
COMMUN. MATH. SCI. c© 2018 International Press

Vol. 16, No. 4, pp. 1095–1132

RIGOROUS ACCURACY AND ROBUSTNESS ANALYSIS FOR
TWO-SCALE REDUCED RANDOM KALMAN FILTERS IN

HIGH DIMENSIONS∗

ANDREW J. MAJDA† AND XIN T. TONG‡

Abstract. Contemporary data assimilation often involves millions of prediction variables. The
classical Kalman filter is no longer computationally feasible in such a high dimensional context. This
problem can often be resolved by exploiting the underlying multiscale structure, applying the full
Kalman filtering procedures only to the large scale variables, and estimating the small scale variables
with proper statistical strategies, including multiplicative inflation, representation model error in the
observations, and crude localization. The resulting two-scale reduced filters can have close to optimal
numerical filtering skill based on previous numerical evidence. Yet, no rigorous explanation exists for
this success, because these modifications create unavoidable bias and model error. This paper con-
tributes to this issue by establishing a new error analysis framework for two different reduced random
Kalman filters, valid independent of the large dimension. The first part of our results examines the
fidelity of the covariance estimators, which is essential for accurate uncertainty quantification. In a
simplified setting, this is demonstrated by showing the true error covariance is dominated by its esti-
mators. In general settings, the Mahalanobis error and its intrinsic dissipation can be used as simplified
quantification of the same property. The second part develops upper bounds for the covariance estima-
tors by comparing with proper Kalman filters. Combining both results, the classical tools for Kalman
filters can be used as a-priori performance criteria for the reduced filters. In applications, these criteria
guarantee the reduced filters are robust, and accurate for small noise systems. They also shed light on
how to tune the reduced filters for stochastic turbulence.
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1. Introduction

Data assimilation, the numerical prediction procedure for partially observed pro-
cesses, has been a central problem for science and engineering for decades. In this new
age of technology, the dimensions of filtering problems have grown exponentially, as a
result of the increasingly abundant observations and ever growing demand for predic-
tion accuracy. In geophysical applications such as numerical weather forecasting, the
dimensions are staggeringly high, often exceeding d= 106 for the prediction variables,
and q= 104 for the observations. In such a context, the well known Kalman filter is
no longer computationally feasible. Its direct implementation requires high dimensional
matrices product and inversion, resulting a computation complexity of O(d2q), which
far exceeds modern computing capability.

One important strategy for high dimensional filtering is dimension reduction. Many
geophysical and engineering problems have intrinsic multiscale structures [1–3], where
the large scale variables have more uncertainty and of more prediction importance. In
comparison, the small scale variables are driven by strong dissipation and fast oscillation,
their values are more predictable but of less significance. Intuitively, one would like to
apply the full filtering procedures for the large scale variables, while estimating the
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small scale variables with some simplified strategy. This paper investigates two such
general strategies: estimate the small scale variables by their statistical equilibrium
state, or use a constant statistical state as the prior distribution in each filtering step
for the small scale. The resulting two-scale reduced filters will be called the dynamically
decoupled reduced Kalman filter (DRKF) and general reduced Kalman filter (RKF)
respectively. These ideas have been applied earlier to stochastic turbulence, and known
as the reduced Fourier domain Kalman filter (RFDKF) and variance strong damping
approximate filter (VSDAF), see chapters 3 and 7 of [4]. Numerous numerical tests on
these reduced filters [4,5] have shown their performances are close to optimal in various
regimes. And because only the large scale variable of dimension p is fully filtered, the
complexity is reduced significantly to O(dq2 +p2q).

While the two-scale reduced filters have simple intuitions and successful applica-
tions, there is no rigorous nonasymptotic analysis framework for its performance. Pre-
cisely speaking, we are interested in the statistical and dynamical features of the filter
error en. In the classical Kalman filtering context, we have complete knowledge of en,
as its covariance is correctly estimated by the optimal filter, and follows a Riccati equa-
tion that quickly converges to an equilibrium state [6]. As for the reduced filters, the
filter error covariance Een⊗en no longer matches its reduced estimator Cn because of
unavoidable model errors, which create bias through multiplicative inflation, represen-
tation error in the observations, and crude localization. Instead, it follows an online
recursion where model reduction procedures constantly introduce structural biases. As
a consequence, there is an intrinsic barrier between the reduced filters and the optimal
one [5, 7], and the classical approach which shows approximate filters are close to the
optimal one is not applicable in this scenario [8–11].

This paper proposes and applies a new performance analysis strategy for the reduced
filters in the subtle context of Kalman filters with random coefficients ( [6], and chapter
8 of [4] for an application in large dimensions). It consists of two parts. The first part
examines the fidelity of the reduced covariance estimator Cn, and aims to show the
true error covariance is not underestimated, which is essential for rigorous uncertainty
quantification. The direct approach, showing Een⊗en�Cn, is applicable to RKF if
the dimension reduction procedure preserves this inequality, while the system noises are
uncorrelated with the system coefficients. Another more general but weaker approach
is to consider the Mahalanobis error ‖en‖2Cn =eTnC

−1
n en. By showing that 1

dE‖en‖
2
Cn

is
bounded by a dimension free constant, we show the error covariance estimator is not far
off from the true value. This can be established by verifying the Mahalanobis error is
dissipative, which is an intrinsic dynamical property of Kalman type updates. It holds
for both RKF and DRFK even with correlated system noises.

The second objective is to find a bound for the covariance estimator Cn. Two
signal observation systems with augmented coefficients are considered, and we show
their Kalman filter covariances are respectively the covariance estimator in DRKF and
an upper bound for the covariance estimator in RKF. By building this connection, we
transform the original error control problem of reduced filters to one of standard classical
Kalman filters. The latter has a rich literature that we can rely on, so there are multiple
ways to bound Cn.

In combination, the previous results provide a theoretical framework to discuss the
accuracy of reduced filters. In applications, many models, such as stochastic turbulences,
could have various ways to do the two-scale separation [12,13]. Moreover, most practical
reduced filters employ various covariance inflation techniques to ensure no covariance
underestimation [14–16]. Which dimension reduction method is better, and how to tune
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the filter parameters, are important practical questions. But previously, they can only
be studied through extensive numerical experiments. In this perspective, our framework
can be used as a priori estimates, or rigorous support for previous numerical findings.

The remainder of this section intends to give a quick overview of our results, while
the detailed formal statements along with the proofs are left in the later sections.

1.1. Kalman filtering in high dimension. Consider a signal-observation
system with random coefficients [6]:

Xn+1 =AnXn+Bn+ξn+1,

Yn+1 =HnXn+1 +ζn+1.
(1.1)

In (1.1), ξn+1 and ζn+1 are two sequences of independent Gaussian noises, ξn+1∼
N (0,Σn) and ζn+1∼N (0,σn). We assume the signal variable Xn is of dimension d,
the observation variable Yn is of dimension q≤d, and the observation noise matrix σn
is nonsingular to avoid ill-posed inverse problems. The realizations of the dynamical
coefficients (An,Bn,Σn), the observation coefficients (Hn,σn), as long as Yn are as-
sumed to be available, and the objective is to estimate Xn. By considering general
random coefficients, many interesting models involving intermittent dynamical regimes
or observations can be formulated as (1.1). Details will be discussed in Section 6.

The optimal filter for system (1.1) is the Kalman filter [4,6,17], assuming (X0,Y0) is
Gaussian distributed. It estimates Xn with a Gaussian distribution N (mn,Rn), where
the mean and covariance follow a well known recursion:

mn+1 =Anmn+Bn+Kn+1(Yn+1−Hnmn), Rn+1 =K(R̂n+1),

R̂n+1 =AnRnA
T
n +Σn, Kn+1 = R̂n+1Hn(σn+HnR̂n+1H

T
n )−1,

K(C) =C−CHn(σn+HnCH
T
n )−1HT

n C.

(1.2)

The Kalman filter has found a wide range of applications in various fields. This
is due to its theoretical optimality, robustness and stability in the classical low dimen-
sional setting. However, in many modern day applications where the system dimension
reaches 106, direct application of (1.2) is no longer feasible, because the computation
complexity of (1.2) is roughly O(d2q) = 1016, which is far beyond the speed of standard
high performance computing, 1012. This is briefly discussed by a complexity analysis in
Section A.

Besides the dimension reduction strategies discussed below, there are various ways
to approximate the Kalman filter by random sampling. These methods are known as
the ensemble Kalman filters (EnKF) [18, 19] which are commonly used in numerical
weather forecast. They require various ad-hoc tuning techniques [14–16, 20]. Theo-
retical properties of EnKF, such as well-posedness, nonlinear stability, and geometric
ergodicity, can be studied in nonlinear settings [21–24], while their performance can be
studied in linear settings through similar frameworks as the one introduced here [25,26].
Quantitative analysis of the filter error can also be done in the limit of a large sample
size [10,11,27].

1.2. Two-scale separation and reduced Kalman filters. Dynamical fea-
tures of system (1.1) can often be exploited for dimension reduction and fast computa-
tion of Kalman filters. In this paper, we focus on scenarios where system (1.1) has a
two-scale separation

Xn=

[
XL
n

XS
n

]
.
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Here, XL
n consists of p(�d) large scale variables, and XS

n consists of d−p small scale
variables. Throughout, PL and PS will denote the associated subspaces, PL and PS

will denote the associated projections.
In Section 6.3.2, we will consider a simple stochastic turbulence model (see [4]),

where An is a constant matrix that consists of 2×2 diagonal sub-blocks with spectral
norm exp(−νh|k|2). To the small scale Fourier modes with large wavenumbers |k|,
An applies a strong damping. As a consequence, the small scale variables have very
little uncertainty. Their exact values are of little importance, but they are difficult to
compute numerically because of the stiffness involved. This simple example captures
features shared by many turbulence models. In such a scenario, it is intuitive to apply
dimension reduction and try to filter only the large scale part.

One naive way of dimension reduction would be directly ignoring the small scale
part. But this is usually problematic. Despite that XS

n has little uncertainty in each
coordinate, the observation operator Hn= [HL

n ,H
S
n ] involves all coordinates, and so does

the observation:

Yn+1 =HL
nX

L
n +HS

nX
S
n +ζn+1. (1.3)

XS
n could have significant contribution to the observation Yn through HS

n . Directly
ignoring the small scale part may create a big bias, as the filter will try to interpret
the contribution of XS

n in terms of XL
n , which is called representation error [12, 13].

The correct filter reduction requires some simple but educated estimations of the filter
impact from the small scale variables.

1.2.1. Dynamical decoupled reduced Kalman filter (DRKF). One simple
estimate of the small scale variables would be their statistical equilibrium states. This
idea was applied for stochastic turbulences in chapter 7 of [4] and named the RFDKF. To
generalize it, we consider a simplified setting where the dynamics of the signal variable
Xn is decoupled between the two scales. In other words, the system coefficients of (1.1)
have the following block structure:

An=

[
ALn 0
0 ASn

]
, Bn=

[
BLn
BSn

]
, ξn=

[
ξLn
ξSn

]
, Σn=

[
ΣLn 0
0 ΣSn

]
. (1.4)

The diagonal An used for stochastic turbulence in Section 6.3.2 follows this description.
Notice that with observation mixing the two scales (1.3), the optimal Kalman filter does
not necessarily have a block diagonal structure, so we cannot directly apply a large scale
projection to (1.2).

The DRKF filtering strategy comes as a combination of two ideas. First, if the small
scale part has very little fluctuations, then its unfiltered mean, µSn , is a good estimator.
Second, the small scale observation HS

nX
S
n+1 is interpreted as a noisy perturbation to

the large scale observation. We can remove the mean of this perturbation by letting

Y Ln =Yn−HS
nµ

S
n+1.

We also need to consider the fluctuation at the small scale ∆XS
n+1 =XS

n+1−µSn+1. By
interpreting it as a mean zero Gaussian noise, we need to include the representative
error covariance:

σLn =σn+HS
nV

S
n+1(HS

n )T .

Here V Sn is the unfiltered covariance of XS
n conditioned on the system coefficients. In

this way, we treat {∆XS
n+1} as an independent sequence. Unfortunately this is not the
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case in reality, and model errors are hence created. We remedy this by inflating the
covariance in the end with a factor r>1.

In summary, DRKF estimates XL
n and XS

n by Gaussian distributions (µLn ,C
L
n ) and

(µSn ,V
S
n ) respectively. The mean and covariance sequences are updated as below:

µLn+1 =ALnµ
L
n +BLn +KL

n+1(Y Ln −HL
n (ALnµ

L
n +BLn )),

CLn+1 = rKL(ĈLn+1), ĈLn+1 =ALnC
L
n (ALn)T +ΣLn ,

KL
n+1 = ĈLn+1(HL

n )T (σLn +HL
n Ĉ

L
n+1(HL

n )T )−1,

KL(ĈLn+1) = ĈLn+1− ĈLn+1(HL
n )T (σLn +HL

n Ĉ
L
n+1(HL

n )T )−1HL
n Ĉ

L
n+1,

Y Ln =Yn−HS
nµ

S
n+1, σLn =σn+HS

nV
S
n+1(HS

n )T ,

µSn+1 =ASnµ
S
n+BSn , V Sn+1 =ASnV

S
n (ASn)T +ΣSn .

(1.5)

Since the filter essentially works only in the large scale subspace, the computational
complexity is reduced to O(q3 +p2q) or O(q3 +p2q+d2) , see Section A for details.
Also see chapter 8 of [4] for an application of DRKF to random filtering of geophysical
turbulence.

1.2.2. General RKF. When the two scales are not dynamically decoupled, the
DRKF (1.5) may have a bad performance. This is because DRKF does not filter the
small scale part, while the small scale error enters the large scale estimation through
the cross scale dynamics (see page 43 of [4] for an example). Another more appropri-
ate reduced filtering strategy would be filtering the small scale with a constant prior
covariance DS as an estimate of the small scale dynamics. This will be called a general
reduced Kalman filter (RKF). It has been applied to stochastic turbulence in chapter 7
of [4] and called VSDAF.

To be specific, a fixed PS⊗PS matrix DS will be used as the prior for the small
scale variables. So given a covariance estimator Cn for XL

n , the effective covariance of
Xn will be

C+
n :=Cn+DS .

In many applications, DS can be chosen as a multiple of the unfiltered equilibrium
covariance of XS

n . But it can also take other general matrix values. In summary, the
RKF estimates Xn by a Gaussian distribution N (µn,Cn+DS), with the mean and
covariance generated by a recursion:

µn+1 =Anµn+Bn+K̂n+1(Yn+1−Hnµn),

Ĉn+1 =AnC
+
n A

T
n +Σn, K̂n+1 = Ĉn+1Hn(σn+HnĈn+1H

T
n )−1,

Cn+1 = rPLK(Ĉn+1)PL.

