
COMMUN. MATH. SCI. c© 2018 International Press

Vol. 16, No. 6, pp. 1615–1633

GLOBAL DISSIPATIVE SOLUTIONS OF THE NOVIKOV EQUATION∗

SHOUMING ZHOU† , LI YANG‡ , AND CHUNLAI MU§

Abstract. This paper is regarding the continuation of solutions to the Novikov equation beyond
wave breaking. Our method is based on the characteristic of establishing new variables, then we trans-
form the Novikov equation to a closed semilinear system on these new variables so that all singularities
are resolved due to possible wave breaking. Returning to the original variables, we obtain a semigroup
of global dissipative solutions, which depends continuously on the initial data. Note that the nonlin-
earity of the Novikov equation is higher than the Camassa-Holm equation; this requires us to seek the
high-order energy density and another conservative law.
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1. Introduction
In this paper, we deal with the continuation of solutions for the Novikov equation{

ut−uxxt+4u2ux−3uuxuxx−u2uxxx= 0, x∈R, t>0,
u(x,0) =u0(x), x∈R, t= 0.

(1.1)

Motivated by the elegant work for the Camassa-Holm equation in [2, 3], we will give a
dissipative solution where energy may vanish from the system.

The motivation to study the Novikov equation (1.1) is that it can be regarded as a
generalization of the famous Camassa-Holm equation (CH) [5, 16]:

mt+c0u+umx+2uxm= 0. (1.2)

The Camassa-Holm equation (1.2) was first implicitly contained in a bi-Hamiltonian
generalization of the KdV equation by Fuchssteiner and Fokas [22], and later deduced
as a model for unidirectional propagation of shallow water over a flat bottom by Ca-
massa and Holm [5]. Analogous to the famous KdV equation, the CH equation also
has a bi-Hamiltonian structure [5, 22], and the CH equation is completely integrable
not only in the sense of the existence of a Lax pair [5], but also (by means of inverse
scattering and inverse spectral theory) as an infinite-dimensional Hamiltonian flow that
can be linearised in suitable action-angle variables, (cf. [1, 9,10,13,18,21]). The orbital
stability of solitary waves and the stability of the peakons (c0 = 0) for the CH equa-
tion were investigated by Constantin and Strauss [19, 20]. The advantage of the CH
equation in comparison with the KdV equation is that the CH equation models the
special wave breaking phenomena, that is, the solution remains bounded but its slope
becomes unbounded in finite time (cf. [6, 15]). Moreover, the wave breaking is one of
the most interesting aspects of the equation, namely, the travelling wave solutions of
greatest height of the governing equations for water waves have a peak at their crest
(cf. [11, 12]).
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The Novikov equation (1.1) is nothing but an integrable Camassa-Holm-type equa-
tion with cubic nonlinearities deduced in [31]. Similar to the CH equation, the Novikov
equation also possesses a Lax pair, a bi-Hamiltonian structure, an infinite sequences of
conserved quantities, and peakon solutions, as well as the explicit formulae for multi-
peakon solutions [27,28]. It is worth pointing out that the peakons are solitons and the
characteristic singularity of greatest height and largest amplitude, which arise as solu-
tions to the free-boundary problem for incompressible Euler equations over a flat bed,
cf. [8,14,17,33]. The above properties mean that the peakons can be considered as good
approximations to exact solutions of the governing equations for water waves. The local
well-posedness for the Novikov equation was investigated in [23, 32, 36]. Furthermore,
the global existence of strong solutions was obtained in [35] under some sign conditions,
and the blow-up phenomena of the strong solutions were studied in [37]. The global
weak solutions for (1.1) were investigated in [30,34].

Owing to the possible development of singularities in a finite time, many researchers
study the behavior of a solution beyond the occurrence of wave breaking. Recently, these
topics have been discussed for the Camassa-Holm equation in [2,3], by introducing a new
set of independent and dependent variables. The conservative and dissipative solutions
of the Camassa-Holm equation were also shown in [24–26], by introducing a coordinate
transformation into Lagrangian coordinates. Moreover, in [4], the authors have shown
that the conservative solution of the Camassa-Holm equation is unique. It is worth
pointing out that the nonlinearity of the Camassa-Holm equation is quadratic, and here
we can only use the H1(R)×L2(R)-norm conserved quantity to study the conservative
and dissipative solutions of the CH equation.

Very recently, Chen et.al. in [7] proved the global existence and uniqueness of con-
servative solutions. However, the global dissipative solutions to the Novikov equation
have not been investigated. We know that the dissipative case is more delicate, because
the corresponding O.D.E. now includes a discontinuous non-local source term. Inspired
by the dissipative solutions for the Camassa-Holm equation in [3], in the present pa-
per, we will first construct a continuous semigroup of dissipative solutions forward in
time by introducing a new set of independent and dependent variables. Then revert-
ing to the original coordinates, we obtain a global dissipative solution of the Novikov
equation. Nevertheless, the Novikov equation involves a higher order term u3

x in the
convolution Q(defined in (2.2)), which cannot be controlled by the conservation law∫
R
(
u2 +u2

x

)
dx. It inspired us to seek another conservation law

∫
R
(
u4 +2u2u2

x− 1
3u

4
x

)
dx

and the higher-order energy density (1+u2
x)2(for the CH it is only 1+u2

x). What we
show here is that: Our constructive procedure (via coordinate transforations) obtains
a unique semigroup of solutions, defined on the entire space H1(R)∩W 1,4(R). The
solution u=u(t,x) satisfies the Oleinik-type inequality

ux(t,x)≤C(1+ t−1), t>0, (1.3)

where the constant C depends only on the norm of the initial data ||ũ||H1(R)∩W 1,4(R).
This paper is organized as follows. In Section 2, we introduce a new set of

independent and dependent variables. In view of these new variables, we transfer the
Novikov equation (2.1) to the semilinear system (3.5) in Section 3, and then we prove
the global existence of solutions to the semilinear system. In Section 4, reverting to
the original coordinates we prove the global dissipative solutions to the equation (2.1).
In Section 5, a global continuous semigroup of weak dissipative solutions to equation
(2.1) is constructed.



