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Abstract. We establish new quantitative estimates for localized finite differences of solutions to
the Poisson problem for the fractional Laplace operator with homogeneous Dirichlet conditions of solid
type settled in bounded domains satisfying the Lipschitz cone regularity condition. We then apply
these estimates to obtain (i) regularity results for solutions of fractional Poisson problems in Besov
spaces; (ii) quantitative stability estimates for solutions of fractional Poisson problems with respect
to domain perturbations; (iii) quantitative stability estimates for eigenvalues and eigenfunctions of
fractional Laplace operators with respect to domain perturbations.
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1. Introduction
We focus on the Poisson problem for the fractional Laplacian operator, namely on

the system

{
(−∆)su=f in Ω

u=0 in R
N \Ω. (1.1)

In the above expression, Ω⊂R
N is an open and bounded set, s is an index belonging

to the interval (0,1), and the regularity of the function f is discussed below. The
symbol (−∆)s denotes the s-fractional Laplacian operator: in § 2.1 we provide both
the definition of (−∆)s and the rigorous (distributional) formulation of problem (1.1)
by following the approach provided, e.g., in [1, 22]. Here, we just mention that we are
concerned with solutions u belonging to the space

X s
0 (Ω) :=

{
u∈Hs(RN ) : u≡0 in R

N \Ω
}

(1.2)

and that in the following we denote by ‖u‖s the so-called Gagliardo semi-norm of u,
which is again defined in § 2.1. Note, furthermore, that the so-called solid boundary
conditions at the second line of (1.1) are consistent with the fact that the fractional
Laplacian is a nonlocal operator. Also, the fractional Laplacian operator coupled with
the solid boundary conditions is usually termed restricted fractional Laplacian.

Problem (1.1) can be addressed by relying on variational techniques. For instance,
a straightforward application of the Lax-Milgram lemma gives existence and uniqueness
of a solution u∈X s

0 (Ω), provided that f belongs to the dual space X s
0 (Ω)

′. It is therefore
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natural to investigate whether or not the condition f ∈L2 implies additional regularity
of u. This is the main goal of the present paper.

In order to state our results in a precise way, we start by introducing some further
notation. Let h∈R

N be a vector, |h|<1. We fix a function u :RN →R and a smooth
cut-off function φ :RN →R, and we define the functions uh and Thu by setting

uh(x) :=u(x+h), (Thu)(x) :=φ(x)uh(x)+
[
1−φ(x)

]
u(x), for every x∈R

N .
(1.3)

Note that the quantity Thu−u=φ[uh−u] can be viewed as a localized version of a
finite difference. In the following we will mostly focus on the case when the domain Ω
satisfies a so-called (ρ,θ)-Lipschitz cone condition. The precise definition is provided
in § 4.3 below. Very loosely speaking, this condition is a sort of quantified Lipschitz
condition imposed on the boundary ∂Ω. Also, ρ∈ (0,+∞) and θ∈ (0,π/2) are regularity
parameters: the bigger the ρ and the θ, the more regular the domain.

Our main result establishes a precise quantitative control on Thu−u in the case
when u is a weak solution of (1.1).

Theorem 1.1. Let Ω⊂R
N be a bounded, open set and f ∈L2(RN ). Assume that φ

is a smooth cut-off function, namely

φ∈W 1,∞(RN ), 0≤φ(x)≤1 (1.4)

and

suppφ⊆B1(0). (1.5)

Assume also that u∈X s
0 (Ω) is a weak solution of (1.1) and that the product

φuh∈X s
0 (Ω). (1.6)

Then there is a constant C, which only depends on N, s, Lipφ and diamΩ, such that

‖Thu−u‖2L2(RN )≤‖uh−u‖2L2(RN )≤C|h|2s‖f‖2X s
0 (Ω)′ . (1.7)

Moreover, if Ω satisfies a (ρ,θ)-Lipschitz cone condition for some ρ∈ (0,+∞), θ∈
(0,π/2) and

|h|≤ ρsinθ

4
,

then there is a constant C̃, which only depends on N, s, Lipφ, diamΩ, ρ and θ, such
that

‖Thu−u‖2s≤ C̃|h|s‖f‖L2(RN )‖f‖H−s(RN ). (1.8)

The following remarks are in order:

• in the statement of the theorem, B1(0) is the open unit ball centered at 0, Lipφ
denotes the Lipschitz constant of φ, and diamΩ is the diameter of Ω, namely

diamΩ:= sup
x,y∈Ω

|x−y|. (1.9)

• A relevant feature of Theorem 1.1 is that by following the proof one can recon-
struct the value of the constants C and C̃.
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• The most interesting estimate is (1.8), whereas establishing (1.7) is quite easy.
Also, note that (1.7) holds for any open and bounded set Ω, whereas to ob-
tain (1.8) we have to assume the Lipschitz cone condition. Indeed, in the
general case we can only establish a weaker version of (1.8), see Lemma 3.1
in § 3 below.

• Let D be a sufficiently large ball containing both Ω and Ω+h, for every |h|<1.
By recalling (1.1), we infer that the solution u is only affected by the values
attained by f on D. Hence, u does not change if we replace f with its trun-
cation to 0 outside D. This implies that in the right hand side of (1.8) (and
in the Besov regularity estimate (1.15) in Theorem 1.3 below) one could for
instance use ‖f‖L2(D), instead of ‖f‖L2(RN ). The replacement of ‖f‖H−s(RN )

with ‖f‖H−s(D) when f ≡0 in R
N \D is more delicate. As a matter of fact, we

can use ‖f‖H−s(D) instead of ‖f‖H−s(RN ) only when s∈ (0,1/2). In the other
cases there are obstructions (see [5]).
However, to simplify the notation here and in the following we always compute
the norms on the whole R

N .

In the following, we discuss some possible applications of Theorem 1.1. First, we
formulate Theorem 1.2, which provides precise quantitative estimates on how the solu-
tion of the Poisson problem (1.1) depends on the domain Ω. Note that in the statement
of Theorem 1.2 the quantity d(Ωb,Ωa) is a way of measuring the “distance” between the
sets Ωa and Ωb: the precise definition is provided in § 4.1.

Theorem 1.2 (Domain perturbations). Let Ωa,Ωb⊂R
N be bounded open sets con-

tained in a sufficiently large open ball D of RN . Let us assume that Ωa satisfies the
(ρ,θ)-Lipschitz cone condition. Let f ∈L2(RN ) and let ua∈X s

0 (Ωa) and ub∈X s
0 (Ωb) de-

note the weak solutions to (1.1) in Ω=Ωa and Ω=Ωb, respectively. There is a positive
constant C, which only depends on N , s, ρ, θ and diamD, such that, if

d(Ωb,Ωa)<
ρsinθ

2
, (1.10)

then

‖ua−ub‖s≤C‖f‖1/2
L2(RN )

‖f‖1/2
H−s(RN )

d(Ωb,Ωa)
s/2. (1.11)

We point out that, as in the case of Theorem 1.1, by following the proof of Theorem 1.2
one can reconstruct the precise value of the constant C in (1.11). Moreover, we observe
that the proof of Theorem 1.2 combines Theorem 1.1 with a localization argument due
to Savaré and Schimperna [21]. Finally, in the statement of Theorem 1.2 we impose
a regularity assumption on Ωa only, while Ωb may be any open and bounded domain
satisfying (1.10). This lack of symmetry is consistent with the fact that the quantity
d(Ωb,Ωa) is not symmetric in Ωa and Ωb, namely in general d(Ωb,Ωa) 6=d(Ωa,Ωb).

In the case of the standard Laplacian, both the optimal regularity properties of the
solution u to the Poisson problem corresponding to (1.1) and the relation between the
regularity of u and the regularity properties of Ω and of f are well known. In particular,
in the case when Ω is a Lipschitz domain, the results in [21] state that, if f ∈L2, then

u belongs to the Besov space u∈B
3/2
2,∞ (see § 2.2 below for the definition of B

3/2
2,∞ ). In

particular, in general one cannot achieve the higher regularity u∈H3/2, as one can see
by considering the one-dimensional example u(x)=(1−x2)+, which solves (1.1) with
s=1 and f =2χ(−1,1) (cf. also [21, Rem. 2.4]). In this case the regularity u∈H3/2(R)
is not attained because u has jump discontinuities at ±1.
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On the other hand, the regularity theory for the fractional Poisson problem for (1.1)
is far less established. In this paper we are interested in possible extensions of the
following result [19, Prop. 1.4 (ii)-(iii)] (see also [8, Th. 2.3]):

Proposition 1.1. Let Ω⊂R
N be a bounded C1,1-domain. If s∈ (0, N4 )∩(0,1), then

the solution u to (1.1) satisfies

‖u‖Lq(Ω)≤C‖f‖L2(Ω) for q=
2N

N−4s
, (1.12)

while for s∈ (N4 ,1)∩(0,1) we have

‖u‖Cα(Ω)≤C‖f‖L2(Ω) for α=min

{
s,2s−N

2

}
. (1.13)

In both cases the constant C>0 only depends on s, |Ω|, and q (or α).

We now state our regularity result. Note that the main novelties of Theorem 1.3
compared to Proposition 1.1 are the following. First of all we require low regularity
properties on the domain Ω as we assume that Ω has only Lipschitz regularity (see
also [9]). Second, we establish Sobolev and Besov-type regularity, more precisely we

show that, if f ∈L2, then the solution u belongs to the Besov space B
3s/2
2,∞ (RN ) (we

refer again to § 2.2 for the precise definition).

Theorem 1.3. Let Ω be a bounded domain satisfying a (ρ,θ)-Lipschitz cone condition
for some values ρ∈ (0,+∞) and θ∈ (0,π/2). Assume f ∈L2(RN ) and let u be the weak
solution of (1.1). Then

u∈B
3s/2
2,∞ (RN ). (1.14)

Moreover, we have the explicit regularity estimate

‖u‖
B

3s/2
2,∞ (RN )

≤C(N,s,diamΩ,ρ,θ)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

. (1.15)

As a Corollary of the Theorem above (see the embedding 2.20) we obtain the following
Sobolev regularity result

Corollary 1.1. Let Ω be a bounded domain satisfying a (ρ,θ)-Lipschitz cone condi-
tion for some values ρ∈ (0,+∞) and θ∈ (0,π/2). Assume f ∈L2(RN ) and let u be the
weak solution of (1.1). Then

u∈H3s/2−ε(RN ). (1.16)

Moreover, we have the explicit regularity estimate

‖u‖H3s/2−ε(RN )≤C(N,s,diamΩ,ρ,θ,ε)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

. (1.17)

We make the following remarks:

• The optimality of (1.15) and of (1.17) is unclear when Ω has only Lipischitz
regularity. We refer to the recent papers [12] and [13] where the issue of regu-
larity is investigated for more general non local operators on smooth domains.
In § 8.4 we discuss an explicit example in one dimension where the solution has
stronger regularity. However, we do not know whether or not this is a general
fact.
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• The interior regularity in the scale of Nikol’skii spaces has been recently in-
vestigated in [6] where it is also proved that weak solutions to (1.1) are in
H2s−ε(Ω).

• By proceeding as in [21, Corollary 3], one can see that the above result extends

to the case when f belongs to the interpolation space B
−s/2
2,1 =(L2,H−s)1/2,1.

In particular, in that case, estimate (1.15) is replaced by

‖u‖
B

3s/2
2,∞ (RN )

≤C(N,s,diamΩ,ρ,θ)‖f‖
B

−s/2
2,1 (RN )

. (1.18)

We conclude by discussing some new spectral stability estimate for the Poisson prob-
lem (1.1). To this aim, we first introduce some notation. We say that (u,λ) is an eigen-
couple for the operator (−∆)s in Ω if the eigenfunction u∈X s

0 (Ω), u 6=0, the eigenvalue
λ∈R and the following holds

{
(−∆)su=λu in Ω,

u=0 in R
N \Ω. (1.19)

Owing to classical functional analytic results, the operator (−∆)s admits a diverging
sequence of positive eigenvalues

0<λ1<λ2≤λ3≤···≤λnր+∞, (1.20)

provided Ω is an open and bounded set. We refer to § 9.1 for a more extended discussion
and we point out that here and in the following we count each eigenvalue according to
its multiplicity, namely according to the dimension of the associated eigenspace.

By combining Theorem 1.1 with an argument in [16] we establish the stability of
the eigenvalues of the operator (−∆)s with respect to domain perturbations.

Theorem 1.4 (Spectral stability). Let Ωa,Ωb⊂R
N be two open, bounded sets satis-

fying the following conditions:

i) Ωa and Ωb both satisfy a (ρ,θ)-Lipschitz cone condition.

ii) Ωa and Ωb are both contained in some open ball D⊂R
N .

iii) There is a ball Br with radius r such that Br⊆Ωa∩Ωb.

Then for every n∈N there are constants ν >0 and C>0, which only depend on
N, s, ρ, θ, diamD,r and n, such that, if

dcH(Ωa,Ωb)<ν, (1.21)

then

|λa
n−λb

n|≤CdcH(Ωa,Ωb)
s. (1.22)

In the previous expression, λa
n and λb

n denote the n-th eigenvalue of (−∆)s in Ωa and
Ωb, respectively.

Some remarks are here in order. First, in the statement of the above theorem
dcH(Ωa,Ωb) denotes the so-called complementary Hausdorff distance, i.e. the Hausdorff
distance between the sets R

N \Ωa and R
N \Ωb, see § 4.1 for the precise definition.

Second, the only reason why we assume hypothesis iii) is because we need an upper
bound on max{λa

n,λ
b
n}. Indeed, by combining condition iii) with the monotonicity of

eigenvalues with respect to set inclusion we obtain an upper bound which only depends
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on N , s, r and n. Also, note that as in the case of Theorems 1.1 and 1.2 by following
the proof of Theorem 1.4 one can reconstruct the values of the constants ν and C.

Remark 1.1. As one can infer from the statements of Theorems 1.2 and 1.4, we have
the following dichotomy:

• to control the difference between the eigenvalues, we need to control the com-
plementary Hausdorff distance dc

H(Ωa,Ωb) and we only use property i) in Defini-
tion 4.1. However, we have to require that both Ωa and Ωb satisfy the Lipschitz
regularity condition.

• On the other hand, to control the difference between the solutions of the Poisson
problem, we need a control on a different type of set distance, namely d(Ωb,Ωa)
(cf. (4.9)). This forces us to use both properties i) and ii) in Definition 4.1. On
the other hand, we only require Lipschitz regularity of Ωa (whereas Ωb can be
any domain satisfying (6.4)).

This dichotomy is basically due to the fact that we, a-priori, have some additional
information on the behavior of the eigenvalues. Namely, they behave monotonically
with respect to domain inclusion, cf. § 9.1, whereas this property is not available for the
solutions of the Poisson problem.

We eventually discuss the stability of eigenfunctions for (−∆)s under domain per-
turbations. We first state the following simple property, which holds for a very large
class of domains:

Proposition 1.2. Fix s∈ (0,1) and let Ω⊂R
N be an open bounded set with negligible

boundary, namely L N (∂Ω)=0. Assume that {Ωj}j∈N is a sequence of open and bounded
sets in R

N such that

d(Ωj ,Ω)<
1

j
. (1.23)

Let (uj ,λj) be a sequence of eigencouples for the operator (−∆)s on Ωj such that

‖uj‖L2(RN )=1. (1.24)

Assume furthermore that

λj →λ as j→+∞ (1.25)

for some λ>0. Then there are a subsequence {jk} and u∈X s
0 (Ω) such that

ujk →u strongly in Hs(RN ) (1.26)

and (u,λ) is an eigencouple for (−∆)s on Ω.

We make the following remarks:

• if the multiplicity of λ is bigger than one, then it might happen that different
subsequences converge to different, linearly independent, eigenfunctions associ-
ated to λ.

• If the multiplicity of λ is bigger than one, then there is no hope of establishing
a convergence rate (see Remark 10.1 in § 10 for a counterexample).

• If the multiplicity of λ is 1 (i.e., if λ is a simple eigenvalue), then we can establish
quantitative estimates, as the next result shows.
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The following result provides an estimate for the convergence rate of (normalized)
principal eigenfunctions, which are always simple. In the statement of Theorem 1.5,
λ1(D) and λ1(Br) denote the first eigenvalue of (−∆)s on D and Br, respectively.

