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PULLBACK DYNAMICAL BEHAVIORS OF THE
NON-AUTONOMOUS MICROPOLAR FLUID FLOWS WITH

MINIMALLY REGULAR FORCE AND MOMENT∗

WENLONG SUN† AND YEPING LI‡

Abstract. In this paper, we investigate the pullback asymptotic behaviors of solutions for the non-
autonomous micropolar fluid flows in 2D bounded domains. Firstly, when the force and the moment
have a little additional regularity, we make use of the semigroup method and ε-regularity method to
obtain the existence of a compact pullback absorbing family in Ĥ and V̂ , respectively. Then, applying
the global well-posedness and the estimates of the solutions, we verify the flattening property (also
known as the “Condition (C)”) of the generated evolution process for the universe of fixed bounded

sets and for another universe with a tempered condition in spaces Ĥ and V̂ , respectively. Further, we
show the existence and regularity of the pullback attractors of the evolution process. Compared with
the regularity of the force and the moment of [31], here we only need the minimal regularity of the
force and the moment.

Keywords. pullback attractor; flattening property; semigroup method; ε-regularity method; en-
strophy equality.
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1. Introduction
In this paper, we study the following non-autonomous micropolar fluid equations:

∂u

∂t
−(ν+νr)∆u−2νrrotω+(u ·∇)u+∇p=f,

∇·u= 0,

∂ω

∂t
−(ca+cd)∆ω+4νrω+(u ·∇)ω−(c0 +cd−ca)∇divω−2νrrotu= f̃ ,

(1.1)

where u= (u1,u2,u3) is the velocity, ω= (ω1,ω2,ω3) is the microrotation field interpreted
as the angular velocity field of rotation of particles, p represents the pressure, f =
(f1,f2,f3) and f̃ = (f̃1, f̃2, f̃3) are external force and moments, respectively. The positive
parameters ν,νr,c0,ca,cd represent viscosity coefficients. Precisely, ν represents the
usual Newtonian viscosity and νr is the microrotation viscosity. The system (1.1) is
introduced in the pioneer work of Eringen [11] in 1966, which describes a class of non-
Newtonian fluid motions with micro-rotational effects and inertial force involved. This
model takes an important role in the fields of applied and computational mathematics,
and we can see more details in [11, 20] and others. Note that when the gyration is
neglected, the micropolar fluid flows reduce to the incompressible Navier-Stokes flows.

Due to their physical importance, mathematical complexity and wide range of ap-
plications, there are many articles on the mathematical theory of the micropolar fluid
Equations (1.1). The well-posedness of solutions for the micropolar fluids has been in-
vestigated in [10, 13–15, 20, 21], and more. Moreover, lots of works are devoted to the
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long time behavior of solutions for the micropolar fluids in bounded domain. More pre-
cisely, Chen, Chen and Dong proved the existence of H2-compact global attractors in a
bounded domain in [6] and verified the existence of uniform attractors in non-smooth
domains in [7]. Chen [8] showed the existence of L2-pullback attractor for the micropolar
fluid flows in a Lipschitz bounded domain with non-homogeneous boundary conditions.
 Lukaszewicz [21] verified the estimates of Hausdorff and fractal dimension of the L2-
global attractor.  Lukaszewicz and Tarasińska [23] proved the existence of H1-pullback
attractor for non-autonomous micropolar fluid equation in a bounded domain. Zhao and
Sun [32] established the well-posedness of the weak solution by using Faedo-Galerkin
approximation and energy equality, and proved the existence of a pullback attractor
via energy method and the Sobolev embedding theorem for the micropolar fluid flows
with infinite delays. Later, Zhou, Liu and Sun [33] verified the H2-boundedness of the
pullback attractors obtained in [32].

Finally, we also note that there exist work on the long time behavior of solutions
for the micropolar fluid flows on unbounded domains, we refer to [9, 27, 28, 30] and the
references therein. In this paper, we will discuss the large-time behavior of the solutions
for the micropolar fluid model (1.1) with the minimal regularity of the force and the
moment in a 2D smooth bounded domains Ω⊆R2.

For the sake of simplicity, we assume that the velocity component u3 in the x3

direction is zero and the axes of rotation of particles are parallel to the x3 axis. Then
u,ω,f,f̃ are of the form u= (u1,u2,0), ω= (0,0,ω3), f = (f1,f2,0), f̃ = (0,0, f̃3). Hence,
the Equations (1.1) can be reduced to the following two-dimensional non-autonomous
dynamical system:

∂u

∂t
−(ν+νr)∆u−2νr∇×ω+(u ·∇)u+∇p=f(t,x),

∂ω

∂t
−α∆ω+4νrω−2νr∇×u+(u ·∇)ω= f̃(t,x),

∇·u= 0, in (τ,T )×Ω,

(1.2)

where α := ca+cd, x := (x1,x2)∈Ω⊆R2, u := (u1,u2), f := (f1,f2), ω and f̃ are scalar
functions,

∇×u :=
∂u2

∂x1
− ∂u1

∂x2
and ∇×ω := (

∂ω

∂x2
,− ∂ω

∂x1
).

To complete the formulation of the initial boundary value problem to system (1.2), we
give the following initial boundary conditions:

u= 0, ω= 0, on (τ,T )×∂Ω, (1.3)

w(τ,x) = (u(τ,x),ω(τ,x)) = (u0(x),ω0(x)), x∈Ω, τ ∈R. (1.4)

Before stating our results, we first give some notations used throughout this paper.
We denote by Lp(Ω) and Wm,p(Ω) the usual Lebesgue space and Sobolev space (see [1])
endowed with norms ‖·‖p and ‖·‖m,p, respectively. For example, ‖ϕ‖Lp = (

∫
Ω
|ϕ|pdx)1/p

and ‖ϕ‖m,p := (
∑
|β|6m

∫
Ω
|Dβϕ|pdx)1/p. Especially, we denote Hm(Ω) :=Wm,2(Ω) and

H1
0 (Ω) the closure of {ϕ∈C∞0 (Ω)} with respect to H1(Ω) norm.

Then, we introduce the following function spaces:

V :={ϕ∈C∞0 (Ω)×C∞0 (Ω)|ϕ= (ϕ1,ϕ2),∇·ϕ= 0},



W. SUN AND Y. LI 1045

H := closure of V inL2(Ω)×L2(Ω), with norm ‖·‖H and dual spaceH∗,

V := closure of V inH1(Ω)×H1(Ω), with norm ‖·‖V and dual spaceV ∗,

Ĥ :=H×L2(Ω) with norm ‖·‖Ĥ and dual space Ĥ∗,

V̂ :=V ×H1
0 (Ω) with norm ‖·‖V̂ and dual space V̂ ∗,

Oσ(B) :={w∈ V̂ : inf
v∈B
‖w−v‖V̂ <σ}.

Here

‖(u,v)‖H := (‖u‖22 +‖v‖22)1/2, ‖(u,v)‖V := (‖u‖2H1 +‖v‖2H1)1/2,

‖(u,v,w)‖Ĥ := (‖(u,v)‖2H +‖w‖22)1/2, ‖(u,v,w)‖V̂ := (‖(u,v)‖2V +‖w‖2H1)1/2.

In the subsequent, we simplify the notations ‖·‖2, ‖·‖H and ‖·‖Ĥ by the same
notation ‖·‖ if there is no confusion. In addition, we denote by (·, ·) the inner product

in L2(Ω),H or Ĥ, and 〈·,·〉 the dual pairing between V and V ∗ or between V̂ and V̂ ∗.
Further, we denote:

Lp(I;X) := space of strongly measurable functions on the closed interval I,

with values in a Banach space X, endowed with norm

‖ϕ‖Lp(I;X) := (

∫
I

‖ϕ‖pXdt)1/p, for 16p<∞,

C(I;X) := space of continuous functions on the interval I, with values

in the Banach space X, endowed with the usual norm,

L2
loc(I;X) := space of locally square integrable functions on the interval I, with values

in the Banach space X, endowed with the usual norm.

We also denote ↪→↪→ the compact embedding between spaces and use distM(X,Y)
to represent the Hausdorff semidistance between X⊆M and Y ⊆M with

distM(X,Y) = sup
x∈X

inf
y∈Y

distM(x,y).

Now let us write system (1.2)-(1.4) into an abstract form. For this, we further
introduce three operators:

〈Aw,φ〉 := (ν+νθ)(∇u,∇Φ)+α(∇ω,∇φ3), ∀w= (u,ω),φ= (Φ,φ3)∈ V̂ ,

〈B(u,w),φ〉 := ((u ·∇)w,φ), ∀u∈V,w= (u,ω)∈ V̂ , ∀φ∈ V̂ ,

N(w) := (−2νr∇×ω,−2νr∇×u+4νrω), ∀w= (u,ω)∈ V̂ ,

(1.5)

then, the system (1.2)-(1.4) can be expressed as the following abstract form:

∂w

∂t
+Aw+B(u,w)+N(w) =F (t,x), in (τ,+∞)×Ω,

∇·u= 0, in (τ,+∞)×Ω,

w= (u,ω) = 0, on (τ,+∞)×∂Ω,

w(τ,x) = (u(τ,x),ω(τ,x)) =w0(x), x∈Ω,τ ∈R,

(1.6)
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where F (t,x) := (f(t,x), f̃(t,x)). The existence and uniqueness of the weak solutions
(for the definition, one can see [21,30]) to system (1.6) has been established in [21], that
is,

Lemma 1.1. Assume F (t,x)∈L2
loc(R;Ĥ).