S. ZHOU, L. YANG, AND C. MU 1617

2. Preliminaries

2.1. The basic equations. As usual, we can rewrite equation (1.1) as follows:

ut=−u2ux−Px−Q, (2.1)

with the source terms P and Q being defined as a convolution{
P
.
= (1−∂2

x)−1
(
u3 + 3

2u(∂xu)2
)
,

Q
.
= 1

2 (1−∂2
x)−1(∂xu)3.

(2.2)

The initial data is given as

u(0,x) = ũ(x)∈H1(R)∩W 1,4(R). (2.3)

The Novikov equation (2.1) has the following two useful conservation laws [7]:

E(t) :=

∫
R
(u2 +u2

x)(t,x)dx=E(0)
.
=E0, (2.4)

G(t) :=

∫
R

(
u4 +2u2u2

x−
1

3
u4
x

)
(t,x)dx=G(0)

.
=G0. (2.5)

From the above two conservation laws and the Sobolev inequality ||u||L∞ ≤||u||2H1 =E0,
we deduce that

||ux||4L4 = 3

∫
R

(u4 +2u2u2
x)dx−3G(t)

≤3

(
||u||L∞

∫
R

(u2 +2u2
x)dx−G(t)

)
≤6E2

0−3G0.

Therefore,

||ux||3L3 ≤||ux||L2 ||ux||2L4 ≤
√

3E(0)[2E2
0−G0] =:K.

This estimate and Young’s inequality for convolutions guarantee that

||P (t)||L∞ , ||Px(t)||L∞ ≤
∥∥∥∥1

2
e−|x|

∥∥∥∥
L∞

∥∥∥∥3

2
uu2

x+u3

∥∥∥∥
L1

=
3

4
E

3/2
0 ,

||P (t)||L2 , ||Px(t)||L2 ≤
∥∥∥∥1

2
e−|x|

∥∥∥∥
L2

∥∥∥∥3

2
uu2

x+u3

∥∥∥∥
L1

=
3
√

2

4
E

3/2
0 ,

(2.6)

and

||Q(t)||L∞ , ||Qx(t)||L∞ ≤
1

2

∥∥∥∥1

2
e−|x|

∥∥∥∥
L∞

∥∥u3
x

∥∥
L1 =

1

4
K,

||Q(t)||L2 , ||Qx(t)||L2 ≤ 1

2

∥∥∥∥1

2
e−|x|

∥∥∥∥
L2

∥∥u3
x

∥∥
L1 =

2
√

2

4
K.

(2.7)

For such solutions, the energies (2.4) and (2.5) remain constant on [0,T ), while we know
that the solution of the Novikov equation (2.1) blows up in finite time if and only if
(cf. [29, 38])

lim
t→T−

inf
x∈R
{uux(t,x)}=−∞.
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Chen et.al., in [7], proved that the solution can be continued after the breaking time
by requiring that the energy remains constant for a.e. t≥0. In the present paper, we
deal with the dissipative solutions for equation (1.1), where wave breaking might induce
a partial or even total loss of energy.

Definition 2.1. By a solution of the Cauchy problem (2.1)-(2.3) on [t1,t2], we
mean a Hölder continuous function u(t,x) defined on [t1,t2]×R, satisfying the following
properties:

(1) At each fixed t, we have u(·,t)∈H1(R)∩W 1,4(R).

(2) the map u(·,t) is Lipschitiz continuous from [t1,t2] to L2, satisfying equality
(2.1) with initial condition (2.3).

Now, we give the definition of dissipative solutions to the Novikov equation (2.1).

Definition 2.2. A solution of the Cauchy problem (2.1)-(2.3) is called a dissipative
solution if it satisfies the inequality (1.3) for some constant C, and moreover the energy
E(t) in (2.4) is a nonincreasing function of time.

2.2. A new set of independent and dependent variables. In order to
change the equation into a semilinear hyperbolic system, we now introduce a new set
of independent and dependent variables. This was first used in [2,3] to establish global
conservative and dissipative solutions for the Camassa-Holm equation. Here, in order
to deal with the cubic term, an appropriate modification of energy density will yield the
global dissipative solutions.

Given the initial data ũ=u0(x)∈H1(R)∩W 1,4(R), consider the energy variable
ω∈R, and let the nondecreasing map ω 7→ ỹ(ω) be defined as follows∫ ỹ(ω)

0

(
1+ ũ2

x

)2
dx=ω. (2.8)

Supposing that the solution u to equation (2.1) is still Lipschitz continuous for t∈ [0,T ],
we now deduce an equivalent system of equations by using the independent variables
(t,ω). Let t 7→y(t,ω) be the characteristic beginning at ỹ(ω), so that

∂

∂t
y(t,ω) =u2(t,y(t,ω)), y(0,ω) = ỹ(ω). (2.9)

Moreover, we use the following notions

u(t,ω)
.
=u(t,y(t,ω)), ux(t,ω)

.
=uy(t,y(t,ω)),

P (t,ω)
.
=P (t,y(t,ω)), Px(t,ω)

.
=Py(t,y(t,ω)),

Q(t,ω)
.
=Q(t,y(t,ω)), Qx(t,ω)

.
=Qy(t,y(t,ω)),

and define the variables: v=v(t,ω) and q= q(t,ω) as

v
.
= 2arctanux, q

.
= (1+u2

x)2 · ∂y
∂ω

. (2.10)

Owing to v being defined up to multiples of 2π, all subsequent equations involving v
are invariant under addition of multiples of 2π. From (2.8) and (2.10), we deduce the
following identities,

q(0,ω)≡1, (2.11)
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1

1+u2
x

= cos2 v

2
,

ux
1+u2

x

=
1

2
sinv,

u2
x

1+u2
x

= sin2 v

2
, (2.12)

