ 3
p . In particular, the

equation is critical in Ḣ
5
2 and Ẇ 1,∞ and thus supercritical for the L2 norm, which is

conserved (see the energy equality (2.1)).
For the convergences in Theorem 1.1 we point out that they take place in critical

(Ẇ 1,∞) and supercritical (L∞, L2) norms for the scaling.

Proof. (Outline of the proof of Theorem 1.1.) We start by demonstrating the
energy estimates available for (1.4) in Section 2. This shows that condition (1.5) can
be met naturally (see also Remark 2.1).

In Section 3, we study the dispersive effects in the Boussinesq system (1.4) (Lemma
3.1, Corollary 3.1 and Proposition 3.1). This is a question regarding the linear part of the

2As described in Section 1.3, the lower index h denotes operation in only the “horizontal” variables
x1,x2.

3For the explicit description of this projection see Lemma 3.1 and Section 4.
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equation and inspires a new choice of variables, which diagonalize the linear evolution.
In view of this analysis, for more clarity, we then reformulate the equations in Section
4 – see Corollary 4.1. This provides the foundation for studying the convergence as
σ→∞, which is carried out in Section 5 and results in Proposition 5.1 and its Corollary
5.1.

Finally, the only task remaining is to determine the dynamics of the limiting system.
This is the subject of Section 6.

1.3. Notation. We denote the components of a vector in R3 either by x,y,z or
number indices. The first two components of a vector in R3 shall be called “horizontal”
and we introduce the notation of a subscript h to denote the associated quantities and
operators (derived from their three-dimensional counterparts). For example, we write
ξh= (ξ1,ξ2)∈R2, so that ξ= (ξh,ξ3)∈R3, ∇h= (∂x1 ,∂x2) and ∆h :=∂2x1

+∂2x2
.

We will use the shorthand ± in indices as a replacement for either + or −, which
are then assumed to be used consistently throughout expressions in which they appear.

2. Energy estimates
As hinted at earlier, it turns out that – from a perspective of energy estimates–

the natural variables for the Boussinesq system (1.2) are u and κ
λθ: to obtain energy

estimates we multiply the equation for θ by κ
λ and then test the first equation with u

and the second with κ
λθ. This yields{

〈∂tu,u〉+〈u ·∇u,u〉+〈∇p,u〉=ν〈∆u,u〉+κ2θu3,(
∂t
κ
λθ
)(

κ
λθ
)

+
(
u ·∇κ

λθ
)(

κ
λθ
)

=µ
(
∆κ
λθ
)(

κ
λθ
)
−κ2u3θ.

Upon integrating this over R3 and recalling that divu= 0, we get{
1
2∂t |u(t)|2L2 =−ν |∇u(t)|2L2 +κ2

∫
R3 θu3,

1
2∂t
∣∣κ
λθ(t)

∣∣2
L2 =−µ

∣∣∇κ
λθ(t)

∣∣2
L2−κ2

∫
R3 θu3.

Adding these two gives the following energy equality for the perturbed Boussinesq sys-
tem (1.2):

∂t |u(t)|2L2 +∂t

∣∣∣κ
λ
θ(t)

∣∣∣2
L2

=−2ν |∇u(t)|2L2−2µ
∣∣∣∇κ
λ
θ(t)

∣∣∣2
L2
. (2.1)

As in the introduction, we denote by T := κ
λθ the rescaled version of θ. In terms of

the dispersion parameter σ :=κλ, we have T =σλ−2θ and the equations for (u,T ) are
∂tu+u ·∇u+∇p=ν∆u+σT~e3,

∂tT +u ·∇T =µ∆T −σu3,
divu= 0,

(2.2)

which equals (1.3) in the inviscid case µ=ν= 0.
If in addition, we differentiate the above equations and use Gagliardo-Nirenberg

interpolation, we obtain inequalities for higher order derivative norms:

Lemma 2.1 (Energy inequality). For any k∈N there exists a constant Ck>0 such
that if (u,T ) solve (2.2), we have the bound

∂t

(
|u(t)|2Hk + |T (t)|2Hk

)
≤−2ν |∇u(t)|2Hk−2µ|∇T (t)|2Hk

+Ck (|∇u(t)|L∞+ |∇T (t)|L∞)
(
|u(t)|2Hk + |T (t)|2Hk

)
.

(2.3)
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Proof. This is a standard argument, so we only give a quick sketch of the proof.