(1.6)

Furthermore, using the complexity analysis in Section A, we see RKF reduces the com-
plexity to O(d2 +dq2 +dp2).

Unlike DRKF, RKF applies a large scale covariance projection in the final step.
This ensures the prior covariance of small scale variables in the next step is still DS .
Its practical effect is similar to the localization techniques in EnKF that are widely
applied, as both simplify the covariance structures. On the other hand, this projection
may underestimate the error covariance for the new update. To offset this effect, a
multiplicative inflation with r>0 is applied, and in the effective covariance estimator



1100 ACCURACY AND ROBUSTNESS FOR REDUCED KALMAN FILTERING

we also include the constant covariance DS . Ideally, these inflations will remedy the
possible covariance underestimation, so that

K(Ĉn+1)�C+
n+1 = rPLK(Ĉn)PL+DS . (1.7)

To be pragmatic, (1.7) may not hold for all n, and we need to introduce a sequence for
the ratio between both sides. This will be formalized in Definition 2.1 in Section 2.

1.3. Filter error bounds through filter covariance. Although the reduced
Kalman filters produce good estimates in various numerical tests, there is no good
rigorous explanation of their successes. We intend to close this gap by developing a
quantitative analysis. In our context, the filter errors of RKF and DRKF are given
respectively by

en=Xn−µn, eLn =XL
n −µLn .

Notice that we do not consider the small scale estimator error for DRKF, as the small
scale variables are not filtered there.

Error analyses for reduced filters are usually more difficult than error analyses for
the optimal filter. For the optimal filter (1.2), the covariance of the error Xn−mn is
exactly Rn, which can be easily studied by the associated Riccati equation [6]. For the
reduced filters, the covariance estimators C+

n and CLn do not necessarily match the real
filter error covariance, since the dimension reduction procedures may create biases.

One classical error analysis strategy for non-optimal filters is to compare them with
the optimal filter and show the differences are small [8–11, 28]. Roughly speaking, this
strategy assumes the non-optimal filter is very close to the optimal filter at one time,
and then exploits the intrinsic ergodicity and continuity of the optimal filter, or an
asymptotic expansion, to show the difference remains small afterwards. Unfortunately,
this strategy is invalid for our reduced filters, because they are structurally different
from the optimal filter (1.2). Evidently, Rn may not have a block diagonal structure
like C+

n does, it may not have its PS⊗PS sub-block being exactly DS , and this sub-
block can never be zero as in the case for DRKF. This is also known as the information
barrier for reduced filters, investigated by [5, 7].

A more pragmatic strategy would be looking for intrinsic statistical properties of
filter errors. In particular, it is important to check whether the reduced covariance
estimators dominate the real error covariance, as underestimating error covariance often
causes severe filter divergence (see chapter 2 of [4]). The direct way will be verifying
bounds such as Een⊗en�C+

n . This is applicable for RKF if the system noises are
independent of the system coefficients, for example when the latter are deterministic.
But for general scenarios and DRKF, the error covariance matrix Een⊗en is hard to
track, as nonindependent system noises are involved in the recursion. For these difficult
situations, we need to look at other statistical quantities.

One natural choice would be the mean square error (MSE), E|en|2. But MSE works
best when the error is isotropic, in other words the error has similar strength in each
component. Our two-scale setting clearly does not fit into this description, as the small
scale error is much weaker. In comparison, the Mahalanobis norm is a better error
measurement. Given a nonsingular d×d positive definite (PD) matrix C, it generates
a Mahalanobis norm on Rd:

‖v‖2C :=vT [C]−1v. (1.8)

This norm is central in many Bayesian inverse problems. For example, given the prior
distribution of X as N (b,C), and a linear observation Y =HX+ξ with Gaussian noise
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ξ∼N (0,Σ), the optimal estimate is the minimizer of ‖x−b‖2C +‖Y −Hx‖2Σ. In our
context, it is natural to look at the Mahalanobis error 1

d‖en‖
2
C+
n

and 1
p‖e

L
n‖2CLn . Based

on our RKF formulation, the true state is estimated by N (µn,C
+
n ). A natural statistics

that verifies this hypothesis is simply 1
dE‖en‖

2
C+
n

. If the hypothesis holds, this statistic

should roughly be of constant values. Comparing with the MSE, the Mahalanobis error
puts less weights in the large scale variables, and more weights in the small scale. By
showing the Mahalanobis error is bounded, we show the error covariance estimator C+

n

more or less captures the real error covariance.
The Mahalanobis error also has surprisingly good dynamical properties. In short,

‖en‖2C+
n

is a dissipative (also called exponentially stable) sequence. This is actually

carried by an intrinsic inequality induced by the Kalman covariance update operator
K. It was exploited by previous works in the literature [6, 29] to show robustness of
Kalman filters and extended Kalman filters (although the name Mahalanobis error is
not explicitly used, but readers can identify it easily in the proofs).

One major result of this paper is informally stated as below:

Theorem 1.1. When applying DRKF (1.5) to a dynamically decoupled system (1.4),
the non-dimensionalized Mahalanobis filter error 1

pE‖e
L
n‖2CLn decays exponentially fast

and is eventually bounded by a dimension free constant.
When applying RKF (1.6) to a general system described by (1.1), if the large scale

projection does not decrease covariance estimate so (1.7) holds, the non-dimensionalized
Mahalanobis filter error 1

dE‖en‖
2
C+
n

decays exponentially fast and is eventually bounded

by a dimension free constant. In addition, if the system noises are independent of all
system coefficients, the second moment of error is dominated by its estimator: Een⊗
en�C+

n .

The formal description is given by Theorems 2.1, 2.2, and 3.1. The requirement
of (1.7) will be replaced by a concrete version, Definition 2.1, which can be verified in

Section 4 provided that PSR̃PS�CDS for a suitable constant C>0 depending on r,
where R̃ is the stationary asymptotic covariance for (1.6).

1.4. Intrinsic filter performance criteria. Theorem 1.1 essentially shows
that the Mahalanobis error is a natural and convenient statistic to assess reduced filter
performance. On the other hand, it raises two new questions to address:

• Bounds of the Mahalanobis error are informative only if the covariance estimator
CLn or C+

n is bounded. So how can we bound these covariance estimators?

• A large scale projection is applied for RKF in the assimilation step. It may
lead to covariance underestimation. Ideally this can be offset by the covariance
inflations so (1.7) holds. In principle, (1.7) requires online verifications during
the implementation of RKF. Yet, offline a priori criteria that depend only on
the system coefficients are more desirable.

Let us consider DRKF first. We only need to consider the first question. In fact, the
answer is quite straightforward. Consider the following augmented signal-observation
system:

XL′

n+1 =A′nX
′
n+Bn+ξLn+1, Y ′n+1 =HL

nX
L′

n+1 +ζ ′n+1,

A′n=
√
rALn , ξLn+1∼N (0,Σ′n), Σ′n= ΣLn , ζn+1∼N (0,σLn ).

(1.9)

The optimal filter of the above system is a Kalman filter N (mL
n ,R

L
n). It is easy to

verify that RLn =CLn /r if it holds at n= 0, because RLn follows a Riccati recursion just
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like (1.5). The advantage we gain from this observation is that, as a Kalman filter

covariance, RLn converges to a unique stationary solution R̃Ln , assuming the system (1.9)
is stationary, ergodic, weakly observable and controllable (See [6] and Theorem C.1).
This stationary solution reflects the intrinsic filtering skills of (1.9). It is clearly bounded
and independent of the filter initialization, and in many cases, it can be computed or
admits simple concrete upper bounds.

A similar idea also works for RKF. The corresponding inflated signal-observation
system is slightly different from (1.1) with an inflation r′>r:

X ′n+1 =A′nX
′
n+Bn+ξ′n+1, Y ′n+1 =HnX

′
n+1 +ζ ′n+1,

A′n=
√
r′An, ξn+1∼N (0,Σ′n), Σ′n= r′Σn+r′AnDSA

T
n , ζn+1∼N (0,σn).

(1.10)

If R̃n denotes the associated stationary Kalman covariance sequence, then it possesses
all the theoretical and computational advantages mentioned for R̃Ln . Theorem 4.2 in

below transfers these advantages to RKF by showing that C+
n � rR̃n+DS . Moreover,

Theorem 4.2 shows that the online condition (1.7) can be verified by a similar version

for the stationary solution R̃n, which will be Assumption 4.1; but because R̃n can be
estimated a priori, we find an a priori criterion that guarantees the performance of RKF.

In Section 6, we will discuss some scenarios when R̃Ln and R̃n can be bounded
explicitly in spectral norms or with respect to the optimal covariance Rn. Then Theorem
1.1 implies the MSE E‖en‖2 is bounded, or the reduced filter performance is comparable
with the optimal one. In many practical scenarios where the observation is frequent,
the system noise Σn and observation noise σn are of scale ε comparing to other system
coefficients. Then it is easy to verify in such a setting R̃n and R̃Ln scale like ε2, and so
will the reduced filter errors. This is a nontrivial property for the reduced filters and
evidently very useful in practice. This is usually framed as filter accuracy [30,31].

Other than accuracy, another important application for our framework is finding the
transition point for two-scale separation, and how to setup the small scale covariance DS

for RKF. These questions can be answered by studying the Kalman filters for (1.9) and
(1.10). Section 6 discusses these issues with concrete examples in stochastic turbulence.

1.5. Preliminaries. The remainder of this paper is arranged as follows. Al-
though RKF (1.6) applies to more general systems, its error analysis is structurally
simpler than the one of DRKF. Section 2 starts our discussion by first showing the
second moment of RKF error is bounded by C+

n in Theorem 2.1, and then the dissipa-
tion of the Mahalanobis error in Theorem 2.2, where Definition 2.1 formalizes (1.7). A
direct Corollary 2.1 shows that the filter is exponentially stable for the mean sequence.
The additional structural complexity of DRKF comes from the fact that the small scale
fluctuation sequence is not an independent one. Section 3 resolves this issue by proving
Theorem 3.1. Section 4 introduces some intrinsic performance criteria for the reduced
filters. This is carried out by a comparison argument using the Kalman filters for the
inflated systems (1.9) and (1.10). The details are in Proposition 4.1 and Theorem 4.2.
Immediate corollaries for MSE and accuracy are also drawn there. Section 5 generalizes
this idea to more general stochastic settings. Finally, Section 6 reviews some classical
methods to control the Kalman filter covariance, and applies them to stochastic turbu-
lences in Fourier domain in various dynamical and observational settings. The related
complexity estimates, convergence to a stationary Kalman covariance, and some matrix
inequalities are discussed in the appendix.

Before we start the discussion, here are a few standard notations we will use in the
following. ‖C‖ denotes the spectral norm of a matrix C, and |x| is the l2 norm of a
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vector x. We use x⊗x to denote the rank 1 n×n matrix xxT generated by a column
vector x. We use C ∈PD(PSD) or simply C is PD (PSD) to indicate a symmetric
matrix C is positive definite (semidefinite). [C]j,k denotes the (j,k)-th entry of a matrix
C, and [C]I2 is the sub-matrix with both indices in a set I. And A�B indicates that
B−A∈PSD. dae is the smallest integer above a real number a.

We assume the filter initializations are known and of deterministic values. Generally
speaking, there are no specific requirements for their values. But some results implicitly
rely on the invertibility of the covariance matrices.

Following [6], we say a random sequence Z0,Z1,. .. is stationary, if (Z0,Z1,. ..) and
(Zk,Zk+1,. ..) have the same distribution. We say such a sequence is ergodic, if there is
only one invariant measure for the shifting map (Z0,Z1,. ..) 7→ (Z1,Z2,. ..).

There will be three filtrations in our discussion. The first one contains all the
information of system coefficients up to time n, and the initial covariance matrices for
the filters:

Fcn=σ{Ak,Bk,Σk,Hk,σk,k≤n}∨σ{R0,C0,C
L
0 ,V

S
0 ,R̃0,R̃

L
0 }.

Noticeably, all the filter systems have their covariance estimators inside this filtration:

σ{Rk,CLk ,R̃Lk ,Ck,R̃k,k≤n+1}⊂Fcn.

We will use Fc=∨n≥0Fcn to denote all the information regarding the system coefficients
through the entire time line. When the system coefficient and initial filter covariances
are deterministic, Fc is trivial, so EFc =E.

The second filtration in addition includes information of the observations and mean
initialization

Fon=σ{Yk,k≤n}∨σ{m0,µ0,µ
L
0 }∨Fcn.

This filtration also contains the filter mean sequence mn,µn,µ
L
n . The last filtration

contains all the information of system (1.1) up to time n, Fn=Fon∨σ{ζk,ξk,k≤n}.
We use EnZ, EFZ to denote the conditional expectation of a random variable Z with
respect to Fn or another fixed σ-field F respectively.

Finally, as our discussion concerns two filters, and two scales, quite a few variables
are inevitably introduced. Table 1.1 below lists some frequently used ones for future
reference.

2. Performance of RKF

In the RKF formulation (1.6), the multiplicative inflation r>1 in large scale, and
the constant inflation in small scale Ds, intend to remedy the side effect of large scale
projection PL and ensure that the covariance estimate does not decrease. We measure
the actual covariance change caused by this dimension reduction step, through the
following sequence of ratios:

βn+1 = inf{b≥0,K(Ĉn+1)� bC+
n+1}. (2.1)

Recall that K(Ĉn+1) is the target posterior covariance given by the Kalman filter for-

mulas, and Ĉ+
n+1 is the posterior covariance that RKF employs. Intuitively, if βn is

eventually bounded by 1, then C+
n+1 does not underestimate the error covariance. More

formally, we define the following.
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Symbol Interpretation
µLn ,µ

S
n DRKF large and small scale filter mean

CLn DRKF large scale filter covariance
V Sn DRKF small scale unfiltered covariance

R̃Ln DRKF intrinsic Kalman filter covariance of (1.9)
µn RKF filter mean of both scales
Cn RKF large scale filter covariance
DS RKF small scale prefixed covariance
C+
n RKF filter covariance of both scales

R̃n RKF intrinsic Kalman filter covariance of (1.10)
βn Covariance underestimation in projection, see (2.1)

β∗(<1) A constant that dominates βn asymptotically
r(>1) Multiplicative inflation used in both filters

r′(>r) Multiplicative inflation used to define R̃Ln
K,KL Covariance map from forecast to posterior in RKF and DRKF

K̂n,K
L
n Kalman gain matrix in RKF and DRKF

Table 1.1: A list of frequently occurring symbols.