∂y

∂ω
=

q

(1+u2
x)2

= cos4 v

2
·q. (2.13)

Equation (2.13) yields

y(t,θ)−y(t,ω) =

∫ θ

ω

cos4 v(t,s)

2
·q(t,s)ds. (2.14)

Moreover, we have

P (t,ω) =
1

2

∫ ∞
−∞

exp{−|y(t,ω)−x|}
(
u3 +

3

2
u(ux)2

)
dx,

Q(t,ω) =
1

4

∫ ∞
−∞

exp{−|y(t,ω)−x|}(ux)3dx,

Px(t,ω) =
1

2

(∫ ∞
y(t,ω)

−
∫ y(t,ω)

−∞

)
exp{−|y(t,ω)−x|}

(
u3 +

3

2
u(ux)2

)
dx,

Qx(t,ω) =
1

4

(∫ ∞
y(t,ω)

−
∫ y(t,ω)

−∞

)
exp{−|y(t,ω)−x|}(ux)3dx.

In the above equalities, we can implement the change of variables x=y(t,θ), and rewrite
the convolutions as an integral over the variable θ. Using the identities (2.12)-(2.14),
thus, we get an expression for P,Q and Px,Qx in terms of the new variable ω, that is,

P (ω) =
1

2

∫ ∞
−∞

exp

{
−

∣∣∣∣∣
∫ θ

ω

(
q ·cos4 v

2

)
(s)ds

∣∣∣∣∣
}

·
[
q

(
u3 cos4 v

2
+

3

2
usin2 v

2
cos2 v

2

)]
(θ)dθ, (2.15)

Px(t,ω) =
1

2

(∫ ∞
ω

−
∫ ω

−∞

)
exp

{
−

∣∣∣∣∣
∫ θ

ω

(
q ·cos4 v

2

)
(s)ds

∣∣∣∣∣
}

·
[
q

(
u3 cos4 v

2
+

3

2
usin2 v

2
cos2 v

2

)]
(θ)dθ, (2.16)

Q(ω) =
1

8

∫ ∞
−∞

exp

{
−

∣∣∣∣∣
∫ θ

ω

(
q ·cos4 v

2

)
(s)ds

∣∣∣∣∣
}
·
(
q sinv sin2 v

2

)
(θ)dθ, (2.17)

Qx(t,ω) =
1

8

(∫ ∞
ω

−
∫ ω

−∞

)
exp

{
−

∣∣∣∣∣
∫ θ

ω

(
q ·cos4 v

2

)
(s)ds

∣∣∣∣∣
}
·
(
q sinv sin2 v

2

)
(θ)dθ. (2.18)

In view of (2.1) and (2.9), the evolution equation for u in the new variables (t,ω) has
the form

∂

∂t
u(t,ω) =ut+uyyt=ut+u2ux=−Px(t,ω)−Q(t,ω), (2.19)
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where Px and Q are defined in (2.16) and (2.17), respectively. Next, we deduce an
evolution equation for the variable q from (2.10)∫ ω2

ω1

q(t,ω)dω=

∫ y(t,ω2)

y(t,ω1)

(
1+u2

x(t,x)
)2
dx.

Equation (2.9) and Pxx=P −u3− 3
2uu

2
x yield

d

dt

∫ ω2

ω1

q(t,ω)dω=

∫ y(t,ω2)

y(t,ω1)

{[(1+u2
x)2]t+[u2(1+u2

x)2]x}dx

=

∫ y(t,ω2)

y(t,ω1)

4(1+u2
x)ux

(
uxt+

1

2
uu2

x+u2uxx+
1

2
u

)
dx

=

∫ y(t,ω2)

y(t,ω1)

4(1+u2
x)ux

(
1

2
u+u3−P −Qx

)
dx.

Differentiating the above equality with respect to ω, we obtain

∂

∂t
q(t,ω) =

(
1

2
u+u3−P −Qx

)
4ux

1+u2
x

·q

=
(
u+2u3−2P −2Qx

)
sinv ·q. (2.20)

Finally, using (2.9) and (2.10), we get

∂

∂t
v(t,ω) =

2

1+u2
x

(uxt+u2uxx)

=
2

1+u2
x

(
−1

2
u(ux)2 +u3−P −Qx

)
= 2(u3−P −Qx)cos2 v

2
−usin2 v

2
. (2.21)

In (2.20)and (2.21), the functions P,Px,Q and Qx are given by (2.15)-(2.18).

3. Global existence of solutions to the semilinear system
In order to obtain the global dissipative solutions of equations (2.1)-(2.3), it is

important to modify them suitably. Assume that along a given characteristic t 7→y(t,ω),
the wave breaks at the first time t= τ(ω). Recalling our rescaled variable v= 2arctanux,
this means that ux(t,ω)→±∞, as t↑ τ(ω) by setting v(t,ω)≡±π for all t≥ τ(ω). Then,
P,Px,Q and Qx in (2.15)-(2.18) can be replaced by

P (ω) =
1

2

∫
{−π<v(θ)<π}

exp

{
−

∣∣∣∣∣
∫
{s∈[ω,θ],−π<v(s)<π}

cos4 v(s)

2
·q(s)ds

∣∣∣∣∣
}

·
[
u3(θ)cos4 v(θ)

2
+

3

2
u(θ)sin2 v(θ)

2
cos2 v(θ)

2

]
q(θ)dθ, (3.1)

Px(ω) =
1

2

(∫
{θ>ω,π<v(θ)<π}

−
∫
{θ<ω,−π<v(θ)<π}

)

exp

{
−

∣∣∣∣∣
∫
{s∈[ω,θ],−π<v(s)<π}

cos4 v(s)

2
·q(s)ds

∣∣∣∣∣
}
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·
[
u3(θ)cos4 v(θ)

2
+

3

2
u(θ)sin2 v(θ)