(1) If wτ ∈ Ĥ, then system (1.6) has a unique solution w satisfying

w∈L∞(τ,+∞;Ĥ)∩C([τ,+∞);Ĥ)∩L2
loc(τ,+∞;V̂ ), w′∈L2

loc(τ,+∞;V̂ ∗).

And w depends continuously on the initial value wτ with respect to the Ĥ norm.

(2) If wτ ∈ V̂ , then problem (1.6) has a unique solution w satisfying

w∈L∞(τ,+∞;V̂ )∩C([τ,+∞);V̂ )∩L2
loc(τ,+∞;D(A)), w′∈L2

loc(τ,+∞;Ĥ).

Moreover, the solution w depends continuously on the initial value wτ with respect to
the V̂ norm.

Remark 1.1. We point out here that the prerequisite F ∈L2
loc(R;Ĥ) used to ensure

the well-posedness of the weak solutions in space Ĥ (see [21]) can be relaxed to F ∈
L2
loc(R;V̂ ∗), which can be verified by the Galerkin method.

At this stage, we introduce a definition and give some relevant conclusions.

Definition 1.1.
(1) A biparametric family of maps {U(t,τ)}t>τ is called a process on X, if it satisfies

the following properties:

◦ U(t,τ) :X 7→X, for any τ 6 t;

◦ U(τ,τ) = identity;

◦ U(t,r)U(r,τ) =U(t,τ), for any τ 6 r6 t.
Moreover, {U(t,τ)}t>τ is a continuous process on X if for any t> τ, U(t,τ) is continuous
on X.

(2) A process {U(t,τ)}t>τ on X is said to be closed if for any τ 6 t, and any sequence
{wn}⊆X with wn→w∈X and U(t,τ)wn→y∈X, then U(t,τ)w=y.

Then, we have the following conclusions:

(i) If a process is continuous, then it must be closed.

(ii) On the basis of Lemma 1.1 and Definition 1.1, the map defined by

U(t,τ) :

{
wτ 7→U(t,τ)wτ =w(t;τ,wτ )∈ Ĥ, ∀τ 6 t, wτ ∈ Ĥ,

wτ 7→U(t,τ)wτ =w(t;τ,wτ )∈ V̂ , ∀τ 6 t, wτ ∈ V̂ ,
(1.7)

generates a continuous process {U(t,τ)}t>τ in Ĥ and V̂ , respectively.
This paper will study under the following four assumptions, respectively.

(H1) F (t,x)∈L2
loc(R;V̂ ∗) and

∫ 0

−∞
eδ1θ‖F (θ)‖2

V̂ ∗dθ<+∞.

(H2) F (t,x)∈L2
loc(R;Ĥ) and

∫ 0

−∞
eδ1θ‖F (θ)‖2dθ<+∞.

(H3) F (t,x)∈Lploc(R;V̂ ∗) for some p>2 and

∫ 0

−∞
eδ1θ‖F (θ)‖2

V̂ ∗dθ<+∞.
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(H4) F (t,x)∈Lploc(R;Ĥ) for some p>2 and

∫ 0

−∞
eδ1θ‖F (θ)‖2dθ<+∞.

In order to facilitate the discussion, we denote by X the space Ĥ or V̂ , and by
P(X) the family of all nonempty subsets of X. Let D be a nonempty class of families

parameterized in time, i.e., each element of D is of the form D̂={D(t) : t∈R}⊆P(X),
which will be called a universe in P(X). Based on these notations, we introduce the
following definitions concerning the pullback attractors. One can refer to [4,16,23,24,31]
for general definitions and theories. Note that U(t,τ)D(τ) :=U(t,τ)[D(τ)] is the image
of D(τ) under U(t,τ).

Definition 1.2.
(1) A family of sets D̂0 ={D0(t)|t∈R}⊆P(X) is called pullback D-absorbing for

the process {U(t,τ)}t>τ in X if for any t∈R and any D̂={D(t)|t∈R}∈D, there exists

a τ0(t,D̂)6 t such that U(t,τ)D(τ)⊆D0(t) for all τ 6 τ0(t,D̂).

(2) The process {U(t,τ)}t>τ is said to be pullback D̂0-asymptotically compact in
X if for any t∈R, any sequences {τn}⊆ (−∞,t] and {xn}⊆X satisfying τn→−∞ as
n→∞ and xn∈D0(τn) for all n, the sequence {U(t,τn;xn)} is relatively compact in

X. {U(t,τ)}t>τ is called pullback D-asymptotically compact in X if it is pullback D̂-

asymptotically compact for any D̂∈D.

(3) A family of sets ÂD={AD(t)|t∈R}⊆P(X) is called a pullback D-attractor of
the process {U(t,τ)}t>τ on X if it has the following properties:

Compactness: for any t∈R,AD(t) is a nonempty compact subset of X;

Invariance: U(t,τ)AD(τ) =AD(t),∀t> τ ;

Pullback attracting: ÂD is pullback D-attracting in the following sense:

lim
τ→−∞

distX (U(t,τ)D(τ),AD(t)) = 0,∀D̂={D(s)|s∈R}∈D,t∈R;

Minimality: the family of sets ÂD is minimal in the sense that if Ô={O(t)|t∈R}⊆
P(X) is another family of closed sets satisfying

lim
τ→−∞

distX(U(t,τ)D(τ),O(t)) = 0, ∀D̂={D(t)|t∈R}∈D;

then AD(t)⊆O(t) for t∈R.

From now on, we denote by DĤ the class of all families of nonempty subset D̂=
{D(t)|t∈R}⊆P(Ĥ) satisfying

lim
τ→−∞

(eδ1τ sup
w∈D(τ)

‖w‖2) = 0. (1.8)

And, we use DĤF to denote the class of families D̂={D(t) =D|t∈R} with D a fixed

nonempty bounded subset of Ĥ. Evidently, it holds that DĤF ⊆DĤ and DĤ is inclusion-

closed, i.e, if D̂∈DĤ and D̂′={D′(t)|t∈R}⊆P(Ĥ) with D′(t)⊆D(t) for all t, then

D̂′∈DĤ . In addition, we denote by DĤ,V̂ the class of all families D̂V̂ of elements of

P(V̂ ), here

D̂V̂ ={DV̂ (t) =D(t)∩ V̂ |t∈R} with D̂={D(t)|t∈R}∈DĤ .
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At the same time, we use DV̂F to denote the universe of fixed nonempty bounded subsets

of V̂ . It is easy to find that both classes DĤ,V̂ and DV̂F are universe in P(V̂ ) and that

DV̂F ⊆DĤ,V̂ ⊆DĤ . Moreover, DĤ,V̂ is inclusion-closed.
The first purpose of this work is to prove the existence of a compact absorbing

family in two different spaces Ĥ and V̂ . That is:

Theorem 1.1. Assume (H3) holds, then there exists a compact pullback absorbing

family in Ĥ.

Theorem 1.2. Under the conditions of (H4), there exists a compact pullback absorbing

family in V̂ .
The second objective is to show the existence and regularity of pullback D- attrac-

tors for the generated evolution process for the universe of fixed bounded sets and for
another universe with a tempered condition in spaces Ĥ and V̂ , with minimally regular
force and moment, respectively. We have the following theorem.

Theorem 1.3. Assume (H1) hold, then the process {U(t,τ)}t>τ defined by (1.7)

possesses the minimal pullback DĤF - and DĤ- attractors

ÂDĤF ={ADĤF (t)|t∈R} and ÂDĤ ={ADĤ (t)|t∈R}∈DĤ ,

respectively. Furthermore,

ADĤF (t)⊆ADĤ (t), ∀t∈R.

Moreover, with a little additional regularity on F , it holds that the following regu-
larity of the pullback D - attractors obtained in Theorem 1.3.

Theorem 1.4. Under the conditions of (H2), the process {U(t,τ)}t>τ defined by (1.7)

possesses the minimal pullback DV̂F - attractors

ÂDV̂F ={ADV̂F (t)|t∈R},

and the minimal pullback DĤ,V̂ -attractors

ÂDĤ,V̂ ={ADĤ,V̂ (t) : t∈R}.

Moreover, the following statements hold:

(1) For any t∈R, we have

ADV̂F (t)⊆ADĤF (t)⊆ADĤ (t) =ADĤ,V̂ (t), (1.9)

where ÂDĤF ={ADĤF (t)|t∈R} and ÂDĤ ={ADĤ (t)|t∈R} are the minimal pullback

DĤF - and DĤ-attractors of {U(t,τ)}t>τ in space Ĥ, which are obtained in Theorem
1.3.