Definition 2.1 (Acceptable reduction). We say the dimension reduction in RKF is
asymptotically acceptable if there is a finite adjustment time n0 and a β∗<1 such that

βn≤β∗ for all n≥n0.

Moreover, we say the RKF enters the acceptable reduction phase, when n≥n0.

The conditions above are online, in the sense that their verification requires an
implementation of RKF. Section 4 will provide an a priori criterion Assumption 4.1,
which can lead to asymptotically acceptable reductions.

2.1. Second moment of error with system independent noises. In many
scenarios, the system noises depend on the system coefficients only through Σn and σn.
In specific:

ξn+1∼N (0,Σn), ζn+1∼N (0,σn) conditioned on Fc∨Fn. (2.2)

In simple terms, (2.2) indicates that the system noises are independent of the system
coefficients. In the classical setting of Kalman filtering, where the system coefficients are
deterministic, this holds automatically. But it may fail for some conditional Gaussian
systems. Assuming (2.2), the second moment of error EFcen⊗en can be computed
explicitly, and is in fact bounded by the effective covariance estimator C+

n .

Theorem 2.1. Suppose the system noises are independent of the system coefficients,
so (2.2) holds. For any fixed inflation ratio r>1, consider applying the RKF (1.6) to
system (1.1). Suppose the dimension reduction in RKF is asymptotically acceptable as
described in Definition 2.1. Then with any fixed initial conditions, when

n≥n0 +max{0,d− log‖[EFcen0
⊗en0

][C+
n0

]−1‖/logβ∗e}, (2.3)

the second moment of the error en=Xn−µn is dominated by the covariance estimator:

EFcen⊗en�C+
n a.s.
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If we take average of both sides, this implies that Een⊗en�EC+
n .

Notice that the dependence of n on EFcen0
⊗en0

is logarithmic, so in practice the
exact value of EFcen0⊗en0 is not very important.

Proof. Using Lemma B.4, we define ψn0
,

ψn0 = max{1, inf{ψ :EFc(en0⊗en0)�ψC+
n0
}}= max{1,‖EFc(en0⊗en0)[C+

n0
]−1‖}.

We define ψn for n≥n0 recursively by letting

ψn+1 = max{1,ψnβn+1}.

By our assumptions, for n≥n0, ψn converges to 1 geometrically with ratio β∗, and it
reaches 1 when (2.3) happens. We claim that

EFc(en⊗en)�ψnC+
n , n≥n0, (2.4)

so the claim of this theorem holds.
We show (2.4) by induction. It is clear that it holds for n=n0. Suppose it holds

for n, consider the forecast error ên+1 =Xn+1−(Anµn+Bn). The following recursion
can be established:

ên+1 =Anen+ξn+1, en+1 = (I−K̂n+1Hn)ên+1−K̂n+1ζn+1.

In combination:

en+1 = (I−K̂n+1Hn)Anen+(I−K̂n+1Hn)ξn+1−K̂n+1ζn+1.

Because (I−K̂n+1Hn)An∈Fc, where ξn+1 and ζn+1 are conditionally mean zero based
on (2.2), we find

EFcen+1⊗en+1

=EFc [(I−K̂n+1Hn)(An(en⊗en)ATn +Σn)(I−K̂n+1Hn)T +K̂T
n+1σnK̂n+1]

=[(I−K̂n+1Hn)(AnEFcen⊗enATn +Σn)(I−K̂n+1Hn)T +K̂T
n+1σnK̂n+1]

�(I−K̂n+1Hn)(ψnAnC
+
n A

T
n +Σn)(I−K̂n+1Hn)T +K̂T

n+1σnK̂n+1

�ψn[(I−K̂n+1Hn)(AnC
+
n A

T
n +Σn)(I−K̂n+1Hn)T +K̂T

n+1σnK̂n+1] =ψnK(Ĉn+1).
(2.5)

In the penultimate step, we used that ψn≥1, and also the well known matrix identity
for Kalman updates

K(Ĉn+1) = (I−K̂n+1Hn)Ĉn+1(I−K̂n+1Hn)T +K̂T
n+1σnK̂n+1.

By the definition of βn+1 (2.1), we have ψnK(Ĉn+1)�ψnβn+1C
+
n+1�ψn+1C

+
n+1. So

(2.4) holds for n+1 as well.

Remark 2.1. In fact, if EFce0 = 0, one can also show EFcen= 0 in this setting, so
EFcen⊗en is actually the error covariance. But the RKF mean µn is a biased estimator.
Unbiasedness would require EFonen= 0 a.s., which in general does not hold. In order to
avoid confusion, we did not mention this fact in the theorem.
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2.2. Mahalanobis error dissipation. If the system coefficients have depen-
dence on the system noises, the Kalman gain matrix K̂n+1 may have correlation with
the error term en. So the identity (2.5) no longer holds. But even in this difficult sce-
nario, an intrinsic matrix inequality still holds. In the context of the optimal Kalman
filter (1.2), it can be formulated as

ATn (I−Kn+1Hn)TR−1
n+1(I−Kn+1Hn)An�R−1

n ,

and for RKF it becomes (2.9) in below. From this perspective, the Mahalanobis error
‖en‖2C+

n
is a natural statistic that dissipates through time. In specific, we have

Theorem 2.2. For any fixed inflation r>1, consider applying the RKF (1.6) to the
d+q dimensional system (1.1). Suppose the dimension reduction in RKF is asymptoti-
cally acceptable as described by Definition 2.1, then

E‖en‖2C+
n
≤ (β∗)n−n0E‖en0

‖2
C+
n0

+
2d

1−β∗
.

In other words, the Mahalanobis error is dissipative after the adjustment time n0.

Proof. We will show that given any n,

En‖en+1‖2C+
n+1

≤βn+1‖en‖2C+
n

+2dβn+1. (2.6)

Then the original claim of this theorem can be achieved by applying the Gronwall’s
inequality in discrete time. To show (2.6), recall that in the proof of Theorem 2.1, the
filter error has the following recursion:

en+1 = (I−K̂n+1Hn)Anen+(I−K̂n+1Hn)ξn−K̂n+1ζn+1.

Since ξn+1 and ζn+1 are independent of Fn conditioned on Σn and σn, we find that

EneTn+1[C+
n+1]−1en+1 =EneTnATn (I−K̂n+1Hn)T [C+

n+1]−1(I−K̂n+1Hn)Anen (2.7)

+EnξTn+1(I−K̂n+1Hn)T [C+
n+1]−1(I−K̂n+1Hn)ξn+1

+EnζTn+1K̂
T
n+1[C+

n+1]−1K̂n+1ζn+1. (2.8)

For the first part (2.7), we claim that

ATn (I−K̂n+1Hn)T [C+
n+1]−1(I−K̂n+1Hn)An�βn+1[C+

n ]−1. (2.9)

To see that, notice by (2.1), βn+1C
+
n+1�K(Ĉn+1)� (I−K̂n+1Hn)Ĉn+1(I−K̂n+1Hn)T .

Moreover (I−K̂n+1Hn) = (I+ Ĉn+1H
T
n σ
−1
n Hn)−1 is clearly invertible. By Lemma B.2,

the inversion of the inequality above reads

(I−K̂n+1Hn)T [C+
n+1]−1(I−K̂n+1Hn)�βn+1Ĉ

−1
n+1. (2.10)

Next, notice that Ĉn+1�AnC+
n A

T
n , so

ATn (I−K̂n+1Hn)T [C+
n+1]−1(I−K̂n+1Hn)An

�βn+1A
T
n Ĉ
−1
n+1An�βn+1A

T
n [AnC

+
n A

T
n ]−1An,
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which by Lemma B.2 leads to (2.9). To deal with (2.8), we use the identity aTAa=
tr(AaaT ) and the independence of ξn+1,ζn+1,

EnξTn+1(I−K̂n+1Hn)T [C+
n+1]−1(I−K̂n+1Hn)ξn+1 +ζTn+1K̂

T
n+1[C+

n+1]−1K̂n+1ζn+1

=Entr[(I−K̂n+1Hn)T [C+
n+1]−1(I−K̂n+1Hn)Σn+K̂n+1σnK̂

T
n+1[C+

n+1]−1].

Note (2.10) and that by definition, Ĉn+1�Σn, so Lemma B.2 implies:

tr[(I−K̂n+1Hn)T [C+
n+1]−1(I−K̂n+1Hn)Σn]≤dβn+1.

Also notice that

K(Ĉn+1) = (I−K̂n+1Hn)Ĉn+1(I−K̂n+1Hn)T +K̂n+1σnK̂
T
n+1� K̂n+1σnK̂

T
n+1. (2.11)

Then by βn+1C
+
n+1�K(Ĉn+1)� K̂n+1σnK̂

T
n+1, tr(K̂n+1σnK̂

T
n+1[C+

n+1]−1)≤dβn+1. By
summing up (2.7) and (2.8), we have reached (2.6) and so ends the proof.

Remark 2.2. In the analysis of the standard Kalman filter and extended Kalman
filter, [6, 29] implicitly exploit the same mechanism but do not apply a multiplicative
inflation. But they require that the covariance sequences Cn,C

−1
n ,Σn and Σ−1

n are
bounded from above ( [6] has weaker assumptions, but its results are qualitative rather
than quantitative). In principle, we can also remove the multiplicative inflation by
adding similar conditions. But such conditions are usually not satisfied in high dimen-
sional settings, since Σn may have many small scale entries being very close to zero.

2.3. Exponential stability. Another useful property implied by the previous
analysis is that RKF is exponentially stable. Let (µ0,C0) and (µ′0,C0) be two implemen-
tations of RKF with the same covariance but different means. Then these two RKFs
share the same covariance estimate, and the difference in their mean estimates is given
by

(µn−µ′n) =Un,0(µ0−µ′0), Un,m=

n−1∏
k=m

(I−K̂k+1Hk)Ak.

So if ‖Un,0‖ converges to zero exponentially fast, then so does the mean difference.
In [6], this is called exponential stability.

Corollary 2.1. Under the conditions of Theorem 2.2, suppose also that supn‖C+
n ‖<

∞,‖[C+
0 ]−1‖<∞, then the RKF filter is exponentially stable

limsup
n→∞

1

n
log

∥∥∥∥∥
n−1∏
k=0

(I−K̂k+1Hk)Ak

∥∥∥∥∥≤ 1

2
logβ∗.

Proof. Let Un,n0 =
∏n−1
k=n0

(I−K̂k+1Hk)Ak. By iterating (2.9) n times, we find
that

‖C+
n ‖−1UTn,0Un,0�UTn,0[C+

n ]−1Un,0�

(
n∏
k=1

βn

)
[C+

0 ]−1.

Taking spectral norm on both hand side yields our claim.

Sections 4 and 6 will discuss how to bound ‖C+
n ‖.
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3. Error analysis of DRKF
When comparing DRKF with RKF in the dynamical decoupled scenario (1.4), the

former has a significant advantage: since no large scale projection is applied, there
is no risk of underestimating the error covariance, so online criteria like the ones in
Definition 2.1 are not necessary. But there are two disadvantages. First, DRKF has
a special dynamical structural requirement, second the small scale fluctuation requires
more technical treatments. To see the second point, it is straight forward to have the
following recursion for the filter error, just like in the proof of Theorem 2.1,

eLn+1 = (I−KL
n+1H

L
n )Ane

L
n +(I−KL

n+1H
L
n )ξLn+1−KL

n+1ζn+1−KL
n+1H

S
n∆XS

n+1.

Unlike ξn+1 and ζn+1, in most situations, ∆XS
n+1 =XS

n+1−µSn+1 has a nonzero corre-
lation with the error eLn , as it is not an independent time series. Therefore the second
moment matrix does not follow a recursive formula, since (2.5) no longer holds. On
the other hand, the Mahalanobis error dissipation still holds since it is a more intrin-
sic property. In order to show that, we need additional conditions on the small scale
dynamics ASn , and impose a (2.2) type of independence condition on the small scale
system. We will see that such condition holds for many important examples in Section
6.

Theorem 3.1. Consider applying DRKF (1.5) to system (1.1) with two-scale dy-
namical decoupling (1.4). Suppose there is a λS<1 such that the small scale unfiltered
covariance V Sk satisfies

ASk,jV
S
j (ASk,j)

T �λk−jS V Sk , ASk,j =ASk−1 ·· ·ASj+1A
S
j .

Assume also the distribution of the small scale system noise ξSn is N (0,ΣSn), conditioned
on the system coefficients σ-field Fc. Then the following holds

E‖eLn‖2CLn ≤
2

rn
E‖eL0 ‖2CL0 +

2p(1+γσ)

r−1
+

4
√
λSrpγσ

(
√
r−1)(1−

√
λS)

. (3.1)

The last term comes from the time correlated small scale fluctuation, and the constant
γσ is given by

γσ = sup
n≥0
{‖[σLn ]−1HS

nV
S
n+1(HS

n )T ‖}.

Note that γσ≤1, and it has the potential to be small if HS
nV

S
n+1(HS

n )T is small.

Proof. The filter error follows the recursion:

eLn+1 = (I−KL
n+1H

L
n )ALne

L
n +KL

n+1ζn+1−KL
n+1H

L
n ξn+1−KL

n+1H
S
n∆XS

n+1.

In order to take away the influence of ∆XS
n , consider

ẽLn =eLn−
n∑
k=1

ULn,kQ
S
k , QSk :=KL

kH
S
k−1∆XS

k ,

and

ULn,k := (I−KL
nH

L
n−1)ALn−1 ·· ·(I−KL

k+1H
L
k )ALk .
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ẽLn follows the recursion

ẽLn+1 = (I−KL
n+1H

L
n )ALn ẽ

L
n +KL

n+1ζn+1−KL
n+1H

L
n ξn+1.

Then the same proof of Theorem 2.2 is valid for ẽLn+1, except that in place of (2.1), we

have CLn+1 = rKL(ĈLn+1). So βn will be replaced by 1
r , and instead of (2.6), we have

En‖ẽLn+1‖2CLn+1
≤ 1

r
‖ẽLn‖2CLn +

2d

r
.

As a consequence of the Gronwall’s inequality, E‖ẽLn‖2CLn ≤
1
rn ‖ẽ

L
0 ‖2CL0 + 2d

r−1 . Because of

Young’s inequality

E‖eLn‖2CLn ≤2E‖ẽLn‖2CLn +2E

∥∥∥∥∥
n∑
k=1

ULn,kQ
S
k

∥∥∥∥∥
2

CLn

.

It suffices for us to bound

E

∥∥∥∥∥
n∑
k=1

ULn,kQ
S
k

∥∥∥∥∥
2

CLn

=
∑
j,k≤n

E(QSj )T (ULn,j)
T [CLn ]−1ULn,kQ

S
k . (3.2)

Following the proof of (2.9), a similar matrix inequality also holds for DRKF,

(ALn)T (I−KL
n+1H

L
n )T [CLn+1]−1(I−KL

n+1H
L
n )ALn �

1

r
[CLn ]−1.