Theorem 1.5. Fix s∈ (0,1) and let Ωa, Ωb be two bounded, open sets satisfying the
conditions i), ii) and iii) in the statement of Theorem 1.4 and

max{d(Ωb,Ωa),d(Ωa,Ωb)}<
ρsinθ

2
. (1.27)

Let λa
1, λ

b
1 denote the first eigenvalue of the operator (−∆)s in Ωa and Ωb, respectively,

and let ea and eb be the corresponding eigenfunctions satisfying

‖ea‖L2(RN )=‖eb‖L2(RN )=1,

∫

RN

(−∆)s/2ea(x)(−∆)s/2eb(x)dx≥0. (1.28)

Define δ by setting

δ :=
1

2

(
1

λa
1

− 1

λa
2

)
>0.

Then there is a positive constant ν >0, which only depends on N , s, ρ, θ, diamD, r,
λ1(D) and δ, such that the following holds :

∥∥∥∥∥
ea√
λa
1

− eb√
λb
1

∥∥∥∥∥
s

≤ C√
λ1(D)

max
{
δ−1,λ1(Br)

}
min{d(Ωa,Ωb),d(Ωb,Ωa)}s/2 , (1.29)

for some constant C=C(N,s,ρ,θ,diamD)≥0, provided that dcH(Ωa,Ωb)≤ν.

The proof of Theorem 1.5 mainly relies on the abstract theory developed by
Feleqi [10]. Also, note that one can also obtain similar results for eigenfunctions as-
sociated to other simple eigenvalues. Moreover, in the case of non-simple eigenvalues,
we can control a suitable notion of “distance between eigenspaces”. We refer the reader
to Theorem 10.1 in § 10 for more details.

We conclude the introduction by outlining the plan of the paper: in the next sec-
tion we introduce some functional-analytic background. In § 3, we establish the main
estimates on localized finite differences of solutions. In § 4 we discuss the regularity
conditions on domains and state some related geometrical properties. In § 5 we apply
these results to control the difference of two solutions to (1.1) supported in different do-
mains. In § 6 we establish some domain perturbation estimates that constitute a weaker
version of Theorem 1.2. These estimates are improved in the subsequent § 7 and § 8
by means of a bootstrap argument. In this way we complete the proofs of Theorem 1.1
and of Theorem 1.2. Next, in § 9 we discuss the behavior of eigenvalues under domain
perturbations and establish Theorem 1.4; finally, in § 10 we establish Theorem 1.5 on
the behavior of eigenfunctions.

1.1. Notation. For the reader’s convenience, we collect the main notation
used in the sequel. In the rest of the paper, we denote by C(a1, . . . ,ak) a (generic)
constant that may only depend on the quantities a1, . . . ,ak. Its precise value may vary
on occurrence. Also, we use the following notation:

• L N (E): the Lebesgue measure of the (measurable) set E⊆R
N .

• a.e. x: L N−almost every x.
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• x ·y: the Euclidean scalar product between the vectors x, y∈R
N .

• |x|: the Euclidean norm of x∈R
N .

• Br(x): the open ball of radius r centered at x in R
N .

• d(x,E): the distance from the point x∈R
N to the set E⊆R

N , namely

d(x,E) := inf
y∈E

|x−y|.

• e(E,F ): the excess of the set E⊆R
N with respect to the set F ⊆R

N , i.e.,

e(E,F ) := sup
y∈E

d(y,F ).

• dH(E,F ): the Hausdorff distance between the sets E,F ⊆R
N , given by

dH(E,F )= e(E,F )+e(F,E).

• dcH(E,F ): the complementary Hausdorff distance defined by formula (4.4) be-
low.

• d(E,F ): the distance defined by formula (4.9) below. Roughly speaking, it pro-
vides a measure of the excess of the boundary ∂E with respect to the boundary
∂F .

• Hs(RN ): the fractional Sobolev space W s,2. We usually focus on the case
s∈ (0,1).

• H−s(RN ): the dual space of Hs(RN ).

• (·, ·): the standard scalar product in L2(RN ), namely

(u,v) :=

∫

RN

u(x)v(x) dx.

• X s
0 (Ω): the functional space

X s
0 (Ω) :=

{
u∈Hs(RN ) : u(x)=0 for a.e. x∈R

N \Ω
}
.

Here Ω⊆R
N is a given open set.

• Br
2,∞(RN ) : the Besov space defined as in § 2.2.

• [·, ·]s: the bilinear form

[u,v]s :=
(
(−∆)s/2u,(−∆)s/2v

)
=

∫

RN

[(−∆)s/2u](x)[(−∆)s/2v](x) dx,

which is defined on Hs(RN ) and is a scalar product on X s
0 (Ω) if Ω is bounded.

• ‖·‖s: the Gagliardo semi-norm defined as in (2.6).

• X s
0 (Ω)

′: the dual space of X s
0 (Ω).

• 〈·, ·〉: the duality product between X s
0 (Ω)

′ and X s
0 (Ω).

• uh, Thu: the functions defined as in (1.3).

• v̂ or Fv: the Fourier transform of the function v (whenever it makes sense).

• C∞
c (Ω): the set of smooth, compactly supported functions, defined on the set

Ω.
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2. Functional analytic background material: fractional Laplacian and
Besov spaces

For the reader’s convenience, in this section we discuss some functional analytic
results that are pivotal to our analysis. In particular, in § 2.1 we provide the rigorous
formulation of the Poisson problem (1.1). In § 2.2 we introduce the definition and some
important property of a particular class of Besov spaces.

2.1. The Poisson problem for the fractional Laplace operator.

2.1.1. The fractional Laplace operator. Given s∈ (0,1) and u in the
Schwartz class S of the rapidly decaying functions at infinity, (−∆)su is defined as

(−∆)su(x) :=C(N,s)p.v.

∫

RN

u(x)−u(y)

|x−y|N+2s
dy, (2.1)

where the notation p.v. means that the integral is taken in the Cauchy principal value
sense, namely

p.v.

∫

RN

u(x)−u(y)

|x−y|N+2s
dy= lim

εց0

∫

RN\Bε(x)

u(x)−u(y)

|x−y|N+2s
dy (2.2)

and in (2.1) C(N,s) is the normalization constant (cf., e.g., [7])

(∫

RN

1−cos(x1)

|x|N+2s
dx

)−1

.

For any s∈ (0,1) and any x,y∈R
N we will also use the shorthand notation Ks(x−

y)= |x−y|−N−2s to denote the singular kernel in (2.1). The operator (−∆)s can be
equivalently introduced by means of the Fourier transform, which we define for general
function v∈S as follows:

Fv(ξ)= v̂(ξ)=
1

(2π)N

∫

RN

e−ix·ξu(x)dx.

Moreover, F−1 stands for the inverse transform of F. As usual, the above definition can
be extended to tempered distributions.

We can then introduce (−∆)s as the pseudo-differential operator with symbol |ξ|2s,
namely

(−∆)sv=F−1(|ξ|2sF(v)), ∀v∈S. (2.3)

In particular, when v∈Hs(RN ), then (−∆)s/2v∈L2(RN ) owing to the above charac-
terization.

2.1.2. Functional framework. Even if the equations we are going to study
are settled only in Ω, the behavior of (−∆)su depends on the interplay between the
values of u inside and outside Ω. This is related to the non locality of (−∆)s, which
implies that, even when u has compact support, (−∆)su does not necessarily have the
same property. For this reason, when we consider a solution u to (1.1), u will be always
thought as a function defined on the whole space R

N that identically vanishes outside
Ω. In particular, the global regularity of u will be influenced by this fact (cf. Theorem
1.3 and the examples discussed in the Introduction).
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We now proceed along the lines of [22] (see also [1] and [18]). Given s∈ (0,1), we
introduce the Sobolev type spaces

X s
0 (Ω) :=

{
v∈Hs(RN ) such that v=0 a.e. in R

N \Ω
}
. (2.4)

In particular, for s∈ (0,1) the extension operator of u∈X s
0 (Ω) to 0 outside Ω is a

continuous mapping of Hs(Ω)→Hs(RN ). Then (see [17, Theorem 11.4, Chapter 1]),
if s∈ (1/2,1), the functions in X s

0 (Ω) are equal to zero in the sense of traces on ∂Ω.
Hence, X s

0 (Ω) can be identified with Hs
0(Ω) in that case, whereas X s

0 ∼Hs
0(Ω)=Hs(Ω)

for s∈ (0,1/2). In the limit case s=1/2, it turns out that X 1/2
0 (Ω)∼H

1/2
00 (Ω) (again,

see [17] for more details).
We denote by (·, ·) the scalar product in L2(RN ), by ‖·‖L2(RN ) the induced norm

and we endow the Hilbert space X s
0 (Ω) with the norm

‖v‖2X s
0 (Ω) :=‖v‖2L2(RN )+‖v‖2s. (2.5)

Here, ‖·‖s denotes the so-called Gagliardo-seminorm

‖v‖2s :=
∫∫

R2N

Ks(x−y)|v(x)−v(y)|2dxdy, (2.6)

which is well defined for v∈Hs(RN ). We also recall the fractional Poincaré inequality

‖v‖L2(RN )≤CP (Ω,s)‖v‖s, for every v∈X s
0 (Ω), (2.7)

where the constant CP depends, in principle, on Ω and on s. Note that, since the set
Ω is bounded, its diameter (which is defined by (1.9)) is finite and, also, Ω is contained
in a suitable ball D with radius equal to diamΩ. In view of the fact that (2.4) implies
X s

0 (Ω)⊆X s
0 (D), it follows CP (Ω,s)≤CP (D,s) and, consequently, we can choose the

constant CP in (2.7) depending only on N , s and diamΩ. Namely, we have

‖v‖L2(RN )≤C(N,s,diamΩ)‖v‖s, for every v∈X s
0 (Ω). (2.8)

As a consequence of (2.8), the Gagliardo seminorm is actually an equivalent norm
on X s

0 (Ω). Hence, we will generally use ‖·‖s in place of ‖·‖X s
0 (Ω). Because of this, it is

also important to express the Gagliardo-seminorm by using the Fourier transform. We
have that (cf. [7, Proposition 3.4 & Proposition 3.6]):

C(N,s)‖v‖2s =‖(−∆)s/2v‖2L2(RN )=
∥∥|ξ|sv̂

∥∥2
L2(RN )

for v∈Hs(RN ) and s∈ (0,1). (2.9)

In the following, we will also use the notation

[u,v]s :=

∫

RN

[(−∆)s/2u](x)[(−∆)s/2v](x) dx=
(
(−∆)s/2u,(−∆)s/2v

)
. (2.10)

Note that, owing to (2.8) and (2.9), the above bilinear form is actually a scalar product
on X s

0 (Ω).
In view of the fact that we will deal with domain variations, it will be generally

convenient to view the elements of X s
0 (Ω) as functions defined on the whole space

R
N that vanish a.e. outside Ω. In particular, we can continuously embed X s

0 (Ω) into
L2(RN ). This embedding is not dense, since the closure of X s

0 (Ω) in L2(RN ) coincides
with the subspace H0 of L2(RN ) containing those functions that vanish a.e. outside Ω.
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In particular, if we denote by H−s(RN ) the dual space of Hs(RN ), we have the chain
of embeddings

L2(RN ) →֒H−s(RN ) →֒X s
0 (Ω)

′

and both the above embeddings are continuous, namely

‖f‖X s
0 (Ω)′ ≤‖f‖H−s(RN )≤‖f‖L2(RN ) for every f ∈L2(RN ). (2.11)

2.1.3. The Poisson problem for the fractional Laplacian. With the above
functional framework at our disposal, we can make precise the notion of weak solution.

Given f ∈X s
0 (Ω)

′, we say that u :RN →R is a weak solution to (1.1) if



u∈X s

0 (Ω),

C(N,s)

∫∫

R2N

Ks(x−y)(u(x)−u(y))(ϕ(x)−ϕ(y))dxdy= 〈f,ϕ〉 , ∀ϕ∈X s
0 (Ω).

(2.12)
It is worth noting that (2.12) may be equivalently reformulated as

{
u∈X s

0 (Ω),(
(−∆)s/2u,(−∆)s/2ϕ

)
= 〈f,ϕ〉 , ∀ϕ∈X s

0 (Ω).
(2.13)

In what follows, when we speak of a weak (or variational) solution u to (1.1), we will
mean a function u∈X s

0 (Ω) satisfying (2.12) or, equivalently, (2.13).
By using the Lax-Milgram Lemma one can show that, if f ∈X s

0 (Ω)
′ (and hence, in

particular, if f ∈L2(RN )), then there is a unique solution u∈X s
0 (Ω). In particular, we

have the stability estimate

‖u‖s≤‖u‖X s
0 (Ω)≤C(N,s,diamΩ)‖f‖X s

0 (Ω)′ . (2.14)

2.2. Besov spaces and interpolation. In this paragraph we recall the def-
inition and some properties of the Besov space Br

2,∞(RN ). We refer to the books by
Triebel [24] and by Stein [23, §V.5] for extended discussions.

If r∈ (0,1], then

Br
2,∞(RN ) :=

{
u∈L2(RN ) : sup

h∈RN\{0}

‖u2h−2uh+u‖L2(RN )

|h|r <+∞
}
, (2.15)

where the function uh is defined as in (1.3) and u2h(x) :=u(x+2h). The spaceBr
2,∞(RN )

is a Banach space with norm

‖u‖Br
2,∞(RN ) :=‖u‖L2(RN )+ sup

h∈RN\{0}

‖u2h−2uh+u‖L2(RN )

|h|r . (2.16)

Note that, if r∈ (0,1), then u∈Br
2,∞(RN ) if and only if

‖u‖L2(RN )+ sup
h∈RN\{0}

‖uh−u‖L2(RN )

|h|r <+∞

and, also, the expression on the left hand side is equivalent to the norm ‖·‖Br
2∞(RN ),

namely

sup
h∈RN\{0}

‖uh−u‖L2(RN )

|h|r ≤C(N,r) sup
h∈RN\{0}

‖u2h−2uh+u‖L2(RN )

|h|r , (2.17)
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sup
h∈RN\{0}

‖u2h−2uh+u‖L2(RN )

|h|r ≤C(N,r) sup
h∈RN\{0}

‖uh−u‖L2(RN )

|h|r . (2.18)

If r>1, then

Br
2,∞(RN ) :=

{
u∈L2(RN ) :

∂u

∂xi
∈Br−1

2,∞(RN ) for every i=1, . . . ,N

}
.

and

‖u‖Br
2,∞(RN ) :=‖u‖L2(RN )+

N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
Br−1

2,∞(RN )

. (2.19)

In the above expressions, ∂u/∂xi denote the distributional partial derivatives of u. We
now recall some properties of Br

2,∞(RN ) that will be used in the following. First,

Br
2,∞(RN )⊂Hr−ε(RN ), for every r∈ (0,+∞), ε∈ (0,r) (2.20)

and

Hr(RN )⊂Br
2,∞(RN ), for every r∈ (0,+∞). (2.21)

Also, all the above inclusions are continuous. Second, we follow [23, p. 131] and we
consider the equation

(I−∆)su=f in R
N , (2.22)

where I denotes the identity operator and as usual s∈ (0,1). A rigorous formulation
of (2.22) can be provided by using the so-called Bessel potential. For our purposes here
it is enough to say that, if f ∈L2(RN ), then u∈L2(RN ) satisfies (2.22) if and only if

(1+ |ξ|2)sû(ξ)= f̂(ξ) for a.e. ξ∈R
N . (2.23)

As a particular case of [23, Theorem 4′, p. 153] we obtain the following

Lemma 2.1. Assume that f ∈Br
2,∞(RN ) and that u satisfies (2.22). Then u∈

Br+2s
2,∞ (RN ) and

‖u‖Br+2s
2,∞ (RN )≤C(N,s,r)‖f‖Br

2,∞(RN ). (2.24)

3. Estimates on localized finite differences
This section aims at establishing estimate (1.7) and Lemma 3.1 below.

Lemma 3.1. Let Ω⊂R
N be a bounded, open set, and let f ∈L2(RN ). Assume that u

and φ satisfy the same assumptions as in the statement of Theorem 1.1. Then for every
σ∈ (0,1) we have

‖Thu−u‖2s≤C(N,s,Lipφ,diamΩ,σ)|h|σs‖f‖L2(RN )‖f‖X s
0 (Ω)′ (3.1)