For 0≤ l≤k, we take a derivative Dl of order l of the equations, multiply by
Dlu and DlT in the respective equations and integrate over R3. This gives the time
derivative of the L2 norms of Dlu and DlT , and their gradients in L2. Upon sum-
mation, the remaining linear terms vanish and we are only left with the nonlinear
pieces 〈Dl(u ·∇u),Dlu〉L2 and 〈Dl(u ·∇T ),DlT 〉L2 . Since divu= 0, this vanishes if all
l derivatives fall onto the gradient term, so by interpolation we can bound these by

(|∇u|L∞+ |∇T |L∞)
(
|u|2Ḣl + |T |

2
Ḣl

)
(for more details see [6, Section 4], for example).

Now we need only sum over all such derivatives of order l and orders l≤k.

Remark 2.1 (Dependence on σ). We note that the energy estimates are uniform
in the dispersion parameter σ, which is natural for a dispersive effect (given by a
skew-symmetric singular perturbation) measured in L2 based Sobolev spaces. Most
importantly, it implies that condition (1.5) is met naturally in the standard local well-
posedness theory.

In the inviscid case, ν=µ= 0, we can deduce, from Grönwall’s inequality, the growth
bound

|u(t)|Hk + |T (t)|Hk ≤ (|u(0)|Hk + |T (0)|Hk)exp

(
Ck

∫ t

0

|∇u(s)|L∞+ |∇T (s)|L∞ ds

)
.

(2.4)

From this, it follows directly that the inviscid Boussinesq system (1.3) is locally
well-posed in Hk for k≥3 (with Hk estimates uniform in σ).

Remark 2.2 (Physical relevance). In terms of the unrescaled variables in system
(1.2) one may wish to separately take note of two cases for the limit σ=κλ→∞, which
both guarantee uniform (in σ) energy estimates as required in (1.5):

(1) Fix λ>0, let κ→∞: Any initial data (u0,θ0) work (as long as they are of small
size, as in Theorem 1.1).
This is the case where we fix a stratification profile u= 0, θ=λ2z and let the grav-
itational force (through the constant κ) tend to infinity.

(2) Let λ→∞, fix κ>0: We need θ0 = 0.
Here we fix the strength of gravity κ and consider perturbations of increasingly
steep stratified solutions u= 0, θ=λ2z. Due to the scaling of the energy, we have to
require that the initial data in θ vanish, else the energy will not remain uniformly
bounded as λ→∞.

3. Dispersive effects in the inviscid system

To understand the dispersive effects present in (1.2), we continue our study of the
inviscid case, where ν=µ= 0. For simplicity of notation, we henceforth assume the
subscripts for T as in the previous section to be understood and thus drop them from
the notation. For convenience we recall here the relevant system (1.3),

∂tu+u ·∇u+∇p=σT~e3,

∂tT +u ·∇T =−σu3,
divu= 0,

(3.1)

where σ :=κλ and the pressure p can be expressed in terms of u through the third
equation as p= (−∆)−1(div(u ·∇u)−σ∂3T ). In view of a decomposition of this system
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into a linear and a nonlinear part, we split the pressure as

p=pL+pNL, pL :=−σ(−∆)−1∂3T, pNL := (−∆)−1div(u ·∇u).

The linear part of (3.1) then reads
∂tu+∇pL=σT~e3,

∂tT =−σu3,
divu= 0,

(3.2)

and we can formally rewrite (3.1) as
∂tu+Nu(u,u)+∇pL=σT~e3,

∂tT +Mu(u,T ) =−σu3,
divu= 0,

(3.3)

with nonlinearities Nu(u,u) =u ·∇u+∇pNL and Mu(u,T ) =u ·∇T .
In the following, it will be convenient to also work with the vorticity variable ω :=

curlu, since this avoids having to solve for the pressure. The velocity u can then be
expressed in terms of the vorticity ω as u= (−∆)−1curlω. The full, nonlinear Boussinesq
system in vorticity formulation is then given by the equations

∂tω+Nω(ω,ω) =σ

 ∂yT

−∂xT
0

,
∂tT +Mω(ω,T ) =σ(−∆)−1 (∂yω1−∂xω2),

divω= 0,

(3.4)

where

Nω(ω,ω) := curl(u ·∇u) =ω ·∇u−u ·∇ω

denotes the Euler nonlinearity in vorticity form and the transport term u ·∇T has been
written as Mω(ω,T ). We notice that the first equation implies ∂tdivω= 0, so that the
equation divω= 0 reduces to a condition on the initial data.