Iterate this multiple times, we have (ULn,k)T [CLn ]−1ULn,k� rk−n[CLk ]−1.
The terms in the sum (3.2) with j=k can be bounded by

E(QSk )T (ULn,k)T [CLn ]−1ULn,kQ
S
k

≤ 1

rn−k
E(QSk )T [CLk ]−1QSk

=
1

rn−k
Etr((KL

k )T [CLk ]−1KL
k (HS

k−1∆XS
k ⊗HS

k−1∆XS
k ))

≤ 1

rn−k
Etr((KL

k )T [CLk ]−1KL
k EFck(HS

k−1∆XS
k ⊗HS

k−1∆XS
k ))

=
1

rn−k
Etr([CLk ]−1KL

kH
S
k−1V

S
k (HS

k−1)T (KL
k )T ).

Similar to (2.11), we have

CLk = rKL(ĈLk )� rKL
k σ

L
k−1(KL

k )T �γ−1
σ KL

kH
S
k−1V

S
k (HS

k−1)T (KL
k )T . (3.3)

As a consequence of Lemmas B.5 and B.3, the j=k terms in (3.2) can be further
bounded by

E(QSk )T (ULn,k)T [CLn ]−1ULn,kQ
S
k ≤

γσ
rn−k

Etr(Ip) =
pγσ
rn−k

. (3.4)

The j <k terms in (3.2) come from time correlations of ∆XS
k . In order to bound them,

notice that:

E(QSj )T (ULn,j)
T [CLn ]−1ULn,kQ

S
k
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=Etr((HS
j−1)T (KL

j )T (ULn,j)
T [CLn ]−1ULn,kK

L
kH

S
k−1(∆XS

k ⊗∆XS
j ))

=Etr(WT
j (ULn,j)

T [CLn ]−1ULn,kWk)EFcn(∆XS
k ⊗∆XS

j ))

with Wk :=KL
kH

S
k−1. The moving average representation of ∆XS

k is:

∆XS
k =ASk,j∆X

S
j +

k∑
i=j+1

ASk,iξ
S
i .

Since for i>j, ξSi is distributed as N (0,ΣSi ) conditioned on Fcn∨Fj ,

EFcn∨Fj (∆X
S
i ⊗∆XS

j ) =EFcn∨Fj (A
S
k,j∆X

S
j ⊗∆XS

j ) =ASk,jV
S
j .

Therefore, for the j <k terms in (3.2)

E(QSj )T (ULn,j)
T [CLn ]−1ULn,kQ

S
k +(QSk )T (ULn,k)T [CLn ]−1ULn,jQ

S
j

=Etr([WT
j (ULn,j)

T [CLn ]−1ULn,kWkA
S
k,j+(ASk,j)

TWT
j (ULn,j)

T [CLn ]−1ULn,kWk]V Sj ). (3.5)

In order to apply Lemma B.5, we are interested in bounding the symmetric matrix

Zj,k :=WT
j (ULn,j)

T [CLn ]−1ULn,kWkA
S
k,j+(ASk,j)

TWT
k (ULn,k)T [CLn ]−1ULn,jWj .

Notice that for any PSD matrix C, matrices A and B, and γ>0, the following holds

(γ−1A−γB)TC(γ−1A−γB)�0 ⇒ γ−2ATCA+γ2BTCB�ATCB+BTCA.

For our purpose, let A=ULn,kWkA
S
k,j ,B=ULn,jWj ,C= [CLn ]−1,γ= (λSr)

k−j
4 , and find

Zj,k�γ−2(ASk,j)
TWT

k (ULn,k)T [CLn ]−1ULn,kWkA
S
k,j+γ2WT

j (ULn,j)
T [CLn ]−1ULn,jWj .

To continue, recall that (ULn,k)T [CLn ]−1ULn,k� rk−n[CLk ]−1, and the relation (3.3).
Then using Lemmas B.5 and B.3,

tr((ASk,j)
TWT

k (ULn,k)T [CLn ]−1ULn,kWkA
S
k,jV

S
j )

≤rk−ntr((ASk,j)
T (KL

kH
S
k−1)T [CLk ]−1KL

kH
S
k−1A

S
k,jV

S
j )

=rk−ntr([CLk ]−1KL
kH

S
k−1A

S
k,jV

S
j (ASk,j)

T (KL
kH

S
k−1)T )

≤λk−jS rk−ntr([CLk ]−1KL
kH

S
k−1V

S
k (KL

kH
S
k−1)T ).

Using (3.3) again, we find the quantity above is bounded by γσλ
k−j
S rk−np. Likewise

tr(WT
j (ULn,j)

T [CLn ]−1ULn,jWjV
S
j )≤ rj−ntr([CLj ]−1KL

j H
S
j−1V

S
j (KL

j H
S
j−1)T )≤ rj−nγσp.

As a consequence,

(3.5)≤Etr(Zj,kV
S
j )≤2r

k+j
2 −nλ

k−j
2

S γσp. (3.6)

Finally, we can bound (3.2) by (3.4) and (3.6):
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(3.2)≤
n∑
k=1

p

rn−k
+2p

∑
j<n

r
j−n
2

∑
k≥j+1

λ
k−j
2

S ≤ rpγσ
r−1

+
2
√
λSrpγσ

(
√
r−1)(1−

√
λS)

.

Remark 3.1. In the first appearance, the formulation of the result may suggest that
the filter error can be reduced by picking a large inflation strength r. In fact, this is an
artifact caused by the usage of Mahalanobis error. The covariance estimator CLn also
increases with r, so ‖eLn‖CLn being small does not imply en is small. This is slightly
discussed in the next section. On the other hand, a larger r does lead to stronger
stability.

Following the same proof of Corollary 2.1, the exponential stability holds for DRKF
as well:

Corollary 3.1. Under the conditions of Theorem 3.1, suppose also that

sup
n
‖CLn ‖<∞, ‖[CL0 ]−1‖<∞,

then the DRKF filter is exponentially stable as

limsup
n→∞

1

n
log

∥∥∥∥∥
n−1∏
k=0

(I−KL
k+1H

L
k )ALk

∥∥∥∥∥≤−1

2
logr.

4. Intrinsic performance criteria
Sections 2 and 3 have demonstrated that the reduced filter can estimate the real

error covariance. But in order for these results to be applicable to concrete problems,
there are two issues:

• The Mahalanobis error is informative about the filter error only when the
covariance estimators CLn and C+

n are bounded. This is also the case for
EFcen⊗en�C+

n in Theorem 2.1.

• Theorems 2.1 and 2.2 require conditions described in Definition 2.1. These are
online or a posteriori criteria that can be verified only by running RKF. In
practice, a priori criteria are more useful for verification.

To address these two issues, we consider two signal-observation systems (1.9) and

(1.10) as augmentations of system (1.1), and use their Kalman filter covariance R̃Ln and

R̃n as references. These reference filters are important for our reduced filters, because
Proposition 4.1 and Theorem 4.2 below show direct connections between R̃Ln ,R̃n and
CLn ,C

+
n respectively. This approach has four advantages:

1) The Kalman filter covariance Rn describes the smallest possible filter covariance for
signal-observation systems like (1.1). Since the augmented systems (1.9) and (1.10)
can be viewed as small perturbations of system (1.1), the associated Kalman filter

covariance R̃Ln ,R̃n are not too different from the proper part of Rn (Proposition 6.2
explores some sufficient conditions). So if CLn and C+

n are bounded by a multiple of

R̃Ln ,R̃n, the reduced filter covariance matrices are comparable with the optimal.

2) Kalman filters are direct and intrinsic descriptions of how well systems like (1.1)

can be filtered. The dependence of R̃Ln and R̃n on the system coefficients is very

nonlinear. Imposing conditions on R̃n instead of on the system coefficients makes
our exposition much simpler.
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3) Unlike reduced filters, Kalman filter has been a classical research object for decades.
There is a huge literature we can exploit.

4) Kalman filter covariance matrices often converge to a unique stationary solution
of the associated Riccati equation in (1.2), assuming the system coefficients are
ergodic stationary sequences, and other weak conditions hold. See [6] and Section
C for details. This unique solution is independent of the initial condition. By
imposing conditions on the stationary solution, our results for the reduced filters
are independent of the initial conditions as well. When we refer to this stationary
solution in the following discussion, we implicitly assume the existence of this unique
stationary solution.

4.1. Kalman filters for comparison. The connection between DRKF and
the augmented system (1.9) is simple and direct:

Proposition 4.1. Consider applying DRKF (1.5) to system (1.1) with dynamical

decoupling (1.4). Let R̃Ln be the Kalman filter covariance for the large scale reference

system (1.9) with the same system coefficient realization as in (1.1). If R̃Ln = 1
rC

L
n holds

for n= 0, then it holds for all n≥0.

Proof. Suppose our claim holds at time n. Then the Kalman filter covariance for
system (1.9) follows:

̂̃
R
L

n+1 = rALnR̃
L
n(ALn)T +Σ′n=ALnC

L
n (ALn)T +ΣLn = ĈLn+1,

therefore our claim holds at time n+1 as well:

R̃Ln+1 =KL(
̂̃
R
L

n+1) =KL(ĈLn+1) =
1

r
CLn+1.

In the case of RKF, we need to consider system (1.10), of which the Kalman filter

covariance R̃n follows the recursion

R̃n+1 =K(
̂̃
Rn+1),

̂̃
Rn+1 = r′AnR̃nA

T
n +Σ′n. (4.1)

The Kalman update operator K is the same as in (1.2). Unlike Proposition 4.1, where we

showed R̃Ln is directly a multiple of CLn , rR̃n will be an upper bound for Cn, which leads

to rR̃+
n �C+

n . In addition, using this inequality, we can verify the online assumptions

in Definition 2.1 using assumptions regarding R̃n:

Assumption 4.1. Let R̃n be a (the unique stationary) positive definite (PD) solution
of (4.1). Assume that its small scale part is bounded as follow with 1

r <β
∗<1

PSR̃nPS� (β∗r−1)DS .

As we discussed earlier in this section, the Riccati equation (4.1) has a unique sta-
tionary solution under weak conditions. Despite that Theorem 4.2 below works for any
solution of (4.1), by considering the stationary solution it allows Assumption 4.1 to be
independent of the initial conditions.

Theorem 4.2. Consider applying RKF (1.6) to system (1.1), and the Kalman filter

covariance R̃n for system (1.10). Then after a finite time n0, the RKF error covariance

estimate C+
n is bounded by the reference covariance R̃n

C+
n � rR̃n+DS , n≥n0 = dlog(‖R̃−1

0 C0‖)/log(r′/r)e.
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If in addition the reference projection Assumption 4.1 holds, then the conditions in
Definition 2.1 also hold, and the acceptable reduction phase starts no later than n0.

Proof. For all n≥0, denote

νn= inf{ν :Cn�νR̃n}=‖[R̃n]−1Cn‖.

Following the formulation of n0, we assume ν0<∞. We claim that νn has the following
recursive relation:

νn+1≤ rmax{1, 1
r′ νn}. (4.2)

This comes from a simple induction. Suppose that Cn�νnR̃n, we have

Ĉn+1 =AnCnA
T
n +Σn+AnDSA

T
n �νn[AnR̃nA

T
n ]+Σ′n� 1

r′ νn
̂̃
Rn+1.

Hence by the monotonicity and concavity of the operator K, Lemma B.1,

Cn+1� rK(Ĉn+1)� rK( 1
r′ νn

̂̃
Rn+1)� rmax{1, 1

r′ νn}K(
̂̃
Rn+1) =νn+1R̃n+1, (4.3)

which completes the induction. Then if we iterate (4.2) n0 time, we find that

νn≤ r, Cn� rR̃n, for all n≥n0.

Next, we prove the second claim of this theorem by showing a stronger result, that
is the βn sequence defined by (2.1) is bounded by

βn≤
νn
r2

(β∗r−1)+
1

r
. (4.4)

Then because νn≤ r when n≥n0, the assumptions in Definition 2.1 are implied. To see
(4.4), denote

PLK(Ĉn)PL=KLL, PLK(Ĉn)PS =KLS ,

PSK(Ĉn)PL=KSL, PSK(Ĉn)PS =KSS .

For any βn≥ 1
r , from

[
√
βnr−1PL− 1√

βnr−1
PS ]K(Ĉn)[

√
βnr−1PL− 1√

βnr−1
PS ]�0,

we have

(βnr−1)KLL+ 1
βnr−1KSS�KSL+KLS . (4.5)

Finally note that, KSS� 1
rCn�

1
rνnR̃n�

1
rνn(β∗r−1)DS , so

K(Ĉn) =KLL+KLS+KSL+KSS

�βnrKLL+
βnr

βnr−1
KSS

�βn
(
rKLL+

νn(β∗r−1)

r(βnr−1)
DS

)
.
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Note that with the upper bound of βn in (4.4), the coefficient before DS is less than 1,
so

K(Ĉn)�βn(rKLL+DS) =βnC
+
n ,

and the proof is finished.

Remark 4.1. Assumption 4.1 is not the direct replacement of the assumptions in
Definition 2.1, as we need an additional constant β∗r−1. This constant appears to
be necessary for the control of the potential cross covariance between the two scales,
which is achieved by a Cauchy Schwartz inequality (4.5). In certain scenarios, the cross
covariance between two scales can be controlled by, say, localization structures, then
the (4.5) is an overestimate, and β∗r−1 can probably be replaced by 1. In other words,
there might be scenarios where the assumptions in Definition 2.1 hold while Assumption
4.1 does not. This is why we keep two assumptions in this paper instead of combining
them.

4.2. Filter error statistics. In applications, other than the Mahalanobis error
generated by the estimated covariances CLn or C+

n , there are other interesting error
statistics: 1) The MSE E|en|2. 2) The Mahalanobis error generated by the optimal
filter covariance Rn. The latter shows a comparison between the reduced filter and the
optimal filter, as the optimal filter error satisfies E‖Xn−mn‖2Rn =d. In many scenarios,

we may find these error statistics equivalent to the Mahalanobis error generated by CLn
or C+

n . To see this, we can simply combine Theorems 2.2 and 4.2,

Corollary 4.1. Suppose system (1.1) satisfies the reference projection Assumption
4.1, then the Mahalanobis error of RKF generated by the reference covariance is bounded
uniformly in time:

limsup
n→∞

E‖en‖2R̃+
n
≤ 2dr

1−β∗
.

If in addition the system noises are independent of the system coefficients, (2.2), then

Een⊗en� rER̃n+DS .