(2) For any t∈R and D̂∈DĤ , there holds

lim
τ→−∞

distV̂
(
U(t,τ)D(τ),ADĤ (t)

)
= 0. (1.10)
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(3) Suppose F satisfies

sup
s60

(
e−δ1s

∫ s

−∞
eδ1θ‖F (θ)‖2dθ

)
<+∞. (1.11)

Then, for any t∈R and fixed bounded subset B of Ĥ, we have

ADV̂F (t) =ADĤF (t) =ADĤ (t) =ADĤ,V̂ (t) (1.12)

and

lim
τ→−∞

distV̂
(
U(t,τ)B,ADĤF (t)

)
= 0. (1.13)

Remark 1.2. The existence of the pullback attractors in spaces Ĥ and V̂ has
been proved by showing the existence of the pullback absorbing set and the asymptotic
compactness of the generated evolution process with the force f ∈L2

loc(R;Ĥ) and the

moment f̃ ∈L2
loc(R;Ĥ) in [31]. However, here we only need the minimal regularity of

the force and the moment. Moreover, we verify the flattening property of the generated
evolution process, to show the existence and regularity of the pullback attractors of the
evolution process. This argument is essentially different from [31]. In fact, the flattening
property (a Fourier splitting technique) makes the analysis significantly simpler.

The idea of the proof is outlined as follows. Firstly, borrowed the ideas and argu-
ments in [17], the existence of compact pullback absorbing family can be proved by the
semigroup approach raised by Fujita and Kato [12] and the ε-regularity theory developed
by Arrita and Carvalho [2]. Here, we emphasize that, compared with the Navier-Stokes
equations (w= 0,νr = 0), the micropolar fluid flow consists of the angular velocity field
ω of the micropolar particles, which leads to a different nonlinear term B(u,w) and
an additional term N(u) in the abstract equation. Therefore, we have to obtain more
delicate estimates and analysis for the solutions. Next, we verify the flattening property
(also known as the “Condition (C)”) of the generated evolution process for the universe
of fixed bounded sets and for another universe with a tempered condition in spaces
Ĥ and V̂ , respectively. Further, we show the existence and regularity of the pullback
attractors of the evolution process. The main point is to establish several key estimates,
which will play an important role in verifying the flattening property of the process.
The method has been used in [25] as their “Condition (C)”, and in [18] as “the flat-
tening property”. Due to the minimal regularity of the force and the moment, we can
not use the arguments in [31]. The lower regularity of F ∈L2

loc(R;V̂ ∗) than [31] with

F ∈L2
loc(R;Ĥ) results in the loss of the uniform estimate in [t−2,t] of ‖w(·)‖V̂ , which

forces us to prove the Lemmas 4.1-4.3 to obtain the flattening property of the process
{U(t,τ)}t>τ .

The rest of the paper is organized as follows. In Section 2, we make some necessary
preliminaries. That is, we introduce some definitions and give some useful estimates with
respect to the operators and recall some known results concerning the micropolar fluid
model. Section 3 is devote to show Theorem 1.1 and 1.2. That is, basing on the global
well-posedness and the estimates of the solutions, we apply the semigroup method and
ε- regularity, combining with some Sobolev inequalities, to testify the existence of the
compact pullback absorbing family (not only asymptotic compactness) in spaces Ĥ and

V̂ , respectively. In Section 4, we first concentrate on verifying the flattening property of
the process. Then, using the flattening property of the process, we prove the existence
of the pullback attractors for the universe of fixed bounded sets and for another universe
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with a tempered condition in spaces Ĥ and V̂ , respectively. Furthermore, we reveal the
regularity result of the pullback attractors by showing that these attractors coincide
with each other.

2. Preliminaries

In this section, we make some necessary preliminaries. To begin with, we give some
useful estimates with respect to those operators (1.5) in the following lemmas.

Lemma 2.1. The operator A is a linear continuous operator both from V to V ∗ and

from D(A) :=V ∩
(
H2(Ω)

)3
to H. Indeed, A=−P∆, where P is the Leray projector

from L2(Ω) to H. The operator B(·,·) is continuous from V ×V to V ∗. Moreover, for
any u∈V,w∈V , it holds that

〈B(u,w),ϕ〉=−〈B(u,ϕ),w〉. (2.1)

Proof. The linearity and continuity of the operator A can be deduced directly
from its definition. Similarly, the continuity of the operator B(·,·) can be obtained

easily from its definition. We only need to verify (2.1). In fact, for any u∈V,w∈ V̂ , we
have

〈B(u,w),w〉= ((u ·∇)w,w) =

∫
Ω

(u1
∂

∂x1
+u2

∂

∂x2
)(w1,w2,w3)(w1,w2,w3)dx

=

3∑
j=1

2∑
i=1

∫
Ω

ui
∂wj
∂xi

wjdx=

3∑
j=1

2∑
i=1

1

2

∫
Ω

ui
∂w2

j

∂xi
dx=

1

2

3∑
j=1

2∑
i=1

(uiw
2
j |∂Ω−

∫
Ω

w2
jDiuidx)

=− 1

2

3∑
j=1

2∑
i=1

∫
Ω

w2
jDiuidx=−1

2

3∑
j=1

∫
Ω

w2
j (∇·u)dx= 0. (2.2)

Hence, the identity (2.1) is valid as a consequence of (2.2). This completes the proof.

Lemma 2.2 (see [21,22,30]).

(1) There are two positive constants c1 and c2 such that

c1〈Aw,w〉6‖w‖2V̂ 6 c2〈Aw,w〉, ∀w∈ V̂ . (2.3)

(2) There exists a positive constant λ which depends only on Ω, such that for any

(u,w,ϕ)∈V × V̂ × V̂ , it holds that

|〈B(u,w),ϕ〉|6λ‖u‖ 1
2 ‖∇u‖ 1

2 ‖w‖ 1
2 ‖∇w‖ 1

2 ‖∇ϕ‖. (2.4)

Furthermore, for (u,w,ϕ)∈V ×D(A)× V̂ and (u,w,ϕ)∈V ×D(A)×D(A), we have

|〈B(u,w),ϕ〉|6λ‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇w‖ 1
2 ‖Aw‖ 1

2 ‖ϕ‖, (2.5)

|〈B(u,w),Aϕ〉|6λ‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇w‖ 1
2 ‖Aw‖ 1

2 ‖Aϕ‖. (2.6)

(3) There exist two positive constants c(νr) and δ1 := min{ν,α} such that

‖N(w)‖6 c(νr)‖w‖V̂ , ∀w∈ V̂ , (2.7)

〈Aw,w〉+〈N(w),w〉> δ1‖w‖2V̂ , ∀w∈ V̂ . (2.8)
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Remark 2.1. According to the definition of operator A and the classical spectral
theory of elliptic operators (see [3]), there exists a sequence {λn}∞n=1 (formed by the
eigenvalues of A) satisfying

0<λ1 6λ2 6 ·· ·6λn6 ·· · , λn→+∞ as n→∞,

and a sequence of elements {vn}∞n=1⊆D(A), which forms a orthonormal basis of Ĥ, so

that span{v1,v2, ·· · ,vn,·· ·} is dense in V̂ , and Avn=λnvn for ∀n∈N.

Next, we recall a basic result (see Theorem 3.11 in [16]).

Proposition 2.1. Assume {U(t,τ)}t>τ is a closed process, D is a universe in P(X),

D̂0 ={D0(t)|t∈R}⊆P(X) is pullback D- absorbing for the process, and {U(t,τ)}t>τ is

pullback D̂0- asymptotically compact. Then, the family ÂD={AD(t)|t∈R} defined by

AD(t) =
⋃
D̂∈D

Λ(D̂,t)
X

with Λ(D̂,t) :=
⋂
s6t

⋃
τ6s

U(t,τ)D(τ)
X

, ∀t∈R, (2.9)

satisfies the following properties:

◦ Compactness: for any t∈R, the set AD(t) is a nonempty compact subset of X,

and AD(t)⊆Λ(D̂0,t);

◦ Invariance: ÂD is invariant, i.e. U(t,τ)AD(τ) =AD(t), for all τ 6 t;
◦ Pullback attracting: ÂD is pullback D- attracting, that is

lim
τ→−∞

distX(U(t,τ)D(τ),AD(t)) = 0, for allD̂∈D, t∈R;

◦ Minimality: the family ÂD is minimal;

◦ if D̂0∈D, then AD(t) = Λ(D̂0,t)⊆D0(t)
X

, for all t∈R.

Remark 2.2. If ÂD ∈D, then it is the unique family of closed subsets in P. Further-
more, the sufficient conditions for ÂD ∈D are that
• D̂0∈D,
• the set D0(t) is closed for all t∈R,

• the universe D is inclusion-closed, that is, if D̂∈D and D̂′={D′(t) : t∈R}⊆P(X)

with D′(t)⊆D(t) for all t, then D̂′∈D.

Finally, we introduce a notion called “flattening property” (see [17, 18]), which is
also known as “Condition (C)” in [25].