The associated linear system reads
∂tω=σ

 ∂yT

−∂xT
0

 ,
∂tT =σ(−∆)−1 (∂yω1−∂xω2),

divω0 = 0,

(3.5)

since here ∂tdivω= 0 follows from the first equation.
The space of solutions to the linear systems (3.2) and (3.5) is three-dimensional and

can be computed explicitly as follows4:

4We recall the notation ± in indices as a replacement for either + or −, which are then assumed
to be used consistently.
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Lemma 3.1. In Fourier space the linear system (3.2) can be diagonalized for any
ξ∈R3 with (ξ1,ξ2) 6= (0,0) in the following three eigenvectors and eigenvalues:

−ξ2
ξ1
0
0

 with eigenvalue 0,


ξ1ξ3
ξ2ξ3
−|ξh|2
−i|ξh||ξ|

 with eigenvalue i
|ξh|
|ξ|

,


ξ1ξ3
ξ2ξ3
−|ξh|2
i |ξh||ξ|

 with eigenvalue − i |ξh|
|ξ|

.

(3.6)

We denote the corresponding eigenspaces in physical space by Eu0 , Eu− and Eu+, and the
projections onto them by Pu0 , Pu− and Pu+, respectively.

The corresponding eigenvectors and eigenvalues for the linear system (3.5) are
−ξ1ξ3
−ξ2ξ3
|ξh|2

0

 with eigenvalue 0,


−ξ2 |ξ|
ξ1 |ξ|

0
|ξh|

 with eigenvalue i
|ξh|
|ξ|

,


−ξ2 |ξ|
ξ1 |ξ|

0
−|ξh|

 with eigenvalue − i |ξh|
|ξ|

.

(3.7)

We denote the corresponding eigenspaces in physical space by Eω0 , Eω− and Eω+, and the
projections onto them by Pω0 , Pω− and Pω+, respectively.

Remark 3.1. As will be shown later (see Proposition 3.1), the modes with eigenvalues

±i |ξh||ξ| exhibit dispersive decay.

Proof. We only give the computation for (3.5), since (3.2) works analogously.
After taking Fourier transforms, (3.5) reads

∂t


ω̂1

ω̂2

ω̂3

T̂

=σ


0 0 0 −iξ2
0 0 0 iξ1
0 0 0 0

−i ξ2|ξ|2 i
ξ1
|ξ|2 0 0


︸ ︷︷ ︸

=:A(ξ)


ω̂1

ω̂2

ω̂3

T̂

 . (3.8)

The matrix A(ξ) is diagonalizable as long as ξ1 6= 0 or ξ2 6= 0. Its eigenvalues and
eigenspaces can be computed to be v1 := (0,0,1,0)

ᵀ
, v2 := (ξ1,ξ2,1,0)

ᵀ
with eigenvalue 0,
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v3 := (−ξ2 |ξ|,ξ1 |ξ|,0, |ξh|)ᵀ with eigenvalue i |ξh||ξ| and v4 := (−ξ2 |ξ|,ξ1 |ξ| ,0,−|ξh|)ᵀ with

eigenvalue −i |ξh||ξ| .

A priori the linear system thus has two stationary modes (v1 and v2) and two

modes whose time evolution is given by e±i
|ξh|
|ξ| (v3 and v4). We notice that through the

condition that divω= 0 (which is automatically propagated) we can reduce the system
to one with three degrees of freedom: it is automatically satisfied by v3 and v4, but not
individually by v1 and v2. Hence, if s :=αv1 +βv2 is an element of the eigenspace of the
eigenvalue 0, we impose the condition that divω= 0 through

0 = ξ ·s= ξ ·(αv1 +βv2) = ξ3α+(ξ21 +ξ22)β,

so that β=− ξ3
ξ21+ξ

2
2
α and thus s=α

(
− ξ1ξ3
ξ21+ξ

2
2
,− ξ2ξ3

ξ21+ξ
2
2
,1,0

)ᵀ
spans the eigenspace of

eigenvalue 0.

By projecting onto the eigenspaces of the linear system one can then directly deduce
the following

Corollary 3.1. A solution (u,T ) of (3.3) or (ω,T ) of (3.4) can be decomposed as

(u,T )(t) = (S(t),0)+D−(t)+D+(t) or (ω,T )(t) = (s(t),0)+d−(t)+d+(t),

where (S(t),0) :=Pu0 (u,T )(t)∈Eu0 , (s(t),0) :=Pω0 (ω,T )(t)∈Eω0 , D±(t) :=Pu±(u,T )(t)∈
Eu± and d±(t) :=Pω±(ω,T )(t)∈Eω±.

More explicitly, there exist functions ψ(t),a(t) and b(t) such that

(S(t),0) =


−∂2ψ
∂1ψ

0
0

,(s(t),0) =


−∂1∂3ψ
−∂2∂3ψ

∆hψ
0

 ,

D+(t) =


∂1∂3a
∂2∂3a
−∆ha

i |∇h||∇|a

 ,d+(t) =


−∂2 |∇|a
∂1 |∇|a

0
i |∇h|a

 ,

D−(t) =


∂1∂3b
∂2∂3b
−∆hb

−i|∇h||∇|b

 ,d−(t) =


−∂2 |∇|b
∂1 |∇|b

0
−i|∇h|b

.