As a consequence:

• Suppose that limsupn‖R̃+
n ‖≤R, then the MSE is bounded by limsupnE|en|2≤

2Rdr
1−β∗ . If in addition (2.2) holds, then E|en|2≤ rRd.

• Suppose that R̃+
n �ρ2Rn, where Rn is the covariance sequence of the optimal

filter (1.2) and ρ≥1, then the performance of RKF is comparable with the

optimal filter, as limsupE‖en‖2Rn ≤
2Rdrρ2

1−β∗ . If in addition (2.2) holds, then

Een⊗en�ρ2rERn.

The requirement that ‖R̃+
n ‖≤R or R̃+

n �ρ2Rn can be verified by various ways dis-

cussed in Section 6. As for DRKF, we consider only the MSE, because R̃Ln is not directly
comparable with Rn.

Corollary 4.2. Suppose system (1.1) is dynamically decoupled in two scales

(1.4), then if the Kalman filter covariance of system (1.9) satisfies R̃L0 = 1
rC

L
0 and

limsup‖R̃Ln‖≤R, the MSE of DRKF is bounded:

limsup
n→∞

E|eLn |2≤
2Rp(1+γσ)

r2−r
+

4
√
λSRpγσ

(r−
√
r)(1−

√
λS)

.
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4.3. Reduced filter accuracy. In many applications, the observations are
partial but very frequent and accurate. In such cases, one would expect the filter error
to be small. This is quite easy to show for optimal Kalman filters, but not obvious
for reduced filters. With our framework, we can easily obtain the filter accuracy of the
reduced filters.

Corollary 4.3. Suppose system (1.1) is dynamically decoupled in two scales with

the stationary Kalman filter covariance of system (1.9) being bounded ‖R̃Ln‖≤R; or
suppose the reference projection Assumption 4.1 holds with the stationary Kalman filter
covariance of system (1.10) being bounded ‖R̃+

n ‖≤R. In either case, assume the sta-
tionary Kalman covariance attracts other Kalman filter covariance sequence as in [6].
Then there is a DRKF, or RKF, for the following signal-observation system with small
system and observation noises:

Xε
n+1 =AnX

ε
n+Bn+εξn+1, Y εn+1 =HnX

ε
n+1 +εζn+1. (4.6)

The MSE of this filter scales like ε2. More precisely, there is a constant DR such that

limsup
n→∞

E|eεn|2≤ ε2DR.

Here eεn stands for XL,ε
n −µL,εn for DRKF, or Xε

n−µεn for RKF.

Proof. In the dynamically decoupled case, the corresponding reference system will
be

X
′L
n+1 =A

′L
n X

′L
n +Bn+εξn+1, Y

′L
n+1 =HnX

′L
n+1 +εζ ′n+1.

The stationary Kalman filter covariance of this system will be R̃L,εn = ε2R̃Ln , so

limsup
n≥0

‖R̃L,εn ‖= ε2 limsup
n≥0

‖R̃Ln‖≤ ε2R.

Then applying Corollary 4.2 we have our claim.
As for the second case, we apply RKF with Dε

S = ε2DS . The corresponding reference
will be

X ′n+1 =A′nX
′
n+Bn+εξn+1, Y ′n+1 =HnX

′
n+1 +εζn+1.

The stationary solution of this system will be R̃εn= ε2R̃n, so

limsup
n≥0

‖R̃ε+n ‖= ε2 limsup
n≥0

‖R̃+
n ‖≤ ε2R.

Then applying Corollary 4.1 we have our claim.

5. General stochastic sequence setting
In some challenging scenarios, the reference stationary covariance R̃n may not be a

bounded sequence, then Assumption 4.1 cannot be verified. But weaker results may be
obtainable, and interestingly the proofs do not need much of a change. The content of
this section is not necessary for most parts of Section 6, and can be skipped in the first
reading.

An assumption that is more general than the ones in Defininition 2.1 would be
requiring the truncation error converges to a sequence that is stable on average:
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Assumption 5.1. Suppose there is a stochastic sequence β∗n with a finite adjustment
time n0 such that the sequence (2.1) satisfies βn≤β∗n for all n≥n0.

The generalization of Theorem 2.2 is

Theorem 5.2. For any fixed inflation r>1, consider applying the RKF (1.6) to
system (1.1). Suppose the large scale truncation of the RKF satisfies Assumption 5.1,
then for any fixed times n0≤n,

E(β∗n0+1 ·· ·β∗n)−1‖en‖2C+
n
≤E‖en0‖2C+

n0

+2dE
n∑

k=n0+1

(β∗n0+1 ·· ·β∗k)−1. (5.1)

Proof. First of all, notice that the inequality (2.6) still holds. Our claim is simply
an induction, because

E(β∗n0+1 ·· ·β∗n+1)−1‖en+1‖2C+
n+1

=E(β∗n0+1 ·· ·β∗n+1)−1En‖en+1‖2C+
n+1

≤E(β∗n0+1 ·· ·β∗n)−1(‖en‖2C+
n

+2d).

If (5.1) holds for time n and we replace ‖en‖2C+
n

by its upperbound, then (5.1) holds

also for time n+1.

In order to verify the general Assumption 5.1, an a priori condition can also be
derived from the reference Kalman covariance.

Assumption 5.3. Let R̃n be a (stationary) PD solution of (4.1). Assume its small
scale part is bounded as below with a stochastic sequence β∗n

PSR̃nPS� (β∗nr−1)DS .

Since in the proof of Theorem 4.2, we used nothing about the fact that β∗ is a
constant, so if we replace β∗ with β∗n in that proof, it is still valid. Therefore the
following claim holds:

Theorem 5.4. Suppose the general referenced projection Assumption 5.3 holds, then
Assumption 5.1 also holds, and the acceptable reduction phase starts no later than

n0 = dlog(‖R̃−1
0 C0‖)/log(r′/r)e.

Moreover the covariance estimator is bounded by C+
n � rR̃n+DS for n≥n0.

Remark 5.1. The previous discussion provides an easy generalization of our frame-
work, but admittedly it buries some difficulties inside the result (5.1). If we want
Theorem 5.2 to provide concrete Mahalanobis error dissipation and convergence like in
Theorem 2.2, we roughly need to show

• E(β∗n0+1 ·· ·β∗n+1)−1≥ exp(b∗(n−n0)) for a constant b∗>0.

• E
∑n
k=n0+1(β∗n0+1 ·· ·β∗k)−1≤Dexp(b∗(n−n0)) for the same constant b∗>0, and

some D.

Usually it is not difficult to establish either of these ingredients, the major difficulty is
that the growth ratio b∗ needs to be the same in both. Some special structures, like
β∗k being independent of each other, will make the verification straightforward, but in
general it is difficult.
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6. Applications and examples
Given a concrete system (1.1), there might be various ways that the two-scale

separation can be done. It is of practical importance to find the minimal large scale
subspace, the proper inflation ratio r, while keeping the filter error small. Based on our
previous results, these problems can be solved by numerically computing the Kalman
filter covariance for the augmented system with a fixed r′>1, (1.9) or (1.10), then
verify Assumption 4.1 for RKF. The optimal two-scale separation and inflation can be
obtained by minimizing the MSE upper bound in Corollary 4.1.

In this section, we will discuss a few general principles that may facilitate the
filter error quantification and the verification of Assumption 4.1. A simple stochastic
turbulence model will be considered as an example, and we will apply these principles
to this model in different settings [4].

6.1. Some general guidelines for covariance bounds. Section 4 uses
Kalman filters to provide a priori performance criteria. One of the advantages is that
Kalman filters have a huge literature, so there are many known results on how to control
the Kalman filter covariance. We present in below a few simple ones. For the simplicity
of illustration, we convey them only for system (1.1) and its Kalman filter covariance
Rn, while the same ideas are also applicable to the augmented systems (1.9), (1.10) and

filter covariances R̃Ln ,R̃n.

6.1.1. Unfiltered covariance. In most applications, system (1.1) has a stable
dynamics itself, so the covariance of Xn conditioned on the system coefficients Fcn can
be bounded. The computation of this covariance

Vn=EFcn(Xn⊗Xn)−EFcn(Xn)⊗EFcn(Xn),

follows a straightforward iteration: Vn+1 =AnVnA
T
n +Σn. In fact, we already used

the small scale part V Sn for the formulation of DRKF. Clearly if V0�R0, then Vn�Rn.
Although this seems trivial, it is useful as it is independent of the choice of observations,
and involves very little computation.

6.1.2. Equivalent transformation on observation. Sometimes, changing
the way we view the observations may simplify the computation by a lot. Mathe-
matically speaking, we can consider a sequence of invertible q×q matrix Ψn, and the
signal-observation system as below

Xn+1 =AnXn+Bn+ξn+1, Ỹn+1 = ΨnHnXn+1 +Ψnζn+1.

Intuitively, the Kalman filter performance of this system would be the same as (1.1).
This is true, as one can check the Kalman covariance update operator K is invariant
under this transformation. This equivalent transformation can be used to simplify our

notation. For example, we can let Ψn=σ
−1/2
n , then the observation noise for Ỹn is a

sequence of i.i.d. Gaussian random variables.

6.1.3. Benchmark principle. Since the Kalman filter (1.2) is the optimal

filter of system (1.1), for any other estimator X̂n of Xn, its error covariance is an upper
bound for Rn:

EFcn(Xn−X̂n)⊗(Xn−X̂n) =EFcnEFon(Xn−X̂n)⊗(Xn−X̂n)�Rn.

So if there is an estimator X̂n with a computable error covariance Qn, then Qn�Rn.
Although this idea is simple, it has been used many places to guarantee that Rn is
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bounded, and as to the authors’ knowledge, it is the only general strategy. The unfiltered
covariance is actually a special application of this principle, where the estimator is simply
the mean, X̂n=EFcnXn.

When the observation Hn is full rank, another simple estimator could be trusting
the observation: X̂n+1 =H−1

n Yn+1. The error covariance is [HT
n ]−1σnH

T
n . This idea can

be generalized to the scenario where system (1.10) is detectable through a time interval
[m,n]. Here we provide an explicit estimate, while similar results can also be found
in [32–34].

Proposition 6.1. Denote the observability Gramian matrix as

On,m=

n∑
k=m

ATk,mH
T
k−1σ

−1
k−1Hk−1Ak,m, Ak,j =Ak−1 ·· ·Aj+1Aj .

Suppose that Kn,m=On,m+R̂−1
m is invertible, where R̂m is the prior covariance of Xm

without observing Ym. Then

Rn�
n∑

j=m+1

Qjn,mΣj−1(Qjn,m)T +An,mK−1
n,mA

T
n,m,

where Qjn,m=An,mK−1
n,mKj−1,mA

−1
j,m. In case there is no prior knowledge of Xm, R̂−1

m

can be set as a zero matrix, which is the inverse of the infinite covariance.

Proof. For the simplicity of notations, in our proof, we do transform the obser-

vations, and replace Hk by σ
−1/2
k Hk and σk by Iq. We will first build up a smoother

for Xm and then propagate it through time [m,n]. Also, without lost of generality, we

assume Xm∼N (0,R̂m) and Bk≡0. Consider the estimator

X̂m=K−1
n,m

n∑
k=m

ATk,mH
T
k−1Yk, X̂n=An,mX̂m.

Notice that Xk and Yk have the following moving average formulation:

Xk =Ak,mXm+

k∑
j=m+1

Ak,jξj , Yk =Hk−1

Ak,mXm+

k∑
j=m+1

Ak,jξj

+ζk.

The error made by this estimator, Xn−X̂n, can be written as

Xn−X̂n=

[
An,m−An,mK−1

n,m

n∑
k=m

ATk,mH
T
k−1Hk−1Ak,m

]
Xm

+

n∑
j=m+1

An,j−An,mK−1
n,m

n∑
k=j

ATk,mH
T
k−1Hk−1Ak,j

ξj
−An,mK−1

n,m

n∑
k=m

ATk,mH
T
k−1ζk.

When R̂−1
m = 0, one can check that the quantity above is independent of Xm.
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Note that Kn,m=ATj,mOn,jAj,m+Kj−1,m, so

An,j−An,mK−1
n,m

n∑
k=j

ATk,mH
T
k−1Hk−1Ak,j =An,j−An,mK−1

n,mA
T
j,mOn,j

=An,m[I−K−1
n,mA

T
j,mOn,jAj,m]A−1

j,m=An,mK−1
n,mKj−1,mA

−1
j,m=Qjn,m.

In particular

Qmn,m=An,mK−1
n,mKm−1,m=An,mK−1

n,mR̂
−1
m .

The expected error covariance EFcn(Xn−X̂n)⊗(Xn−X̂n) is bounded by

An,mK−1
n,mR̂

−1
m K−1

n,mA
T
n,m+

n∑
j=m+1

Qjn,mΣj−1(Qjn,m)T

+An,mK−1
n,m

(
n∑

k=m

ATn,kH
T
k−1Hk−1An,k

)
K−1
n,mA

T
n,m

=

n∑
j=m+1

Qjn,mΣj−1(Qjn,m)T +An,mK−1
n,m

(
R̂−1
m +

n∑
k=m

ATn,kH
T
k−1Hk−1An,k

)
K−1
n,mA

T
n,m

=

n∑
j=m+1

Qjn,mΣj(Q
j
n,m)T +An,mK−1

n,mA
T
n,m.

6.1.4. The comparison principle of Riccati equations. In order to control
Rn, sometimes it suffices to find another set of system coefficients, such that its Kalman
filter covariance R′n�Rn. One way to generate such R′n is applying the comparison
principle of Riccati equations for the forecast covariance [35].

Theorem 6.1 (Freiling and Jank 96). Consider a signal-observation system

X ′n+1 =A′nX
′
n+B′n+ξ′n+1, Y ′n+1 =H ′nX

′
n+1 +ζ ′n+1,

with ξ′n+1∼N (0,Σ′n) and ζ ′n+1∼N (0,σ′n). Suppose the following holds a.s. with system
coefficients of (1.1) [

Σn ATn
An −HT

n σ
−1
n Hn

]
�
[
Σ′n A

′T
n

A′n −H
′T
n σ

′−1
n HT

n

]
. (6.1)

Then if the forecast covariance satisfies R̂1� R̂′1, we have R̂n� R̂′n for all n≥1.

In particular, we can compare the reference Kalman filter of (1.10) with the optimal
filter (1.2):

Proposition 6.2. Suppose that there are constants c and C such that cΣn�AnDSA
T
n

and AnΣ−1
n ATn �CHnσ

−1
n HT

n , and there is a ρ≥1 such that

1

σ

(
1− 1

ρ2

)
≥ C(1−

√
r′)2

ρ2−r′(1+c)
.
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Then the stationary solution R̃n of (4.1) is bounded by the stationary Kalman filter
covariance Rn of (1.2) by the following

R̃n�ρ2Rn.

