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DIFFUSION LIMIT OF THE
BOLTZMANN-LANDAU-LIFSHITZ-GILBERT SYSTEM IN

FERROMAGNETIC MATERIALS∗

LIHUI CHAI† , CARLOS J. GARCÍA-CERVERA‡ , AND XU YANG§

Abstract. In this paper, we continue the study initiated in our previous work on the semiclassical
limit for the Schrödinger-Poisson-Landau-Lifshitz-Gilbert system in [3]. Specifically, we consider the
s-wave form spin dynamics coupled with the magnetization dynamics governed by the Landau-Lifshitz-
Gilbert system, and rigorously obtain the diffusion limit of the coupled system.
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1. Introduction
The magnetization reversal process in ferromagnetic materials has important tech-

nological applications. The idea of switching the orientation of the magnetization in
a ferromagnetic multilayer using currents perpendicular to the magnetic layers was in-
troduced by Slonczewski [16] and Berger [2]. As a consequence of the conservation of
spin angular momentum, there is a transfer of spin angular momentum between the
conduction electrons and the magnetization in the form of an additional torque, known
as spin-transfer torque. Controlling the magnetization using the spin-transfer torque
is an attractive alternative to more traditional ways in which magnetic fields are used,
as the currents are more localized and require less power consumption. This has had
significant impact in the design of magneto-electronic devices, such as magnetic random
access memories (MRAMs) and high-density recording media [10].

In some models of spin-transfer torque, an additional torque is expressed explicitly
in terms of the magnetization and added to the Landau-Lifshitz-Gilbert equation (LLG)
[11,17,21]. Global existence of weak solutions for one such model was presented in [12].
Spatial effects have proven to be significant in the reversal process, specially in the
presence of magnetic domain walls and vortices. Zhang, Levy and Fert [20] introduced
a model in which the dynamics of the spin accumulation is accounted for, and coupled
to the LLG. These types of models have received some attention in the mathematics
community in recent years as well [1, 4, 6–9,14,18,19].

In earlier work, the authors studied the semiclassical limit for the Schrödinger-
Poisson-Landau-Lifshitz-Gilbert system [3]. In this article, we are interested in rigor-
ously proving the diffusion limit of the coupled spin and magnetization dynamics. For
the sake of simplicity, we shall start with the introduction of the s-wave form consid-
ered in the physical studies in the diffusion regime e.g. [15], where the spin density
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matrix W ε=W ε(x,v,t)∈C2×2 for (x,v,t)∈R3
x×R3

v×R+ satisfies the following linear
Boltzmann equation

∂tW
ε+

1

ε
T (W ε) = i[σ̂ ·mε,W ε]+

1

ε2
Q(W ε)+Qsf(W

ε),

W ε(x,v,0) =W ε
in(x,v), for (x,v)∈R3

x×R3
v

(1.1)

with ε�1 as the Knudsen number, [·, ·] gives the commutator, i.e. , [A,B] =AB−BA,
the triplet of the Pauli matrices σ̂= (σ1,σ2,σ3)T is defined as follows:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.2)

and the transport and collision terms are given by

T (W ) =v ·∇xW (x,v)−∇xφ(x) ·∇vW ε(x,v) (1.3)

Q(W ) =

∫
R3

α(v,v′)(M(v)W (v′)−M(v′)W (v)) dv′, (1.4)

Qsf(W ) =
I

2
TrW −W, (1.5)

where we have used Tr to denote the matrix trace. In (1.3), E(x) =−∇xφ(x) is the
applied electric field, and we assume that φ is a given potential that is bounded from
below. Since a constant shift in the potential does not change the electric field, we may
assume φ≥0. We also assume that 0≤α0≤α(v,v′)≤α1, and α(v,v′) =α(v′,v). The
Maxwellian M(v) is defined by

M(v) =
1

(2π)3/2
exp

(
−|v|

2

2

)
.