(3.9)

Remark 3.2. Here the functions a and b are complex-valued and arise from the

projections onto the eigenspaces of the propagators eit
|∇h|
|∇| and e−it

|∇h|
|∇| , respectively.

This is natural since the splitting stems from a diagonalization of a real-valued system
with (conjugate) complex eigenvalues on the Fourier side – compare also the linear wave
equation and the half-wave operators that arise when diagonalizing it as a first-order
system.5

Remark 3.3 (Stream Function). The function ψ of the stationary mode is real-valued
and can be identified as the stream function of a two-dimensional, incompressible flow
(for each fixed x3∈R).

5Alternatively we may rewrite the linear modes using the propagators sin
(
t
|∇h|
|∇|

)
and cos

(
t
|∇h|
|∇|

)
:

We know that a solution (ωL,TL)(t) to the linear problem (3.5) in the eigenspaces Eω± can be written
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3.1. Dispersive decay. We study now the decay properties of the semigroup
generated by the linear operators that arise in (3.2) and (3.5). We denote by L±
the linear operators with Fourier symbols ±i |ξh||ξ| , i.e. for any (possibly vector-valued)

Schwartz function f ∈S(R3) we let

L±f(x) :=F−1
(
±i |ξh|
|ξ|

f̂(ξ)

)
.

For the semigroup generated by L±, we then have the following decay estimate:

Proposition 3.1. There exists a constant C>0 such that for any f ∈C∞c (R3)∣∣eL±tf ∣∣
L∞
≤Ct− 1

2 |f |Ḃ3
1,1
. (3.10)

Proof. By scaling, it suffices to prove the estimate
∣∣eL±tϕ∣∣

L∞
. t−

1
2 for a smooth

bump function ϕ∈C∞c (R3) with Fourier transform supported in an annulus around
|ξ|∼1 (away from the origin – see [6, Proof of Proposition 2.1] for more details on this
reduction). Hence, we bound the integral∫

R3

eix·ξ±it
|ξh|
|ξ| ϕ(ξ)dξ. (3.11)

With stationary phase techniques in mind, we smoothly split the area of integration
into two pieces, according to the size of ξ3. To this end let ε>0, to be chosen later.

For |ξ3|≤ ε we note that∫
|ξ3|≤ε

eix·ξ±it
|ξh|
|ξ| ϕ(ξ)dξ. |ϕ|L∞ ε,

since |{|ξ3|<ε}|. ε.
If |ξ3|>ε we apply the method of stationary phase. We note that

∇|ξh|
|ξ|

=
ξ3

|ξ|3

(
ξ1ξ3
|ξh|

,
ξ2ξ3
|ξh|

,−|ξh|
)
,

so for any (t,x)∈R×R3 there are at most finitely many stationary points of the expo-

nent in (3.11). Furthermore we compute that
∣∣∣detHess |ξh||ξ|

∣∣∣− 1
2

= |ξ3|−2 |ξh|
1
2 |ξ|

9
2 , so the

as

(ωL,TL)(t) =e
it
|∇h|
|∇|


−∂2 |∇|a0
∂1 |∇|a0

0
i |∇h|a0

+e
−it |∇h||∇|


−∂2 |∇|b0
∂1 |∇|b0

0
−i|∇h|b0

 ,
with a0,b0 :R3→C complex-valued projections of the initial data onto the eigenspaces Eω±. By ex-

panding and regrouping these we deduce that there exist real-valued functions α0,β0 :R3→R such
that

(ωL,TL)(t) =cos

(
t
|∇h|
|∇|

)
−∂2 |∇|α0

∂1 |∇|α0

0
|∇h|β0

−sin

(
t
|∇h|
|∇|

)
−∂2 |∇|β0
∂1 |∇|β0

0
|∇h|α0

.
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standard stationary phase lemma gives a bound of∫
|ξ3|>ε

eix·ξ±it
|ξh|
|ξ| ϕ(ξ)dξ. |ϕ|L∞ t

− 3
2 ε−2.

In total, we thus have the bound ε+ t−
3
2 ε−2, so that the choice of ε= t−

1
2 gives the

claim.

Remark 3.4. The systems (3.2) and (3.5) include the additional parameter σ>0,
which governs the strength of dispersion: if f(t) solves ∂tf =σL±f , then |f(t)|L∞ ≤
C(σt)−

1
2 |f |Ḃ3

1,1
.