Note that in (3.1) the constant C depends on σ and can in principle deteriorate when
σ→1−. For this reason (3.1) can be regarded as a weaker version of (1.8).
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3.1. Proof of the estimate (1.7). We first recall that 0≤φ≤1 owing to (1.4)
and we point out that

‖Thu−u‖L2(RN )=‖φ(uh−u)‖L2(RN )≤‖φ‖L∞(RN )‖uh−u‖L2(RN )≤‖uh−u‖L2(RN ).
(3.2)

Hence, to establish (1.7), it is sufficient to control ‖uh−u‖L2(RN ). We recall that ûh=

eiξ·hû. Then, the Plancherel theorem and (2.14) give

‖uh−u‖2L2(RN )=

∫

RN

|eiξ·h−1|2s|eiξ·h−1|2−2s|û(ξ)|2dξ
(3.4),(3.5)

≤ 8|h|2s
∫

RN

|ξ|2s|û|2dξ (2.9)
= C(N,s)|h|2s‖u‖2s

(2.14)

≤ C(N,s,diamΩ)|h|2s‖f‖2X s
0 (Ω)′ . (3.3)

In the previous formula we have used the following elementary inequalities: first, since
s∈ (0,1), we have

|eiξ·h−1|2−2s≤
(
|eiξ·h|+ |1|

)2−2s

≤22−2s≤4. (3.4)

Second, a direct check shows that

|eiξ·h−1|=
∣∣cos(ξ ·h)−1+ isin(ξ ·h)

∣∣≤2|ξ ·h|≤2|ξ||h|. (3.5)

3.2. Preliminary results.
Lemma 3.2. If φ is a cut-off function satisfying (1.4) and s∈ (0,1), then

‖(−∆)s/2φ‖L∞(RN )≤C(N,s,Lipφ). (3.6)

Proof. We first observe that, since s/2∈ (0,1/2), then

(−∆)s/2φ(x)=C(N,s)

∫

RN

φ(x)−φ(y)

|x−y|N+s
dy (3.7)

because the above integral converges. Now, notice that

|(−∆)s/2φ(x)|≤C(N,s)

∫

RN

|φ(x)−φ(y)|
|x−y|N+s

dy

=C(N,s)

∫

|x−y|≤1

|φ(x)−φ(y)|
|x−y|N+s

dy+C(N,s)

∫

|x−y|>1

|φ(x)−φ(y)|
|x−y|N+s

dy

≤C(N,s,Lipφ)

∫

|x−y|≤1

1

|x−y|N−1+s
dy+C(N,s)

∫

|x−y|>1

1

|x−y|N+s
dy

=C(N,s,Lipφ)

∫ 1

0

1

ρs
dρ+C(N,s)

∫ +∞

1

1

ρ1+s
dρ=C(N,s,Lipφ), (3.8)

which establishes (3.6).

Lemma 3.3. If u∈X s
0 (Ω) and φ is a cut-off function satisfying (1.4), then the product

uφ∈X s
0 (Ω).

Proof. First, we recall Definition (2.4) of X s
0 (Ω) and we infer that φ(x)u(x)=0 for

a.e. x∈R
N \Ω. Hence, to prove that φu∈X s

0 (Ω) we are left to show that φu∈Hs(RN ).
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To this aim, we first observe that, since 0≤φ≤1 and u∈L2(RN ), then φu∈L2(RN ).
Hence, it remains to prove that ‖φu‖s<+∞. Owing to (2.9), this is equivalent to
showing

(−∆)s/2(φu)∈L2(RN ). (3.9)

The above relation follows from general results related to the so-called Kato-Ponce
inequality. For instance, we can apply [14, formula (2)] with the choices f =φ, g=u,
p1=p2=∞, q1= q2= r=2, and with s/2 in place of s. By recalling (3.6), we then obtain
(3.9). Note that, strictly speaking, [14, formula (2)] is only stated for smooth functions
in the Schwartz class, but by relying on a standard density argument one can extend it
to the (fractional) Sobolev setting.

Lemma 3.4. Assume that w∈Hs(RN ) and that φ is a cut-off function satisfying (1.4)
and (1.5). Let C(φ,w) be the commutator defined by setting

C(φ,w) :=(−∆)s/2(φw)−w(−∆)s/2φ−φ(−∆)s/2w. (3.10)

For every σ∈ (0,1), there is a constant C(N,s,Lipφ,σ) such that

‖C(φ,w)‖L2(RN )≤C(N,s,Lipφ,σ)‖w‖σL2(RN )‖w‖1−σ
s . (3.11)

Proof. First we point out that, if N ≤2s, we can choose s′<s such that N >2s′.
Now, owing to [7, Proposition 2.1], if w∈X s

0 (Ω), then w∈X s′

0 (Ω) and

‖w‖s′ ≤C‖w‖s.

Hence, it is enough to establish (3.11) for w∈X s′

0 (Ω). For this reason we will always
assume in the following, with no loss of generality, that N >2s.

We recall the fractional Sobolev embedding inequality, and we refer to [7, The-
orem 6.5] for an extended discussion. If p∗=2N/(N−2s) and w∈Hs(RN ), then
w∈Lp∗

(RN ) and

‖w‖Lp∗ (RN )≤C(N,s)‖w‖s. (3.12)

Next, we fix σ∈ (0,1) and choose r∈ (2,p∗) in such a way that

1

r
=

σ

2
+

1−σ

p∗
=C(N,s,σ). (3.13)

We also recall the elementary interpolation inequality

‖w‖Lr(RN )≤
(
‖w‖L2(RN )

)σ(
‖w‖Lp∗ (RN )

)1−σ

. (3.14)

Finally, we use Theorem A.8 in the paper by Kenig, Ponce and Vega [15], which states
that

‖C(φ,w)‖L2(RN )≤C(N,s,p1,p2)‖(−∆)s1/2φ‖Lp1 (RN )‖(−∆)s2/2w‖Lp2 (RN ) (3.15)

provided that s1,s2∈ [0,s], s=s1+s2 and p1,p2∈ (1,+∞) satisfy

1

2
=

1

p1
+

1

p2
.
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We apply (3.15) with s1=s, s2=0 and p2= r and combine the result with (3.12)
and (3.14). We infer

‖C(φ,w)‖L2(RN )≤C(N,s,σ)‖(−∆)s/2φ‖Lp1 (RN )

(
‖w‖L2(RN )

)σ(
‖w‖Lp∗ (RN )

)1−σ

,

(3.16)
provided that

1

p1
=

1

2
− 1

r
=(1−σ)

(
1

2
− 1

p∗

)
=(1−σ)

s

N
. (3.17)

To obtain the previous expression, we have used the explicit expression (3.13) of r. Also,
note that p1∈ (2,+∞) since N >2s. To control the term ‖(−∆)s/2φ‖Lp1 (RN ) we use an
argument similar to (but easier than) the one that gives the proof of [4, Lemma 1].
Namely, we write

‖(−∆)s/2φ‖p1

Lp1 (RN )
=

∫

|x|≤2

|(−∆)s/2φ(x)|p1 dx+

∫

|x|>2

|(−∆)s/2φ(x)|p1 dx=:J1+J2.

(3.18)
To control J1, we simply recall Lemma 3.2 and we obtain

J1≤‖(−∆)s/2φ‖p1

L∞(RN )
2NωN ≤C(N,s,Lipφ,p1)=C(N,s,Lipφ,σ). (3.19)

Here, ωN denotes the measure of the unit ball in R
N and we have used the explicit

expression of p1, namely (3.17), to establish the last equality.
To control J2, we first recall the equality (3.7) and the fact that suppφ⊆B1(0),

owing to (1.5). This implies that, if |x|>2, then

|(−∆)s/2φ(x)|=C(N,s)

∣∣∣∣
∫

RN

φ(x)−φ(y)

|x−y|N+s
dy

∣∣∣∣=C(N,s)

∫

RN

φ(y)

|x−y|N+s
dy

=C(N,s)

∫

B1(0)

φ(y)

|x−y|N+s
dy≤C(N,s)

∫

B1(0)

1

|x−y|N+s
dy

≤C(N,s)
1

|x|N+s
. (3.20)

To establish the last inequality we have used the fact that, if |x|>2 and |y|≤1, then

|x−y|≥ |x|−|y|≥ |x|
2
.

Using (3.20) and recalling that p1 is given by (3.17), we obtain

J2=

∫

|x|>2

|(−∆)s/2φ(x)|p1 dx≤C(N,s)

∫ +∞

2

1

ρN(p1−1)+1+sp1
dρ=C(N,s,σ). (3.21)

Note that the above integral converges since p1>2 owing to (3.17). By combin-
ing (3.16), (3.18), (3.19) and (3.21) we eventually establish (3.11).

3.3. Proof of Lemma 3.1. First of all, we decompose ‖Thu−u‖s as

‖Thu−u‖2s=‖Thu‖2s−‖u‖2s︸ ︷︷ ︸
A

−C(N,s)
(
(−∆)s/2u,(−∆)s/2[(Thu)−u]

)
︸ ︷︷ ︸

B

. (3.22)
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We now separately control the terms A and B by proceeding according to the following
steps.

Step 1: we control the term B. By combining (1.6) with Lemma 3.3 we infer that

v=Thu−u=φ(uh−u)∈X s
0 (Ω)

and hence we can use it as a test function in (2.13). Consequently, by using (1.7) we
obtain

|B|=
∣
∣
∣

(

(−∆)s/2u,(−∆)s/2[(Thu)−u]
)∣
∣
∣
(2.13)
= |〈f,(Thu)−u〉|≤‖f‖L2(RN )‖(Thu)−u‖L2(RN )

(1.7)

≤ C(N,s,diamΩ)|h|s‖f‖L2(RN )‖f‖Xs
0 (Ω)′ . (3.23)

Step 2: we rewrite the term A in (3.22) in a more convenient form. We observe
that

‖Thu‖
2
s =C(N,s)‖(−∆)s/2(Thu)‖

2
L2(RN )

=C(N,s)‖(−∆)s/2[φuh]+(−∆)s/2[(1−φ)u]‖2L2(RN )

=C(N,s)‖(−∆)s/2u+(−∆)s/2[φ(uh−u)]‖2L2(RN )

=C(N,s)‖(−∆)s/2u+φ(−∆)s/2[uh−u]+(uh−u)(−∆)s/2φ+C(φ,uh−u)‖2L2(RN )

=C(N,s)‖Th((−∆)s/2u)+(uh−u)(−∆)s/2φ+C(φ,uh−u)‖2L2(RN ). (3.24)

Here we used the fact that (−∆)s/2uh=[(−∆)s/2u]h to ensure the last equality. Indeed,
this equation holds true for every u∈Hs(RN ), since the definition of the fractional
Laplacian in terms of the Fourier transform implies

F((−∆)s/2uh)= |ξ|sûh= |ξ|seih·ξû= eih·ξF((−∆)s/2u)=F([(−∆)s/2u]h)

for u∈Hs(RN ). We have

A=‖Thu‖2s−‖u‖2s
=C(N,s)‖Th((−∆)s/2u)+(uh−u)(−∆)s/2φ+C(φ,uh−u)‖2L2(RN )−‖u‖2s
=C(N,s)

[
‖Th((−∆)s/2u)+(uh−u)(−∆)s/2φ‖2L2(RN )−‖(−∆)s/2u‖2L2(RN )

+‖C(φ,uh−u)‖2L2(RN )+2
(
Th((−∆)s/2u)+(uh−u)(−∆)s/2φ,C(φ,uh−u)

)]

=C(N,s)
[
I1+I2+I3

]
, (3.25)

provided that

I1 :=‖Th((−∆)s/2u)+(uh−u)(−∆)s/2φ‖2L2(RN )−‖(−∆)s/2u‖2L2(RN ) (3.26)

I2 :=‖C(φ,uh−u)‖2L2(RN ) (3.27)

I3 :=2
(
Th((−∆)s/2u)+(uh−u)(−∆)s/2φ,C(φ,uh−u)

)
. (3.28)

Step 3: we control the term I1. First, we rewrite it as

I1=‖Th((−∆)s/2u)+(uh−u)(−∆)s/2φ‖2L2(RN )−‖Th((−∆)s/2u)‖2L2(RN )︸ ︷︷ ︸
I1,1



AKAGI, SCHIMPERNA, SEGATTI, AND SPINOLO 929

+‖Th((−∆)s/2u)‖2L2(RN )−‖(−∆)s/2u‖2L2(RN )︸ ︷︷ ︸
I1,2

. (3.29)

To control I1,1, we use the elementary identity |a+b|2−|a|2= b ·(b+2a), which gives

I1,1=

∫

RN

[∣
∣
∣Th((−∆)s/2u)(x)+

(

uh(x)−u(x)
)

((−∆)s/2φ)(x)
∣
∣
∣

2

−|Th((−∆)s/2u)(x)|2
]

dx

=

∫

RN

[

uh(x)−u(x)
]

((−∆)s/2φ)(x)

·

[
[

uh(x)−u(x)
]

((−∆)s/2φ)(x)+2Th((−∆)s/2u)(x)

]

dx

≤‖(−∆)s/2φ‖L∞(RN )‖uh−u‖L2(RN )
[

‖(−∆)s/2φ‖L∞(RN )‖uh−u‖L2(RN )+2‖Th((−∆)s/2u)‖L2(RN )

]

. (3.30)

Next, we use the convexity of the real valued function y 7→ |y|2. More precisely,
recalling that 0≤φ≤1, we have that for almost every x∈R

N

|Th((−∆)s/2u)(x)|2=
∣∣∣φ(x)((−∆)s/2u)h(x)+

[
1−φ(x)

]
(−∆)s/2u(x)

∣∣∣
2

≤φ(x)
∣∣∣((−∆)s/2u)h(x)

∣∣∣
2

+(1−φ(x))
∣∣∣(−∆)s/2u(x)

∣∣∣
2

. (3.31)

Owing to (2.14), the above inequality implies

‖Th((−∆)s/2u)‖L2(RN )≤2‖(−∆)s/2u‖L2(RN )

(2.14)

≤ C(N,s,diamΩ)‖f‖X s
0 (Ω)′ ,

whence, recalling (3.6), (3.3) and (3.30), we obtain

I1,1≤C(N,s,Lipφ,diamΩ)|h|s‖f‖2X s
0 (Ω)′ . (3.32)

To control I1,2 we use (2.14) and (3.31) and we infer

I1,2=

∫

RN

(
|Th((−∆)s/2u)(x)|2−|(−∆)s/2u(x)|2

)
dx

≤
∫

RN

φ(x)
(
|((−∆)s/2u)h(x)|2−|((−∆)s/2u)(x)|2

)
dx

=

∫

RN

|φ(x−h)−φ(x)||((−∆)s/2u)(x)|2dx≤Lipφ |h|
∫

RN

|((−∆)s/2u)(x)|2dx
(2.14)

≤ C(N,s,Lipφ,diamΩ)|h|‖f‖2X s
0 (Ω)′ .

Combining the above inequality with (3.32) and recalling that s∈ (0,1) and |h|≤1, we
arrive at

I1≤|I1,1|+ |I1,2|≤C(N,s,Lipφ,diamΩ)
(
|h|s+ |h|

)
‖f‖2X s

0 (Ω)′

≤C(N,s,Lipφ,diamΩ)|h|s‖f‖2X s
0 (Ω)′ .

(3.33)

Step 4: we control the term I2. We combine (2.14), (3.3) and Lemma 3.4. Now,
we fix σ∈ (0,1) and we obtain

I2=‖C(φ,uh−u)‖2L2(RN )

(3.11)

≤ C(N,s,Lipφ,σ)‖uh−u‖2σL2(RN )‖u−uh‖2−2σ
s
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≤C(N,s,Lipφ,σ)‖uh−u‖2σL2(RN )‖u‖2−2σ
s

(2.14)

≤ C(N,s,Lipφ,diamΩ,σ)‖uh−u‖2σL2(RN )‖f‖2−2σ
X s

0 (Ω)′

(1.7)

≤ C(N,s,Lipφ,diamΩ,σ)|h|2σs‖f‖2σX s
0 (Ω)′‖f‖2−2σ

X s
0 (Ω)′

=C(N,s,Lipφ,diamΩ,σ)|h|2σs‖f‖2X s
0 (Ω)′ . (3.34)

Step 5: we control the term I3. First, we point out that

|I3|≤2
√

I2(I1+‖(−∆)s/2u‖2
L2(RN )

). (3.35)

By combining (3.33) and (3.34), and recalling that |h|<1, we get

√
I2I1≤C(N,s,Lipφ,diamΩ,σ)

√
|h|2σs+s‖f‖4X s

0 (Ω)′

≤C(N,s,Lipφ,diamΩ,σ)|h|σs‖f‖2X s
0 (Ω)′ . (3.36)

Next, by combining (2.14) and (3.34) we infer

√
I2‖(−∆)s/2u‖2

L2(RN )
≤C(N,s,Lipφ,diamΩ,σ)|h|σs‖f‖2X s

0 (Ω)′ . (3.37)

Finally, we plug (3.36) and (3.37) into (3.35) and we arrive at

I3≤C(N,s,Lipφ,diamΩ,σ)|h|σs‖f‖2X s
0 (Ω)′ . (3.38)

Step 6: we conclude the proof of Lemma 3.1. We plug (3.34), (3.33) and (3.38)
into (3.25) and, by recalling that σ∈ (0,1), we obtain

A=‖Thu‖2s−‖u‖2s≤C(N,s,Lipφ,σ,diamΩ)|h|σs‖f‖2X s
0 (Ω)′ .