We also define

ρε=

∫
R3

TrW εdv, and sεk =

∫
R3

Tr(σkW
ε)dv, k= 1,2,3, (1.6)

where ρε is the position density and sε= (sε1,s
ε
2,s

ε
3)T is the spin density.

We assume that the ferromagnetic material occupies a compact domain Ω⊂R3
x

with smooth boundary, and over the domain Ω×R+ the magnetization mε=mε(x,t) =
(mε

1,m
ε
2,m

ε
3) satisfies the Landau-Lifshitz-Gilbert (LLG) equation

∂tm
ε=−γmε×(Heff [mε]+sε)+mε×∂tmε,

mε(x,0) =min(x), for x∈Ω,

∂νm
ε(x,t) = 0, for (x,t)∈∂Ω×R+

(1.7)

with the effective field Heff given by

Heff [mε] = ∆mε+Hs[m
ε], and Hs[m

ε] =−∇
3∑
j=1

(
∂

∂xj

1

4π |x|
∗mε

j

)
, (1.8)

and in the domain (R3
x\Ω)×R+, mε≡0. The stray field, Hs, can be written as Hs =

−∇u, where u=∇N ∗m=
∑3
j=1

(
∂
∂xj

1
4π|x| ∗m

ε
j

)
is the magnetostatic potential, and

solves the equation divHs = div m in R3 in the sense of distributions, i.e.,∫
R3

Hs ·∇ϕ=

∫
Ω

m ·∇ϕ, ∀ϕ∈H1(R3). (1.9)
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The coupling of spin and magnetization is via the terms [σ̂ ·mε,W ε] in (1.1) and
sε in (1.7). In this paper we are interested in asymptotically deriving and rigorously
proving the diffusion limit of the coupled Boltzmann-Landau-Lifshitz-Gilbert system
(1.1)-(1.7).

2. Preliminary
In this section, we assume W ε andmε are solutions to (1.1)-(1.7), and analyze basic

properties of collision operators and the solutions. We denote the space of hermitian
2×2 matrices by H2×2, and give the following definition:

Definition 2.1. Define the weighted space L2
M as

L2
M :=

{
W :R3

v→H2×2

∣∣∣∣∣
∫
R3

v

TrW 2M−1 dv<∞

}
. (2.1)

Proposition 2.1 ( [13]). Consider the collision operator Q : L2
M→L2

M defined in
(1.4). The following properties are satisfied:

(1) Q is a linear, self-adjoint, continuous and non-positive operator;

(2) For all W ∈L2
M, it holds that ∫

R3
v

Q(W )dv= 0; (2.2)

(3) The kernel of Q

kerQ=
{
W ∈L2

M
∣∣W =NM(v), N ∈C2×2

}
, (2.3)

(kerQ)
⊥

=

{
W ∈L2

M

∣∣∣∣∣
∫
R3

v

W dv=02×2

}
; (2.4)

(4) Let ΠW =M
∫
R3

v
W dv, then

−(Q(W ),W )L2
M
≥ α0

2
‖ΠW −W‖L2

M
; (2.5)

(5) The image of Q is closed and ImQ= (kerQ)⊥. The equation Q(W ) =G has a solu-
tion in L2

M if and only if G∈ ImQ.

Proof. Here we only give the proof to the fourth item, and the others can be
verified in a straightforward way.

Tr

∫
R3

Q(W )
W

M
dv= Tr

∫
R3

∫
R3

α(MW ′−M′W )
W

M
dv′dv

=− 1

2
Tr

∫
R3

∫
R3

α(MW ′−M′W )

(
W ′

M′
− W

M

)
dv′dv

=− 1

2
Tr

∫
R3

∫
R3

αMM′
(
W ′

M′
−W
M

)2

dv′dv

≤− α0

2
Tr

∫
R3

M
(
N− W

M

)2

dv=−α0

2
Tr

∫
R3

(NM−W )
2

M
dv,

where N =

∫
R3

W dv, and we have used the Jensen inequality.
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Definition 2.2. Define the weighted space L2
M as

L2
M :=

{
W :R3×R3→H2×2

∣∣∣∣∣
∫
R3

x

∫
R3

v

TrW 2M−1 dvdx<∞

}
. (2.6)

Proposition 2.2. Let W ε∈L2
M be a solution of (1.1), then ‖sεk‖L2(R3)≤C ‖W

ε‖L2
M

.