Definition 2.1. Assume that X is a Banach space with norm ‖·‖X , and D̂0 =
{D0(t)|t∈R} is a given family. We say that the process {U(t,τ)}t>τ on X satisfies

the pullback D̂0-flattening property if, for any t∈R and ε>0, there exist τ(ε,t,D̂0)<t,

a finite dimensional subspace X(ε,t,D̂0) of X, and a map P(ε,t,D̂0) :X 7→X(ε,t,D̂0),
such that

{PU(t,τ)wτ |τ 6 τ(ε,t,D̂0), wτ ∈D0(τ)}is bounded inX.

and

‖(I−P)U(t,τ)wτ‖X <ε, for any τ 6 τ(ε,t,D̂0),wτ ∈D0(τ).
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Remark 2.3. Garćıa-Luengo, Maŕın-Rubio and Real [17, Proposition 9] pointed out

that, to ensure a process {U(t,τ)}t>τ is pullback D̂0- asymptotically compact, it is

enough to show the process satisfies the pullback D̂0-flattening property.

3. Existence of compact pullback absorbing family
In this section, using the semigroup method (see [12]) and ε-regularity method (see

[2]), we show the existence of a compact pullback absorbing family (not only asymptotic

compactness) in Ĥ and V̂ , respectively. To do this, let us first define the fractional
powers spaces D(Aα) as the domains of operators Aα and analytic semigroup e−At.

Definition 3.1. For α>0, let D(Aα) =
{
w∈ Ĥ|

∞∑
n=1

λ2α
n (w,vn)2<+∞

}
. In par-

ticular, we also write u∈D(Aα) if w= (u,ω)∈D(Aα). And Aαw=
∞∑
n=1

λαn(w,vn)vn∈

Ĥ, ∀w∈D(Aα), here {vn}n>1 is given in Remark 2.1.

Note that for all α>0, D(Aα) is a Hilbert space with the inner product
(w,ϕ)D(Aα) = (Aαw,Aαϕ) and D(A−α) := the dual space of D(Aα). Particularly,

D(A0) = Ĥ, D(A
1
2 ) = V̂ , D(A−

1
2 ) = V̂ ∗. For convenience, we write ‖ϕ‖α :=‖Aαϕ‖.

Definition 3.2. For any w∈ Ĥ and t>0, define e−Atw=
∞∑
n=1

e−λnt(w,vn)vn∈ Ĥ.

3.1. Existence of a compact pullback absorbing sets in Ĥ. In this
subsection, we focus on the proof of Theorem 1.1. To begin with, the following results
can be verified in the same way as Lemmas 3.2-3.3 in our previous work [31], we omit
the details here.

Lemma 3.1. Assume F ∈L2
loc(R;V̂ ∗) and w is the solution to system (1.6) with initial

value wτ ∈ Ĥ. Then,

(1) it holds that

‖w(t)‖2 6e−δ1(t−τ)‖wτ‖2 +
e−δ1t

δ1

∫ t

τ

eδ1θ‖F (θ)‖2
V̂ ∗dθ. (3.1)

(2) for any t∈R and D̂={D(t)|t∈R}∈DĤ , there exists a τ0(D̂,t)<t−2 such that,

for any τ 6 τ0(D̂,t) and wτ ∈D(τ),

‖w(r;τ,wτ )‖2 6ρ1(t), ∀r∈ [t−2,t], (3.2)∫ r

r−1

‖w(r;τ,wτ )‖2
V̂

dθ6ρ2(t), ∀r∈ [t−1,t], (3.3)∫ r

r−1

‖w′(r;τ,wτ )‖2
V̂ ∗dθ6ρ3(t), ∀r∈ [t−1,t], (3.4)

where

ρ1(t) := 1+
e−δ1(t−2)

δ1

∫ t

−∞
eδ1θ‖F (θ)‖2

V̂ ∗dθ, ρ2(t) :=
1

δ1
ρ1(t)+

1

δ2
1

∫ t

t−2

‖F (θ)‖2
V̂ ∗dθ,

ρ3(t) := 3(c−1
1 +c(νr))

2ρ2(t)+3λ2ρ1(t)ρ2(t)+3

∫ t

t−2

‖F (θ)‖2
V̂ ∗dθ.
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Invoking (3.2), we can obtain

Lemma 3.2. Under the conditions of Lemma 3.1, the family D̂0 ={D0(t)|t∈R} with

D0(t) = B̄Ĥ(0,RĤ(t)) is pullback DĤ- absorbing for the process {U(t,τ)}t>τ in Ĥ, where

B̄Ĥ(0,RĤ(t)) ={w∈ Ĥ
∣∣‖w‖26RĤ(t)} with RĤ(t) :=1+

e−δ1(t−2)

δ1

∫ t

−∞
eδ1θ‖F (θ)‖2

V̂ ∗dθ

is a closed ball in Ĥ.

Then, let us verify a important smoothing estimate.

Lemma 3.3. For any β>0, it holds that

‖Aβe−Atw‖6 cβt−β‖w‖, ∀w∈ Ĥ. (3.5)

Proof. Since, for any w∈ Ĥ, w=
∞∑
n=1

(w,vn)vn. Then, we have

‖Aβe−Atw‖=‖
∞∑
n=1

λβne
−λnt(w,vn)vn‖=‖t−β

∞∑
n=1

(λnt)
βe−λnt(w,vn)vn‖

6 t−β sup
γ∈[0,+∞)

γβe−γ‖
∞∑
n=1

(w,vn)vn‖= c0t
−β‖w‖,

where cβ := sup
γ∈[0,∞)

γβe−γ . This completes the proof.

Next, we investigate the estimates about operators B and N .

Lemma 3.4. For any 0<ε<
1

4
, there exist constants c̄ε and c̃ε such that

B : D(Aε)×D(Aε) 7→D(A−(1−2ε)) and ‖B(u,w)‖−(1−2ε) 6 c̄ε‖w‖2ε ,
N : D(Aε) 7→D(A−(1−2ε)) and ‖N(w)‖−(1−2ε) 6 c̃ε‖w‖ε.

Proof. Note that for any ε∈ (0,
1

4
), it holds that (see [1])

D(A1−2ε) ↪→W 2−4ε,2(Ω) ↪→W 1,∞(Ω) ↪→W 1, 1
2ε (Ω), D(Aε) ↪→W 2ε,2(Ω) ↪→L

2
1−2ε (Ω).

Then, for any ϕ∈D(A1−2ε), it follows from the above embedding and Hölder inequality
that∣∣〈B(u,w),ϕ〉

∣∣= ∣∣〈B(u,ϕ),w〉
∣∣6‖u‖

L
2

1−2ε (Ω)
‖w‖

L
2

1−2ε (Ω)
‖∇ϕ‖

L
1
2ε (Ω)

6‖w‖2
L

2
1−2ε (Ω)

‖∇ϕ‖
L

1
2ε (Ω)

6 c̄ε‖w‖2ε‖ϕ‖1−2ε, ∀(u,w)∈D(Aε)×D(Aε),

and ∣∣〈N(w),ϕ〉
∣∣= ∣∣∫

Ω

−2νr(
∂ω

∂x2
,− ∂ω

∂x1
,
∂u2

∂x1
− ∂u1

∂x2
+2ω) ·(ϕ1,ϕ2,ϕ3)dx

∣∣
6 c
∣∣∫

Ω

∇w ·ϕdx
∣∣6 c∫

Ω

|w| · |∇ϕ|dx6 c‖w‖
L

1
1−2ε (Ω)

‖∇ϕ‖
L

1
2ε (Ω)
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6 c̃ε‖w‖ε‖ϕ‖1−2ε, ∀w∈D(Aε),

where c̄ε and c̃ε are positive constants. This completes the proof.

Now, let us show the boundness of {U(t,τ)D(τ)} in D(Aε) norm.

Lemma 3.5. Assume that (H3) holds, then, for any ε<min{ 1
4 ,

1
2−

1
p},t∈R and D̂∈

DĤ ,

{U(t,τ)wτ |wτ ∈D(τ),τ 6 τ0(D̂,t)} is bounded in D(Aε),

where τ0(D̂,t) is given in Lemma 3.1.

Proof. First, fix t∈R,D̂∈DĤ ,τ 6 τ0(D̂,t),wτ ∈D(t) and write wσ(s) =w(σ+
s;τ,wτ ), Fσ(s) =F (σ+s). Noting that any weak solution w to system (1.6) satisfies the
variation of constants formula

w(t) =e−A(t−s)w(s)+

∫ t

s

e−A(t−θ)[F (θ)−B(u(θ),w(θ))−N(w(θ))]dθ, ∀s∈ [τ,t]. (3.6)

In particular, for some σ>τ (specified later), we have

wσ(s) =e−Aswσ(0)+

∫ s

0

e−A(s−θ)[Fσ(θ)−B(uσ(θ),wσ(θ))−N(wσ(θ))]dθ, ∀s∈ [0,t−σ].