Recalling (3.22) and using (3.23) we then deduce

‖Thu−u‖2s≤C(N,s,Lipφ,σ,diamΩ)|h|σs
(
‖f‖2X s

0 (Ω)′ +‖f‖L2(RN )‖f‖X s
0 (Ω)′

)
,

whence, using the inequality ‖f‖X s
0 (Ω)′ ≤‖f‖L2(RN ), we eventually arrive at (3.1).

4. Geometric background material: Hausdorff distance, Lipschitz cone
condition and cut-off functions

In this section we introduce some preliminary notions related to distance between
sets in R

N , regularity properties of open sets, covering lemmas and cut-off functions.

4.1. Hausdorff and related distances between sets in R
N . We start by

recalling some definitions and we refer to [21, § 2.3] for more details. Let E,F ⊆R
N be

two sets. The excess or unilateral Hausdorff distance of E with respect to F is defined
as

e(E,F ) := sup
x∈E

d(x,F )= sup
x∈E\F

d(x,F )= sup
x∈E\F

d(x,∂F ). (4.1)

The (bilateral) Hausdorff distance between E and F is then given by

dH(E,F ) := e(E,F )+e(F,E)= sup
x∈E

d(x,F )+ sup
y∈F

d(y,E). (4.2)
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We also introduce the notions of internal excess:

ec(F,E) := e
(
R

N\E,RN\F
)
= sup

x∈F\E

d(x,RN\F )= sup
x∈F\E

d(x,∂F ) (4.3)

and of complementary Hausdorff distance:

dcH(E,F ) := ec(F,E)+ec(E,F )=dH
(
R

N\E,RN\F
)
. (4.4)

Next, given a set E⊆R
N and a real number ε>0, we term E−ε the (possibly empty)

set

E−ε :=
{
x∈E : Bε(x)⊆E

}
. (4.5)

Moreover, we denote by Eε the set

Eε :=
{
x∈R

N : d(x,E)<ε
}
. (4.6)

The following result is well known. We provide a proof just for the sake of completeness.

Lemma 4.1. Let E,F be subsets of RN and let ε>0. Then we have the following:
i) if

ec(F,E)<ε, (4.7)

then

F−ε⊆E;

ii) if

e(E,F )<ε, (4.8)

then

E⊆F ε.

Proof. Let us first prove i). By contradiction, let us assume there is x∈F such
that Bε(x)⊆F and x /∈E. Since Bε(x)⊆F , then

d(x,RN\F )≥ ε.

Moreover, since x /∈E, then x∈F\E. Hence, we have

ec(F,E)= sup
y∈F\E

d(y,RN\F )≥d(x,RN\F )≥ ε,

which contradicts (4.7) and proves i).

To prove ii), we assume again by contradiction that there is x∈E such that d(x,F )≥
ε. This implies that

e(E,F )= sup
y∈E

d(y,F )≥d(x,F )≥ ε,

which contradicts (4.8). The lemma is proved.
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It is worth noting that, if dcH(E,F )<ε, then we have both E−ε⊆F and F−ε⊆E.
Analogously, if dH(E,F )<ε, then E⊆F ε and F ⊆Eε.

In addition, we observe that, if we define the distance

d(E,F ) := e(E,F )+ec(F,E), (4.9)

then it turns out that

e(F△E,∂F )≤d(E,F )≤2e(F△E,∂F ),

where F△E=(E\F )∪(F\E). Also,

d(E,F )<ε=⇒F−ε⊆E⊆F ε. (4.10)

In other words, if the distance d(E,F ) is smaller than ε, then the boundary of E is
included in the ε-neighbourhood of the boundary of F .

4.2. Construction of cut-off functions. The following covering lemma is
classical (cf., e.g., [2, p. 49]). Also in this case, we provide a proof for completeness:

Lemma 4.2. Let E⊆R
N satisfy E⊆BR(y) for some R>0, y∈R

N . Fix r>0. Then
there are x1, . . . ,xk ∈E such that:

i) the cardinality k satisfies

k≤
(
2R+r

r

)N

; (4.11)

ii) the balls Br(xi) cover E, namely

E⊆
k⋃

i=1

Br(xi); (4.12)

iii) the balls Br/2(xi) are pairwise disjoint, namely

Br/2(xi)∩Br/2(xj)=∅ if i 6= j. (4.13)

Proof. We choose x1∈E and we set E1 :=E \Br(x1). Next, we choose x2∈E1

and we set E2 :=E1 \Br(x2). We iterate this procedure: since E is bounded, after some
finite number k of steps we obtain Ek+1=∅. Then, by construction, (4.12) is satisfied.
To establish (4.13), we point out that |xi−xj |≥ r if i 6= j. To establish (4.11), we observe
that the balls Br/2(x1), . . . ,Br/2(xk) are also contained in the ball BR+r/2(y). Hence,
we deduce

kωN

(r
2

)N
=

k∑

i=1

L
N
(
Br/2(xi)

)
=L

N

(
k⋃

i=1

Br/2(xi)

)

≤L
N
(
BR+r/2(y)

)
=ωN (R+r/2)N ,

which implies (4.11). In the above expression, ωN denotes the measure of the unit ball
in R

N .

We conclude this subsection with a “kind of partition of unity” result that gives the
existence of a suitable family of cut-off functions. The proof is very standard (see for
instance the proof of [16, Lemma 9]), so we omit it.
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Lemma 4.3. Let x1, . . . ,xk belong to R
N . Let r>0 and let Br(x1), . . . ,Br(xk) be

open balls such that (4.13) holds. Then there are (k+1) Lipschitz continuous functions
φ0, . . . ,φk :R

N →R satisfying the following requirements:

0≤φi(x)≤1, |∇φi(x)|≤
C(N)

r
for a.e. x∈R

N and every i=1, . . . ,k; (4.14)

φ0(x)=0 if x∈
k⋃

i=1

Br(xi), φ0(x)=1 if x∈R
N \

k⋃

i=1

B2r(xi); (4.15)

φi(x)=0 if x∈R
N\B2r(xi) for i=1, . . . ,k; (4.16)

k∑

i=0

φi(x)=1 for every x∈R
N . (4.17)

4.3. The Lipschitz cone condition. We first introduce the regularity assump-
tion we use. We fix θ∈ (0,π/2), ρ>0 and n a unitary vector in R

N . We term Cρ,θ(n)
the open cone

Cρ,θ(n) :=
{
v∈R

N : 0< |v|<ρ, v ·n> |v|cosθ
}
.

Definition 4.1. Assume Ω⊆R
N is an open set and fix x0∈R

N , θ∈ (0,π/2), ρ>0.
We term Nρ,θ(x0,Ω) the (possibly empty) set of unit vectors n∈R

N such that

i) for every v∈Cρ,θ(n) and every y∈B3ρ(x0)∩Ω, we have (y−v)∈Ω.

ii) for every v∈Cρ,θ(n) and every y∈B3ρ(x0)\Ω, we have (y+v)∈R
N \Ω.

We say that Ω satisfies the uniform (ρ,θ)-Lipschitz cone condition if

Nρ,θ(x0,Ω) 6=∅ ∀x0∈R
N .

We have the following simple result. We refer to Figure 4.1 for a representation.

Lemma 4.4. Let n be a unit vector and let ρ>0 and θ∈ (0,π/2). Assume that
0<t<ρ/2 and let ε= tsinθ. If x= tn, then

Bε(x)⊆Cρ,θ(n).

Proof. We can refer to Figure 4.1 and infer that the inclusion holds true. For
completeness, we also provide an analytic proof. Assume that v∈Bε(x). Then

v= tn+εe (4.18)

for some e in the open unit ball centered at the origin. Since

0<t(1−sinθ)≤|v|≤ t(1+sinθ)<ρ,

because ε= tsinθ, we are left to show that

v ·n> |v|cosθ. (4.19)

Actually, using (4.18), we infer

v ·n= t+εe ·n, (4.20)
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Fig. 4.1.

whence in particular v ·n>0. Moreover, using that |n|=1 and |e|<1, we infer

|v|2= t2+2εte ·n+ε2|e|2<t2+2εte ·n+ε2, (4.21)

Then, squaring both sides of (4.19), we are left to check that

(v ·n)2−|v|2 cos2θ>0.

Using (4.20), (4.21) and, subsequently, that ε= tsinθ, we then obtain

(v ·n)2−|v|2 cos2θ>t2+ε2(e ·n)2+2εte ·n −
(
t2+2εte ·n+ε2

)
cos2θ

= t2 sin2θ+ t2(e ·n)2 sin2θ+2t2(e ·n)sin3θ− t2 sin2θcos2θ

= t2 sin2θ
(
sinθ+(e ·n)

)2≥0,

whence follows (4.19), as desired.

5. Projection estimates
In this section we establish two preliminary results that are pivotal to the proof of

Theorem 1.2 and of Theorem 1.4.

Lemma 5.1. Assume Ω is an open, bounded set satisfying a (ρ,θ)-Lipschitz cone
condition for some ρ∈ (0,1/2], θ∈ (0,π/2). Assume furthermore that f ∈L2(RN ) and
that u∈X s

0 (Ω) is the weak solution of (1.1). If

0<ε<
ρsinθ

2
, (5.1)

then there is ũ∈X s
0 (Ω

−ε) such that

‖ũ−u‖2L2(RN )≤C(N,s,diamΩ,ρ)
( ε

sinθ

)2s
‖f‖2X s

0 (Ω)′ (5.2)
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and, for every σ∈ (0,1),

‖ũ−u‖2s≤C(N,s,diamΩ,ρ,σ)
( ε

sinθ

)σs
‖f‖L2(RN )‖f‖X s

0 (Ω)′ . (5.3)

Note that the assumption that ρ≤1/2 is not restrictive: indeed, Definition 4.1 implies
that, if ρ1≤ρ2 and Ω satisfies a (ρ2,θ)-Lipschitz cone condition, then it also satisfies a
(ρ1,θ)-Lipschitz cone condition.

Lemma 5.2. Assume Ω is an open, bounded set satisfying a (ρ,θ)-Lipschitz cone
condition for some ρ∈ (0,1/2], θ∈ (0,π/2). Let ε satisfy

0<ε<
ρsinθ

2
. (5.4)

Fix f ∈L2(RN ) and let w be the weak solution of

{
(−∆)sw=f in Ωε

w=0 in R
N \Ωε.

(5.5)

Then there is ŵ∈X s
0 (Ω) such that

‖ŵ−w‖2L2(RN )≤C(N,s,diamΩ,ρ)
( ε

sinθ

)2s
‖f‖2X s

0 (Ω
ε)′ (5.6)

and, for every σ∈ (0,1),

‖ŵ−w‖2s≤C(N,s,diamΩ,ρ,σ)
( ε

sinθ

)σs
‖f‖L2(RN )‖f‖X s

0 (Ω
ε)′ . (5.7)

5.1. Proof of Lemma 5.1.

5.1.1. Construction of ũ. We fix Ω, ε and u as in the statement of Lemma 5.1.
We also fix a number t such that

ε

sinθ
<t<

ρ

2
. (5.8)

We proceed according to the following steps.

Step 1: we introduce the set

E :=
⋃

y∈∂Ω

Bρ(y). (5.9)

We apply Lemma 4.2 with R=diamΩ+1, r=ρ and we obtain that

E⊆
k⋃

i=1

Bρ(xi), x1, . . . ,xk ∈R
N , (5.10)

where every x∈R
N belongs to at most 5N of the balls B2ρ(x1), . . . ,B2ρ(xk). Owing

to (4.11), the cardinality k satisfies

k≤C(N,diamΩ,ρ). (5.11)
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Step 2: we apply Lemma 4.3, again with r=ρ, and we consider the functions φ0, . . . ,φk.
For every i=1, . . . ,k we fix a vector ni∈Nρ,θ(xi,Ω) and we define the function uit by
setting

uit(x) :=u(x+ tni). (5.12)

Step 3: finally, we define the function ũ by setting

ũ(x) :=φ0(x)u(x)+

k∑

i=1

φi(x)uit(x). (5.13)

5.1.2. Proof of the inclusion ũ∈X s
0 (Ω

−ε). First, combining Lemma 3.3 with
the Definition (5.13) of ũ, we conclude that ũ∈Hs(RN ). Hence, we are left to show that

ũ(x)=0 for a.e. x∈R
N\Ω−ε. (5.14)

We fix x∈R
N\Ω−ε and we separately consider two cases.

Case 1: if d(x,Ω)≥ t, then x /∈Ω and moreover (x+ tni) /∈Ω for all i=1, . . . ,k be-
cause ni is a unit vector. Since u∈X s

0 (Ω), then u≡0 in R
N\Ω, whence

0=u(x)=u(x+ tni)=uit(x).

This implies that ũ(x)=0.

Case 2: we are left to consider the case when d(x,Ω)<t: we have

x∈
⋃

z∈∂Ω

B2t(z)⊆
k⋃

i=1

Bρ(xi). (5.15)
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To prove the above inclusion, we have combined the inequality t<ρ/2, which follows
from (5.8), with Step 1 in § 5.1.1. By combining (5.15) with (4.15) we get φ0(x)=0.
Next, we fix i∈{1, . . . ,k} such that φi(x) 6=0. Owing to (4.16), this implies that x∈
B2ρ(xi). We set y :=x+ tni. We want to show that y /∈Ω.

First, we apply Lemma 4.4 and we conclude that

Bε(x)⊆y−Cρ,θ(ni). (5.16)

Now, we point out that y∈B3ρ(xi) because x∈B2ρ(xi) and |t|≤ρ/2. Hence, we can use
property i) in Definition 4.1: if y∈Ω, then y−Cρ,θ(n)⊆Ω. By recalling (5.16) and the
definition of Ω−ε we conclude that, if y∈Ω, then Bε(x)⊆Ω and hence x∈Ω−ε. This
contradicts our assumption and hence we can conclude that y /∈Ω. This implies

0=u(y)=u(x+ tni)=uit(x),

whence follows that ũ(x)=0. The proof of (5.14) is complete.

5.1.3. Proof of (5.2) and (5.3). We first establish (5.2). We combine (4.17)
with (5.13) and we conclude that, for every x∈R

N , there holds

u(x)− ũ(x)=
k∑

i=1

φi(x)
[
u(x)−uit(x)

]
. (5.17)

To control ‖u− ũ‖L2(RN ) we use (1.7). More precisely, we first recall (5.11) and conclude
that

‖u− ũ‖L2(RN )≤k max
i=1,...,k

‖φi[u−uit]
]
‖L2(RN )

(5.11)

≤ C(N,diamΩ,ρ) max
i=1,...,k

‖φi[u−uit]‖L2(RN ).

(5.18)

Next, we set h= tni (we do not highlight the dependence of h on the index i, for
simplicity) and recall the Definition (1.3) of Thv. Then we infer that Thv−v=φ[vh−v].

We now apply Theorem 1.1 to the function φi[u−uit], for every i=1, . . . ,k. The hy-
potheses of Theorem 1.1 are satisfied because φi is a cut-off function as in the statement
of Lemma 4.3 and consequently satisfies (1.4) and also (1.5), since r=ρ≤1/2. Also, the
analysis in § 5.1.2 shows that φiuit∈X s

0 (Ω
−ε)⊆X s

0 (Ω), whence condition (1.6) is also
satisfied. By combining (5.18) with (1.7) we arrive at the inequality

‖u− ũ‖L2(RN )≤C(N,s,diamΩ,ρ,θ)ts‖f‖X s
0 (Ω)′ .=C(N,s,diamΩ,ρ,θ)|h|s‖f‖X s

0 (Ω)′ .