2
cos2 v(θ)

2

]
q(θ)dθ, (3.2)

and

Q(ω) =
1

8

∫
{−π<v(θ)<π}

exp

{
−

∣∣∣∣∣
∫
{s∈[ω,θ],−π<v(s)<π}

cos4 v(s)

2
·q(s)ds

∣∣∣∣∣
}

·
(

sinv(θ)sin2 v(θ)

2

)
q(θ)dθ, (3.3)

Qx(ω) =
1

8

(∫
{θ>ω,−π<v(θ)<π}

−
∫
{θ<ω,−π<v(θ)<π}

)

exp

{
−

∣∣∣∣∣
∫
{s∈[ω,θ],−π<v(s)<π}

cos4 v(s)

2
·q(s)ds

∣∣∣∣∣
}
·
(

sinv(θ)sin2 v(θ)

2

)
q(θ)dθ.

(3.4)

Therefore, equations (2.19)-(2.21) are converted into the following form:
∂u
∂t =−Px−Q,
∂v
∂t =

{
2(u3−P −Qx)cos2 v

2 −usin2 v
2 , −π<v<π,

0, else,

∂q
∂t =

{
(u+2u3−2P −2Qx)sinv ·q, −π<v<π,
0, else,

(3.5)

with the initial condition u(0,ω) = ũ(ỹ(ω))
v(0,ω) = 2arctanũx(ỹ(ω))
q(0,ω) = 1.

(3.6)

System (3.5) can be regarded as an O.D.E. in a Banach space. It is easy to see that
the right-hand side of the system (3.5) is discontinuous. The discontinuity appears
precisely when v=±π. We observe that v is close to the values ±π transversally, i.e.,
with derivative vt=−u by the second equation in (3.5). It is exactly the transversality
condition that guarantees the well-posedness of the system (3.5).
Consider here the Cauchy problem for system (3.5) in a more convenient form as

∂

∂t
U(t,ω) =F (U(t,ω))+H(ω,U(t,·)) ω∈R, (3.7)

U(0,ω) = Ũ(ω), (3.8)

where U = (u,v,q)∈R3, while

F (ω,U(t)) =

{(
0, u3(1+cosv)−usin2 v

2 , (u+2u3)sinv ·q
)
, −π<v<π,

(0, −u, 0), else
(3.9)

and

H(ω,U(t)) =

{
−
(
Px+Q, (P +Qx)(1+cosv), 2(P +Qx)sinv ·q

)
, −π<v<π,

(−Px−Q, 0, 0), else.
(3.10)
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The nonlocal operators P,Px,Q and Qx were given in (3.1)-(3.4).
We note that if a solution of (3.7)-(3.10) is obtained, the mapping

(t,ω)→ (u(t,ω),v(t,ω),q(t,ω)) (3.11)

provides a solution of system (3.5). Notice that the vector field F :R3→R3 in (3.7)
is uniformly bounded and Lipschitz continuous when u is still in a bounded set. Nev-
ertheless, the nonlocal operator H is discontinuous. In fact, at a time τ∗ such that
meas({ω;v(τ∗,ω) =±π})>0, the set {ω;τ(ω)>t}={ω;−π<v(ω)<π} may suddenly
shrink. Therefore, the integral terms P,Px,Q and Qx in (3.1)-(3.4) are discontinuous.

To begin with, we obtain the local existence and uniqueness of the solution to the
Cauchy problem (2.1). Furthermore, we claim that this local solution can be extended
globally in time. The main theorem of this section is stated as follows.

Theorem 3.1. Given ũ∈H1(R)∩W 1,4(R), the Cauchy problem (3.7)-(3.10)
with initial data Ũ

.
= (ũ,2arctanũx,1) has a unique solution in the Banach space

C([0,T ],L∞(R;R3)) for T >0.

Proof.
Step 1. Establishing the local existence of solutions. Firstly, we get some

priori estimates on F and H in (3.7). Suppose that U = (u,v,q)∈L∞(R;R3) satisfies
the following inequalities

‖u(w)‖L∞ ≤C,
1

C
≤ q(ω)≤C, for all ω, (3.12)

meas({ω;−π<v(ω)<π,|v(ω)|≥ π
2
})≤C, (3.13)

for some constant C. Therefore, there is a constant r∗ depending only on C such that

||Q||L∞(R) + ||Qx||L∞(R) + ||P ||L∞(R) + ||Px||L∞(R)≤ r∗,
||F (U)||L∞(R)≤ r∗, ||H(U)||L∞(R)≤ r∗.

Furthermore, there exists a Lipschitz constant r such that if U∗= (u∗,v∗,q∗) satisfies
the same estimates (3.12) and (3.13), then

||F (U)−F (U∗)||L∞(R)≤ r||U−U∗||L∞(R).

Assume the initial data ũ∈H1(R)∩W 1,4(R) to be given. Since ũ,ũx∈L2(R)∩L4(R),
the set

{x∈R; |ũx|≥ ε}

has finite measure for every ε>0. Then we can find a constant C>0 such that

||ũ||L∞(R)≤
C

2
, meas

({
ω;|ṽ(ω)|≥ π

4

})
≤ C

2
.

Choose δ>0 small enough such that v(ω)∈ (−π,−π+δ] (or, v(ω)∈ [π−δ,π)), which
means ux<0 (respectively, ux>0). The precise blow-up scenario and the hypothesis
(3.12) imply that 0<u(w)≤C (respectively, −C≤u(w)<0). Furthermore, there exists
a constant M>0 such that

∂

∂t
v(t,ω) = (u3−P −Qx)(1+cosv)−usin2 v

2
≤− 1

M
.(Respectively,

∂

∂t
v(t,ω)≥ 1

M
).

(3.14)
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Otherwise, ∂
∂tv↗0 (respectively, ∂

∂tv↘0), which is a contradiction with v↘
−π(respectively, v↗π).