4. A reformulation of the equations
In this section we rewrite the Boussinesq system (3.4) using the above analysis to

set up the problem of studying the behavior for strong dispersion.
Now we project the full, nonlinear Boussinesq system onto the eigenmodes of the

corresponding linear system. The steps and notation in both the velocity and vorticity
formulations ((3.2) and (3.3), or (3.5) and (3.4), respectively) are completely analogous
– we give the relevant details here in the vorticity formulation, since we will use it later
to compute the limiting dynamics in Section 6. The results are summarized in Corollary
4.1.

Notation 4.1. We begin by introducing the “bar” notation to denote the first three
components of the projections onto the eigenmodes of the linear systems (3.2) and (3.5),
so that we have P̄u0 ,P̄u±,P̄ω0 ,P̄ω± :R4→R3. In particular then we have S(t) = P̄u0 (u,T )(t)
and s(t) = P̄ω0 (ω,T )(t), since the T component of the stationary mode vanishes (as we
saw in Lemma 3.1).

Stationary modes. We apply the projection Pω0 to (3.4). We recall that the
stationary mode Pω0ω does not involve T , so the only nonlinearity present there is

Pω(ω,ω) := P̄ω0 (Nω(ω,ω)) = P̄ω0
(
Nω(P̄ω0ω+ P̄ω+ω+ P̄ω−ω,P̄ω0ω+ P̄ω+ω+ P̄ω−ω)

)
,

which (by bilinearity of N) can be split into nine pieces, in accordance with the types
of interactions of stationary and dispersive modes. To simplify notation, we use the
shorthands ∗, + or − to denote an input of the stationary or dispersive modes, respec-
tively. Hence Pω(∗,∗) = P̄ω0

(
Nω(P̄ω0ω,P̄ω0ω)

)
, Pω(∗,+) = P̄ω0

(
Nω(P̄ω0ω,P̄ω+ω)

)
etc. One

can then write Pω(ω,ω) =
∑
j,k=∗,+,−P

ω(j,k).

Dispersive modes. Similarly, we split the nonlinearities projected onto the dis-
persive modes as

Qω+ ((ω,T ),(ω,T )) :=Pω+ ((Nω(ω,ω),Mω(ω,T ))),

Qω− ((ω,T ),(ω,T )) :=Pω− ((Nω(ω,ω),Mω(ω,T ))),
(4.1)

and write Qω+(∗,±) =Qω+
(
Pω0 (ω,T ),Pω±(ω,T )

)
etc.

Corollary 4.1. The Boussinesq system in velocity form (3.1) can be rewritten as{
∂tS(t) =

∑
j,k=∗,+,−P

u(j,k),

∂tD±(t)+σL±D±(t) =
∑
j,k=∗,+,−Q

u
±(j,k),

(4.2)

with initial data (u,T )(0) = (u0,T0) satisfying divu0 = 0, and in vorticity form (3.4) as{
∂ts(t) =

∑
j,k=∗,+,−P

ω(j,k),

∂td±(t)+σL±d±(t) =
∑
j,k=∗,+,−Q

ω
±(j,k),

(4.3)



KLAUS WIDMAYER 1723

with the initial data (ω,T )(0) = (ω0,T0) satisfying divω0 = 0. (We recall that the second
equations in both these systems stand for two separate equations with either the choice
of + or − indices.)

Remark 4.1. Note that in this formulation the conditions that u and ω be divergence-
free are automatically built-in, since we project onto divergence-free vector fields, by
Lemma 3.1.

5. Limit of strong dispersion
This section describes the effect of strong dispersion in (3.1). More precisely, we

work on a fixed time interval6 for which one has uniform energy estimates in the dis-
persion parameter σ>0, as is the setting of Theorem 1.1, and study the dynamics as
σ→∞. Intuitively, one expects the system to decouple into a purely dispersive part
(that tends to zero in a dispersive norm) and a limiting “stationary” part. Later on, in
Section 6, we will identify this limiting system as stratified 2D Euler equations.

Using the analysis from Section 3, we can prove:

Proposition 5.1. Consider the Equations (4.2) for the Boussinesq system,
∂tS

σ(t) =
∑
j,k=∗,+,−P

u(j,k),

∂tD
σ
±(t)+σL±D

σ
±(t) =

∑
j,k=∗,+,−Q

u
±(j,k),

(uσ,T σ)(0) = (u0,T0),

divu0 = 0,

(5.1)

and assume that for some M>0 we have the estimates

|Sσ(t)|H6 ,
∣∣Dσ
±(t)

∣∣
H6 ≤M for t∈ [0,1],

as well as
∣∣Dσ
±(0)

∣∣
Ḃ3

1,1
,
∣∣Dσ
±(0)

∣∣
Ḃ4

1,1
≤M .