(3.7)

From (3.2) and (3.3), we see that, for any σ∈ [t−1,t], s ∈ [0,t−σ],

‖wσ(s)‖6ρ
1
2
1 (t) and

∫ s

0

‖wσ(θ)‖2
V̂

dθ6ρ2(t). (3.8)

Hence, on the basis of Lemma 3.3 and Lemma 3.4, choosing σ∈ [t−1,t] and letting
s6 t−σ, then taking the norm of (3.7) in D(Aε) and multiplying by sε, we obtain

sε‖wσ(s)‖ε6sε‖e−Aswσ(0)‖ε+sε
∫ s

0

‖e−A(s−θ)[Fσ(θ)−B(uσ(θ),wσ(θ))−N(wσ(θ))]‖εdθ

6cε‖wσ(0)‖+c1−εs
ε

∫ s

0

(s−θ)−(1−ε)[‖B(uσ(θ),wσ(θ))‖−(1−2ε)

+‖N(wσ(θ))‖−(1−2ε)

]
dθ+c 1

2
+εs

ε

∫ s

0

(s−θ)−
1
2
−ε‖Fσ(θ)‖V̂ ∗dθ

6L1 +L2 +L3, (3.9)

where

L1 := cερ
1
2
1 (t)+c 1

2 +εs
ε

∫ s

0

(s−θ)− 1
2−ε‖Fσ(θ)‖V̂ ∗dθ,

L2 := c1−εc̄εs
ε

∫ s

0

(s−θ)−(1−ε)‖wσ(θ)‖2εdθ,

L3 := c1−εc̃εs
ε

∫ s

0

(s−θ)−(1−ε)‖wσ(θ)‖εdθ.

In order to find an upperbound of sε‖wσ(s)‖ε. In the following, we estimate L1,L2

and L3 respectively. First, due to 0<ε< 1
2−

1
p , then, for any s∈ [0,t−σ]⊆ [0,1], it is

easy to see that

L1 6 cερ
1
2
1 (t)+c 1

2 +ε(

∫ s

0

(s−θ)
− 1

2
−ε

1− 1
p dθ)1− 1

p (

∫ s

0

‖Fσ(θ)‖p
V̂ ∗dθ)

1
p



W. SUN AND Y. LI 1055

6 cερ
1
2
1 (t)+c 1

2 +ε(

∫ s

0

r

− 1
2
−ε

1− 1
p dr)1− 1

p (

∫ t

t−1

‖F (r)‖p
V̂ ∗dr)

1
p =:ϕ1(t), (3.10)

where ϕ1(t) is bounded under the assumption (H3) for any t∈R. Next, consider the
following interpolation inequality (see [29], (2.24))

‖w(θ)‖
1
2
ε 6‖w(θ)‖ 1

2−ε‖w(θ)‖ε
V̂
, for anyw∈ Ĥ, ε∈ (0,

1

4
],

which together with (3.8) and Hölder inequality gives

L2 6c̄εc1−εs
ε

∫ s

0

(s−θ)−(1−ε)‖wσ(θ)‖
3
2
ε ‖wσ(θ)‖ 1

2−ε‖wσ(θ)‖ε
V̂

dθ

6c̄εc1−εs
ερ

1−2ε
4

1 (t)
(∫ s

0

‖wσ(θ)‖2
V̂

dθ
) ε

2
(∫ s

0

(s−θ)−
2(1−ε)
2−ε ‖wσ(θ)‖

3
2−ε
ε dθ

)1− ε2
6c̄εc1−ερ

1−2ε
4

1 (t)ρ
ε
2
2 (t)sε

(∫ s

0

(s−θ)−
2(1−ε)
2−ε ‖wσ(θ)‖

3
2−ε
ε dθ

)1− ε2
= :ϕ2(t)sε

(∫ s

0

(s−θ)−
2(1−ε)
2−ε ‖wσ(θ)‖

3
2−ε
ε dθ

)1− ε2 . (3.11)

Similarly, we have

L3 6c̃εc1−εs
ερ

1−2ε
4

1

(∫ s

0

‖wσ(θ)‖2
V̂

dθ
) ε

2
(∫ s

0

(s−θ)−
2(1−ε)
2−ε ‖wσ(θ)‖

1
2−ε
ε dθ

)1− ε2
6ϕ2(t)sε

(∫ s

0

(s−θ)−
2(1−ε)
2−ε ‖wσ(θ)‖

1
2−ε
ε dθ

)1− ε2 . (3.12)

Now, letting M(s) =sε‖wσ(s)‖ε and substituting (3.10)-(3.12) into (3.9), yields

M(s)6ϕ1(t)+ϕ2(t)sε
[
(

∫ s

0

(s−θ)−
2(1−ε)
2−ε θ−

3ε
2−εM

3
2−ε (θ)dθ)1− ε2

+(

∫ s

0

(s−θ)−
2(1−ε)
2−ε θ−

ε
2−εM

1
2−ε (θ)dθ)1− ε2

]
.

Finally, with the help of the following proposition (one can refer to [17] for detailed
proof):

Proposition 3.1. If, for all s∈ [0,t−σ], there exists a continuous function Q(s) with
Q(0)>M(0) satisfying

Q(s)>ϕ1(t)+ϕ2(t)sε
[
(

∫ s

0

(s−θ)−
2(1−ε)
2−ε θ−

3ε
2−εQ

3
2−ε (θ)dθ)1− ε2

+(

∫ s

0

(s−θ)−
2(1−ε)
2−ε θ−

ε
2−εQ

1
2−ε (θ)dθ)1− ε2

]
,

then M(s)6Q(s), ∀s∈ [0,t−σ]. Particularly, for any fixed k0>1, k0ϕ1(t)>M(s) for
all s∈ [0,t−σ].

We conclude that, for all wτ ∈D(τ),τ 6 τ0(D̂,t),

‖Aεw(t;τ,wτ )‖= (t−σ)−εM(t−σ)6k0(t−σ)−εϕ1(t),

which implies Lemma 3.5 holds.

Proof. (The proof of Theorem 1.1). Based on Lemma 3.5 and the compact

embedding D(Aε) ↪→↪→ Ĥ, the existence of a compact pullback absorbing family in Ĥ
follows immediately. This completes the proof.
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3.2. Existence of a compact pullback absorbing family in V̂ . The goal
of this subsection is to prove the existence of a compact pullback absorbing family in
V̂ . First, we improve the estimates of the solutions.

Lemma 3.6. Assume (H2) hold, then for any t∈R and D̂={D(t)|t∈R}∈DĤ , there

exists a τ ′0(D̂,t)<t−2, such that for any τ 6 τ ′0(D̂,t) and wτ ∈D(τ), it holds that

‖w(r;τ,wτ )‖2 6ρ4(t), ∀r∈ [t−2,t], (3.13)

‖w(r;τ,wτ )‖2
V̂
6ρ5(t), ∀r∈ [t−1,t], (3.14)∫ t

t−1

‖Aw(θ;τ,wτ )‖2dθ6ρ6(t), (3.15)

where

ρ4(t) = 1+
e−δ1(t−2)

δ1

∫ t

−∞
eδ1θ‖F (θ)‖2dθ, ρ6(t) := c5(2ρ5(t)+ρ4ρ

2
5(t)+

∫ t

t−2

‖F (θ)‖2dθ),

ρ5(t) = c3(ρ4(t)+

∫ t

t−2

‖F (θ)‖2dθ)×exp
{
c4[(ρ4(t)+

∫ t

t−2

‖F (θ)‖2dθ)2 +1]
}

with c3 = 2c2 + c2
c1δ1

,c4 = max
{

2c2λ
4 ·max{1,δ−2

1 },4c2c2(νr)
}

and

c5 = max{4λ4,4c2(νr),2c
−1
1 ,4}.

Proof. The estimate of (3.13) is similar to that of (3.2). Moreover, the estimates
(3.14) and (3.15) can be proved similarly to (3.8) and (3.9) in Lemma 3.3 of [31],
respectively. Hence, we can omit the details here.

Noting that {B̄Ĥ(0,ρ4(t))|t∈R} :={w∈ Ĥ|‖w(t)‖2 6ρ4(t)}∈DĤ , based on Lemma
3.6, we immediately have

Lemma 3.7. Assume that (H2) hold, then the family of sets

D̂0,V̂ :={D̂0,V̂ (t) = B̄Ĥ(0,ρ4(t))∩ V̂ |t∈R}∈DĤ,V̂ .

Moreover, for any t∈R,D̂∈DĤ , and there exists a τ ′0(D̂,t)<t such that

U(t,τ)D(τ)⊆ D̂0,V̂ (t), ∀τ 6 τ ′0(D̂,t).

Particularly, D̂0,V̂ is pullback DĤ,V̂ - absorbing for process {U(t,τ)}t>τ .

Then, we verify the following estimates about the operators B and N .

Lemma 3.8. For any ε>0, there exist constants ¯̄cε and ˜̃cε such that

B : V × V̂ 7→D(A−ε) and ‖B(u,w)‖−ε6 ¯̄cε‖w‖2V̂ , ∀(u,w)∈V × V̂ .

N : V̂ 7→D(A−ε) and ‖N(w)‖−ε6 ˜̃cε‖w‖V̂ , ∀w∈ V̂ .