Define the sets

Γδ
.
={ω∈R; ṽ(ω)∈ (−π,δ−π]}, Γ′

.
=R\Γδ.

By possibly reducing the size of δ>0, we can suppose that

meas(Γδ)≤ 1

8rM
.

On a suitable domain D⊂C([0,T ],L∞(R)), we will get the solution t 7→U(t) as the
unique fixed point of a contractive transformation J :D 7→D. Concretely, for a given T >
0, we define the domain D as the set of continuous mappings t 7→U(t) = (u(t),v(t),q(t))
from [0,T ] into L∞(R,R3) satisfying the following properties,

U(0) = Ũ ,

||U(t)−U(s)||L∞(R)≤2r∗|t−s|,

v(t,ω)−v(s,ω)≤− 1

M
(t−s), ω∈Γδ,0≤s<t≤T.

Here the operator J is defined as

(J (U))(t,ω) = Ũ+

∫ t

0

[F (U(τ,ω))+H(ω,U(τ,·))]dτ.

Next, we will show that if we choose T >0 small enough, then the mapping J is con-
tractive. It is clear that J maps the domain D into itself. It remains to verify that J
is a strict contraction. Indeed, suppose that U,U∗∈D and define

η= max
t∈[0,T ]

||U(t)−U∗(t)||L∞(R), (3.15)

and the crossing time

τ(ω) = sup{t∈ [0,T ];v(t,ω)>−π}.(Respectively, τ(ω) = sup{t∈ [0,T ];v(t,ω)<π}.

The τ∗(ω) is defined in the same way. The definitions of τ(ω) and τ∗(ω) imply that
||v(τ(ω))−v∗(τ∗(ω))||≤η. We claim that for each ω∈Γδ,

|τ(ω)−τ∗(ω)|≤2ηM.

Without loss of generality, we set τ(ω)≥ τ∗(ω), (3.14) and (3.15) give

|τ(ω)−τ∗(ω)|= τ(ω)−τ∗(ω)≤M(v(τ∗(ω))−v(τ(ω)))

≤M(|v(τ(ω))−v∗(τ∗(ω))|+ |v(τ∗(ω))−v∗(τ∗(ω))|)
≤2ηM.

For t∈ [0,T ] we then have

||JU(t)−JU∗(t)||L∞(R)

≤
∫ t

0

||F (U(τ))−F (U∗(τ))||L∞(R)dτ+

∫ t

0

||H(U(τ))−H(U∗(τ))||L∞(R)dτ
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≤2r

∫ t

0

||U(τ)−U∗(τ)||L∞(R)dτ+r

∫ t

0

meas({ω;v(τ,ω)>−π,v∗(τ,ω)≤−π})dτ

+r

∫ t

0

meas({ω;v(τ,ω)≤−π,v∗(τ,ω)>−π})dτ ≤2rTη+r

∫
Γδ

2|τ(ω)−τ∗(ω)|dω≤ 1

2
η,

provided that T is small enough. This yields that J is a strict contraction when u(w)>0
for v(w)∈ (−π,δ−π]. Similarly, when u(w)<0 for v(w)∈ [π−δ,π), we can obtain that
J is also a strict contraction. The desired local solution of the Cauchy problem (3.7)-
(3.10) follows from the fact that it has a unique fixed point.

Step 2. Extending the local solutions of the semilinear system (3.5)
globally in time. The basic component is a global bound on the total energy,

E(t) =

∫
{−π<v(t,ω)<π}

(
u2(t,ω)cos4 v(t,ω)

2
+sin2 v(t,ω)

2
cos2 v(t,ω)

2

)
q(t,ω)dω (3.16)

and

G(t) =

∫
{−π<v(t,ω)<π}

[(
u4 cos4 v

2
+2u2 sin2 v

2
cos2 v

2
− 1

3
sin4 v

2

)
q

]
(t,ω)dω. (3.17)

We start with presenting the fact that

uω =
q

2
sinvcos2 v

2
, (3.18)

provided the local solution of (3.5) is defined. Indeed, the first equation of (3.5) and
the definitions of Px and Q at (3.2) and (3.3) give

uωt=

{(
u3 cos4 v

2 + 3
2usin2 v

2 cos2 v
2 −P cos4 v

2 −Qx cos4 v
2

)
q, if −π<v<π,

0, else.

On the other hand, the last two equations in (3.5) imply(q
2

sinvcos2 v

2

)
t
=
qt
2

sinvcos2 v

2
+
q

2
vtcosvcos2 v

2
− q

2
vt sinvcos

v

2
sin

v

2

=

(
u3 cos4 v

2
+

3

2
usin2 v

2
cos2 v

2
−P cos4 v

2
−Qx cos4 v

2

)
q,

for −π<v<π. While, if v=±π, the last two equations in (3.5) reflect(q
2

sinvcos2 v

2

)
t
= 0.

Since q̃= 1, at the initial time t= 0, we have

∂u

∂ω
= ũx ·

∂ỹ

∂ω
=

ũx
(1+ ũ2

x)2
=

sinv

2
cos2 v

2
=
q

2
sinvcos2 v

2
.

Thus, we obtain that (3.18) remains valid for all times t≥0, provided the solution is
defined.