Finally, we point out that the above inequality holds for every t satisfying (5.8) and we
eventually arrive at (5.2).

The proof of (5.3) relies on (3.1) and is entirely analogous. The only new point is
that we have to use the inequality Lipφ≤C(N,ρ), which follows from (4.14). Details
are omitted for brevity.

5.2. Proof of Lemma 5.2.

5.2.1. Construction of ŵ. We fix Ω, ε and w as in the statement of Lemma 5.2.
We also fix a number t satisfying (5.8). We proceed as in Step 1 and Step 2 in § 5.1.1
and we define the function wit by setting

wit(x) :=w(x+ tni). (5.19)

Finally, we define the function ŵ by setting

ŵ(x) :=φ0(x)w(x)+

k∑

i=1

φi(x)wit(x). (5.20)
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5.2.2. Proof of the inclusion ŵ∈X s
0 (Ω). We combine Lemma 3.3 with the

Definition (5.20) of ŵ and we conclude that ŵ∈Hs(RN ). Hence, we are left to show
that

ŵ(x)=0 for a.e. x∈R
N\Ω. (5.21)

We fix x /∈Ω and we separately consider two cases:

Case 1: if d(x,Ωε)≥ t, then x /∈Ωε and moreover (x+ tni) /∈Ωε because ni is a unit
vector. Since w∈X s

0 (Ω
ε), then w≡0 in R

N\Ωε, whence

0=w(x)=w(x+ tni)=wit(x).

This implies that ŵ(x)=0.

Case 2: we are left to consider the case when d(x,Ωε)<t. By recalling Defini-
tion (4.6), this implies d(x,Ω)<t+ε<2t. Thus, we have

x∈
⋃

z∈∂Ω

B2t(z)⊆
k⋃

i=1

Bρ(xi).

Combining the above formula with (4.15) we deduce that φ0(x)=0. Next, we fix
i∈{1, . . . ,k} such that φi(x) 6=0. Owing to (4.16), this implies that x∈B2ρ(xi). We set
y :=x+ tni and we want to show that y /∈Ωε. Since x∈B2ρ(xi), we can use property ii)
in Definition 4.1: since x /∈Ω, then x+Cρ,θ(ni)⊆R

N \Ω. Next, we apply Lemma 4.4
and we conclude that

Bε(y)⊆x+Cρ,θ(n)⊆R
N \Ω.

This means that d(y,Ω)≥ ε and hence that y /∈Ωε. Consequently we have

0=w(y)=w(x+ tni)=wit(x),

whence we obtain ŵ(x)=0. The proof of (5.21) is complete.

5.2.3. Proof of (5.6) and (5.7)

We proceed as in § 5.1.3 and we apply estimates (1.7) and (3.1) in the domain Ωε.
The details are omitted.

6. Domain perturbation estimates

This section aims at establishing the following result, which can be regarded as a
weaker version of Theorem 1.2:

Lemma 6.1. Under the same assumptions as in the statement of Theorem 1.2, for
every σ∈ (0,1) we have

‖ua−ub‖s≤C(N,s,diamΩ,ρ,θ,σ)‖f‖1/2L2(D)‖f‖
1/2
X s

0 (D)′d(Ωb,Ωa)
sσ/2. (6.1)
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6.1. Notation and preliminary results. Let D, Ωa and Ωb be as in the
statement of Theorem 1.2. We recall that we term ua and ub the solutions of (1.1)
when Ω=Ωa and Ω=Ωb, respectively. Also, we recall that the sets Ω−ε and Ωε are
defined as in (4.5) and (4.6), respectively, and we term u−ε and uε the solutions of the
Poisson problem (1.1) when Ω=Ω−ε and Ω=Ωε, respectively.

We introduce some additional notation. Given two bounded subdomains Ω and Ω̃
of D with Ω⊆ Ω̃, we denote with PΩ̃→Ω the orthogonal projection

PΩ̃→Ω :X s
0 (Ω̃)→X s

0 (Ω) (6.2)

with respect to the scalar product (2.10). Namely, for u∈X s
0 (Ω̃), this projection is

characterized by

[u−PΩ̃→Ω(u),v]s=0 ∀v∈X s
0 (Ω).

Recall also that

‖w−PΩ̃→Ω(w)‖s= min
v∈X s

0 (Ω)
‖w−v‖s

for w∈X s
0 (Ω̃). We have the following simple, albeit important, property:

Lemma 6.2. Assume that Ωa⊆Ω and that ua and u solve (1.1) respectively in Ωa and
in Ω. Then

PΩ→Ωa
(u)=ua,

and PΩ→Ωa
is linear.

Proof. Since X s
0 (Ωa)⊂X s

0 (Ω) and since u and ua are weak solutions of (1.1) in Ω
and in Ωa, respectively, we have, for all v∈X s

0 (Ωa),

[u,v]s= 〈f,v〉=[ua,v]s,

whence [u−ua,v]s=0 for all v∈X s
0 (Ωa), that is the thesis.

6.2. Proof of Lemma 6.1: conclusion. First, we fix ε>0 such that

d(Ωb,Ωa)<ε<
ρsinθ

2
. (6.3)

We recall (4.10) and we conclude that

Ω−ε
a ⊆Ωb⊆Ωε

a. (6.4)

By using Lemma 6.2, we have

ub=PΩε
a→Ωb

(uε
a),

where uε
a denotes the weak solution of (1.1) in Ωε

a. Hence we obtain the following chain
of inequalities:

‖uε
a−ub‖s= min

v∈X s
0 (Ωb)

‖uε
a−v‖s≤‖uε

a−u−ε
a ‖s≤‖uε

a−ua‖s+‖ua−u−ε
a ‖s. (6.5)
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Note that to establish the first inequality we used the inclusion X s
0 (Ω

−ε
a )⊆X s

0 (Ωb)
following from (6.4). By using (6.5) we infer

‖ua−ub‖s≤‖ua−uε
a‖s+‖uε

a−ub‖s≤2‖ua−uε
a‖s+‖ua−u−ε

a ‖s. (6.6)

Applying again Lemma 6.2, we deduce

‖ua−u−ε
a ‖s= min

v∈X s
0 (Ω

−ε
a )

‖ua−v‖s.

By using Lemma 5.1 we conclude that

‖ua−u−ε
a ‖s≤C(N,s,diamΩ,ρ,θ,σ)εσs/2‖f‖1/2L2(D)‖f‖

1/2
X s

0 (Ωa)′

≤C(N,s,diamΩ,ρ,θ,σ)εσs/2‖f‖1/2L2(D)‖f‖
1/2
X s

0 (D)′ .
(6.7)

In the previous estimate we used the inequality ‖f‖X s
0 (Ωa)′ ≤‖f‖X s

0 (D)′ , which holds

for f ∈L2(RN ) and can be established by arguing as follows: from the inclusion Ωa⊂D
we infer that, for every v∈X s

0 (Ωa), ‖v‖X s
0 (D)=‖v‖X s

0 (Ωa). This implies

‖f‖X s
0 (Ωa)′ = sup

v∈X s
0 (Ωa)

∫
RN f(x)v(x)dx

‖v‖X s
0 (Ωa)

≤ sup
v∈X s

0 (Ωa)

‖f‖X s
0 (D)′‖v‖X s

0 (D)

‖v‖X s
0 (Ωa)

=‖f‖X s
0 (D)′ .

By applying once more Lemma 6.2 we get

‖uε
a−ua‖s= min

v∈X s
0 (Ωa)

‖uε
a−v‖s,

which combined with Lemma 5.2 gives

‖uε
a−ua‖s≤C(N,s,diamΩ,ρ,θ,σ)εσs/2‖f‖1/2L2(D)‖f‖

1/2
X s

0 (Ω
ε
a)

′

≤C(N,s,diamΩ,ρ,θ,σ)εσs/2‖f‖1/2L2(D)‖f‖
1/2
X s

0 (D)′ . (6.8)

By plugging (6.7) and (6.8) into (6.6) we arrive at

‖ua−ub‖s≤C(N,s,diamΩ,ρ,θ,σ)εσs/2‖f‖1/2L2(D)‖f‖
1/2
X s

0 (D)′ .

We recall that the above inequality holds for every ε satisfying (6.3) and we conclude
the proof of (6.1).

7. Regularity estimates
In this section we establish the following result, which can be be regarded as a

weaker version of Theorem 1.3:

Lemma 7.1. Under the same assumptions as in the statement of Theorem 1.3, for
every σ∈ (0,1) we have

u∈B
3σs/2
2,∞ (RN ), ‖u‖

B
3σs/2
2,∞ (RN )

≤C(N,s,diamΩ,ρ,θ,σ)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

.

(7.1)
The proof is based on an argument similar to that given in the proof of [21, Proposition
2.3] combined with the use of Lemma 7.2 below.
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7.1. Preliminary results. The following result is classical, but we provide a
proof for the sake of completeness and for future reference.

Lemma 7.2. Assume that v∈L2(RN ) satisfies

(−∆)sv=g in R
N . (7.2)

If g∈Br
2,∞(RN ) for some r>0, then

v∈Br+2s
2,∞ (RN ) and ‖v‖Br+2s

2,∞ (RN )≤C(N,s,r)
[
‖v‖L2(RN )+‖g‖Br

2,∞(RN )

]
. (7.3)

Proof. The basic idea of the proof can be outlined as follows: first, we observe
that (7.2) implies that

v+(−∆)sv= ℓ :=v+g in R
N . (7.4)

Next, by using the Fourier transform, we show that the regularity properties of the
above equation are basically the same as those of the Equation (2.22). Finally, we
apply Lemma 2.1 and we conclude.

The details of this procedure are organized into a number of steps.

Step 1: we show that v∈Br
2,∞(RN ).

First of all, we show that v has some fractional Sobolev regularity. More precisely,
we fix ε=min{r,s}, and we show that v∈Hr+2s−ε(RN ) and that

‖v‖Hr+2s−ε(RN )≤C(N,s,r)
[
‖v‖L2(RN )+‖g‖Br

2,∞(RN )

]
. (7.5)

To establish (7.5), we first use the inclusion property (2.20) and we conclude that
g∈Hr−ε(RN ) and that

‖g‖Hr−ε(RN )

(2.20)

≤ C(N,s,r)‖g‖Br
2,∞(RN ). (7.6)

Next, we point out that proving that v∈Hr+2s−ε(RN ) amounts to show that

(1+ |ξ|2)(r+2s−ε)/2v̂∈L2(RN ).

We recall (2.3) and we infer the following chain of equalities:

(1+ |ξ|2)(r+2s−ε)/2|v̂|

=
(1+ |ξ|2)(r+2s−ε)/2

1+ |ξ|r+2s−ε
(1+ |ξ|r+2s−ε)|v̂| (2.3)=

(1+ |ξ|2)(r+2s−ε)/2

1+ |ξ|r+2s−ε
(|v̂|+ |ξ|r−ε|ĝ|)

≤ (1+ |ξ|2)(r+2s−ε)/2

1+ |ξ|r+2s−ε

[
|v̂|+(1+ |ξ|2)(r−ε)/2|ĝ|

]
. (7.7)

Next, we recall that ε=min{r,s} and, since

∣∣∣∣
(1+ |ξ|2)(r+2s−ε)/2

1+ |ξ|r+2s−ε

∣∣∣∣≤C(N,s,ε)=C(N,s,r) for every ξ∈R
N ,

then by combining (7.6) and (7.7) we conclude that v∈Hr+2s−ε(RN ) and that the
inequality (7.5) is satisfied.
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We now turn to the proof of the Besov regularity of v. We recall that ε=min{r,s}
and, owing to (2.21), we conclude that

v∈Hr+2s−ε(RN )⊂Hr(RN )
(2.20)
⊂ Br

2,∞(RN )

and, by using (7.5), that

‖v‖Br
2,∞(RN )

(2.20)

≤ C(N,s,r)‖v‖Hr+2s−ε(RN )

(7.5)

≤ C(N,s,r)
[
‖v‖L2(RN )+‖g‖Br

2,∞(RN )

]
.

(7.8)
Step 2: we conclude the proof of the lemma in the case when r+2s≤1. First, we

point out that by using (2.3) again we infer from (7.4) the equality

v̂(ξ)+ |ξ|2sv̂(ξ)= ℓ̂(ξ) for a.e. ξ∈R
N . (7.9)

Note that, owing to (7.8), ℓ=v+g∈Br
2,∞(RN ) and

‖ℓ‖Br
2,∞(RN )≤C(N,s,r)

[
‖v‖L2(RN )+‖g‖Br

2,∞(RN )

]
. (7.10)

Since by assumption v∈L2(RN ), owing to the Plancherel Theorem and to Defini-
tion (2.15), proving that v∈Br+2s

2,∞ (RN ) amounts to show that

sup
h∈RN\{0}

‖v̂2h−2v̂h+ v̂‖L2(RN )

|h|r+2s
<+∞.

By directly computing v̂h and using (7.9) we obtain

v̂2h(ξ)−2v̂h(ξ)+ v̂(ξ)

=(ei2ξ·h−2eiξ·h+1)v̂(ξ)

(7.9)
=

ei2ξ·h−2eiξ·h+1

1+ |ξ|2s ℓ̂(ξ)=
(1+ |ξ|2)s
1+ |ξ|2s

1

(1+ |ξ|2)s (e
i2ξ·h−2eiξ·h+1)ℓ̂(ξ). (7.11)

Owing to (2.23),

1

(1+ |ξ|2)s (e
i2ξ·h−2eiξ·h+1)ℓ̂(ξ)= û2h(ξ)−2ûh(ξ)+ û(ξ) (7.12)

provided that u solves the equation

(I−∆)su= ℓ in R
N . (7.13)

Owing to Lemma 2.1, since ℓ∈Br
2,∞(RN ), then u∈Br+2s

2,∞ (RN ). Moreover,

‖û‖L2(RN )+ sup
h∈RN\{0}

‖û2h−2ûh+ û‖L2(RN )

|h|r+2s
=‖u‖Br+2s

2,∞ (RN )

(2.24)

≤ C(N,s,r)‖ℓ‖Br
2,∞(RN )

(7.10)

≤ C(N,s,r)
[
‖v‖L2(RN )+‖g‖Br

2,∞(RN )

]
.

(7.14)
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To conclude, we point out that

(1+ |ξ|2)s
1+ |ξ|2s ≤1 for every ξ∈R

N . (7.15)

By combining (2.16), (7.11), (7.12), (7.14) and (7.15) we eventually arrive at (7.3).

Step 3: we conclude the proof by dealing with the case when r+2s>1. Re-
call (2.19), we fix j=1, . . .N and term w the distributional derivative

w :=
∂v

∂xj
.

Next, we point out that

ŵ2h(ξ)−2ŵh(ξ)+ ŵ(ξ)= iξj(e
i2ξ·h−2eiξ·h+1)v̂(ξ)

and by arguing as in (7.11) and (7.12) we conclude that

ŵ2h(ξ)−2ŵh(ξ)+ ŵ(ξ)=
(1+ |ξ|2)s
1+ |ξ|2s (ẑ2h(ξ)−2ẑh(ξ)+ ẑ(ξ)) ,

provided that

z=
∂u

∂xj

and u solves (7.13).
If 1<r+2s≤2, then by following the same argument as in Step 2 we conclude the

proof of the lemma.
If r+2s>2 we iterate the above argument and we eventually arrive at (7.3).

7.2. Proof of Lemma 7.1. We fix f ∈L2(RN ) and h∈R
N . As usual we term

u the weak solution of (1.1) and we define the functions uh and fh as in (1.3). We
have now all the ingredients required to prove Lemma 7.1. Owing to the translation
invariance of the fractional Laplacian, uh∈X s

0 (Ω−h) is the weak solution of

{
(−∆)suh=fh in Ω−h,

uh=0 in R
N \(Ω−h).

Here and in the following we use the notation

Ω−h :=
{
x∈R

N :x+h∈Ω
}
.