Proof. First, for any ε>0, it holds that

W 1,2(Ω) ↪→L
1
ε (Ω), D(Aε) ↪→L

2
1−2ε (Ω), L2(Ω) ↪→L

2
1+2ε (Ω),

which together with Hölder inequality leads to that, for any φ∈D(Aε),∣∣〈B(u,w),φ〉
∣∣6‖u‖

L
1
ε (Ω)
‖∇w‖‖φ‖

L
2

1−2ε (Ω)
6‖w‖

L
1
ε (Ω)
‖∇w‖‖φ‖ε
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6 ¯̄cε‖w‖2V̂ ‖φ‖ε, ∀(u,w)∈V × V̂ ,

and∣∣〈N(w),φ〉
∣∣= ∣∣∫

Ω

−2νr(
∂ω

∂x2
,− ∂ω

∂x1
,
∂u2

∂x1
− ∂u1

∂x2
+2ω) ·(φ1,φ2,φ3)dx

∣∣
6 c
∫

Ω

|∇w| · |φ|dx6 c‖∇w‖
L

2
1+2ε (Ω)

‖φ‖
L

2
1−2ε (Ω)

6 ˜̃cε‖w‖V̂ ‖φ‖ε, ∀w∈ V̂ .

This completes the proof.

With Lemma 3.7, Lemma 3.3 and Lemma 3.8 in hand, we immediately have

Lemma 3.9. Let (H4) hold and take δ<min{1

4
,

1

2
− 1

p
}, then, for any t∈R and

D̂∈DĤ , {U(t,τ)D(τ)|τ 6 τ ′0(D̂,t)} is bounded in D(A
1
2−

1
p ).

Proof. Taking the norm of (3.6) in D(A
1
2 +δ), choosing ε such that δ+ε<

1

2
, and

using Hölder inequality, we have

‖w(t)‖ 1
2 +δ6‖e−Aw(t−1)‖ 1

2 +δ+

∫ t

t−1

‖e−A(t−θ)F (θ)‖ 1
2 +δdθ

+

∫ t

t−1

‖e−A(t−θ)[B(u(θ),w(θ))+N(w(θ))]‖ 1
2 +δdθ

6cδ‖w(t−1)‖V̂ +c 1
2 +δ+ε

∫ t

t−1

(t−θ)− 1
2−δ−ε‖B(u(θ),w(θ))‖−εdθ

+c 1
2 +δ+ε

∫ t

t−1

(t−θ)− 1
2−δ−ε‖N(w(θ))‖−εdθ+c 1

2 +δ

∫ t

t−1

(t−θ)− 1
2−δ‖F (θ)‖dθ

6cδρ
1
2
5 (t)+c 1

2 +δ+ε
¯̄cερ5(t)

∫ t

t−1

(t−θ)− 1
2−δ−εdθ+c 1

2 +δ+ε
˜̃cερ

1
2
5 (t)

∫ t

t−1

(t−θ)− 1
2−δ−εdθ

+c 1
2 +δ[

∫ t

t−1

(t−θ)−
p( 1

2
+δ)

p−1 dθ]
p−1
p [

∫ t

t−1

‖F (θ)‖pdθ]
1
p

6
(
cδ+

2c 1
2 +δ+ε

˜̃cε

1−2δ−2ε

)
ρ

1
2
5 (t)+

2c 1
2 +δ+ε

¯̄cε

1−2δ−2ε
ρ5(t)+c 1

2 +δ

[ 2(p−1)

(1−2δ)p−2

] p−1
p
[∫ t

t−1

‖F (θ)‖pdθ
] 1
p .

Obtaining the desired result.

Finally, let us give the proof of Theorem 1.2.

Proof. (The proof of Theorem 1.2). From Lemma 3.9, the existence of the

compact pullback absorbing family in V̂ is a consequence of the compact embedding
D(A

1
2 +δ) ↪→↪→ V̂ . This completes the proof.

4. Existence and regularity of pullback attractors
In this section, we are going to show Theorem 1.3 and Theorem 1.4. First, basing on

the estimates of solutions obtained in Section 3, we verify the flattening property of the
process. Then, using the flattening property of the process, we prove the existence of
the pullback attractors for the universe of fixed bounded sets and for another universe
with a tempered condition in spaces Ĥ and V̂ , respectively. Further, we reveal the
regularity result of the pullback attractors by showing that these attractors coincide
with each other.
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4.1. Existence of pullback attractors in space Ĥ. In this subsection, we
concentrate on proving the existence of pullback attractors. According to Remark 2.3,

it suffices to show that the process {U(t,τ)}t>τ possesses pullback DĤ - absorbing and

satisfies pullback DĤ - flattening property.

Based on Lemma 3.2, it is sufficient to verify the pullback DĤ - flattening property
for the process U(t,τ) on Ĥ. We need to prove three auxiliary results.

Lemma 4.1. Under the conditions of Lemma 3.2, for any t∈R,D̂∈DĤ , {τn}⊆ (−∞,t−
1] and {wτn}⊆ Ĥ satisfying τn→−∞ as n→∞ and wτn ∈D(τn) for all n, it holds that

the sequence {w(·;τn,wτn)} is relatively compact in C([t−1,t];Ĥ).

Proof. Let w(n)(·) :=w(·;τn,wτn) =U(·,τn;wτn) be the solution to (1.6). Then, ac-

cording to Lemma 3.1, we conclude that there exists a τ0(D̂,t)<t−2 such that the sub-

sequence (relabelled the same) {w(n)(·)
∣∣τn6 τ0(D̂,t)}⊆{w(n)(·)} is uniformly bounded

in L∞(t−2,t;Ĥ)∩L2(t−2,t;V̂ ) and {(w(n))′(·)} is uniformly bounded in L2(t−2,t;V̂ ∗).
Furthermore, from the standard diagonal procedure, there exists a function w(·) such
that 

w(n)(·)⇀∗w(·) weakly star in L∞(t−2,t;Ĥ),

w(n)(·)⇀w(·) weakly in L2(t−2,t;V̂ ),

(w(n))′(·)⇀w′(·) weakly in L2(t−2,t;V̂ ∗).

(4.1)

Therefore, it follows from Aubin-Lions theorem (i.e., refer to [5,29]) and the embedding

V̂ ↪→↪→ Ĥ ↪→ V̂ ∗ that

w(n)(·)→w(·) strongly in L2(t−2,t;Ĥ).

Further, it holds that

w(n)(·)→w(·) strongly in Ĥ, a.e.on [t−2,t].

Again from (4.1), we have

w(n)(·)∈C([t−2,t];Ĥ), w(·)∈C([t−2,t];Ĥ).

Now, since

w(n)(s2)−w(n)(s1) =

∫ s2

s1

(w(n))′(θ)dθ in V̂ ∗, ∀s1, s2∈ [t−2,t],

and {(w(n))′} is uniformly bounded in L2(t−2,t;V̂ ∗), we conclude by Ascoli-Arzelá
theorem that

w(n)(·)→w(·) strongly in C([t−2,t];V̂ ∗).

Hence, for any sequence {sn}⊆ [t−2,t] with sn→s∗ as n→∞, we know that

w(n)(sn)⇀w(s∗) weakly in Ĥ.

Indeed, we claim that

w(n)(·)→w(·) strongly in C([t−1,t];Ĥ), (4.2)
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which implies the sequence {·;τn,wτn} is relatively compact in C([t−1,t];Ĥ). The proof
of (4.2) is similar to that of (3.49) in Lemma 3.8 of [31], we omit here. This completes
the proof.

Lemma 4.2. Assume that (H1) holds, then for any ε>0, t∈R and D̂∈DĤ , there

exists δ= δ(ε,t,D̂)∈ (0,1) such that∣∣‖w(t;τ,wτ )‖2−‖w(t−s;τ,wτ )‖2
∣∣<ε, ∀s∈ [0,δ], τ 6 τ0(D̂,t), wτ ∈D(τ), (4.3)

where τ0(D̂,t) comes from Lemma 3.1.

Proof. We verify the above assertion by a contradiction argument. Indeed, if

(4.3) were not true, then, for any δ∈ (0,1), there exist an ε0>0, t∈R, D̂∈DĤ and three
sequences {τn}⊆ (−∞,t−1] with τn→−∞ as n→∞, {wτn} with wτn ∈D(τn), and
{sn} with 06sn6 1

n such that∣∣‖w(t;τn,wτn)‖2−‖w(t−sn;τn,wτn)‖2
∣∣> ε0, for all n>1. (4.4)

However, from (4.2), we see that

‖w(t;τn,wτn)‖→‖w(t)‖ and ‖w(t−sn;τn,wτn)‖→‖w(t)‖, as n→∞,

which implies (4.4) is absurd.