In the following, we prove that the extended energies

Ẽ(t) =

∫
R

(
u2(t,ω)cos4 v(t,ω)

2
+sin2 v(t,ω)

2
cos2 v(t,ω)

2

)
q(t,ω)dω (3.19)
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and

G̃(t) =

∫
R

[(
u4 cos4 v

2
+2u2 sin2 v

2
cos2 v

2
− 1

3
sin4 v

2

)
q

]
(t,ω)dω (3.20)

remain constant in time. From (3.5), we obtain that

d

dt

∫
R

(
u2 cos4 v

2
+sin2 v

2
cos2 v

2

)
qdω

=

∫
R

[
−2ucos4 v

2
(Px+Q)−

(
2u2 cos3 v

2
sin

v

2
− 1

2
cosv sinv

)
(
−usin2 v

2
+2u3 cos2 v

2
−2cos2 v

2
(P +Qx)

)
+sinv

(
u2 cos4 v

2
+

1

4
sin2v

)(
2u3 +u−2P −2Qx

)]
qdω. (3.21)

On the other hand, the definitions of P,Px,Q and Qx in (3.1)-(3.4) yield

Pω = qPx cos4 v

2
, Q=qQx cos4 v

2
,

(Px)ω =−
(3

8
usin2v+u3 cos4 v

2
−cos4 v

2
P
)
q,

(Qx)ω =−1

4
cos2 v

2
sinvq+cos4 v

2
Qq.

Notice that on the right-hand of (3.19), we are integrating over the entire real line.
Certainly, this does not make a difference because cos v2 = 0 whenever v=±π. Using
(3.18) and the above equality for Pω and (Qx)ω, we obtain

(uP )ω =uωP +uPω = q
(
P cos3 v

2
sin

v

2
+uPx cos4 v

2

)
,

(uQx)ω =uωQx+u(Qx)ω = q

(
Qx sin

v

2
cos3 v

2
+uQcos4 v

2
− 1

2
usin

v

2
cos3 v

2

)
.

Therefore,

d

dt

∫
R

(
u2 cos4 v

2
+sin2 v

2
cos2

v

2

)
qdω=

∫
R
∂ω
{
u4−2uP −2uQx

}
dω= 0.

The last equality holds since lim
|ω|→∞

u(ω) = 0 as u∈H1(R), while P,Px,Q and Qx are

uniformly bounded. This proves

Ẽ(t) =

∫
R

(
u2(t,ω)cos4 v(t,ω)

2
+sin2 v(t,ω)

2
cos2 v

2

)
q(t,ω)dω= Ẽ(0)

.
=E0, (3.22)

along any solution of (3.5).
Similarly, for the conservation of G̃, by computation, we get

dG̃

dt
=

∫
R
∂ω

{
u6 +

4

3

(
u3(P +Qx)+(Q+Px)2−(P +Qx)2

)}
dω= 0.



1626 GLOBAL DISSIPATIVE SOLUTIONS OF THE NOVIKOV EQUATION

This yields that

G̃(t) =

∫
R

(
u4 cos4 v

2
+2u2 sin2 v

2
cos2 v

2
− 1

3
sin4 v

2

)
qdω= G̃(0)

.
=G0. (3.23)

If the solution is defined, using (3.18) and (3.22), we obtain the bound

sup
ω∈R
|u2(t,ω)|≤2

∫
R
|uuω|dω≤2

∫
R
|u| ·

∣∣∣sin v
2

cos3 v

2

∣∣∣qdω≤E0. (3.24)

This provides a uniform a priori bound on ||u(t)||L∞(R). From (3.22)-(3.23) and the
definitions (3.1)-(3.4), it follows that

||P (t)||L∞(R), ||Px(t)||L∞(R)≤C1,

||Q(t)||L∞(R), ||Qx(t)||L∞(R)≤C2,
(3.25)

where C1 = 3
4E

3
2
0 and C2 = 1

4

√
6E3

0−3E0G0. Observe the third equation in (3.5), as
long as the solution is defined, by (3.24)-(3.25), we deduce that

|qt|≤
(

2(C1 +C2 +E
3
2
0 )+E

1
2
0

)
q.

Since q(0,ω) = 1, the above differential inequality implies

e−Ct≤ q(t)≤eCt, (3.26)

the constant C depends only on E0 and G0. From the second equation in (3.5), it is
obvious that

−π≤v(t,ω)<π.

Finally, the lower bound on q in (3.26) combines the estimates (3.22) and (3.23), from
which we can deduce that, for every η>0, there exists a constant Cη depending on
E0,G0 and T such that

meas({ω; |v(t,ω)|≥η})≤Cη t∈ [0,T ].

All the above analysis, the priori bounds (3.12)-(3.13) which we need to establish a local
solution are satisfied with a constant C uniformly valid over any given time interval
[0,T ]. This completes the proof of extending the local solution globally extended for all
times t≥0.

Next, we will show the continuous dependence of solutions to system (2.1) on the
initial data belonging to H1(R)∩W 1,4(R). This needs further estimates. Suppose that
ũn→ ũ in H1(R)∩W 1,4(R), with v= 2arctanux, then

||un− ũ||L∞(R)→0, ||ṽn− ṽ||L2(R)→0. (3.27)

Generally, ||ṽn− ṽ||L∞(R)→0 does not converge to zero. By the weaker assumptions
(3.27), we prove the following result on continuous dependence of solutions to system
(3.5).

Theorem 3.2. Given a sequence of initial data ũn, such that ||un− ũ||H1(R)∩W 1,4(R)→
0. Therefore, for any T >0, the corresponding solutions un(t,ω) of (3.5) with initial data
(3.6) converge to u(t,ω) uniformly for (t,ω)∈ [0,T ]×R.

Proof. The steps of the proof of Theorem 3.2 are similar to the Theorem 2 in [3].
Hence, we omit it here.
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4. Global dissipative solutions to the Equation (2.1)
In present section, we will prove that the global solution of system (3.5) provides a

global dissipative solution to equation (2.1), in the original variables (t,x). Let (u,v,q)
be a global solution to (3.5) and

y(t,ω)
.
= ỹ(ω)+

∫ t

0

u2(τ,ω)dτ. (4.1)

Then for each fixed ω, the function t 7→y(t,ω) yields a solution to the Cauchy problem

∂

∂t
y(t,ω) =u2(t,ω),y(0,ω) = ỹ(ω). (4.2)

We claim that a solution of (2.1) can be obtain by setting

u(t,x)
.
=u(t,ω) if y(t,ω) =x. (4.3)

Theorem 4.1. If (u,v,q) is a global solution to the Cauchy problem (3.5) with the
initial data (3.6), then the function u=u(t,x) defined by (4.1)-(4.3) gives a solution
to the initial value problem (2.1) for the Novikov equation. Moreover, the solution
u=u(t,x) has the following property:

||u(t)||2H1(R)≤||u(t′)||2H1(R) if 0≤ t′≤ t. (4.4)

Moreover, there exists a constant C depending only on the total energy ||ũ||H1 such that

|ux(t,x)|≤C(1+ t−1), t>0, x∈R. (4.5)

Furthermore, given a sequence of initial data ũn, as long as

||ũn− ũ||H1(R)∩W 1,4(R)→0, (4.6)

then, the corresponding solutions un(t,x) converge to u(t,x) uniformly for (t,x) in any
bounded set.