Note that, if |h| is sufficiently small (which is not restrictive for our purposes, as it will
be clear in the following), then

d(Ω−h,Ω)= e(Ω−h,Ω)+ec(Ω,Ω−h)≤2|h|≤ ρsinθ

2
. (7.16)

We term vh the weak solution of

{
(−∆)svh=fh in Ω,

vh=0 in R
N \Ω.
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Owing to (7.16), the sets Ωa=Ω and Ωb=Ω−h satisfy (1.10). By applying Lemma 6.1,
we conclude that for every σ∈ (0,1) we have

‖uh−vh‖s≤C(N,s,diamΩ,ρ,θ,σ)‖fh‖1/2H−s(RN )
‖fh‖1/2L2(RN )

|h|σs/2. (7.17)

Next, we consider the function w :=u−vh, which satisfies w∈X s
0 (Ω). Moreover, by

linearity, w is the weak solution of

{
(−∆)sw=f−fh in Ω,

w=0 in R
N \Ω.

Using (2.14), we infer

‖u−vh‖s
(2.14)

≤ C(N,s,diamΩ)‖f−fh‖X s
0 (Ω)′

(2.11)

≤ C(N,s,diamΩ)‖f−fh‖H−s(RN ).

(7.18)

Next, we control ‖f−fh‖H−s(RN ). We first fix R>0 (to be determined later) and we
point out that

‖f−fh‖2H−s(RN )=C(N)

∫

RN

(1+ |ξ|2)−s|1−eiξ·h|2|f̂ |2dξ

=C(N)
(∫

|ξ|≤R

(1+ |ξ|2)−s|1−eiξ·h|2|f̂ |2dξ
︸ ︷︷ ︸

I1

+

∫

|ξ|>R

(1+ |ξ|2)−s|1−eiξ·h|2|f̂ |2dξ
︸ ︷︷ ︸

I2

)
.

(7.19)

Next, we introduce the decomposition

|1−eiξ·h|2= |1−eiξ·h|2−s|1−eiξ·h|s
(3.4),(3.5)

≤ 8|ξ|s|h|s, (7.20)

which gives

I1
(7.20)

≤ C(N)

∫

|ξ|≤R

(1+ |ξ|2)−s|ξ|s|h|s|f̂ |2dξ≤C(N)Rs|h|s
∫

RN

(1+ |ξ|2)−s|f̂ |2dξ

≤C(N)Rs|h|s‖f‖2H−s(RN ). (7.21)

On the other hand, (1+ |ξ|2)−s≤|ξ|−2s, whence

I2
(7.20)

≤ C(N)

∫

|ξ|>R

|ξ|−2s|ξ|s|h|s|f̂ |2dξ=C(N)

∫

|ξ|>R

|ξ|−s|h|s|f̂ |2dξ≤R
−s|h|s‖f‖2L2(RN ).

(7.22)

By choosing R in such a way that Rs=‖f‖L2(RN )/‖f‖H−s(RN ), plugging this equality
into (7.21) and (7.22) and by recalling (7.19) we eventually get

‖f−fh‖H−s(RN )≤C(N)‖f‖1/2
L2(RN )

‖f‖1/2
H−s(RN )

|h|s/2. (7.23)

By combining (7.17), (7.18) and (7.23) we arrive at

‖u−uh‖s≤‖u−vh‖s+‖vh−uh‖s
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≤C(N,s,diamΩ)‖f‖1/2
L2(RN )

‖f‖1/2
H−s(RN )

|h|s/2

+C(N,s,diamΩ,ρ,θ,σ)‖fh‖1/2H−s(RN )
‖fh‖1/2L2(RN )

|h|σs/2

≤C(N,s,diamΩ,ρ,θ,σ)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

[
|h|σs/2+ |h|s/2

]

≤C(N,s,diamΩ,ρ,θ,σ)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

|h|σs/2, (7.24)

where to establish the last inequality we used that |h|≤1 and σ∈ (0,1).
We now set z := (−∆)s/2u and we point out that, thanks to (2.9), (7.24) implies

‖z−zh‖L2(RN )≤C(N,s,diamΩ,ρ,θ,σ)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

|h|σs/2.

We point that σs/2∈ (0,1) since s,σ∈ (0,1) and we recall that in this case the Besov
norm can be characterized as in (2.17). We conclude that the above inequality implies

z∈B
σs/2
2,∞ (RN ), ‖z‖

B
σs/2
2,∞ (RN )

≤‖z‖L2(RN )+C(N,s,diamΩ,ρ,θ,σ)‖f‖
1/2

H−s(RN )
‖f‖

1/2

L2(RN )
.

(7.25)

Note that

‖z‖L2(RN )=C(N,s)‖u‖s
(2.14)

≤ C(N,s,diamΩ)‖f‖X s
0 (Ω)′

(2.11)

≤ C(N,s,diamΩ)‖f‖H−s(RN )

(2.11)

≤ C(N,s,diamΩ)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

,

whence from (7.25) we infer

‖z‖
B

σs/2
2,∞ (RN )

≤C(N,s,diamΩ,ρ,θ,σ)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

. (7.26)

Finally, we recall that z := (−∆)s/2u and we apply Lemma 7.2. We conclude that

u∈B
(σs/2)+s
2,∞ (RN ), ‖u‖

B
(σs/2)+s
2,∞ (RN )

(7.3)

≤ C(N,s,σ)(‖u‖L2(RN )+‖z‖
B

σs/2
2,∞ (RN )

)

(7.26)

≤ C(N,s,diamΩ,ρ,θ,σ)‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

.

(7.27)

Since σ∈ (0,1), then B
(σs/2)+s
2,∞ (RN )⊆B

3σs/2
2,∞ (RN ) and the inclusion is continuous.

Hence, from (7.27) we infer (7.1) which concludes the proof of the lemma.

8. Conclusion of the bootstrap argument

8.1. Proof of Theorem 1.1. First, we point out that we have already given
the proof of (1.7) in § 3.1, so we are left to prove (1.8). To this end, we proceed as
in § 3.3 and we point out that

‖Thu−u‖2s≤|A|+ |B|, (8.1)

where A and B are as in (3.22). Owing to (3.23),

|B|
(3.23)

≤ C(N,s,diamΩ)|h|s‖f‖L2(RN )‖f‖X s
0 (Ω)′

(2.11)

≤C(N,s,diamΩ)|h|s‖f‖L2(RN )‖f‖H−s(RN ). (8.2)
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Next, we recall (3.25) and we decompose A as

A=C(N,s)
[
I1+I2+I3

]
, (8.3)

where I1, I2 and I3 are defined as in (3.26), (3.27) and (3.28), respectively. Owing
to (3.33),

|I1|
(3.33)

≤ C(N,s,Lipφ,diamΩ)|h|s‖f‖2X s
0 (Ω)′

(2.11)

≤C(N,s,Lipφ,diamΩ)|h|s‖f‖L2(RN )‖f‖H−s(RN ). (8.4)

To control I2, we first choose σ1∈ (2/3,2/(3s)) 6=∅ so that

3

2
σ1s<1. (8.5)

We apply Lemma 7.1 and we recall that, when r∈ (0,1), the Br
2,∞-norm can be charac-

terized as in (2.17). We conclude that

sup
h∈RN\{0}

‖u−uh‖L2(RN )

|h|3σ1s/2

(2.16),(2.17)

≤ C(N,s)‖u‖
B

3σ1s/2
2,∞ (RN )

(7.1)

≤ C(N,s,diamΩ,ρ,θ,σ1)‖f‖1/2H−s(RN )
‖f‖1/2

L2(RN )
. (8.6)

Next, we choose

σ2=
2

3σ1
∈ (s,1) (8.7)

and by proceeding as in (3.34) we obtain

I2=‖C(φ,uh−u)‖2L2(RN )

(3.11)

≤ C(N,s,Lipφ,σ2)‖uh−u‖2σ2

L2(RN )
‖u−uh‖2−2σ2

s

≤C(N,s,Lipφ,σ2)‖uh−u‖2σ2

L2(RN )
‖u‖2−2σ2

s

(2.14)

≤ C(N,s,Lipφ,diamΩ,σ2)‖uh−u‖2σ2

L2(RN )
‖f‖2−2σ2

X s
0 (Ω)′

(8.6)

≤ C(N,s,Lipφ,diamΩ,ρ,θ,σ1,σ2)|h|3σ1σ2s‖f‖σ2

H−s(RN )
‖f‖σ2

L2(RN )
‖f‖2−2σ2

X s
0 (Ω)′

(8.7)

≤ C(N,s,Lipφ,diamΩ,ρ,θ,σ1,σ2)|h|2s‖f‖σ2

H−s(RN )
‖f‖σ2

L2(RN )
‖f‖2−2σ2

X s
0 (Ω)′

(2.11)

≤ C(N,s,Lipφ,diamΩ,ρ,θ,σ1,σ2)|h|2s‖f‖σ2

H−s(RN )
‖f‖σ2

L2(RN )
‖f‖1−σ2

H−s(RN )
‖f‖1−σ2

L2(RN )

=C(N,s,Lipφ,diamΩ,ρ,θ,σ1,σ2)|h|2s‖f‖H−s(RN )‖f‖L2(RN ). (8.8)

We point out that σ1, and consequently σ2, can be chosen in such a way that they
depend only on s, and we simplify the above estimate to

I2≤C(N,s,Lipφ,diamΩ,ρ,θ)|h|2s‖f‖H−s(RN )‖f‖L2(RN ). (8.9)

To control I3, we recall (3.35) and we obtain

|I3|
(3.35)

≤ 2
√

I2
(
|I1|+‖(−∆)s/2u‖2

L2(RN )

)
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(8.9)

≤ C(N,s,Lipφ,diamΩ,ρ,θ)|h|s‖f‖1/2
H−s(RN )

‖f‖1/2
L2(RN )

√
|I1|+‖(−∆)s/2u‖2

L2(RN )

(2.14),(8.4)

≤ C(N,s,Lipφ,diamΩ,ρ,θ)|h|s‖f‖H−s(RN )‖f‖L2(RN )

√
|h|s+1

≤C(N,s,Lipφ,diamΩ,ρ,θ)|h|s‖f‖H−s(RN )‖f‖L2(RN ). (8.10)

By combining (8.1), (8.2), (8.3), (8.4), (8.9) and (8.10) we eventually arrive at (1.8) and
this concludes the proof of Theorem 1.1.

8.2. Proof of Theorem 1.2.

8.2.1. Preliminary results. First, we establish a sharper version of Lemma 5.1.

Lemma 8.1. Let f ∈L2(RN ). Under the same assumptions as in the statement of
Lemma 5.1, there is ũ∈X s

0 (Ω
−ε) such that (5.2) holds and moreover

‖ũ−u‖2s≤C(N,s,diamΩ,ρ)
( ε

sinθ

)s
‖f‖L2(RN )‖f‖H−s(RN ). (8.11)

Proof. We take the same function ũ as in the proof of Lemma 5.1 (see in partic-
ular § 5.1.1). Owing to the analysis in § 5.1.2, ũ∈X s

0 (Ω
−ε) and hence we are left to

establish (8.11). To this aim, we proceed as in § 5.1.3 and we combine (5.17) and (1.8).
We get, for h=hi= tni,

‖u− ũ‖s
(5.17)

≤ k max
i=1,...,k

‖φi[u−uit]
]
‖s

(5.11)

≤ C(N,diamΩ,ρ) max
i=1,...,k

‖φi[u−uit]‖s
(1.3),(5.12)

= C(N,diamΩ,ρ) max
i=1,...,k

‖Thi
u−u‖s

(1.8),(4.14)

≤ C(N,s,diamΩ,ρ)
√

|h|s‖f‖L2(RN )‖f‖H−s(RN )

≤C(N,diamΩ,ρ)

√( ε

sinθ

)s
‖f‖L2(RN )‖f‖H−s(RN ),

owing to the arbitrariness of t∈ (ε/sinθ,ρ/2). This establishes (8.11).

We now state a sharper version of Lemma 5.2.

Lemma 8.2. Let f ∈L2(RN ). Under the same assumptions as in the statement of
Lemma 5.2, there is ŵ∈X s

0 (Ω) such that (5.6) holds and moreover

‖ŵ−w‖2s≤C(N,s,diamΩ,ρ)
( ε

sinθ

)s
‖f‖L2(Ωε)‖f‖H−s(RN ). (8.12)

Proof. We take the same function ŵ as in the proof of Lemma 5.2, namely we
define ŵ as in (5.20). By arguing as in the proof of Lemma 8.1 and applying (1.8) we
arrive at (8.12). The details are omitted.

8.2.2. Proof of Theorem 1.2: conclusion. We proceed as in the proof of
Lemma 6.1, but we apply Lemma 8.1 and 8.2 instead of Lemma 5.1 and 5.2, respectively.
In particular, in place of (6.7) we get

‖ua−u−ε
a ‖s≤C(N,s,diamΩ,ρ,θ)εs/2‖f‖1/2

L2(RN )
‖f‖1/2

H−s(RN )
, (8.13)

and, in place of (6.8),

‖uε
a−ua‖s≤C(N,s,diamΩ,ρ,θ)εs/2‖f‖1/2

L2(RN )
‖f‖1/2

H−s(RN )
. (8.14)
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We plug (8.13) and (8.14) into (6.6), we recall that ε can be any number satisfying (6.3)
and we eventually arrive at (1.11).

8.3. Proof of Theorem 1.3. We proceed as in the proof of Lemma 7.1, but
we apply (1.11) instead of (6.1). In particular, we can replace (7.17) with

‖uh−vh‖s≤C(N,s,diamΩ,ρ,θ)‖f‖1/2
L2(RN )

‖f‖1/2
H−s(RN )

|h|s/2 (8.15)

and hence we can improve (7.24) to

‖u−uh‖s≤C(N,s,diamΩ,ρ,θ)‖f‖1/2
L2(RN )

‖f‖1/2
H−s(RN )

|h|s/2.

By arguing as in the proof of Lemma 7.1 from the above inequality we infer that z :=

(−∆)s/2u belongs to the Besov spaceB
s/2
2,∞. Thus, by applying Lemma 7.2, we eventually

arrive at (1.14).

8.4. An explicit example. In this paragraph we discuss the Hs (and hence-
forth Besov) regularity of the solution of (1.1) in a specific example. Let us fix s∈ (0,1)
and consider the Poisson problem

{
(−∆)su=1 in B1(0),

u=0 in R
N \B1(0).

(8.16)

In the above expression, B1(0) is the unit ball, centered at the origin, of R
N . The

solution u is then given by

u(x)=

{
C(N,s)(1−|x|2)s if |x|<1,

0 elsewhere.
(8.17)

A proof of the above fact is given by Getoor [11, Theorem 5.2] (cf. also [3] and [20]).
We have the following regularity result:

Lemma 8.3. Assume N =1. Let u be the solution of (8.16). Then

u∈Hr(R) for every r<s+
1

2
. (8.18)

Note that, owing to (2.21), the above lemma implies, in particular,

u∈Br
2,∞(R) for every r<s+

1

2
. (8.19)

We now compare this result with the regularity provided by Theorem 1.3. We set

f(x) :=

{
1 if |x|<1,

0 elsewhere

and we point out that f ∈L2(R). Theorem 1.3 implies that u∈B
3s/2
2,∞ (R). Since s<1,

then 3s/2<s+1/2, whence, in particular,

Br
2,∞(R)⊂B

3s/2
2,∞ (R) if 3s/2<r<s+1/2.

This means that Lemma 8.3 is consistent with Theorem 1.2 since the regularity result
established in Lemma 8.3 is stronger than the regularity provided by Theorem 1.2.
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Proof. (Proof of Lemma 8.3.) We use the explicit formula (8.17) and we
proceed according to the following steps:

Step 1: we make some preliminary considerations. First, we point out that estab-
lishing (8.18) amounts to show that (1+ |ξ|2)r/2û∈L2(R), or, equivalently,

∫

R

(1+ |ξ|2)rû2(ξ)dξ <+∞. (8.20)

Since
∣∣∣∣
(1+ |ξ|2)r
1+ |ξ|2r

∣∣∣∣<C(r) for every ξ∈R,

then establishing (8.20) is equivalent to proving

∫

R

(1+ |ξ|2r)û2(ξ)dξ <+∞. (8.21)

Since u∈L2(R), then û∈L2(R) and hence (8.21) holds if and only if

∫

R

|ξ|2rû2(ξ)dξ <+∞. (8.22)

Finally, we point out that

∫

R

|ξ|2rû2(ξ)dξ=

∫ 2

−2

|ξ|2rû2(ξ)dξ+

∫

|ξ|>2

|ξ|2rû2(ξ)dξ≤C‖û‖2L2(R)+

∫

|ξ|>2

|ξ|2rû2(ξ)dξ

(8.23)
and this implies that to establish (8.18) it suffices to show that

∫

|ξ|>2

|ξ|2rû2(ξ)dξ <+∞ for every r<s+
1

2
. (8.24)

Step 2: we compute the Fourier transform of u. To this end, we note that u is
smooth on the interval (−1,1) and satisfies

(1−x2)u′(x)+2sxu(x)=0 for x∈ (−1,1). (8.25)

It can be shown that then (8.25) holds in fact in the sense of distributions on R as u is
defined by (8.17). Thus, we can take the Fourier transform of both sides of (8.25) and
obtain

F((1−x2)u′(x)+2sxu(x))=0 in Rξ. (8.26)

A straightforward computation ensures that

F(x2u′)=− d2

dξ2
v̂(ξ),

provided that v(x)=u′(x). This implies that

F(x2u′)=−i
(
ξ
d2

dξ2
û+2

d

dξ
û
)
.
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By using the above equality we can re-write (8.25) as

ξ
d2

dξ2
û+(2+2s)

d

dξ
û+ξû=0 in Rξ. (8.27)

Note furthermore that û is a smooth function since u is compactly supported.