It is worth noticing that if r′ is close to 1 and c is close to 0, ρ can be close to 1 as
well.

Proof. We apply the equivalent observation transformation mentioned in Section
6.1.2, and assume σn= Iq. Let us consider the following inflation of (1.1) with ρ≥1

Xρ
n+1 =AnX

ρ
n+Bn+ρξn+1, Y ρn+1 =HnX

ρ
n+1 +ρζn+1. (6.2)

Let Rρn be the stationary filter covariance sequence of the associated Kalman filter,
and Rn be the one for (1.1). Evidently, the stationary solution of this system satisfies

Rρn=ρ2Rn, and so are the forecast covariances R̂ρn=ρ2R̂n. In order to apply Theorem
6.1 to the previous system and (1.10), we consider the following matrix difference[
ρ2Σn (An)T

An − 1
ρ2σH

T
nHn

]
−
[
Σ′n (A′n)T

A′n − 1
σH

T
nHn

]
=

[
(ρ2−r′)Σn−r′AnDSA

T
n (1−

√
r′)ATn

(1−
√
r′)An ( 1

σ −
1
σρ2 )HT

nHn

]

�

[
(ρ2−(1+c)r′)Σn (1−

√
r′)ATn

(1−
√
r′)An ( 1

σ −
1
σρ2 )HT

nHn

]
.

With the conditions in the proposition, the matrix above is PSD. Therefore R̂ρn�
̂̃
Rn,

then because ρ>1 stands for a worse observation, it is straight forward to verify that

R̃n=K(
̂̃
Rn)�Kρ(

̂̃
Rn)�Kρ(R̂ρn) =ρ2K(ρ−2R̂ρn) =ρ2K(R̂n) =ρ2Rn.

Here Kρ denotes the forecast-posterior Kalman covariance update for the system (6.2).

6.2. Different signal observation systems. The analysis framework of this
paper can address system (1.1) with very general setups. When applying it to particular
dynamical and observation settings, there are special ways to verify the conditions. In
this section, we briefly discuss a few settings commonly used in various scientific and
engineering fields. An explicit example will be given in Section 6.3.

6.2.1. Classical setting. In the classical setting, the system coefficients are
deterministic and time homogenous, in other words they are of constant values. In this
case, the stationary Kalman filter covariance matrices are also constant R̃Ln = R̃L,R̃n=

R̃. Each of them solves an algebraic Riccati equation(ARE) equation

R̃=K(R̂) = R̂−R̂HT (σ+HR̂HT )−1HR̂, R̂= r′AR̃AT +r′ADSA
T +r′Σ,

R̃L=KL(R̂L), R̂L= rALR̃L(AL)T +ΣL.
(6.3)

In general, these solutions require numerical methods to compute.

6.2.2. Intermittent dynamical regimes. One challenge that practical filters
often face is that the dynamical coefficientAn is not always stable with spectral norm less
than 1. This is usually caused by the large scale chaotic dynamical regime transitions.
One simple way of modelling this phenomenon, is letting An be a Markov jump process
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on two states {A+,A−}, where ‖A−‖≤1 and ‖A+‖>1. Chapter 8 of [4] has shown that
this model could generate intermittent turbulence signals as seen in nature. Chapter 8
of [4] has also numerically tested the DRKF for the related filtering problem, showing
close to optimal performance.

Our analysis framework naturally applies to these scenarios. The only difficulty is
that Assumption 5.1 may require additional works to verify. In general, one may need
the general results in Section 5 or even other mechanisms mentioned in Remark 5.1.

On the other hand, in many practical situations, the random dynamical regime
switchings occur only on part of the model. If the large scale subspace includes this
random part as in [4], the coefficients for small scale part are deterministic. This may
make the conditions in our theorems the same as the deterministic case. For example,
the formulation of Theorem 3.1 for DRKF is independent of the large scale coefficients.
For another example, if the large scale variables have no impact on the small scales,
PSAnPL≡0, then when computing the unfiltered covariance for small scale V S , the
large scale coefficients also are irrelevant.

6.2.3. Conditional Gaussian systems. If the system coefficients are functions
of the observation, that is An=A(Yn) and likewise for the other terms, system (1.1) is
a conditional Gaussian system. Although the evolution of (Xn,Yn) in this case can be
very nonlinear, the optimal filter is still given by (1.2) according to [17]. Such structure
rises in many practical situations, like Lagrangian data assimilation, and turbulent
diffusion with a mean flow. The conditional Gaussian structure can be exploited in these
situations to gain significant advantages [36,37]. In particular, dynamical structures like
geostrophic balance can yield other types of reduced filters [38].

In our context of reduced filtering, one caveat of conditional Gaussian system is
that the system noises are in general not independent of the future system coefficients.
For example, Yn+1 may depend on ξn, and so does An+1 =A(Yn+1). As a consequence,
Theorems 2.1 and 3.1 may not apply, while Theorem 2.2 still holds.

6.2.4. Intermittent observations. Due to equipment problems, observations
may not come in constantly but randomly. [39] models this feature by letting Hn=γnH
where γn is a sequence of independent Bernoulli random variables with Eγn= γ̄. When
the signal dynamics is unstable, [39] has shown that there is a critical frequency γc,
such that the average Kalman filter covariance ERn has a time uniform upper bound if
and only if γ̄ <γc. Such results can be directly applied to the reference Kalman filters
of systems (1.9) and (1.10), which leads to upper bounds for the reduced filter errors.
On the other hand, if the system dynamics is stable, the reduced filter error can also be
bounded using methods in Section 5. This will also be discussed in Section 6.3.5.

6.3. Stochastic turbulence examples. One of the most important appli-
cations of filtering is numerical weather forecast. The computational problems in this
field are challenging, because the system dimensions are extremely high, and the system
parameters are changing constantly. One simple way to model a planetary turbulence
flow is linearizing a stochastic dynamics in the Fourier domain. In order to apply the
reduced filters to these models, we are interested in finding the minimal amount of
Fourier modes for the large scale subspace, and how to set up the small scale covariance
DS for RKF.

6.3.1. Linearized stochastic turbulence in Fourier domain. Consider the
following stochastic partial differential equation [4, 40]

∂tu(x,t) = Ω(∂x)u(x,t)−γ(∂x)u(x,t)+F (x,t)+Ẇ (x,t). (6.4)
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For the simplicity of discussion, the underlying space is assumed to be an one dimen-
sional torus T= [0,2π], while the generalization to higher dimensions is quite straight
forward. The terms in (6.4) have the following physical interpretations:

1) Ω is an odd polynomial of ∂x. This term usually comes from the Coriolis effect from
earth’s rotation, or the advection by another turbulence flow.

2) γ is a positive and even polynomial of ∂x. This term models the general diffusion
and damping effects in stochastic turbulences.

3) F (x,t) is a deterministic forcing and W (x,t) is a stochastic forcing.

In this paper, we assume both forcings have a Fourier decomposition

F (x,t) =
∑
k∈I

fk(t)eik·x, W (x,t) =
∑
k

σukWk(t)eik·x.

Here Wk(t) = 1√
2
Wk,r(t)+ i√

2
Wk,i(t) is a standard Wiener process on C, and the con-

jugacy condition is imposed to ensure terms in (6.4) are of real values: fk(t) =
f∗−k(t),σuk = (σu−k)∗,Wk(t) =W ∗−k(t). Suppose P (∂x)eik·x= iωke

ik·x,γ(∂x)eik·x=γke
ik·x

with γk>0. Then the solution of (6.4) can be written in terms of its Fourier coeffi-
cients, u(x,t) =

∑
kuke

ik·x, where the real and imaginary parts follow

d

[
urk(t)
uik(t)

]
=

[
−γk −ωk
ωk −γk

][
urk(t)
uik(t)

]
dt+

[
frk (t)
f ik(t)

]
dt+

σuk√
2

[
dW r

k (t)
dW i

k(t)

]
. (6.5)

To transform (6.4) to a discrete time formulation like (1.1) in the real domain, we
assume the intervals between observations are of constant length h>0, and pick a
Galerkin truncation range K ∈N. Let Xn in (1.1) be a (2K+1)-dim column vector,
with coordinates being:

[Xn]0 =u0(nh), [Xn]k =urk(nh), [Xn]−k =uik(nh), k= 1,. ..,K. (6.6)

The system coefficients for the dynamic part of (1.1) then can be formulated as follows,
where An=A is diagonal with 2×2 sub-blocks, and Σn= Σ is diagonal. Their entries
are given below:

[A]{k,−k}2 = exp(−γkh)

[
cos(ωkh) sin(ωkh)
−sin(ωkh) cos(ωkh)

]
, [B]k =frk (nh)h, [B]−k =f ik(nh)h,

[Σ]k,k =
(σuk )2

2

∫ (n+1)h

nh

exp(−2γks)ds=
1

2
Euk (1−exp(−2γkh)).

(6.7)
Euk = 1

2γk
(σuk )2 is the stochastic energy of the k-th Fourier mode, it is also the sum of

stochastic energy of [Xn]k and [Xn]−k.
In applications, the damping often grows and the energy decays like polynomials of

the wavenumber |k|

γk =γ0 +ν|k|α, Euk =E0|k|−β , α>0, β≥0. (6.8)

As we will see in our discussion below, such formulation guarantees the existence of a
large scale separation with good reduced filter performance. To show that our framework
is explicitly computable, we will consider the following specific set of physical parameters
for (6.8) with a Kolmogorov energy spectrum used in [41]:

α= 2, β=
5

3
, r= 1.2, r′= 1.21, h= 0.1, ν= 0.01, β∗= 0.9, E0 = 1. (6.9)
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6.3.2. Setups for reduced filters. Since the system coefficients of (6.7) are
all block diagonal, both DRKF and RKF can be applied for reduced filters. Naturally,
the large scale set consists of modes with low wavenumbers {|k|<N} for a certain N .
And for RKF, DS should be a diagonal matrix with entries {δk}|k|≥N . The question
is how to pick these reduced filter parameters, and how do they depend on the system
coefficients.

Based on Theorem 3.1, DRKF does not require additional constraints. But in order
to have good practical performances, intuitively the error caused by small scale time
correlation should be small comparing with the other terms. In other words, for some
ε>0,

2
√
λSr(

√
r+1)γσ

(1−
√
λS)(1+γσ)

≤ ε, (6.10)

The λS in this model is max|k|≥N exp(−γkh) = exp(−γNh). If we approximate (1−
√
λS)

with 1, and bound γσ with 1, we find that γN ≥− 2
h log(ε/

√
r(r+1)). This relation is

independent of the energy spectrum, and if the dissipation has a polynomial growth as
in (6.8) with γ0 = 0, we find that approximately

N ≥
[
− 2

hν
log(ε/

√
r(r+1))

] 1
a

.

In the physical setup of (6.9) with ε= 0.2, we find that N ≈65.
RKF requires the verification of Assumption 4.1. Here we use the unfiltered covari-

ance Ṽ of the inflated system (1.10) as an upper bound for R̃n as in Section 6.1.1. It is

easy to find that Ṽ is diagonal with entries

[Ṽ ]k,k = ṽk =
r′Euk (1−r′exp(−2γkh))+δkr

′ exp(−2γkh)

2−2r′exp(−2γkh)
. (6.11)

In order for Assumption 4.1 to hold, we need that for some β∗≤1

ṽk≤ (β∗r−1)δk k≥N. (6.12)

In order to achieve this, we need β∗r≥β∗rr′ exp(−2γkh)+1 and δk≥
r′Euk

β∗r−β∗rr′ exp(−2γkh)−1 . In the setting of (6.8), exp(−2γkh)→0 for large |k|, so

we roughly require

δk≥
r′Euk
β∗r−1

⇒ DS≈
r′PSE

u
kPS

β∗r−1
. (6.13)

The small scale truncation requires γN ≥ 1
2h log

(
1
r′ −

1
β∗rr′

)
. In the polynomial dis-

sipation setting (6.8), this implies N ≥ [ 1
2hν log

(
1
r′ −

1
β∗rr′

)
]
1
α . In particular with the

physical parameters (6.9), N ≈25.

6.3.3. Intermittent physical environment. A simple way to model inter-
mittent physical environment for stochastic turbulence (6.7) is letting An be a Markov
chain, while maintaining the sub-block structure: [An]{k,−k}2 = [λn]k[A]{k,−k}2 . Here λn
is a Markov chain taking values in RK+1. Then the system random instability can be
modeled as the random fluctuation of [λn]k, so that occasionally ‖[An]{k,−k}2‖>1 for
some k.
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In many situations, such instability only occur on the a small subset I of Fourier
modes. This is because when the wave numbers are high, the dissipation force is much
stronger than the random environmental force. So for k∈ Ic, [An]{k,−k} remains a
constant value like in (6.7). Then it suffices to let the large scale mode set include
subset I, and the discussion in Section 6.3.2 remains the same.

6.3.4. Advection from a strong jet flow. One major nonlinearity source for
planetary or engineering turbulence takes the form of a jet flow advection. For example,
the meridional flows on earth are often advected by a eastward zonal flow [37,41]. (6.4)
can be extended to this scenario, by adding an auxiliary process wt∈R to describe the
jet flow, with Bt being an independent standard Wiener process in R,

dwt=Gwt(ut)dt+gtdt+σwdBt,

∂tu(x,t) = (Ω(∂x)+wt∂x−γ(∂x))u(x,t)dt+F (x,t)dt+dW (x,t).
(6.14)

The feedback of ut=u( · ,t) on wt, Gwt(ut), is assumed to be linear on ut, but may
have nonlinear dependence on wt. Since strong jet flows often have close to accurate
observations, we assume wt can be directly observed. The resulting system will be
conditionally Gaussian. A time discretization like in Section 6.3.1 would lead to the
same dynamical formulation as (6.7), except that the phase speed ωk is replaced by
ωk+kw̃n. w̃n=wnh is the time discretization of wt, and it follows

w̃n+1 = G̃w̃nXn+1h+ w̃n+gnhh+σw
√
hζvn+1.

Here G̃wX=Gw(u) if X consists of the Fourier modes of field u like in (6.6). w̃n+1

can be seen as the q+1-th dimension of the observation vector Yn+1, and ζvn+1 is its
observation noise.

Jet flow advection in fact is a good example to show that the system independent
noise condition (2.2) may fail, since the observation noise ζvn+1 is correlated with co-
efficients An+1 and Hn+1 through w̃n+1. As a consequence, Theorems 2.1 and 3.1 no
longer apply, but Theorem 2.2 still holds.