Then as σ→∞, for any t∈ (0,1], we have Dσ
±(t)→0 in W 1,∞ and Sσ(t)→S∞(t)

in L2, where S∞ solves {
∂tS
∞(t) =Pu(S∞,S∞),

S∞(0) = P̄u0 (u0,T0).
(5.2)

Remark 5.1. Note that the evolution of the limiting system (5.2) is given by the
nonlinear self-interaction of the stationary mode with itself, projected again onto the
stationary mode.

Remark 5.2 (Rate of dispersive decay). The proof below shows that – as long as
there is some decay – the exact rate of decay in the dispersive estimate (3.10) is not
crucial for this result. Similarly, the general idea of this decoupling in the limit of strong
dispersion applies in a wider context of interacting oscillatory and dispersive systems.

The proof combines the dispersive decay with the Duhamel’s formula.

Proof. We first prove the decay of Dσ
± and then use it to deduce the convergence

to the limiting system (5.2). To illustrate that this result does not depend on the precise
rate of dispersive decay of the semigroup eσL±t, we write α for the exponent 1

2 in the
decay estimate (3.10) and notice that the proof works for any α>0.

6Without loss of generality we assume this to be [0,1].
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Decay of the dispersive modes. Applying the dispersive decay estimate (3.10) in
Duhamel’s formula gives, for any 0<t≤1,

∣∣Dσ
±(t)

∣∣
L∞
≤
∣∣eσtL±Dσ

±(0)
∣∣
L∞

+
∑

j,k=∗,+,−

∫ t

0

∣∣∣eσ(t−s)L±Qu±(j,k)
∣∣∣
L∞

ds

. (tσ)−α
∣∣Dσ
±(0)

∣∣
Ḃ3

1,1
+σ−α

∫ t

0

(t−s)−α
∣∣Qu±(j,k)

∣∣
Ḃ3

1,1
ds

. (tσ)−α
∣∣Dσ
±(0)

∣∣
Ḃ3

1,1
+σ−α

∫ t

0

(t−s)−α
(
|Sσ(s)|2H5 +

∣∣Dσ
±(s)

∣∣2
H5

)
ds

. (tσ)−α
∣∣Dσ
±(0)

∣∣
Ḃ3

1,1
+σ−αM2

∫ t

0

(t−s)−αds

.σ−α→0 as σ→∞. (5.3)

Here we have used the fact7 that
∣∣Qu±(j,k)

∣∣
Ḃ3

1,1
.
∣∣Qu±(j,k)

∣∣
W 4,1 ≤

∣∣Dσ
±
∣∣2
H5 + |Sσ|2H5 for

j,k=∗,+,−.
The same argument works for a derivative of Dσ

±, so that this finishes the proof of
the decay in W 1,∞ of Dσ

±(t).

Convergence of the stationary modes. The initial data of S∞ and Sσ agree and
we can write the equation for their difference Sσ−S∞ as

∂t (S
σ(t)−S∞(t)) = (Pu(∗,∗)−Pu(S∞,S∞))+

∑
j,k=∗,+,−, (j,k)6=(∗,∗)

Pu(j,k). (5.4)

Here we have grouped the terms with two stationary inputs first. Hence every term in
the second sum on the right contains at least one dispersive term, which we can estimate
in L∞ when estimating the whole expression in L2. More precisely, we note that for
such a term with (j,k) 6= (∗,∗)

|Pu(j,k)|L2 ≤
∣∣Dσ
±(t)

∣∣
W 1,∞

(
|Sσ(t)|H1 +

∣∣Dσ
±(t)

∣∣
H1

)
.Mσ−α

by our previous estimate (5.3).
As for the first term, the divergence structure of the Euler nonlinearity u ·∇u allows

us to estimate this in L2 without losing a derivative:

〈Pu(∗,∗)−Pu(S∞,S∞),Sσ−S∞〉L2

=〈P̄u0Nu(Sσ,Sσ)− P̄u0Nu(S∞,S∞),Sσ−S∞〉L2

=〈P̄u0 (Nu(Sσ,Sσ)−Nu(S∞,S∞)),Sσ−S∞〉L2

=〈Nu(Sσ,Sσ)−Nu(S∞,S∞),Sσ−S∞〉L2

≤|∇Sσ(t)|L∞ |S
σ(t)−S∞(t)|2L2 , (5.5)

where the last inequality follows from the observation that

〈Nu(Sσ,Sσ)−Nu(S∞,S∞),Sσ−S∞〉L2

=〈Sσ ·∇Sσ−S∞ ·∇S∞,Sσ−S∞〉L2 +〈∇pNL−∇pNL,∞,Sσ−S∞〉L2

=〈Sσ ·∇Sσ−S∞ ·∇S∞,Sσ−S∞〉L2

7In fact, for any ν >0, one has the embedding W 3+ν,1 ↪→ Ḃ3
1,1.
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=〈(Sσ−S∞) ·∇Sσ+S∞ ·∇(Sσ−S∞),Sσ−S∞〉L2