Step 3: we only consider the case ξ∈ (2,+∞), since the case ξ∈ (−∞,−2) is anal-
ogous. We set z(ξ) := ξ1+sû(ξ). Then, noting for simplicity by v′(ξ) the derivative of a
generic function v(ξ), by a direct computation we can check that z solves

z′′(ξ)+
(
1− s(1+s)

ξ2

)
z(ξ)=0 for ξ∈ (2,+∞). (8.28)

By multiplying the above expression times z′(ξ) we then infer

1

2

d

dξ

[
(z′)2(ξ)+z2(ξ)

(
1− s(1+s)

ξ2

)]
=

s(1+s)z2(ξ)

ξ3
for ξ∈ (2,+∞). (8.29)

Next, we point out that, if s∈ (0,1) and ξ∈ (2,+∞), then

(
1− s(1+s)

ξ2

)
≥ 1

2
. (8.30)

We then set

m(ξ) :=
[
z′(ξ)2+z2(ξ)

(
1− s(1+s)

ξ2

)]
, (8.31)

and we obtain the differential inequality

m′(ξ)≤ C

ξ3
m(ξ) for ξ∈ (2,+∞). (8.32)

By applying Gronwall’s lemma, we deduce that m, and consequently z, is bounded
in the interval (2,+∞). By performing a similar argument on the interval (−∞,−2),
we then have

∫

|ξ|>2

|ξ|2rû2(ξ)dξ≤C

∫

|ξ|>2

|ξ|2(r−1−s)dξ <+∞

provided that 2(r−1−s)<−1, namely that r<s+1/2. This establishes (8.24) and
henceforth (8.18) and concludes the proof of the lemma.

9. Proof of Theorem 1.4

9.1. Preliminary results. The following results is well-known. A proof is given,
e.g., in [22, Prop. 9] under the additional assumption 2s<N . Actually, the argument
in [22] seems to work for general s∈ (0,1). However, for the reader’s convenience, we
provide here a sketch of an alternative proof.

Lemma 9.1. Let Ω⊂R
N an open and bounded set and let s∈ (0,1). Then the following

properties hold:

i) The operator (−∆)s admits a diverging sequence of positive eigenvalues

0<λ1<λ2≤λ3≤···≤λnր+∞ (9.1)

in Ω. As usual, in (9.1) we count each eigenvalue according to its multiplicity.
Note furthermore that the first eigenvalue λ1 is simple, namely it has multiplic-
ity 1.
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ii) The Rayleigh min-max principle holds, namely for every n∈N we have

λn= min
V ∈V(n)

max
u∈V \{0}

‖u‖2s
‖u‖2L2(Ω)

= max
u∈Sn\{0}

‖u‖2s
‖u‖2

L2(RN )

=
‖un‖2s

‖un‖2L2(RN )

. (9.2)

In the previous expression, V(n) is the set of n-dimensional subspaces of X s
0 (Ω),

u1, . . . ,un are the eigenfunctions associated to the eigenvalues λ1, . . . ,λn and Sn

is the subspace generated by u1, . . . ,un.

Proof. We first establish i). We consider the linear operator R :L2(Ω)→X s
0 (Ω)

which maps the function f ∈L2(Ω)⊆X s
0 (Ω)

′ to the weak solution u=R(f) of the Poisson
problem (1.1). We start with showing that R is continuous. We recall that the bilinear
form [·, ·]s is defined by (2.10) and by plugging u as a test function in (2.13) we get

C(N,s)‖u‖2s =[u,u]s= 〈f,u〉≤‖f‖L2(Ω)‖u‖L2(Ω)≤C(N,s,diamΩ)‖f‖L2(Ω)‖u‖s.

To establish the last inequality, we have used (2.8). The above inequality implies

‖R(f)‖s≤C(N,s,diamΩ)‖f‖L2(Ω)

and hence establishes the continuity of R.
Next, we term i the immersion i :X s

0 (Ω)→L2(Ω). Since Ω is bounded, by general
results on fractional Sobolev spaces (see [7, Theorem 8.2]) i is a compact map.

Finally, we consider the operator R◦ i, which is continuous and compact because it
is the composition of a continuous operator with a compact operator. Note furthermore
that the operator R◦ i is self-adjoint with respect to the bilinear form [·, ·]s, which is a
scalar product on X s

0 (Ω). Indeed, owing to (2.13), for every u,v∈X s
0 (Ω) we have

[R(u),v]s= 〈u,v〉=(u,v)=(v,u)= 〈v,u〉=[R(v),u]s=[u,R(v)]s.

We conclude that R◦ i is a compact, self-adjoint operator on a separable Hilbert space
and henceforth admits a sequence of eigencouples {(µn,un)}n∈N with {µn} converging
to 0 as n→+∞. Namely, for n∈N, we have

µn(−∆)s(un)=un.

By using un as a test function we then obtain

µnC(N,s)‖un‖2s=‖un‖2L2(Ω)>0,

where we have also used that un 6=0 by definition of eigenvector. The above equality
implies that µn>0 for every n. By setting λn :=1/µn>0 we obtain a sequence of
eigenvalues for the operator (−∆)s. Note that, for n→+∞, λn diverges to +∞ because
µn converges to 0.

Finally, arguing as in the case of the standard Laplace operator, one can prove that
the first eigenvalue is simple and that the Rayleigh min-max principle holds. The details
are omitted.

To state the next result, we have to introduce some notation. First, we fix two
open and bounded sets Ωa,Ωb⊆R

N and an open ball D containing both Ωa and Ωb.
As in (6.2) we denote by PD→Ωa

:X s
0 (D)→X s

0 (Ωa) the projection operator with respect
to the scalar product (2.10). Also, we fix s∈ (0,1) and we term (λa

n,u
a
n), (λ

b
n,u

b
n) the
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sequence of eigencouples of the operator (−∆)s in Ωa and Ωb, respectively. Finally, we
term

Sb
n := span

{
ub
i : i=1, . . . ,n

}
(9.3)

the subspace generated by the eigenfunctions ub
1, . . . ,u

b
n. Note that S

b
n⊆X s

0 (Ωb)⊆X s
0 (D).

The following lemma reduces the problem of controlling the eigenvalues to the
problem of controlling the projections of the corresponding eigenfunctions.

Lemma 9.2. Fix n∈N and suppose that there are positive constants A>0 and 0<
B<1 such that, for every u∈Sb

n,

‖PD→Ωa
(u)−u‖2s≤A‖u‖2L2(RN ), (9.4)

‖PD→Ωa
(u)−u‖2L2(RN )≤B‖u‖2L2(RN ). (9.5)

Then

λa
n−λb

n≤
A

(1−
√
B)2

. (9.6)

Proof. We simply apply [16, Lemma 15] with

H :=X s
0 (D), Va :=X s

0 (Ωa), H(u,v) := [u,v]s, h(u,v) :=(u,v).

9.2. Conclusion of the proof of Theorem 1.4. Let n, s and Ωa, Ωb be as in
the statement of Theorem 1.4. We also fix ε such that

0<dcH(Ωa,Ωb)<ε<ν (9.7)

and we proceed according to the following steps.

Step 1: owing to (4.4), condition (9.7) implies ec(Ωb,Ωa)<ε. By using Lemma 4.1,
we infer

Ω−ε
b ⊆Ωa. (9.8)

We now fix i=1, . . . ,n and consider the i-th eigencouple (λb
i ,u

b
i ) of (−∆)s on Ωb. We

apply Lemma 8.1 and we infer that if ν, and henceforth ε, satisfies (5.1), then there is
ũ∈X s

0 (Ω
−ε
b ) such that

‖ub
i − ũ‖s≤C(N,s,diamD,ρ,θ)εs/2λb

i‖ub
i‖L2(RN ). (9.9)

By (9.8), we have X s
0 (Ω

−ε
b )⊆X s

0 (Ωa). Hence, using (9.9), we get

‖PD→Ωa
(ub

i )−ub
i‖s≤C(N,s,diamD,ρ,θ)εs/2λb

i‖ub
i‖L2(RN ). (9.10)

Finally, we recall that by assumption Ωb contains a ball Br of radius r. This implies
that X s

0 (Br)⊆X s
0 (Ωb) and thanks to the monotonicity of the eigenvalues with respect

to set inclusion (which follows from the Rayleigh min-max principle (9.2)) we conclude
that λb

i ≤C(N,s,r,i). Using (9.10) we finally arrive at

‖PD→Ωa
(ub

i )−ub
i‖s≤C(N,s,diamD,ρ,θ,r,i)εs/2‖ub

i‖L2(RN ). (9.11)
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Step 2: we fix u∈Sb
n (see (9.3)), namely

u=
n∑

i=1

ziu
b
i (9.12)

for some z1, . . . ,zn∈R. We recall that, by construction, the eigenfunctions ub
j are or-

thogonal with respect to the scalar product [·, ·]s, which implies

(ub
j ,u

b
i )=

1

λb
j

[ub
j ,u

b
i ]s=0 if i 6= j.

By using (9.11) we get

‖PD→Ωa
(u)−u‖s=

∥∥∥∥∥
n∑

i=1

zi
[
PD→Ωa

(ub
i )−ub

i

]
∥∥∥∥∥
s

≤
n∑

i=1

|zi|‖PD→Ωa
(ub

i )−ub
i‖s

≤C(N,s,diamD,ρ,θ,r,n)εs/2
n∑

j=1

|zj |‖ub
j‖L2(RN )

≤C(N,s,diamD,ρ,θ,r,n)εs/2‖u‖L2(RN ). (9.13)

Owing to (2.8) the above inequality also implies

‖PD→Ωa
(u)−u‖L2(RN )≤C(N,s,diamD,ρ,θ,r,n)εs/2‖u‖L2(RN ). (9.14)

Step 3: we apply Lemma 9.2. We recall (9.13) and (9.14) and we conclude that
the hypotheses are satisfied if we assume that

B :=C(N,s,diamD,ρ,θ,r,n)εs≤ 1

2
<1.

We can choose the constant ν in the statement of Theorem 1.4 in such a way that
the above condition is satisfied for every ε<ν. By using Lemma 9.2 we conclude that

λa
n−λb

n≤
C(N,s,diamD,ρ,θ,r,n)εs

(1−1/
√
2)2

≤C(N,s,diamD,ρ,θ,r,n)εs.

Since the above inequality holds for every ε satisfying (9.7), we arrive at

λa
n−λb

n≤C(N,s,diamD,ρ,θ,r,n)dcH(Ωa,Ωb)
s

and by exchanging the roles of Ωa and Ωb we eventually conclude the proof of (1.22).

10. Proofs of Proposition 1.2 and Theorem 1.5
In this section, we discuss the stability of the eigenfunctions of (−∆)s with respect

to domain perturbation. We first provide the proof of Proposition 1.2.

Proof. (Proof of Proposition 1.2.) We use (1.24) and (1.25) and we infer that
‖uj‖2s=λj →λ and uj =0 in R

N \Ωj . This implies that there exists u∈Hs(RN ) such
that, up to subsequences, we have

uj →u weakly in Hs(RN ) and strongly in L2(RN ).

By recalling (1.24), this implies ‖u‖L2(RN )=1 and hence u 6=0.
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We now show that (u,λ) is an eigencouple for (−∆)s on Ω by proceeding according
to the following steps.

Step 1: we show that u∈X s
0 (Ω). Since u belongs to Hs(RN ), we are left to show

u=0 a.e. in R
N \Ω. To this end, we fix ϕ∈C∞

c (RN \Ω). We claim that

suppϕ⊂R
N \Ωj for any j sufficiently large.

Indeed, suppϕ is compactly contained in R
N \Ω. Hence, there exists ε0>0 such that

suppϕ⊂R
N \Ωε0 (see (4.6) for the definition of Ωε0). On the other hand, Assump-

tion (1.23) implies, in particular, that e(Ωj ,Ω)<1/j and hence by using Lemma 4.1 we
conclude that Ωj ⊆Ω1/j . In other words, suppϕ⊂R

N \Ωj for j >1/ε0 and this implies

∫

RN

uj(x)ϕ(x)dx=0, for every j >1/ε0.

We let j→∞ and we obtain

∫

RN

u(x)ϕ(x)dx=0.

Owing to the arbitrariness of ϕ∈C∞
c (RN \Ω) and to the fact that L N (∂Ω)=0, we

conclude that u vanishes a.e. in R
N \Ω and hence that u∈X s

0 (Ω).

Step 2: we show that (−∆)su=λu a.e. in Ω. We fix ϕ∈C∞
c (Ω). By using As-

sumption (1.23), we infer ec(Ω,Ωj)<1/j and hence that

suppϕ⊂Ωj for any j sufficiently large.

By using ϕ as a test function in the equation for uj , we get

∫

RN

uj(x)(−∆)sϕ(x)dx=λj

∫

RN

uj(x)ϕ(x)dx

and by passing to the limit as j→∞, we arrive at

∫

RN

u(x)(−∆)sϕ(x)dx=λ

∫

RN

u(x)ϕ(x)dx.

By taking into account the regularity of u and the arbitrariness of ϕ∈C∞
c (Ω), we

deduce that (−∆)su = λu a.e. in Ω, and therefore that (u,λ) is an eigencouple of (−∆)s

on Ω. Moreover, u satisfies the relation ‖u‖2s=λ‖u‖2L2(RN ), which combined with the

equality ‖u‖2L2(RN )=1 gives ‖u‖2s=λ.

Finally, we recall that uj →u weakly in Hs(RN ) and that ‖uj‖s→‖u‖s, we use the
uniform convexity of Hs(RN ) and we conclude that uj →u strongly in Hs(RN ).

Proposition 1.2 does not provide any information on the rate of the convergence
uj →u. Indeed, in contrast to the stability result for eigenvalues, the convergence rate
for eigenfunctions is not uniquely determined in general. The following remark shows
that this happens in particular when the corresponding eigenvalues are not simple.

Remark 10.1. Let us consider the case when the (geometric) multiplicities of λj

and λ are two. We denote by uj
ℓ and uℓ (ℓ=1,2) the corresponding eigenfunctions

such that ‖uj
ℓ‖L2(RN )=‖uℓ‖L2(RN )=1 and [uj

ℓ ,u
j
m]s=λjδℓm. We furthermore assume
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that uj
ℓ →uℓ strongly in Hs(RN ) for each ℓ=1,2. Such a situation occurs, e.g., for

ball-shaped domains. Note that

uj(x) :=(1−σj)uj
1(x)+σjuj

2(x)→u1(x) strongly in Hs(RN ) (10.1)

for every sequence {σj} such that σj →0 as j→∞. This implies that uj is also an
eigenfunction corresponding to λj over Ωj . Moreover, one has

‖uj−u1‖s≥‖uj−uj
1‖s−‖uj

1−u1‖s≥σj‖uj
1−uj

2‖s−‖uj
1−u1‖s=

√
2λjσj−‖uj

1−u1‖s.
If we choose {σj} in such a way that

liminf
j→∞

σj

‖uj
1−u1‖s

∈ (1/
√
2λ,+∞],

then

‖uj−u1‖s≥κσj for every sufficiently large j

for some constant κ>0. This means that we can construct {σj} in such a way that the
eigenfunction uj defined as in (10.1) has an arbitrarily slow rate of convergence to u1.
Hence, in general, the convergence rate of eigenfunctions is not uniquely determined.