As a consequence of Lemma 4.2, we have

Lemma 4.3. Under the conditions of Lemma 4.2, then, for any ε>0, t∈R and

D̂∈DĤ , there exists a δ(ε,t,D̂)∈ (0,1) such that∫ t

t−δ
‖w(θ);τ,wτ‖2dθ<ε, ∀τ 6 τ0(D̂,t), wτ ∈D(τ). (4.5)

Proof. Testing (1.6)1 by w(t) and using (2.2), we have

1

2

d

dθ
‖w(θ)‖2 +〈Aw(θ),w(θ)〉+〈N(w(θ)),w(θ)〉= 〈F (θ),w(θ)〉,

which together with (2.8), Schwartz inequality and Young’s inequality implies

d

dθ
‖w(θ)‖2 +2δ1‖w(θ)‖2 6 d

dθ
‖w(θ)‖2 +2δ1‖w(θ)‖2

V̂

62〈F (θ),w(θ)〉6 δ1‖w(θ)‖2
V̂

+
1

δ1
‖F (θ)‖2

V̂ ∗ .

Integrating the above inequality with respect to time variable from t−δ to t, we obtain

δ1

∫ t

t−δ
‖w(θ)‖2dθ6‖w(t−δ)‖2−‖w(t)‖2 +

1

δ1

∫ t

t−δ
‖F (θ)‖2

V̂ ∗dθ,

which together with F (t,x)∈L2
loc(R;V̂ ∗) and Lemma 4.2 yields (4.5). This completes

the proof.

Now, we are ready to prove the pullback DĤ - flattening property for the process
{U(t,τ)}t>τ on space Ĥ.
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Lemma 4.4. Let (H1) hold, then the process {U(t,τ)}t>τ on Ĥ satisfies the pullback

D̂- flattening property for any D̂∈DĤ .

Proof. According to Definition 2.1, we should verify that, for any ε>0,t∈R and

D̂∈DĤ , there exists an m=m(ε,t,D̂)∈N such that the projection Pm : Ĥ 7→ Ĥm with

Ĥm= span{v1,v2,·· · ,vm} ({vn}n>1 is given in Remark 2.1) satisfies the following two
properties:

(i) {PmU(t,τ)D(τ) : τ 6 τ0(D̂,t)} is bounded in Ĥ,

(ii) ‖(I−Pm)U(t,τ)w(τ)‖<ε, for any τ 6 τ0(D̂,t),wτ ∈D(τ),

where τ0(D̂,t) is given in Lemma 3.1. Observe that ‖Pmw(t)‖6‖w(t)‖, which together
with (3.2) implies property (i).

Next, we verify property (ii). Under the condition (H1), from Lemma 12 in [19], we
have

lim
c→∞

e−ct
∫ t

−∞
ecθ‖F (θ)‖2

V̂ ∗dθ= 0, for any t∈R. (4.6)

Consider fixed τ 6 τ0(D̂,t),wτ ∈D(τ) and let qm(θ) :=w(θ)−Pmw(θ), then it holds the
following Poincaré style inequality

λm+1‖qm(θ)‖2 6‖∇qm(θ)‖2 6‖qm(θ)‖2
V̂
, (4.7)

where λm+1 is defined in Remark 2.1. Since (Pmw(θ),w(θ)−Pmw(θ)) = 0, we deduce
that by taking scalar product in (1.6)1 with qm(θ),

1

2

d

dθ
‖qm(θ)‖2 +〈Aqm(θ),qm(θ)〉+〈B(u,w),qm(θ)〉+〈N(w),qm(θ)〉= 〈F (θ),qm(θ)〉.

(4.8)

In the following, we estimate the terms of (4.8) one by one. First, from (2.4) and
the facts

‖u‖2 6‖w‖2, ‖∇u‖2 6‖∇w‖2 6‖w‖2
V̂
, (4.9)

we get

|〈B(u(θ),w(θ)),qm(θ)〉|6λ‖u(θ)‖ 1
2 ‖∇u(θ)‖ 1

2 ‖w(θ)‖ 1
2 ‖∇w(θ)‖ 1

2 ‖∇qm(θ)‖

6λ‖w(θ)‖‖w(θ)‖V̂ ‖qm(θ)‖V̂ 6 c2λ
2‖w(θ)‖2‖w(θ)‖2

V̂
+

1

4c2
‖qm(θ)‖2

V̂
.

Then, it follows from (2.7) that

|〈N(w(θ)),qm(θ)〉|6‖N(w(θ))‖‖qm(θ)‖6 c(νr)‖w(θ)‖V̂ ‖qm(θ)‖V̂

62c2c
2(νr)‖w(θ)‖2

V̂
+

1

8c2
‖qm(θ)‖2

V̂
.

Moreover, it is easy to get

〈F (θ),qm(θ)〉6‖F (θ)‖V̂ ∗‖qm(θ)‖V̂ 62c2‖F (θ)‖2
V̂ ∗ +

1

8c2
‖qm(θ)‖2

V̂
.



W. SUN AND Y. LI 1061

Finally, taking (2.3), (4.8) and the above three inequalities into account, we obtain

1

2

d

dθ
‖qm(θ)‖2 +

1

c2
‖qm(θ)‖2

V̂
6 〈F (θ),qm(θ)〉−〈B(u(θ),w(θ)),qm(θ)〉−〈N(w(θ)),qm(θ)〉

62c2‖F (θ)‖2
V̂ ∗ +

1

8c2
‖qm(θ)‖2

V̂
+c2λ

2‖w(θ)‖2‖w(θ)‖2
V̂

+
1

4c2
‖qm(θ)‖2

V̂

+2c2c
2(νr)‖w(θ)‖2

V̂
+

1

8c2
‖qm(θ)‖2

V̂
,

that is,

d

dθ
‖qm(θ)‖2 +

1

c2
‖qm(θ)‖2

V̂
64c2‖F (θ)‖2

V̂ ∗ +2c2λ
2‖w(θ)‖2‖w(θ)‖2

V̂
+4c2c

2(νr)‖w(θ)‖2
V̂
.

which together with (4.7) leads to

d

dθ
‖qm(θ)‖2 +

λm+1

c2
‖qm(θ)‖264c2‖F (θ)‖2

V̂ ∗ +2c2λ
2‖w(θ)‖2‖w(θ)‖2

V̂
+4c2c

2(νr)‖w(θ)‖2
V̂
.

Multiplying the above inequality by ec
−1
2 λm+1θ and integrating the resultant inequality

over [t−1,t], one has

ec
−1
2 λm+1t‖qm(t)‖2−ec

−1
2 λm+1(t−1)‖qm(t−1)‖2

64c2

∫ t

t−1

ec
−1
2 λm+1θ‖F (θ)‖2

V̂ ∗dθ+2c2λ
2

∫ t

t−1

ec
−1
2 λm+1θ‖w(θ)‖2‖w(θ)‖2

V̂
dθ

+4c2c
2(νr)

∫ t

t−1

ec
−1
2 λm+1θ‖w(θ)‖2

V̂
dθ,

which together with (3.2) gives

‖qm(t)‖2 6e−c
−1
2 λm+1‖qm(t−1)‖2 +4c2c

2(νr)e
−c−1

2 λm+1t

∫ t

t+1

ec
−1
2 λm+1θ‖w(θ)‖2

V̂
dθ

+2c2λ
2e−c

−1
2 λm+1t

∫ t

t−1

ec
−1
2 λm+1θ‖w(θ)‖2‖w(θ)‖2

V̂
dθ

+4c2e
−c−1

2 λm+1t

∫ t

t−1

ec
−1
2 λm+1θ‖F (θ)‖2

V̂ ∗dθ

6e−c
−1
2 λm+1‖qm(t−1)‖2 +c3(1+ρ1(t))e−c

−1
2 λm+1t

∫ t

t−1

ec
−1
2 λm+1θ‖w(θ)‖2

V̂
dθ

+4c2e
−c−1

2 λm+1t

∫ t

t−1

ec
−1
2 λm+1θ‖F (θ)‖2

V̂ ∗dθ, (4.10)

where c3 := max{4c2c2(νr),2c2λ
2}.

Next, we give a further estimate for (4.10). First, since

‖qm(t−1)‖2 6‖w(t−1)‖2 6ρ1(t), and λm+1→∞, asm→∞,

we conclude that there exists a m1 =m1(ε,t,D̂) such that, for any m>m1,

e−c
−1
2 λm+1‖qm(t−1)‖2< ε2

3
. (4.11)
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Then, for any δ∈ (0,1), from (3.3), it holds that

e−c
−1
2 λm+1t

∫ t

t−1

ec
−1
2 λm+1θ‖w(θ)‖2

V̂
dθ

=e−c
−1
2 λm+1t

∫ t−δ

t−1

ec
−1
2 λm+1θ‖w(θ)‖2

V̂
dθ+e−c

−1
2 λm+1t

∫ t

t−δ
ec

−1
2 λm+1θ‖w(θ)‖2

V̂
dθ

6e−c
−1
2 λm+1δ

∫ t

t−1

‖w(θ)‖2
V̂

dθ+

∫ t

t−δ
‖w(θ)‖2

V̂
dθ

6e−c
−1
2 λm+1δρ2(t)+

∫ t

t−δ
‖w(θ)‖2

V̂
dθ,

which combines with Lemma 4.3 implies that there exist δ∗∈ (0,1) and m2 =

m2(ε,t,D̂,δ∗) such that, for any m>m2,

e−c
−1
2 λm+1t

∫ t

t−1

ec
−1
2 λm+1θ‖w(θ)‖2

V̂
dθ6ec

−1
2 λm+1δ

∗
ρ2(t)+

∫ t

t−δ∗
‖w(θ)‖2

V̂
dθ

<
ε2

3c3(1+ρ1(t))
, ∀τ 6 τ0(D̂,t),wτ ∈D(τ).