Proof. The conclusion follows by observing that

‖sεk‖
2
L2(R3) =

∫
R3

x

∣∣∣∣∣
∫
R3

v

Tr(σkW
ε)dv

∣∣∣∣∣
2

dx

≤
∫
R3

x

(∫
R3

v

|Tr(σkW
ε)|2M−1 dv

∫
R3

v

Mdv

)
dx

=

∫
R3

x

∫
R3

v

|Tr(σkW
ε)|2M−1 dvdx

≤C
∫
R3

x

∫
R3

Tr(σ2
k)Tr

[
(W ε)2

]
M−1 dvdx

≤C ‖W ε‖2L2
M
.

Let E(x) = exp(−φ(x)) and F(x,v) =E(x)M(v). Then one can check that F sat-
isfies

(v ·∇x+E ·∇v)F = 0. (2.7)

This property motivates us to consider the solutions in the following weighted L2 space:

Definition 2.3. Define the weighted space L2
F as

L2
F :=

{
W :R3×R3→H2×2

∣∣∣∣∣
∫
R3

x

∫
R3

v

TrW 2F−1 dvdx<∞

}
. (2.8)

And then we have the following estimates of the solutions:

Proposition 2.3 (Uniform bounded solutions). Let W ε
in∈L2

F and (W ε,mε) be a
smooth solution to (1.1) – (1.7) for t∈ [0,T ]. Then there is a constant C independent
of ε and T , such that

‖W ε‖L∞([0,T ];L2
F )≤C, (2.9)

‖W ε−ΠW ε‖L2([0,T ];L2
F )≤Cε, (2.10)

‖ρε‖L∞([0,T ];L2(R3)) +‖sε‖L∞([0,T ];L2(R3))≤C, (2.11)

‖∂tmε‖L2([0,T ];L2(Ω)) +‖mε‖L∞([0,T ];H1(Ω))≤C. (2.12)

Proof. By multiplying (1.1) by W ε/F , taking trace, integrating over x and v, using
(2.7), (2.5), Tr([σ̂ ·mε,W ε] ,W ε) = 0, and 1

2 (TrW ε)2≤Tr[(W ε)2], we get the following
inequality

1

2

d

dt
‖W ε‖2L2

F
≤− α0

2ε2
‖NεM−W ε‖2L2

F
≤0,
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with

Nε(x,t) =

∫
R3

v

W ε(x,v,t)dv, (2.13)

which implies (2.9) and (2.10). Also, by Proposition 2.2, we get (2.11).
In order to get the estimate for mε, first, we can see that

|mε(t)|= |min| . (2.14)

Then we multiply (1.7) by ∂tm
ε and Heff [mε]+sε and integrate over x to get∫

Ω

|∂tmε|2 dx=−γ
∫

Ω

mε×(Heff [mε]+sε) ·∂tmεdx,

and ∫
Ω

∂tm
ε ·(Heff [mε]+sε)dx=

∫
Ω

mε×∂tmε ·(Heff [mε]+sε)dx.

Thus ∫
Ω

|∂tmε|2 dx=γ

∫
Ω

∂tm
ε ·(Heff [mε]+sε)dx

=− γ
2

d

dt

∫
Ω

(
|∇xmε|2 + |Hs[m

ε]|2
)

dx+γ

∫
Ω

∂tm
ε ·sεdx.