Proof. The uniform bound follows from equation (3.22)

|u2(t,ω)|≤E0. (4.7)

From (4.1), we get the estimate

ỹ(ω)−E0t≤y(t,ω)≤ ỹ(ω)+E0t, t≥0. (4.8)

The definition of ω in (2.8) yields

lim
ω→±∞

y(t,ω) =±∞. (4.9)

Then the image of the map (t,ω) 7→ (t,y(t,ω)) covers the entire half-plane R+×R. Now
we claim

yω = qcos4 v

2
for all t≥0 and a.e ω∈R. (4.10)
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Indeed, from (3.5), a straightforward calculation yields

∂

∂t

(
qcos4 v

2

)
(t,ω) =−2qvt sin

v

2
·cos3 v

2
+qtcos4 v

2

= 2uq sin
v

2
·cos2 v

2
= 2uuω.

On the other hand, (4.1) yields

∂

∂t
yω(t,ω) = 2uuω(t,ω).

The identity (4.10) holds true for almost every ω at t= 0 because the function x 7→
2arctanũx(x) is measurable. By the above calculation it remains true for all t≥0.
From (4.10), we get that y(t,ω) is nondecreasing. Moreover, if ω<θ but y(t,ω) =y(t,θ),
then ∫ θ

ω

yω(t,s)ds=

∫ θ

ω

q(t,s)cos4 v

2
ds= 0.

Hence cos v2 ≡0 throughout the interval of integration. Then, by (3.18), we have

u(t,θ)−u(t,ω) =

∫ θ

ω

q(t,s)

2
sinv(t,s)cos2 v

2
ds= 0.

This shows that the map (t,x) 7→u(t,x) in (4.3) is well defined for all t≥0 and x∈R.
We have that, for every fixed t

meas({y(t,ω);v(t,ω) =±π}) =

∫
{v(t,ω)=±π}

yω(t,ω)dω

=

∫
{v(t,ω)=±π}

q(t,ω)cos4 v(t,ω)

2
dω= 0. (4.11)

In the following, using (4.11) to change the variable of integration, for every fixed t, in
view of (3.22), we obtain∫

R

(
u2(t,x)+u2

x(t,x)
)
dx=

∫
{−π<v(t,x)<π}

[(
u2 cos4 v

2
+sin2 v

2
cos2 v

2

)
q
]

(t,ω)dω≤E0.

(4.12)

It is clear that u, as a function of x, is (uniformly) Hölder continuous with the ex-
ponent 1

2 by Sobolev’s inequality. In view of the first equation in (3.5) and ||Px||L∞(R)

and ||Q||L∞(R) being uniformly bounded, we can conclude that, along every character-
istic curve t→y(t,ω), the map t→u(t,y(t,ω)) is uniformly Lipschitz continuous. So,
u=u(t,x) is globally Hölder continuous.

We now claim the Lipschitz continuity of u(t,x) with values in L2(R). Consider any
interval [τ,τ+h]. For a point x, we take ω∈R such that the characteristic t 7→y(t,ω)
passes through the point (τ,x). From the first equation in (3.5) and ‖u‖2L∞ ≤E0, it
follows that

|u(τ+h,x)−u(τ,x)|≤|u(τ+h,x)−u(τ+h,y(τ+h,ω))|
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+ |u(τ+h,y(τ+h,ω))−u(τ,x)|

≤ sup
|y−x|≤E0h

|u(τ+h,y)−u(τ+h,x)|+
∫ τ+h

τ

|Px(t,ω)+Q(t,ω)|dt.

Then, integrating over the whole real line, using the bound of ||Px||L2(R), ‖Q(x)‖L2 and
‖ux‖L2 , we have∫

R
|u(τ+h,y)−u(τ,y)|2dx

≤2

∫
R

(∫ x+E0h

x−E0h

|ux(τ+h,y)|dy

)2

dx

+2

∫
R

(∫ τ+h

τ

|Px(t,ω)+Q(t,ω)|dt

)2

q(τ,ω)cos4 v(τ,ω)

2
dω

≤4E0h

∫
R

∫ x+E0h

x−E0h

|ux(τ+h,y)|2dydx+2h‖q‖L∞
∫
R

∫ τ+h

τ

|Px(t,ω)+Q(t,ω)|2dtdω

≤8E2
0h

2||ux(τ+h)||2L2(R) +2h‖q‖L∞
∫ τ+h

τ

||Px(t)+Q(t)||2L2(R)dt≤Ch
2.

The above inequality, holding for some constant C depending only on T , shows the
Lipschitz continuity of the map t 7→u(t), in terms of the x variable.

Since L2(R) is a reflexive space and the right-hand side of (2.1) also lies in L2(R),
to establish the equality it suffices to prove the following. For every smooth function
φ∈C∞c , at almost every time t, we need to show that

d

dt

∫
R
u(t,x)φ(x)dx=

∫
R

(
−u2(t,x)ux(t,x)−Px(t,x)−Q

)
φ(x)dx

=

∫
R

(
u3(t,x)φ′(x)+2u2(t,x)ux(t,x)φ(x)−(Px(t,x)+Q(t,x))φ(x)

)
dx. (4.13)

Let us set

τ
.
= inf{t>0;v(t) =±π} (4.14)

for each ω∈R. Note that, for almost every time t≥0 one has

meas
(
{ω;τ(ω) = t}

)
= 0.