6.3.5. Intermittent observations. Observations of turbulence in practice
often come from a network of sensors, that are located at a group of points xj ∈T, and
the observation noise can be modeled by i.i.d. N (0,σ) random variables:

[H]j,0 = 1, [H]j,k = 2cos(kxj), [H]j,−k = 2sin(kxj), σ=σoIq. (6.15)

One particular choice of sensor location will be equal spacing, xj = 2πj
2J+1 ,j= 0,1,. ..,2J ,

studied by chapter 7 of [4]. Consider an equivalent observation transformation

[Ψ]0,j =
1

2J+1
, [Ψ]i,j =

cos( 2πij
2J+1 )

2J+1
, [Ψ]−i,j =

sin( 2πij
2J+1 )

2J+1
,

so the transformed observation coefficients satisfies [ΨH]j,k = δj≡kmod 2J+1, and

ΨσΨT = σoI2J+1

2J+1 . When J <K, such observation network introduces aliasing effect
among the Fourier modes, which is carefully studied in [4, 42]. Here after we focus
only on the simple case where K=J so ΨH= I.

In real applications, turbulence observations may not be available at each time step.
Following the example of [39], we model this problem by letting Hn=γnH, where γn
is a sequence of Bernoulli random variables with average Eγn= γ̄. We will investigate
how does this observation setting change the reduced filter setup.
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For DRKF, the small scale unfiltered covariance V is diagonal with entries [V ]k,k =
1
2E

u
k . Then γσ = supn‖(σLn )−1HnV

SHT
n ‖= sup|k|≥N

(2K+1)Euk
(2K+1)Euk+2σo . Following the dis-

cussion in Section 6.3.2, we are interested in maintaining (6.10). In the polynomial
dissipation regime (6.8), if we approximate 1−

√
λS by 1, and replace 1+γσ by a lower

bound 1, we find that

exp(− 1
2hνN

α)E0N
−β

E0N−β+ 2σo

2K+1

≤ ε√
r(r+1)

In the physical setup of (6.9) with ε= 0.2,σo= 0.1,K= 200 and by numerical computing
the quantities above, we find that N ≈59.

As for RKF, at any fixed time n, the unfiltered covariance Ṽ is given by (6.11), and

we know the reference Kalman filter covariance R̃n� Ṽ . If at time n, the observations

are available, γn= 1, note that
̂̃
Rn�AṼ AT +Σ = Ṽ , by Proposition 6.1 with m=n,

[R̃n]k,k≤v′k =
ṽkσ

o

σo+(2K+1)ṽk
<ṽk.

Denote βo= maxk≥N
ṽk
rδk

+ 1
r ,βu= maxk≥N

ṽk
rδk

+ 1
r . Clearly βo<βu. So in Assumption

5.1, we can let

β∗n=γnβo+(1−γn)βu,

which is an independent sequence.
In order for Theorem 5.2 to give a meaningful upper bound, it suffices to require

β̄∗=Eβ∗n= γ̄βo+(1− γ̄)βu<1. (6.16)

With (6.16), we will have E‖en‖2Cn ≤ β̄
∗(n−n0)E‖en0‖2Cn0

+ 2d
1−β̄∗ . Since (6.12) is equiv-

alent to βu<1, so (6.16) is a weaker requirement and ends up with a smaller N . In
particular, if we pick DS as in (6.13), the parameters as in (6.9), and let γ̄= 0.9,σo=
0.1,K= 200, we find N ≈14.

7. Conclusion and discussion
High dimensionality is an important challenge for modern day numerical filtering,

as the classical Kalman filter is no longer computationally feasible. This problem can
sometimes be resolved by proper dimension reduction techniques, such as exploiting
intrinsic multiscale structures. This paper considers two reduced filters. The DRKF
works for dynamically decoupled systems, it estimates the small scale variables with
their equilibrium statistical state. The RKF uses a constant statistical state as the
small scale filtering prior, and requires the large scale projection not to decrease the
error covariance. Both methods have been studied by [4] for stochastic turbulence fil-
tering, and they have close to optimal performances in various regimes. On the other
hand, rigorous error analysis of these reduced filter has been an open problem, since
the dimension reduction techniques bring in unavoidable biases, just like in many other
practical uncertainty quantification procedures. This paper fills in this gap by develop-
ing a two-step framework. The first step examines the fidelity of the reduced covariance
estimators, showing that the real filter error covariance is not underestimated. For RKF
with system independent noises, this can be verified by tracking the covariance matrix.
For DRKF and more general scenarios, the covariance fidelity can be demonstrated by
the intrinsic dissipation mechanism of the Mahalanobis error. The second step bounds
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the reduced filter covariance estimators, by building a connection between them and
proper Kalman filter covariances. The combination of these two steps yields an error
analysis framework for the reduced filters, with exponential stability and accuracy for
small system noises as simple corollaries. When applied to a linearized stochastic tur-
bulence, this framework provides a priori guidelines for large scale projection range and
reduced filter parameterizations.

Besides the major themes mentioned above, there are two related issues we have
not focused on:

• The multiplicative inflation is applied in our reduced filters to avoid covariance
underestimation. This technique has been applied widely for various practical
filters, but its theoretical importance has never been studied except in one di-
mension [43]. The error analysis of this paper implicitly studies this issue, as
the inflation plays an important role in our proof. Based on the formulation
of Theorems 2.2, 3.1, and 4.2, stronger inflation provides better filter stabil-
ity. Moreover, as mentioned in Remark 2.2, this inflation is an essential high
dimension replacement of the classical uniform bounded conditions in [29].

• For RKF, Theorem 2.1 has a much stronger result comparing with Theorem 2.2,
while the additional condition on system independent noises often holds. But
for many other practical filters such as the ensemble Kalman filter, the second
moment of the filter error cannot be expressed through recursive formulas, as
the Kalman gain matrix is correlated with the filter error. The Mahalanobis
error dissipation on the other hand still holds as it is a more intrinsic property.
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Appendix A. Complexity estimates. In this section we do some simple com-
putational complexity estimates for the Kalman filter (1.2) and the reduced Kalman
filters (1.5) and (1.6). Through these estimations, we find that the reduced filters re-
duce computation complexity from O(d2q) to O(d2 +p2q+p3) and O(d2 +dp2 +dq2),
which is a significant reduction when the state space dimension d is much larger than
the observation dimension q and large scale dimension p. For simplicity, we only consider
the most direct numerical implementation of the related formulas, although there are
many alternative implementation methods with improved numerical stability and accu-
racy [44]. We assume the complexity of matrix product of [A]a×b and [B]b×c is abc, and
the complexity of the inversion and Cholesky decomposition of a general [A]a×a matrix
is a3 [45]. There are also a few additional assumptions that hold for most applications,
while without them similar qualitative claims hold as well.

1) We focus mostly on the online computational cost, which is the cost for the compu-
tation of filter iteration. This is the most significant cost in the long run.

2) When the system coefficients are deterministic, the Kalman gain matrix sequence
in principle can be computed offline [44]. We do not consider this scenario as it
oversimplifies the problem.

3) An is a sequence of sparse matrices. This holds for the stochastic turbulence model in
Section 6. It rises in various differential equation context as most physical interaction
involves only close neighbors. As a consequence, Ĉn+1 =AnCnA

T
n +Σn involves only
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O(d2) complexity instead of O(d3). On the other hand, if this assumption is not
true, then the leading computational cost is O(d3) and comes from the prescribed
forecast step, while the reduced filters obviously reduce the cost to O(p2d), so there
is no need of further discussion.

4) Hn and σn are also sparse matrices with relatively time invariant structure, so matrix

product like HnĈnH
T
n involves only O(d2) computation. This assumption holds in

many applications, where the observation noises are independent.

Based on these assumptions, the complexity of Kalman filter is given by Table A.1.

Operation Complexity order

R̂n=AnRn+1A
T
n +Σn d2

(σn+HnR̂nH
T
n )−1 d2 +q3 +d2q

Kn+1 = R̂nH
T
n (σn+HnR̂n+1H

T
n )−1 d2q

mn+1 =Anmn+Bn−Kn+1(Yn+1−Hn(Anmn+Bn)) d+dq

Rn+1 = R̂n+1−R̂n+1H
T
n (σn+HnR̂n+1H

T
n )−1HnR̂n+1 d2q

total d2q

Table A.1: Complexity estimate of the Kalman filter (1.2).

A.1. DRKF. DRKF essentially is applying a Kalman filter in the large scale
subspace with dimension p. The additional computation involves estimating the unfil-
tered small scale covariance V Sn which requires an O(d2) complexity. When the system
coefficients are constants, V Sn is of constant value and there is no need to update it. We
put such savable cost in brackets in Table A.2.

Operation Complexity order

ĈLn+1 =ALnC
L
n (ALn)T +ΣLn p2

V Sn+1 =AnV
S
n A

T
n +ΣSn , µ

S
n+1 =ASnµ

S
n+BSn (d2)

(σLn +HnĈ
L
n+1H

T
n )−1 (d2)+q3

KL
n+1 = ĈLn+1(HL

n )T (σLn +HL
n Ĉ

L
n+1(HL

n )T )−1 p2q
µLn+1 =ALnµ

L
n +BLn −KL

n+1(Yn+1−HS
nµ

S
n+1−HL

n (ALnµ
L
n +BLn )) pq

CLn+1 = rĈLn+1−rĈLn+1(HL
n )T (σLn +HL

n R̂
L
n(HL

n )T )−1HL
n Ĉ

L
n+1 q3 +p2q

total q3 +p2q+(d2)

Table A.2: Complexity estimate of the DRKF (1.5).

A.2. RKF. In the implementation of RKF, we need to exploit the fact that Cn
is nonzero only for the upper p×p sub-block. Therefore its Cholesky decomposition
involves a cost of O(p3). Also one would like see Ĉn as the sum of AnCnA

T
n , which is

a rank p matrix, and a sparse matrix AnDSA
T
n +Σn, instead of a generic d×d matrix.

The Woodbury matrix identity is also useful for gaining computational advantage. For
example, when doing the matrix inversion

[σn+HnĈnH
T
n ]−1 = [Qn+HnAnCnA

T
nH

T
n ]−1,
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where Qn := [σn+HnΣ′nH
T
n ] with Σ′n= Σn+DS , note that inverting Qn costs O(q3).

The Woodbury identity indicates that:

[Qn+HnAnCnA
T
nH

T
n ]−1

=Q−1
n −Q−1

n HnAnC
1/2
n [I+C1/2

n ATnH
T
nHnAnC

1/2
n ]−1C1/2

n HT
nA

T
nQ
−1
n .

Note that C
1/2
n [I+C

1/2
n ATnH

T
nHnAnC

1/2
n ]−1C

1/2
n has only the upper p×p sub-block

being nonzero, so its computation costs only O(p3 +pqd+p2q). So the overall cost of

computing [σn+HnĈnH
T
n ]−1 is O(pqd+p3 +q3), while in the Kalman filter, it is qd2.

The estimate of each step is given below in Table A.3.

Operation Complexity order

Ĉn=AnCnA
T
n +AnDSA

T
n +Σn d2

(σn+HnĈnH
T
n )−1 pqd+q3 +p3

K̂n+1 =AnCnA
T
nH

T
n (σn+HnĈnH

T
n )−1 p2d+pqd

+Σ′nH
T
n (σn+HnĈnH

T
n )−1 dq2 +d2

µn+1 =Anµn+Bn−K̂n+1(Yn−Hn(Anµn+Bn)) d+dq

Cn+1 = rPLĈnPL−rPLĈnH
T
n (σn+HnĈnH

T
n )−1HnĈnPL dp2 +dq2

total d2 +dp2 +dq2

Table A.3: Complexity estimate of the RKF (1.6).

Appendix B. Matrix inequalities. The following lemma has been mentioned
in [43] for dimension one.

Lemma B.1. The prior-posterior Kalman covariance update mapping K in (1.2), can
also be defined as

K(C) = (I−KHn)C(I−KHn)T +KσKT

where K :=CHn(σ+HnCH
T
n )−1 is the corresponding Kalman gain. K is a concave

monotone operator from PD to itself.

Proof. The first matrix identity is straightforward to verify, and can be found in
many references of Kalman filters [4]. In order to simplify the notations, we let H=Hn

and J(X) = (σ+HXHT )−1. Then with any symmetric matrix A, the perturbation in
direction A is given by

DAJ(X) :=
d

dt
J(X+At)

∣∣
t=0

=−JHAHTJ.

Therefore

DAK=A−AHTJHX−XHTJHA+XHTJHAHTJHX

= (I−HTJHX)TA(I−HTJHX).

The Hessian is

D2
AK=−2AHTJHA+2AHTJHAHTJHX+2XHTJHAHTJHA

−2XHTJHAHTJHAHTJHX

=−2(AHTJ1/2−XHTHAHTJ1/2) ·(AHTJ1/2−XHTHAHTJ1/2)T �0.
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Therefore, as long as X,X+A�0, then the concavity holds:

K(X)+K(X+A)�2K(X+ 1
2A).

When we require A to be PSD, DAK�0 implies the monotonicity of K.

Lemma B.2. Suppose that A,C,D are PSD matrices, C is invertible, while A�
[BCBT +D]−1, then

BTAB�C−1, A1/2DA1/2� Id.

Proof. From the condition, we have A1/2[BCBT +D]A1/2� Id. Therefore our
second claim holds. Moreover,

(BTAB)C(BTAB)�BTA1/2A1/2[BCBT +D]A1/2A1/2B�BTAB.

This leads to our first claim by the next lemma.

Lemma B.3. Let A and B be PSD matrices, if

• A� Id, then ABA�B.

• A� Id, then ABA�B. And for any real symmetric matrix C, CAC�C2.

Proof. If the null subspace of B is D and P is the projection onto the com-
plementary subspace D⊥, then it suffices to show that (PAP)(PBP)(PAP)�PBP.
Therefore, without loss of generality, we can assume B is invertible, so it suffices to
show

(B−1/2AB1/2)(B−1/2AB1/2)T � I.

But this is equivalent to checking that the singular values of B−1/2AB1/2 are greater
than 1, which are the same as the eigenvalues of A.

If A and C are invertible, then the second claim follows as the direct inverse of
the first claim. Else, it suffice to show the claim on the subspace where A and C are
invertible.

Lemma B.4. Let A and B be two PSD matrices, and A is invertible, then

‖AB‖=‖A1/2BA1/2‖= inf{λ :B�λA−1}.

Proof. ‖AB‖=‖A1/2BA1/2‖ comes as conjugacy preserves eigenvalues, and
‖A1/2BA1/2‖= inf{λ :B�λA−1} is obvious.

Lemma B.5. Let B∈PSD, then tr(AB)≤‖A‖tr(B).