=〈(Sσ−S∞) ·∇Sσ,Sσ−S∞〉L2

≤|∇Sσ|L∞ |S
σ−S∞|2L2 . (5.6)

This holds, since by construction Sσ and S∞ are divergence-free, hence the pressure
terms vanish and the last equality in (5.6) holds.

Hence we deduce, using (5.4), that

∂t |Sσ(t)−S∞(t)|2L2 = 2〈∂t(Sσ(t)−S∞(t)),Sσ(t)−S∞(t)〉

.Mσ−α |Sσ(t)−S∞(t)|L2 + |∇Sσ(t)|L∞ |S
σ(t)−S∞(t)|2L2 ,

from which, Grönwall’s Lemma yields

|Sσ(t)−S∞(t)|L2 . tMσ−αe
∫ t
0
|∇Sσ(τ)|L∞ dτ . tMσ−αeMt,

since Sσ(0) =S∞(0). Clearly, this tends to zero as σ→∞.

We can now use this result to show that the corresponding convergence also holds
in vorticity, i.e. for Equation (3.4). This cannot be done purely at the level of the
vorticity, but rather builds on the convergence in velocity, since the equivalent of the
crucial inequality (5.5) includes terms involving both the velocity and the vorticity.

Corollary 5.1. In the setting of Proposition 5.1, consider the equations (4.3) for
the Boussinesq system in vorticity form,

∂ts
σ(t) =

∑
j,k=∗,+,−P

ω(j,k),

∂td
σ
±(t)+σL±d

σ
±(t) =

∑
j,k=∗,+,−Q

ω
±(j,k),

(ωσ,T σ)(0) =(ω0,T0),

divω0 = 0,

(5.7)

and assume now that for some M>0

|sσ(t)|H6 ,
∣∣dσ±(t)

∣∣
H6 ≤M for t∈ [0,1],

and
∣∣dσ±(0)

∣∣
Ḃ3

1,1
,
∣∣dσ±(0)

∣∣
Ḃ4

1,1
≤M .

Then as σ→∞, for any t∈ (0,1], we have dσ±(t)→0 in W 1,∞ and sσ(t)→s∞(t) in
L2, where s∞ solves {

∂ts
∞(t) =Pω(s∞,s∞),

s∞(0) = P̄ω0ω0.
(5.8)

Proof. Since ω= curlu one may apply the curl in the corresponding calculations for
the proof of Proposition 5.1 or work directly with the reformulation (5.7). In either case,
essentially one ends up having to bound the analogue of (5.5), for which one calculates
that

〈Pω(∗,∗)−Pω(s∞,s∞),sσ−s∞〉L2 = 〈P̄ω0Nω(sσ,sσ)− P̄ω0Nω(s∞,s∞),sσ−s∞〉L2

=〈P̄ω0 (Nω(sσ,sσ)−Nω(s∞,s∞)),sσ−s∞〉L2

=〈Nω(sσ,sσ)−Nω(s∞,s∞),sσ−s∞〉L2
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≤|∇sσ(t)|L∞ |s
σ(t)−s∞(t)|2L2 + |∇sσ(t)|L∞ |S

σ(t)−S∞(t)|L2 |sσ(t)−s∞(t)|L2 . (5.9)

This is due to the fact that

〈Nω(sσ,sσ)−Nω(s∞,s∞),sσ−s∞〉L2

=〈sσ ·∇Sσ−Sσ ·∇sσ−s∞ ·∇S∞+S∞ ·∇s∞,sσ−s∞〉L2

=〈(sσ−s∞) ·∇Sσ,sσ−s∞〉L2 +〈s∞ ·∇(Sσ−S∞),sσ−s∞〉L2

−〈Sσ ·∇(sσ−s∞),sσ−s∞〉L2−〈(Sσ−S∞) ·∇s∞,sσ−s∞〉L2

=〈(sσ−s∞) ·∇Sσ,sσ−s∞〉L2 +〈s∞ ·∇(Sσ−S∞),sσ−s∞〉L2

−〈(Sσ−S∞) ·∇s∞,sσ−s∞〉L2 , (5.10)

and allows us to argue as in the proof of Proposition 5.1, once we invoke the L2 conver-
gence of Sσ→S∞ established therein.