It follows from (1.9) that∫
R3

∂tHs[m
ε] ·∇ϕ=

∫
Ω

∂tm
ε ·∇ϕ, ∀ϕ∈H1(R3),

and substituting ϕ for uε∈H1(R3), the corresponding magnetostatic potential, we get
that

1

2

∂

∂t

∫
R3

|Hs[m
ε]|2 =

∫
Ω

∂tm
ε ·Hs[m

ε].

Therefore ∫
Ω

|∂tmε|2 dx+
γ

2

d

dt

∫
Ω

(
|∇xmε|2 + |Hs[m

ε]|2
)

dx

=γ

∫
Ω

∂tm
ε ·sεdx≤ 1

2

∫
Ω

|∂tmε|2 dx+
γ2

2

∫
Ω

|sε|2 dx. (2.15)

Together with (2.11) we get

1

2

∫
Ω

|∂tmε|2 dx+
γ

2

d

dt

∫
Ω

(
|∇xmε|2 + |Hs[m

ε]|2
)

dx≤C. (2.16)

And further we can get for any T >0 fixed,

‖∂tmε‖L2([0,T ],L2(Ω)) +‖∇mε‖L∞([0,T ],L2(Ω))≤C. (2.17)
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3. Existence of solutions
In this section we will establish the existence of the weak solutions to the Boltzmann-

Landau-Lifshitz-Gilbert system (1.1) and (1.7), for which we use the following definition
of weak solutions:

Definition 3.1 (Weak solutions). Let W ε
in∈L2

F , min∈H1(Ω), |min|= 1 a.e. in Ω.
We say W ε and mε are weak solutions to (1.1)–(1.7) if, for all T >0,

• W ε∈L∞([0,∞),L2
F ), mε∈L∞([0,∞),H1(Ω))∩H1([0,T ]×Ω), and |mε|= 1

a.e. in Ω.

• For all η∈C1
c ([0,T )×R6) and χ∈H1((0,T )×Ω), it holds that∫ T

0

∫
R3

x×R3
v

W ε

(
∂tη+

1

ε
T (η)

)
−
∫
R3

x×R3
v

W ε
inη(t= 0)

=−
∫ T

0

∫
R3

x×R3
v

(
i[σ̂ ·mε,W ε]+

1

ε2
Q(W ε)+Qsf(W

ε)

)
η, (3.1)∫ T

0

∫
Ω

∂tm
εχ−

∫ T

0

∫
Ω

mε×∂tmεχ

=−γ
∫ T

0

∫
Ω

mε×(Hs[m
ε]+sε)χ+γ

∫ T

0

∫
Ω

mε×∇mε ·∇χ, (3.2)

and m(x,0) =min.

Then the remainder of this section is devoted to prove the following theorem:

Theorem 3.1 (Existence of weak solutions). Let W ε
in∈L2

F , min∈H1(Ω), and |min|≡
1 on Ω and |min|≡0 on R3\Ω. Then for any T >0 there exist W ε∈L∞([0,T ];L2

F ) and
mε∈L∞([0,T ];H1(Ω))∩H1([0,T ]×Ω), that are weak solutions to (1.1) and (1.7).

Proof. Fix T >0. Let W ε
0 =W ε

in and mε
0 =min. If we have defined W ε

n ∈
L∞([0,T ];L2

M) and mε
n∈L∞([0,T ];H1(Ω)) with |mε

n|≡1 on Ω and |mε
n|≡0 on R3

x\Ω,
then we can define W ε

n+1 and mε
n+1 as the solutions of

∂tW
ε
n+1 +

1

ε
T (W ε

n+1) = i
[
σ̂ ·mε

n,W
ε
n+1

]
+

1

ε2
Q(W ε

n+1)+Qsf(W
ε
n+1),

W ε
n+1(t= 0) =W ε

in,
(3.3)