Choosing a time t such that the above equality holds. Recalling (2.12), (2.13) and (3.5),
we obtain

d

dt

∫
R
u(t,ω)φ(y(t,ω))

[
q(t,ω)cos4 v(t,ω)

2

]
dω

=

∫
R

{
utφqcos4 v

2
+uφ′ytqcos4 v

2
+uφqtcos4 v

2
−uφqvt sinvcos2 v

2

}
dω

=

∫
{−π<v(t,ω)<π}

{
−(Px+Q)φqcos4 v

2
+u3φ′qcos4 v

2
+u2φq sinvcos2 v

2

}
dω

=

∫
{−π<v(t,ω)<π}

{
−(Px+Q)φ+u3φ′+2u2uxφ

}
qcos4 v

2
dω
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=

∫
R

(
u3(t,x)φ′(x)+2u2(t,x)ux(t,x)φ(x)−(Px(t,x)+Q(t,x))φ(x)

)
dx.

This means (4.13) holds. Up to now, we can conclude that the pair of functions u(t,x)
is a solution of (2.1) in the sense of Definition 2.1.

To prove (4.4), for each ω∈R, we define τ(ω) as (4.14). Recalling (3.22) and (4.12),
we have

||u(t)||2H1(R) =

∫
{−π<v(t,ω)<π}

(
u2(t,ω)cos4 v(t,ω)

2
+sin2 v(t,ω)

2
cos2 v(t,ω)

2

)
q(t,ω)dω

=E0−
∫
{τ(ω)≤t}

(
u2(t,ω)cos4 v(t,ω)

2
+sin2 v(t,ω)

2
cos2 v(t,ω)

2

)
q(t,ω)dω

=E0−
∫
{τ(ω)≤t′}∪{t′<τ(ω)≤t}

sin2 v(t,ω)

2
cos2 v(t,ω)

2
q(τ(ω),ω)dω

≤E0−
∫
{τ(ω)≤t′}

sin2 v(t,ω)

2
cos2 v(t,ω)

2
q(τ(ω),ω)dω

= ||u(t′)||2H1(R).

We next prove (4.5). Observe that if δ is small enough, then

v∈ [π−δ,π), (or,v∈ (−π,−π+δ])

yields

∂

∂t
v(t,ω)≤− 1

M
, (respectively,

∂

∂t
v(t,ω)≥ 1

M
).

Therefore,

v(t,ω)<min{π−δ,π− t

M
},(respectively,v(t,ω)<max{δ−π, t

M
−π}).

This yields (4.5) for a suitable constant C. Finally, the convergence of un(t,x) is a
consequence of Theorem 3.1. This finishes the proof of the Theorem 4.1.

5. A semigroup of the dissipative solution
Since the solution to the Cauchy problem (4.7)-(4.8) is unique, the global dissipative

solution of (2.1) can be organized as a semigroup {Zt}t≥0 of applications, that is,

Zt(ũ) =u(t),t≥0,ũ∈H1(R)∩W 1,4(R).

Therefore, we conclude this paper by the following theorem.

Theorem 5.1. Given the initial data ũ∈H1(R)∩W 1,4(R). Let u(t) =Zt(ũ) be the
corresponding global solution of (2.1) which constructed in Theorem 4.1. Then the map
Z :H1(R)∩W 1,4(R)× [0,∞) 7→H1(R)∩W 1,4(R) is a semigroup.

Proof. For fixed τ >0 and all t>0, we need to show that

Zt(Zτ ũ) =Zτ+tũ. (5.1)

Let (t,ω) 7→ (u,v,q)(t,ω) be the corresponding solution of (3.5). Set û=Zτ ũ. Consider
a new energy variable σ and define the map ω 7→σ(ω) to be a solution of the ODE.

d

dω
σ(ω) =

{
q(τ,ω) if −π<v(τ,ω)<π,
0 if v(τ,ω) =±π, (5.2)
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with initial data

σ(ω0) = 0. (5.3)

Here, the value ω0 is chosen such that y(τ,ω0) = 0. We define
û(t,σ) =u(τ+ t,ω(σ)),

v̂(t,σ) =u(τ+ t,ω(σ)),

q̂(t,σ) = q(τ+t,ω(σ))
q(τ,ω(σ)) ,

(5.4)

where σ 7→ω(σ) provides an inverse of the map in (5.3)-(5.4), namely,

ω(σ̄)
.
= sup{s;σ(s)≤ σ̄}.

We claim that, for every σ ∫ y(τ,ω)

0

(
1+u2

x(τ,x)
)2
dx=σ(ω). (5.5)

In view of (5.3), this is valid when ω=ω0,σ= 0. Moreover, recalling the identities (2.12)
and (2.13), we have

∂

∂ω
y(τ,ω) ·

(
1+u2

x(τ,y(τ,σ(ω))
)2

= q(τ,ω) =
d

dω
σ(ω).

By integration, in view of (5.1), one gets (5.5).
To establish the semigroup property, it suffices to prove that the functions (5.4)

provide a solution to the system (3.5). To this end, we write the identities

q(τ+ t,ω)dω= q̂(t,σ(ω))q(τ,ω) · dω
dτ
·dσ= q̂(t,σ(ω))dσ.

This yields

P̂ (t,σ) =P (τ+ t,ω(σ)),P̂x(t,σ) =Px(τ+ t,ω(σ)),

Q̂(t,σ) =Q(τ+ t,ω(σ)),Q̂x(t,σ) =Qx(τ+ t,ω(σ)).

As the last equation in (3.5) is linear with respect to the variable q, then we can get
the conclusion from (5.4) and the above equality. This constructs a semigroup for the
global dissipative solutions of equation (2.1).
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