Proof. Suppose the eigenvalue decomposition of B is ΨDΨT . Then we note that

tr(AB) = tr(AΨDΨT ) = tr(ΨTAΨD), ‖A‖tr(B) =‖ΨTAΨ‖tr(D).

So we can assume B is a diagonal matrix. Then

tr(AB) =

d∑
i=1

Ai,iBi,i≤‖A‖
∑

Bi,i=‖A‖tr(B).
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Appendix C. Convergence to the unique stationary solution. One of the
remarkable property of Kalman filter covariance is that it converges to a unique sta-
tionary solution to the associated Riccati equation, assuming the system coefficients are
stationary, and weak observability and controllability.

Theorem C.1 (Bougerol 93). Suppose that (An,Bn,Hn,Σn) is an ergodic stationary
sequence. Define the observability and controllability Gramian as follows:

On=

n∑
k=1

ATk,1H
T
k σ
−1
k HkAk,1, Cn=

n∑
k=1

ATn,k+1ΣkAn,k+1, Ak,j =Ak−1 ·· ·Aj .

Suppose the system(1.1) is weakly observable and controllable, that is there is an n such
that

P(det(On) 6= 0,det(Cn) 6= 0)>0.

Suppose also the following random variables are integrable,

loglog+‖A1‖, loglog+‖A−1
1 ‖, loglog+‖Σ1‖, loglog+‖HT

1 H1‖.

where log+x= max{0, logx}. Then there is a stationary PD sequence R̃n that follows

R̃n+1 =K(AnR̃nA
T
n +Σn).

And for the covariance matrix Rn of another Kalman filter started with an initial value
R0, will converge to Rsn asymptotically: limsupn→∞

1
nδ(Rn,R̃n)≤α. Here α is a nega-

tive constant, and δ defines a Riemannian distance on S+
d by

δ(P,Q) =

√√√√ d∑
i=1

log2λi, λi are eigenvalues of PQ−1.

One simple and useful fact is that, if the original system (1.1) meets the requirement of
Theorem C.1, then so does the inflated systems (1.9) and (1.10). To see this, one need
to write down the corresponding observability and controllability Gramians O′n and C′n.

In the general scenarios, it’s straightforward to verify that the Gramians of reference
system (1.10) are larger than the ones of (1.1)

O′n=

n∑
k=1

A
′T
k,1H

T
k−1σ

−1
k−1Hk−1A

T
k,1�On, C′n=

n∑
k=1

A
′T
n,k+1Σ′kA

′
n,k+1�Cn.

Since these Gramian matrices are PSD matrices, On and Cn are nonsingular indicate
that O′n and C′n are nonsingular. Also note

log‖A′1‖=
1

2
logR̃+log‖A1‖,

moreover,

log+‖Σ′1‖≤ logR̃+log+(‖Σn‖+‖AnDSA
T
n‖)

≤ logR̃+max{log+(2‖Σn‖),log+(2‖AnDSA
T
n‖)}

≤ logR̃+log2+log+‖Σn‖+2log+‖An‖+log+‖DS‖
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so the integrability condition holds naturally.
When the system had dynamical two-scale decoupling (1.4), it is easy to see that

Ak,j has a block-diagonal structure, and so do the Gramians Cn and On. It is also easy
to verify that the controllability Gramian of (1.9) satisfies

C′n=

n∑
k=1

A
′T
n,k+1ΣLkA

′
n,k+1�

n∑
k=1

ATn,k+1ΣLkA
L
n,k+1 =PLCnPL.

As for the observability Gramian of (1.9), notice that σ−1
k is invertible, so there is a

constant Dn such that Dnσ
−1
k � [σLk ]−1, then it is straightforward to verify that

DnO′n=Dn

n∑
k=1

A
′T
k,1H

T
k−1σ

−1
k−1Hk−1A

′T
k,1�PLOnPL.

This shows the weak observability and controllability of (1.1) implies the ones of (1.9).

REFERENCES

[1] A.J. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant Lecture
Notes, American Mathematical Society, 9, 2003.

[2] A.J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical
Flows, Cambridge University Press, Cambridge, UK, 2006.

[3] I. Groom and A.J. Majda, Efficient stochastic superparameterization for geophysical turbulence,
Proc. Natl. Acad. Sci., 110(12):4464–4469, 2013.

[4] A.J. Majda and J. Harlim, Filtering Complex Turbulent Systems, Cambridge University Press,
Cambridge, UK, 2012.

[5] M. Branicki and A.J. Majda, Quantifying Bayesian filter performance for turbulent dynamical
systems through information theory, Commun. Math. Sci., 12(5):901–978, 2014.

[6] P. Bougerol, Kalman filtering with random coefficients and contractions, SIAM J. Control Optim.,
31(4):942–959, 1993.

[7] A.J. Majda and M. Branicki, Lessons in uncertainty quantification for turbulent dynamical sys-
tem, Discrete and Continuous Dynamical Systems, 32(9):3133–3221, 2013.

[8] P. Del Moral, Nonlinear filtering: Interacting particle resolution, C.R. Acad. Sci. Paris S?r. I
Math., 325(6):653?C-658, 1997.

[9] D. Crisan and A. Doucet, A survey of convergence results on particle filtering methods for prac-
tioners, IEEE Trans on Signal Processing, 50(3):736–746, 2002.

[10] J. Mandel, L. Cobb, and J.D. Beezley, On the convergence of the ensemble Kalman filter, Appl.
Math., 56(6):533–541, 2011.

[11] K.J. Law, H. Tembine, and R. Tempone, Deterministic mean-field ensemble Kalman filtering,
SIAM J. Sci. Comput., 38(3):1251–1279, 2016.

[12] I. Groom, Y. Lee, and A.J. Majda, Ensemble Kalman filters for dynamical systems with unresolved
turbulence, J. Comput. Phys., 273:435–452, 2014.

[13] Y. Lee and A.J. Majda, Multiscale methods for data assimilation in turbulent systems, SIAM
Multiscale Model. Simul., 12:691–713, 2015.

[14] J.L. Anderson, An adaptive covariance inflation error correction algorithms for ensemble filters,
Tellus A, 59:210–224, 2007.

[15] J.L. Anderson, Spatially and temporally varing adaptive covariance inflation for ensemble filters,
Tellus A, 61(1):72–83, 2009.

[16] D.M. Livings, S.L. Dance, and N.K. Nichols, Unbiased ensemble square root filters, Physica D,
237:1021–1081, 2008.

[17] R.S. Liptser and A.N. Shiryaev, Statistics of Random Processes. I, II, Appl. Math., Springer-
Verlag, 5, 2001.

[18] G. Evensen, Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynamics,
54(6):539–560, 2004.

[19] J.L. Anderson, An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev.,
129(12):2884–2903, 2001.

[20] H. Li, E. Kalnay, T. Miyoshi, and C.M. Danforthm, Accounting for model errors in ensemble
data assimilation, Mon. Wea. Rev., 137(10):3407–3419, 2009.

http://www.ams.org/books/cln/009/
http://prp.contentdirections.com/mr/cupress.jsp/doi=10.2277/0521834414
https://doi.org/10.1073/pnas.1302548110
https://doi.org/10.1017/CBO9781139061308
http://dx.doi.org/10.4310/CMS.2014.v12.n5.a6
https://doi.org/10.1137/0331041
http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7284
https://doi.org/10.1016/S0764-4442(97)84778-7
https://www.mendeley.com/research-papers/survey-convergence-results-particle-filtering-methods-practitioners/
https://link.springer.com/article/10.1007%2Fs10492-011-0031-2
https://doi.org/10.1137/140984415
https://doi.org/10.1016/j.jcp.2014.05.037
https://doi.org/10.1137/140978326
https://www.mendeley.com/research-papers/adaptive-covariance-inflation-error-correction-algorithm-ensemble-filters/
https://www.mendeley.com/research-papers/spatially-temporally-varying-adaptive-covariance-inflation-ensemble-filters/
http://mathscinet.ams.org/mathscinet-getitem?mr=2450491
https://link.springer.com/book/10.1007%2F978-3-662-13043-8
https://link.springer.com/article/10.1007%2Fs10236-004-0099-2
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/2009MWR2766.1


1132 ACCURACY AND ROBUSTNESS FOR REDUCED KALMAN FILTERING

[21] D.T.B. Kelly, K.J. Law, and A.M. Stuart, Well-posedness and accuracy of the ensemble Kalman
filter in discrete and continuous time, Nonlinearity, 27:2579–2603, 2014.

[22] X.T. Tong, A.J. Majda, and D. Kelly, Nonlinear stability and ergodicity of ensemble based Kalman
filters, Nonlinearity, 29:657–691, 2016.

[23] D. Kelly, A.J. Majda, and X.T. Tong, Concrete ensemble Kalman filters with rigorous catastrophic
filter divergence, Proc. Natl. Acad. Sci., 112(34):10589–10594, 2016.

[24] X.T. Tong, A.J. Majda, and D. Kelly, Nonlinear stability of the ensemble Kalman filter with
adaptive covariance inflation, Commun. Math. Sci., 14(5):1283–1313, 2016.

[25] A.J. Majda and X.T. Tong, Performance of ensemble Kalman filters in large dimensions, Comm.
Pure Appl. Math for Early View. arXiv: 1606.09321, 2017.

[26] X.T. Tong, Performance analysis of local ensemble Kalman filter, Journal of Nonlinear Science,
28(4):1397–1442, 2018.

[27] E. Kwiatkowski and J. Mandel, Convergence of the square root ensemble Kalman filter in the
large ensemble limit, SIAM/ASA J. Uncertainty Quantification, 3(1):1–17, 2015.

[28] T. Berry and J. Harlim, Linear theory for filtering nonlinear multiscale systems with model error,
Proc. R. Soc. A, 470(2167), 2014.

[29] K. Reif, S. Günther, E. Yaz, and R. Unbelhauen, Stochastic stability of the discrete-time extended
Kalman filter, IEEE Trans on Automatic Control, 44(4):714–728, 1999.

[30] D. Blömker, K.J. Law, A.M. Stuart, and K.C. Zygalakis, Accuracy and stability of the continuous-
time 3DVAR filter for the Navier-Stokes equation, Nonlinearity, 26, 2013.

[31] K.J. Law, A. Shukla, and A.M. Stuart, Analysis of the 3DVAR filter for the partially observed
Lorenz’63 model, Discrete and Continuous Dynamical Systems, 34(3):1061–1078, 2014.

[32] J. Deyst and C. Price, Conditions for asymptotic stability of the discrete minimum variance
linear estimator, IEEE Trans on Automatic Control, 13(6):702–705, 1968.

[33] A.H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1972.
[34] V. Solo, Stability of the Kalman filter with stochastic time-varying parameters, Decision and

Control, Proceedings of the 35th IEEE conference on, 1:57–61, 1996.
[35] G. Freiling and G. Jank, Existence and comparison theorems for algebraic Riccati equations and

Riccati differential and difference equations, Journal of Dynaimical and Control Systems,
2(4):529–547, 1996.

[36] N. Chen, A.J. Majda, and X.T. Tong, Information barriers for noisy Lagrangian tracers in
filtering random incompressible flows, Nonlinearity, 27:2133–2163, 2014.

[37] A.J. Majda and X.T. Tong, Intermittency in turbulent diffusion models with a mean gradient,
Nonlinearity, 28(11):4171–4208, 2015.

[38] N. Chen, A.J. Majda, and X.T. Tong, Noisy Lagrangian tracers for filtering random rotating
compressible flows, J. Non. Sci., 25(3):451–488, 2014.

[39] B. Sinopoli et al, Kalman filtering with intermittent observations, Automatic Control, IEEE
Transaction, 49(9):1453–1464, 2004.

[40] J. Harlim and A.J. Majda, Filtering nonlinear dynamical systems with linear stochastic models,
Nonlinearity, 21:1281–1306, 2008.

[41] A.J. Majda and B Gershgorin, Elementary models for turbulent diffusion with complex physical
features: eddy diffusivity, spectrum, and intermittency, Phil. Trans. Roy. Soc., 371(1982),
2013.

[42] J. Harlim and A.J. Majda, Mathematical strategies for filtering complex systems: regularly spaced
sparse observations, J. Comput. Phys., 227:5304–5341, 2008.

[43] R. Furrer and T. Bengtsson, Estimation of high-dimensional prior and posterior covariance ma-
trices in Kalman filter variants, Journal of Multivariate Analysis, 98:227–255, 2007.

[44] M. Grewal and A. Andrews, Kalman Filtering: Theory and Practice, Second Edition, A Wiley-
Interscience Publication, 2001.

[45] G. Golub and L. Van, Matrix Computations, The John Hopkins University Press, Baltimore,
Maryland, 1983.

http://iopscience.iop.org/article/10.1088/0951-7715/27/10/2579/meta
http://iopscience.iop.org/article/10.1088/0951-7715/29/2/657/meta
https://doi.org/10.1073/pnas.1511063112
http://dx.doi.org/10.4310/CMS.2016.v14.n5.a5
http://pdfs.semanticscholar.org/e7ef/5087a8bbc32be4b670e98d685b702d5407ae.pdf
https://link.springer.com/article/10.1007%2Fs00332-018-9453-2
https://doi.org/10.1137/140965363
http://rspa.royalsocietypublishing.org/content/470/2167/20140168
https://www.mendeley.com/research-papers/stochastic-stability-discretetime-extended-kalman-filter/
http://iopscience.iop.org/article/10.1088/0951-7715/26/8/2193/meta
http://www.aimsciences.org/article/doi/10.3934/dcds.2014.34.1061
http://mathscinet.ams.org/mathscinet-getitem?mr=401292
https://www.researchgate.net/publication/3682185_Stability_of_the_Kalman_filter_with_stochastic_time-varyingparameters
https://link.springer.com/article/10.1007%2FBF02254701
http://iopscience.iop.org/article/10.1088/0951-7715/27/9/2133/meta
http://iopscience.iop.org/article/10.1088/0951-7715/28/11/4171/meta
https://link.springer.com/article/10.1007/s00332-014-9226-5
http://mathscinet.ams.org/mathscinet-getitem?mr=2086911
http://mathscinet.ams.org/mathscinet-getitem?mr=2422380
http://rsta.royalsocietypublishing.org/content/371/1982/20120184
http://rsta.royalsocietypublishing.org/content/371/1982/20120184
https://dl.acm.org/citation.cfm?id=1360989
https://doi.org/10.1016/j.jmva.2006.08.003
https://www.wiley.com/en-gb/Kalman+Filtering%3A+Theory+and+Practice+Using+MATLAB%2C+3rd+Edition-p-9780470173664
https://www.researchgate.net/publication/220694042_Matrix_Computations_3rd_ed