∂tm
ε
n+1 =−γmε

n+1×
(
Heff [mε

n+1]+sεn+1

)
+mε

n+1×∂tmε
n+1,

mε
n+1(t= 0) =min,

(3.4)

where sεn+1 =
∫

Tr(σ̂W ε
n+1)dv. Actually since mε

n∈L∞([0,T ]×R3), we can see that
there exist a (weak) solution W ε

n+1∈L∞([0,T ];L2
F ) such that∥∥W ε

n+1(t)
∥∥
L2
F
≤C, ∀t∈ [0,T ], (3.5)

where C is independent of n. Then by Proposition 2.2 we know
∥∥sεn+1

∥∥
L2(Ω)

≤C
and then similarly to [3, 7, 9] it follows that there exists a weak solution mε

n+1∈
L∞([0,T ];H1(Ω)) such that∥∥∂tmε

n+1

∥∥
L2([0,T ];L2(Ω))

+
∥∥mε

n+1

∥∥
L∞([0,T ];H1(Ω))

≤C. (3.6)

Then we have

W ε
n
n→∞−−−−→W ε in L∞([0,T ],L2

F ) weak* ,
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sεn
n→∞−−−−→sε in L∞([0,T ],L2(R3)) weak* ,

mε
n
n→∞−−−−→mε in L∞([0,T ],H1(Ω)) weak* ,

mε
n
n→∞−−−−→mε in L2([0,T ],L2(Ω)) strongly .

And then by passing to the limit as n→∞ in the equations, we have W ε and mε,
|mε|≡1 satisfy (1.1) and (1.7) weakly.

4. Diffusion limit
In this section we study the diffusion limit as ε→0 of the system (1.1) and (1.7).

Theorem 4.1 (Diffusion limit). Let W ε
in∈L2

F , ‖W ε
in‖L2

F
≤C , min∈H1(Ω), |min|= 1

a.e. in Ω, and W ε and mε are weak solutions to (1.1) – (1.7). Then there exist W ∈
L∞([0,T ],L2

F ), Win∈L2
F , ρ,s∈L∞([0,T ],L2(R3)), m∈L∞([0,T ],H1(Ω)) such that, up

to subsequences,

W ε ε→0−−−→W in L∞([0,T ],L2
F ) weak* ,

W ε
in

ε→0−−−→Win in L2
F weakly ,

W ε−ΠW ε ε→0−−−→02×2 in L2([0,T ],L2
F ) strongly ,

sε
ε→0−−−→s in L∞([0,T ],L2(R3)) weak* ,

mε ε→0−−−→m in L∞([0,T ],H1(Ω)) weak* ,

mε ε→0−−−→m in L2([0,T ],L2(Ω)) strongly .

(4.1)

And moreover, W ∈ker(Q), i.e. , W (x,v,t) =N(x,t)M(k), and N and m satisfy the
following coupled system

∂tN+∇x ·J = i[σ̂ ·m,N ]+Qsf(N), (4.2)

∂tm=−γm×(Heff [m]+s)+m×∂tm, (4.3)

where

J =−D ·(∇xN+∇xφN), D=

∫
R3

v

θ⊗vdv, (4.4)

and θ=θ(v) is the unique solution of −Q(θ) =vM in (kerQ)
⊥

. In addition, if we
define the position density ρ= Tr(N) and the spin density s= Tr(σ̂N), then we get
(4.2) in the physical variables:

∂tρ−∇x ·(D ·(∇xρ+∇xφρ)) = 0, (4.5)

∂ts−∇x ·(D ·(∇xs+∇xφs)) =−2m×s−s. (4.6)

Remark 4.1. This system is similar to the diffusion model introduced by Zhang,
Levy and Fert in [20]. The first term on the right hand side of (4.6) represents the
precessional motion due to the sd interaction when the magnetization directions of the
spin and the local moments are not parallel; the second term on the right hand side of
(4.6) represents the spin-flip relaxation.