6. Self-interaction of the stationary mode
As we saw in Section 5, as the strength of the dispersion increases, the dynamics

of the Boussinesq system decouple into a purely dispersive part (which decays) and
a stationary part, governed by limiting systems (5.2) or (5.8) in velocity or vorticity
form, respectively. As remarked above, these limiting systems consist of the nonlinear
interaction of the stationary mode with itself, whilst outputting again the stationary
mode. In this section, we show that these systems are in fact two-dimensional Euler
equations. We present the relevant computations here, in the vorticity formulation,
since one can then avoid having to solve for the pressure.

For this we consider a velocity Sψ and its associated vorticity sψ of the form Sψ =−∂2ψ∂1ψ
0

 for some ψ(t,x) and compute the projection of curl(Sψ ·∇Sψ) onto Eω0 , i.e.

we compute Pω(sψ,sψ) as it appears in (5.8).

Lemma 6.1 (Stationary output). The stationary output from the self-interaction of a
stationary mode is

Pω(sψ,sψ) =sH (6.1)

with

H(t) = ∆−1h [∂1ψ(t)∆h∂2ψ(t)−∂2ψ(t)∆h∂1ψ(t)]. (6.2)

Proof. To clarify the notation, we recall that

Pω(sψ,sψ) = P̄ω0Nω(sψ,sψ) = P̄ω0 curl(Sψ(t) ·∇Sψ(t)).

By construction, we must have Pω(sψ,sψ) =sH for some H, so the key is to notice that,
by Corollary 3.1, we can identify H(t) through the requirement

∆hH(t) = curl(Sψ(t) ·∇Sψ(t))3 .

We now compute this explicitly.
We have

(Sψ ·∇Sψ)1 =∂2ψ∂1∂2ψ−∂1ψ∂22ψ,
(Sψ ·∇Sψ)2 =−∂2ψ∂21ψ+∂1ψ∂1∂2ψ,
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and hence

[curl(Sψ(t) ·∇Sψ(t))]3 =∂1 (Sψ(t) ·∇Sψ(t))2−∂2 (Sψ(t) ·∇Sψ(t))1

=−∂1∂2ψ∂21ψ−∂2ψ∂31ψ+∂21ψ∂1∂2ψ+∂1ψ∂
2
1∂2ψ

−∂22ψ∂1∂2ψ−∂2ψ∂1∂22ψ+∂1∂2ψ∂
2
2ψ+∂1ψ∂

3
2ψ

=−∂31ψ∂2ψ+∂21ψ(−∂1∂2ψ+∂1∂2ψ)+∂1ψ[∂21∂2ψ+∂32ψ]

+∂22ψ[∂21∂2ψ+∂32ψ]+∂22ψ[∂1∂2ψ−∂1∂2ψ]−∂1∂22ψ∂2ψ
=−∂31ψ∂2ψ+∂1ψ[∆h∂2ψ]−∂1∂22ψ∂2ψ
=∂1ψ[∆h∂2ψ]−∂2ψ[∆h∂1ψ].

From the structure of the eigenspaces (as given in Corollary 3.1), we deduce that this
expression must equal ∆hH, i.e. we can express H as

H(t) = ∆−1h [∂1ψ∆h∂2ψ−∂2ψ∆h∂1ψ],

as claimed.

Proof. (End of the Proof of Theorem 1.1.) Using (6.1) and (6.2), we can
rewrite the dynamics of the limiting equation (5.8) in vorticity form as

∂tψ=−∆−1h [∂1ψ∆h∂2ψ−∂2ψ∆h∂1ψ] . (6.3)

We recognize here the 2D Euler equations in vorticity form: We have

∂t∆hψ=−[∂1ψ∂2∆hψ−∂2ψ∂1∆hψ] =−∇⊥h ψ ·∇h∆hψ.

Setting ω̄ := ∆hψ and ū :=∇⊥h ψ=

(
−∂2ψ
∂1ψ

)
we can write this as

∂tω̄+ ū ·∇hω̄= 0, (6.4)

which is the vorticity formulation of (1.6) in Theorem 1.1. Notice that since ψ depends
on all three space variables (and not just the horizontal ones), this is really a stratified
system of 2D Euler equations, i.e. for every x3∈R, we have an individual 2D Euler
initial value problem in the horizontal variables.

This completes the proof of Theorem 1.1.

Remark 6.1. For any finite σ>0, the self-interaction of the stationary mode also
produces decaying modes, which can be computed directly by projecting onto the rele-
vant subspaces. Since this is not needed here, we leave the calculations to the interested
reader.
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