(4.12)

Finally, because of λm+1→∞ as m→∞, we can deduce from (4.6) that there exists
an m3 =m3(ε,t) such that, for any m>m3,

e−c
−1
2 λm+1t

∫ t

t−1

ec
−1
2 λm+1θ‖F (θ)‖2

V̂ ∗dθ<
ε2

12c2
. (4.13)

Substituting (4.11)-(4.13) into (4.10) and taking m := max{m1,m2,m3}, we get

‖qm(t)‖2<ε2, for any τ 6 τ0(D̂,t), wτ ∈D(τ),

which is property (ii). This completes the proof.

At this stage, we can give the proof of the main result of this subsection.

Proof. (The proof of Theorem 1.3). According to Definition 1.2, the existence of

ÂDĤF and ÂDĤ is a consequence of Proposition 2.1, Remark 2.3, Lemma 3.2 and Lemma

4.4. Furthermore, from Lemma 3.2 and the fact DĤF ⊆DĤ , we obtain ADĤF (t)⊆ADĤ (t)

for ∀t∈R. Obtaining the desired result.

4.2. Existence and regularity of the pullback attractors. The goal of
this subsection is to give the proof of Theorem 1.4. For this, let us verify the pullback

DĤ,V̂ - flattening property for the process in V̂ , that is, the following lemma.

Lemma 4.5. Assume (H2) hold, then the process {U(t,τ)}t>τ on V̂ satisfies the pullback

D̂V̂ - flattening property for any D̂V̂ ∈D
Ĥ,V̂ .

Proof. It suffices to show that for any ε>0,t∈R and D̂∈DĤ,V̂ , there exists
m=m(t,ε,D̂)∈N such that the projection Pm : V̂ → V̂m with V̂m= span{v1,v2,·· · ,vm}
({vn}n>1 is given in Remark 2.1) satisfies the following properties:

(i) {PmU(t,τ)D(τ) : τ 6 τ ′0(D̂,t)} is bounded in V̂ ,
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(ii) ‖(I−Pm)U(t,τ)w(τ)‖V̂ <ε, for any τ 6 τ ′0(D̂,t), wτ ∈D(τ),

where τ ′0(D̂,t) is given in Lemma 3.6.

The property (i) follows directly from (3.14) and the fact ‖Pmw(t)‖V̂ 6‖w(t)‖V̂ .

To prove property (ii), let us fix τ 6 τ ′0(D̂,t),wτ ∈D(τ) and set qm(θ) =w(θ)−
Pmw(θ). Similar to (4.8), we have

1

2

d

dθ
〈qm(θ),Aqm(θ)〉+‖Aqm(θ)‖2 +〈B(u(θ),w(θ)),Aqm(θ)〉

+〈N(w(θ)),Aqm(θ)〉= 〈F (θ),Aqm(θ)〉. (4.14)

Invoking (2.6) and (4.9), one has∣∣〈B(u(θ),w(θ)),Aqm(θ)〉
∣∣6λ‖u(θ)‖ 1

2 ‖∇u(θ)‖ 1
2 ‖∇w(θ)‖ 1

2 ‖Aw(θ)‖ 1
2 ‖Aqm(θ)‖

6λ‖w(θ)‖ 1
2 ‖w(θ)‖V̂ ‖Aw(θ)‖ 1

2 ‖Aqm(θ)‖

6λ2‖w(θ)‖‖w(θ)‖2
V̂
‖Aw(θ)‖+

1

4
‖Aqm(θ)‖2.

From (2.7) and Cauchy inequality, it holds that∣∣〈N(w(θ)),Aqm(θ)〉
∣∣6‖N(w(θ))‖‖Aqm(θ)‖62c2(νr)‖w(θ)‖2

V̂
+

1

8
‖Aqm(θ)‖2.

Moreover, we have

〈F (θ),Aqm(θ)〉62‖F (θ‖2 +
1

8
‖Aqm(θ)‖2.

Substituting the above three inequalities into (4.14), we have

1

2

d

dθ
〈Aqm(θ),qm(θ)〉+ 1

2
‖Aqm(θ)‖2

6λ2‖w(θ)‖‖w(θ)‖2
V̂
‖Aw(θ)‖+2c2(νr)‖w(θ)‖2

V̂
+2‖F (θ)‖2,

which together with (2.3) and the inequality λm+1‖qm(θ)‖2
V̂
6‖Aqm(θ)‖2 leads to

d

dθ
‖qm(θ)‖2

V̂
+c2λm+1‖qm(θ)‖2

V̂
62c2λ

2‖w(θ)‖‖w(θ)‖2
V̂
‖Aw(θ)‖

+4c2c
2(νr)‖w(θ)‖2

V̂
+4c2‖F (θ)‖2,

where λm+1 is defined in Remark 2.1. Multiplying the above inequality by ec2λm+1θ

and integrating the resultant inequality with respect to θ over [t−1,t], then applying
Lemma 3.6, we conclude

‖qm(t)‖2
V̂
6e−c2λm+1‖qm(t−1)‖2

V̂
+2c2λ

2e−c2λm+1t

∫ t

t−1

ec2λm+1θ‖w(θ)‖‖w(θ)‖2
V̂
‖Aw(θ)‖dθ

+4c2c
2(νr)e

−c2λm+1t

∫ t

t−1

ec2λm+1θ‖w(θ)‖2
V̂

dθ+4c2e
−c2λm+1t

∫ t

t−1

ec2λm+1θ‖F (θ)‖2dθ

6e−c2λm+1‖wm(t−1)‖2
V̂

+2c2λ
2ρ

1
2
4 (t)ρ5(t)e−c2λm+1t

(∫ t

t−1

e2c2λm+1θdθ
) 1

2
(∫ t

t−1

‖Aw(θ)‖2dθ
) 1

2
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+4c2c
2(νr)ρ5(t)e−c2λm+1t

∫ t

t−1

ec2λm+1θdθ+4c2e
−c2λm+1t

∫ t

t−1

ec2λm+1θ‖F (θ)‖2dθ

6e−c2λm+1ρ5(t)+
( 2c2
λm+1

) 1
2 λ2ρ

1
2
4 (t)ρ5(t)ρ

1
2
6 (t)+

4c2(νr)ρ5(t)

λm+1

+4c2e
−c2λm+1t

∫ t

t−1

ec2λm+1θ‖F (θ)‖2dθ. (4.15)

On one hand, since λm+1→∞ as m→∞, it clear that there exists an m′1(ε,t,D̂)

such that, for any m>m′1(ε,t,D̂), we have

e−c2λm+1ρ2(t)<
ε2

4
, (

2c2
λm+1

)
1
2λ2ρ

1
2
4 (t)ρ5(t)ρ

1
2
6 (t)<

ε2

4
,

4c2(νr)ρ5(t)

λm+1
<
ε2

4
.

On the other hand, similar to (4.6), under the assumption (H2), we have

lim
c→∞

e−ct
∫ t

−∞
ecθ‖F (θ)‖2dθ= 0, for any t∈R,

which implies there exists m′2(ε,t,D̂) such that

4c2e
−c2λm+1t

∫ t

t−1

ec2λm+1θ‖F (θ)‖2dθ<
ε2

4
, for anym>m′2(ε,t,D̂).

Choosing m= max{m′1(ε,t,D̂),m′2(ε,t,D̂)}, we obtain

‖qm(t)‖V̂ <ε, for any τ 6 τ ′0(D̂,t),wτ ∈D(τ),

that is, the property (ii).

Now, let us give the proof of Theorem 1.4.

Proof. (The proof of Theorem 1.4). According to Definition 1.2, the existences of

ÂDV̂F and ÂDĤ,V̂ are direct consequences of Proposition 2.1, Remark 2.3, Lemma 3.7

and Lemma 4.5.
From the fact DV̂F ⊆DĤ,V̂ ⊆DĤ , it follows that ADV̂F (t)⊆ADĤ,V̂ (t)⊆ADĤ (t). Fur-

ther, by Lemma 3.7, we can obtain ADĤ,V̂ (t) =ADĤ (t). In addition, the relation
ADĤF (t)⊆ADĤ (t) is a conclusion of Theorem 1.3, and evidently, ADV̂F (t)⊆ADĤF (t).

Therefore, (1.9) is valid, which implies (1.10).

Since the set
⋃
t6T

D0,V̂ is a bounded set of V̂ , then under the assumption (1.11), we

can obtain that ADV̂F (t) =ADĤ,V̂ (t) (see [26]). Therefore, (1.12) and (1.13) are valid.

This completes the proof.
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