The limits in (4.1) can be obtained from the compactness in the corresponding
space, and we then look at the limit system.
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4.1. Formal asymptotic expansion. In this section, we formally derive the
limiting equation (4.2) using a Hilbert expansion in order to get some heuristic idea of
the proof. We first expand W ε as

W ε(x,v,t) =W (0)(x,v,t)+εW (1)(x,v,t)+ε2W (2)(x,v,t)+ ... (4.7)

Now, plug (4.7) into (1.1) and separate in the order of ε. We then have

O(1) : Q(W (0)) = 0, (4.8)

O(ε) : Q(W (1)) =v ·∇xW (0)−∇xφ ·∇vW (0), (4.9)

O(ε2) : Q(W (2)) =∂tW
(0) +v ·∇xW (1)−∇xφ ·∇vW (1)− i

[
σ̂ ·m,W (0)

]
−Qsf(W

(0)).

(4.10)

From (4.8), one obtains W (0)∈ker(Q), thus

W (0) =N(x,t)M(v). (4.11)

Then v ·∇xW (0)−∇xφ ·∇vW (0)∈ (kerQ)
⊥

, and thus (4.9) has general solution

W (1) =−τθ(v) ·(∇xN+∇xφN)+K, (4.12)

where θ is the unique solution of −Q(θ) =vM in (kerQ)
⊥

, and K ∈kerQ. Then in-
tegrating (4.10) and noticing that the K terms of W (1) vanish in the integrals, we
obtain

∂tN+∇x ·J = i[σ̂ ·m,N ]+Qsf(N), (4.13)

where J =−D(∇xN+∇xφN) and D=
∫
R3

v
v⊗θ(v)dv.

4.2. Rigorous proof.
Proof. The estimates (2.9) and (2.10) suggest us to write

W ε=NεM+εRε, (4.14)

where
∫
Rεdv=02×2, and there exists a constant C such that

‖Rε‖L2([0,T ];L2
F )≤C and ‖Nε‖L∞([0,T ];L2(R3))≤C. (4.15)

Since W ε is bounded uniformly in L∞([0,T ];L2
F ), we can get that (3.1) is satisfied

for all the test function of the form η=ϕ(x,t)∈C1
c ([0,T )×R3). That is, by substituting

(4.14), we obtain∫ T

0

∫
R3

x

Nε∂tϕdtdx+

∫ T

0

∫
R3

x

Rεv ·∇xϕdtdx−
∫
R3

x

(∫
R3

v

W ε
in dv

)
ϕ(t= 0)dx

=−
∫ T

0

∫
R3

x

(i[σ̂ ·mε,Nε]+Qsf(N
ε))ϕdtdx, (4.16)

which is nothing but the weak formulation of

∂tN
ε+∇x ·

∫
R3

v

v⊗Rεdv= i[σ̂ ·mε,Nε]+Qsf(N
ε). (4.17)
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with initial condition

Nε(x,0) =Nε
in(x) :=

∫
R3

v

W ε
in(x,v)dv. (4.18)

Since ‖W ε
in‖L2

F
≤C uniformly, we know that Nε

in is uniformly bounded in L2(R3).

Then there exists Nin∈L2(R3) such that Nε
in

ε→0−−−→Nin in the weak sense.
We claim that

Lemma 4.1. Nin =
∫
R3

v
Win dv.

Proof. Let N0 =
∫
R3

v
W dv. Then for any ϕ∈L2(R3)∫

R3
x

(Nε
in−N0)ϕdx=

∫
R3

x

∫
R3

v

(W ε
in−Win)dvϕdx

=

∫
R3

x

∫
|v|>K

(W ε
in−Win)dvϕdx+

∫
R3

x

∫
R3

v

(W ε
in−Win)ϕI|v|≤K dvdx.

Since Win is the L2
F weak limit of W ε

in, the second integral converges to zeros as ε→0
for every fixed K>0. The first integral decays uniformly and exponentially in K since∫

R3
x

∫
|v|>K

(W ε
in−Win)dvϕdx

≤

(∫
R3

x

∫
R3

v

(W ε
in−Win)2M−1 dvdx)

) 1
2
(∫

R3
x

∫
|v|>K

Mdv |ϕ|2 dx)

) 1
2

≤C(‖W ε
in‖L2

F
+‖Win‖L2

F
)‖ϕ‖2e−K ≤2C‖ϕ‖2e−K .

Thus ∫
R3

x

(Nε
in−N0)ϕdx→0,

and then Nin =N0.

In order to pass to the limit of (4.17), we need to find the limit of
∫
R3

v
v⊗Rεdv.

Let θ=θ(v) be the unique solution of Q(θ(v)) =−vM(v), then we know that [5]:∣∣∣∣ θM
∣∣∣∣≤C(1+ |v|),

∣∣∣∣∇vθM
∣∣∣∣≤C(1+ |v|2), (4.19)

and we have the following lemma for θ:

Lemma 4.2. It holds that for any η∈Cc([0,T ]×R3
x),

lim
ε→0

∫ T

0

∫
R3

x

∫
R3

v

ηv⊗Rεdv=− lim
ε→0

∫
R3

v

ηθ⊗(v ·(∇xNε+∇xφNε)) dv. (4.20)

Proof. Notice that if W ε∈L∞([0,T ];L2
F ) is a weak solution of (1.1), then (3.1)

holds for any test function in the form of ηθ/M, where η∈Cc([0,T )×R3
x). Then

substituting (4.14) in to (1.1) gives

Q(Rε) =v ·(∇xNε+∇xφNε)M
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+ε(v ·∇x+∇xφ ·∇v)Rε+ε(∂tW
ε− i[σ̂ ·mε,W ε]−Qsf(W

ε)). (4.21)

On the other hand, since Q is a self-adjoint operator and Q(θ(v)) =−vM(v), we have∫
R3

v

θ⊗Q(Rε)/Mdv=

∫
R3

v

Q(θ)⊗Rε/Mdv=−
∫
R3

v

v⊗Rε/Mdv. (4.22)

Multiplying (4.21) by θ/M and integrating over v gives

−
∫
R3

v

v⊗Rεdv=

∫
R3

v

θ⊗Q(Rε)/Mdv

=

∫
R3

v

θ⊗(v ·(∇xNε+∇xφNε)) dv

+ε

∫
R3

v

θ⊗(v ·∇x+∇xφ ·∇v)Rε/Mdv

+ε

∫
R3

v

θ⊗(∂tW
ε− i[σ̂ ·mε,W ε]−Qsf(W

ε))/Mdv. (4.23)

Then by multiplying the above by a test function in Cc((0,T )×R3
x) and using the

boundedness of W ε,Nε,Rε given in (2.9), (4.15), and the estimate (4.19) for θ, we can
obtain

∫
R3

v
v⊗Rεdv converges to −

∫
R3

v
θ⊗v ·(∇xN+∇xφN) dv weakly.

From (4.14) and (4.15), we know thaht there exists N ∈L∞([0,T ];L2(R3
x)) such that

Nε ε→0−−−→N in L∞([0,T ],L2(R3
x)) weak*, (4.24)

W ε ε→0−−−→NM in L∞([0,T ],L2
F ) weak*. (4.25)

The other terms in (4.17) and (1.7) can pass to the limit directly and we obtain the
limit equation

∂tN−∇x ·
∫
R3

v

θ⊗v ·(∇xN+∇xφN) dv= i[σ̂ ·m,N ]+Qsf(N), (4.26)

∂tm=−γm×(Heff [m]+s)+m×∂tm. (4.27)

This complete the proof of Theorem 4.1.
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[6] C.J. Garćıa-Cervera and X.P. Wang, Spin-polarized currents in ferromagnetic multilayers, J.
Comput. Phys., 224(2):699–711, 2007.
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