On the other hand, the convergence rate for principal eigenfunctions might be esti-
mated, since the principal eigenvalue is simple and consequently the situation outlined
in Remark 10.1 cannot occur. In the general case, we can control the convergence rate of
eigenspaces. More precisely, in the rest of this section, we will control a suitable notion
of “distance between eigenspaces” by the domain perturbation rate. In particular, we
will give a proof of Theorem 1.5.

Throughout the rest of this section, Ωa, Ωb are bounded, open sets of RN satisfying
assumptions i)–iii) in the statement of Theorem 1.4. Let (λa

j ,e
a
j ) denote the j-th eigen-

couple of (−∆)s on Ωa (see (1.19)). We can assume that (eaj ) are an orthonormal basis

of L2(Ωa): in particular, (eai ,e
a
j )= δij and [eai ,e

a
j ]s=λa

j δij (cf., e.g., [22, Proposition 9]).
Moreover, we assume that

λa
k−1<λa

k≤λa
k+1≤···≤λa

k+m−1<λa
k+m (10.2)

for some k,m∈N (if k=1, we replace λa
k−1 by 0) and we define the m-dimensional space

Na
k,m := span{eak,eak+1, . . . ,e

a
k+m−1}.

If, for instance, λa
k is an eigenvalue with (geometric) multiplicity m, then (10.2) holds

true and Na
k,m is the corresponding eigenspace. Note that we equip both Na

k,m and

N b
k,m with the norm ‖·‖s.

Next, we recall some notions of distance between two subspaces M , N of X s
0 (D). Let

D⊂R
N be an open ball containing both Ωa and Ωb as in assumption ii) of Theorem 1.4.

Assume moreover that X s
0 (D) is endowed with the norm ‖·‖s, which is equivalent to

‖·‖Hs(RN ). We define the excess of M from N in X s
0 (D) by setting

es(M,N) := sup
x∈M,‖x‖s=1

dists(x,N),

where dists(x,N) := infy∈N ‖x−y‖s. Also, we define the Hausdorff distance between M
and N by setting

dH,s(M,N) := es(M,N)+es(N,M).
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Finally, we define the operator Ta :X s
0 (Ωa)→X s

0 (Ωa)
′ by setting

Tau=f ⇔ [u,ϕ]s= 〈f,ϕ〉X s
0 (Ωa) for all ϕ∈X s

0 (Ωa).

Note that Ta is bounded, linear and bijective (see (2.14)). By the Open Map-
ping Theorem, the map T−1

a : X s
0 (Ωa)

′→X s
0 (Ωa) is a well defined and bounded

linear operator. One can analogously define Tb :X s
0 (Ωb)→X s

0 (Ωb)
′ and its inverse

T−1
b :X s

0 (Ωb)
′→X s

0 (Ωb). Moreover, every v∈L2(D) can be regarded as an element
fv of X s

0 (Ωa)
′ by setting

〈fv,ϕ〉X s
0 (Ωa) :=

∫

Ωa

v(x)ϕ(x)dx for every ϕ∈X s
0 (Ωa).

To simplify notation, we will directly write v instead of fv. Note that T−1
a and T−1

b are
also well-defined if v∈L2(D) (see [19]), namely

Tau=v ⇔ (−∆)su=v in Ωa, u=0 in R
N \Ωa.

In the following, T−1
a and T−1

b are often regarded as bounded linear operators from
L2(D) into X s

0 (D).
The proof of the following lemma is based on an abstract theory due to Feleqi [10,

Lemma 2.4]. For the reader’s convenience we provide a proof, which is specific to our
setting.

Lemma 10.1. Assume that condition (10.2) holds for some k,m∈N. Define δ by
setting

δ :=





1

2
min

{
1

λa
k−1

− 1

λa
k

,
1

λa
k+m−1

− 1

λa
k+m

}
if k≥2,

1

2

(
1

λa
1

− 1

λa
2

)
if k=1.

(10.3)

Then

es
(
Na

k,m,N b
k,m

)
≤mmax

{
δ−1,λa

k+m−1

}∥∥∥
(
T−1
a −T−1

b

)∣∣
Na

k,m

∥∥∥
L(Na

k,m,X s
0 (D))

,

provided that





max

{∣∣∣∣∣
1

λb
k−1

− 1

λa
k−1

∣∣∣∣∣ ,
∣∣∣∣∣

1

λb
k+m

− 1

λa
k+m

∣∣∣∣∣

}
<δ if k≥2,

∣∣∣∣
1

λb
1

− 1

λa
1

∣∣∣∣<δ if k=1.

(10.4)

In the previous expression (T−1
a −T−1

b )|Na
k,m

:Na
k,m→X s

0 (D) denotes the restriction of

T−1
a −T−1

b to Na
k,m, which is bounded and linear. Also, ‖·‖L(Na

k,m,X s
0 (D)) denotes the

(standard) norm of bounded linear operators from Na
k,m to X s

0 (D) (see (10.9) below for
its definition).

Proof. We first point out that, if M,N are closed subspaces of a given Hilbert
space X with inner product (·, ·)X , then

eX(M,N)=‖(1−Q)◦P‖L(X). (10.5)
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In the previous expression, P and Q are the projection maps from X onto M and N ,
respectively, and eX(M,N) is the excess of M from N computed with respect to the
norm ‖·‖ :=

√
(·, ·)X . To establish (10.5) we point out that

‖(1−Q)◦P‖L(X) := sup
u∈X,‖u‖=1

‖(1−Q)◦Pu‖

= sup
v∈M,‖v‖=1

‖(1−Q)v‖= sup
v∈M,‖v‖=1

distX(v,N)= eX(M,N).

In the rest of the proof, we will always choose X=X s
0 (D), ‖·‖=‖·‖s, eX(·, ·)= es(·, ·),

M =Na
k,m and N =N b

k,m.
Next, we fix i=1,2, . . . ,m and observe that
∥∥∥
(
T−1
a −T−1

b

)∣∣
Na

k,m

∥∥∥
L(Na

k,m,X s
0 (D))

= sup
f∈Na

k,m,‖f‖s=1

∥∥(T−1
a −T−1

b

)
f
∥∥
s

≥
∥∥∥∥∥
(
T−1
a −T−1

b

) eak+i−1√
λa
k+i−1

∥∥∥∥∥
s

=
1√

λa
k+i−1

∥∥∥∥
eak+i−1

λa
k+i−1

−T−1
b eak+i−1

∥∥∥∥
s

. (10.6)

Let us define the orthogonal projection PD→Ωb
:X s

0 (D)→X s
0 (Ωb) as in (6.2). By using

the fact that {ebj}j∈N is an orthonormal bais of L2(Ωb), we get

PD→Ωb
(v)=

∞∑

j=1

[v,ebj ]s

λb
j

ebj for v∈X s
0 (D). (10.7)

Note that the series at the right-hand side of the above equality is convergent, since
PD→Ωb

(v) ∈ X s
0 (Ωb) and {ebj}j∈N is a basis.

Since eak+i−1−PD→Ωb
(eak+i−1)∈X s

0 (Ωb)
⊥ and T−1

b (eak+i−1−PD→Ωb
(eak+i−1))=0,

then
∥

∥

∥

∥

∥

eak+i−1

λa
k+i−1

−T
−1
b e

a
k+i−1

∥

∥

∥

∥

∥

2

s

=

∥

∥

∥

∥

∥

PD→Ωb
(eak+i−1)

λa
k+i−1

−T
−1
b ◦PD→Ωb

(e
a
k+i−1)

+
eak+i−1−PD→Ωb

(eak+i−1)

λa
k+i−1

−T
−1
b (e

a
k+i−1−PD→Ωb

(e
a
k+i−1))

∥

∥

∥

∥

∥

2

s

=

∥

∥

∥

∥

∥

PD→Ωb
(eak+i−1)

λa
k+i−1

−T
−1
b ◦PD→Ωb

(e
a
k+i−1)

∥

∥

∥

∥

∥

2

s

+

∥

∥

∥

∥

∥

eak+i−1−PD→Ωb
(eak+i−1)

λa
k+i−1

∥

∥

∥

∥

∥

2

s

(10.7)
=

∥

∥

∥

∥

∥

∥

1

λa
k+i−1

∞
∑

j=1

[eak+i−1,e
b
j ]s

λb
j

e
b
j −

∞
∑

j=1

1

λb
j

[eak+i−1,e
b
j ]s

λb
j

e
b
j

∥

∥

∥

∥

∥

∥

2

s

+

∥

∥

∥

∥

∥

eak+i−1−PD→Ωb
(eak+i−1)

λa
k+i−1

∥

∥

∥

∥

∥

2

s

=
∞
∑

j=1

(

1

λa
k+i−1

−
1

λb
j

)2
[eak+i−1,e

b
j ]

2
s

λb
j

+

∥

∥

∥

∥

∥

eak+i−1−PD→Ωb
(eak+i−1)

λa
k+i−1

∥

∥

∥

∥

∥

2

s

≥
∑

j 6=k,···,k+m−1

(

1

λa
k+i−1

−
1

λb
j

)2
[eak+i−1,e

b
j ]

2
s

λb
j

+

∥

∥

∥

∥

∥

eak+i−1−PD→Ωb
(eak+i−1)

λa
k+i−1

∥

∥

∥

∥

∥

2

s

.

Note furthermore that by combining (10.3) and (10.4) we get
∣∣∣∣∣

1

λa
k+i−1

− 1

λb
j

∣∣∣∣∣>δ if j≤k−1 or j≥k+m. (10.8)
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Indeed, for every j≥k+m we have
∣∣∣∣∣

1

λa
k+i−1

− 1

λb
j

∣∣∣∣∣≥
1

λa
k+m−1

− 1

λb
k+m

(by λa
k+i−1≤λa

k+m−1 and λb
j ≥λb

k+m)

≥ 1

λa
k+m−1

− 1

λa
k+m

−
∣∣∣∣∣

1

λb
k+m

− 1

λa
k+m

∣∣∣∣∣
(10.3), (10.4)

> 2δ−δ= δ.

By using an analogous argument we can establish (10.8) when j≤k−1. Also, we have

∑

j 6=k,···,k+m−1

[eak+i−1,e
b
j ]

2
s

λb
j

(10.7)
=

∑

j 6=k,···,k+m−1

[PD→Ωb
(eak+i−1),e

b
j ]

2
s

λb
j

=‖(1−Q)◦PD→Ωb
(eak+i−1)‖2s

and eak+i−1−PD→Ωb
(eak+i−1)=(1−Q)(eak+i−1−PD→Ωb

(eak+i−1))∈X s
0 (Ωb)

⊥. By going
back to (10.6) and using the above relations, we obtain

∥
∥
∥
∥

(
T

−1
a −T

−1
b

)∣
∣
Na

k,m

∥
∥
∥
∥

2

L(Na
k,m

,Xs
0 (D))

≥
1

λa
k+i−1






δ
2‖(1−Q)◦PD→Ωb(e

a
k+i−1

︸ ︷︷ ︸

∈Xs
0 (Ωb)

)‖2s

+

(
1

λa
k+i−1

)2

‖(1−Q)(eak+i−1−PD→Ωb(e
a
k+i−1))

︸ ︷︷ ︸

∈Xs
0 (Ωb)

⊥

‖2s







≥
1

λa
k+i−1

min

{

δ
2
,

(
1

λa
k+i−1

)2
}

‖(1−Q)eak+i−1‖
2
s.

By using (10.5), we deduce that

es(N
a
k,m,N b

k,m)=‖(1−Q)◦P‖L(X s
0 (D))

= sup
u∈X s

0 (D),‖u‖s=1

‖(1−Q)◦Pu‖s

= sup
u∈X s

0 (D),‖u‖s=1

∥∥∥∥∥(1−Q)
m∑

i=1

[u,eak+i−1]s

λa
k+i−1

eak+i−1

∥∥∥∥∥
s

≤ sup
u∈X s

0 (D),‖u‖s=1

m∑

i=1

|[u,eak+i−1]s|
λa
k+i−1

∥∥(1−Q)eak+i−1

∥∥
s

≤ sup
u∈X s

0 (D),‖u‖s=1

m∑

i=1

‖u‖s
‖eak+i−1‖s
λa
k+i−1

∥∥(1−Q)eak+i−1

∥∥
s

≤
m∑

i=1

1√
λa
k+i−1

∥∥(1−Q)eak+i−1

∥∥
s

≤mmax
{
δ−1,λa

k+m−1

}∥∥∥
(
T−1
a −T−1

b

)∣∣
Na

k,m

∥∥∥
L(Na

k,m,X s
0 (D))
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and this completes the proof.

In the following we use this lemma:

Lemma 10.2. Under the same assumptions as in Theorem 1.2, we have
∥∥∥∥
(
T−1
a −T−1

b

)∣∣∣
Na

k,m

∥∥∥∥
L(Na

k,m,X s
0 (D))

≤C(N,s,ρ,θ,diamD)d(Ωb,Ωa)
s/2.

Proof. We observe that
∥∥∥∥
(
T−1
a −T−1

b

)∣∣∣
Na

k,m

∥∥∥∥
L(Na

k,m,X s
0 (D))

:= sup
f∈Na

k,m,‖f‖s=1

∥∥(T−1
a −T−1

b )f
∥∥
s

= sup
f∈Na

k,m,‖f‖s=1

‖ua−ub‖s , (10.9)

where ua :=T−1
a f and ub :=T−1

b f . By applying Theorem 1.2, we deduce that
∥∥∥∥
(
T−1
a −T−1

b

)∣∣∣
Na

k,m

∥∥∥∥
L(Na

k,m,X s
0 (D))

≤C(N,s,ρ,θ,diamD) sup
f∈Na

k,m,‖f‖s=1

‖f‖1/2L2(D)‖f‖
1/2

H−s(RN )
d(Ωb,Ωa)

s/2

(2.8), (2.11)

≤ C(N,s,ρ,θ,diamD)d(Ωb,Ωa)
s/2,

which is the desired result.

We can now state our main results concerning the eigenspace stability.

Theorem 10.1. Let assumptions i)–iii) in Theorem 1.4 and (1.10) hold. Assume
furthermore that (10.2) holds for some k,m∈N and let δ>0 be the same as in (10.3).
Let λ1(D)>0 denote the principal eigenvalue for (−∆)s on D. Then there is a positive
constant ν, only depending on N , s, ρ, θ, diamD, r, k, m, λ1(D) and δ, such that, if
dcH(Ωa,Ωb)<ν, then

es(N
a
k,m,N b

k,m)≤C(N,s,ρ,θ,diamD)mmax
{
δ−1,λa

k+m−1

}
d(Ωb,Ωa)

s/2. (10.10)

Also, let λj(Br) denote the j-th eigenvalue of (−∆)s on Br. If, in addition, d(Ωa,Ωb)<
(ρsinθ)/2, then we also have

dH,s(N
a
k,m,N b

k,m)

≤C(N,s,ρ,θ,diamD)mmax
{
δ−1,λk+m−1(Br)

}
(d(Ωb,Ωa)+d(Ωa,Ωb))

s/2
. (10.11)

Proof. By recalling that λa
j ≥λa

1 ≥λ1(D)>0 we get that
∣
∣
∣
∣
∣

1

λb
j

−
1

λa
j

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

λa
j −λb

j

λb
jλ

a
j

∣
∣
∣
∣
∣
≤

1

λ1(D)2

∣
∣
∣λ

a
j −λ

b
j

∣
∣
∣→0 for j=k−1,k+m as d

c
H(Ωa,Ωb)→0+.

This implies that (10.4) holds true if ν >0 is small enough (the smallness threshold of ν
may also depend on λ1(D) and δ). By applying Lemmas 10.1 and 10.2, we get (10.10).

If, in addition, d(Ωa,Ωb)< (ρsinθ)/2, then by switching a and b and by repeating
the same argument as before, we obtain

es(N
b
k,m,Na

k,m)≤C(N,s,ρ,θ,diamD)mmax
{
δ−1,λb

k+m−1

}
d(Ωa,Ωb)

s/2
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(with same ν). By using the fact that λa
k+m−1,λ

b
k+m−1≤λk+m−1(Br) and adding the

above inequality to (10.10), we eventually establish (10.11).

We can now give the proof of Theorem 1.5.

Proof. (Proof of Theorem 1.5.) Since the first eigenvalue is simple, assumption
(10.4) is satisfied with k=m=1 provided ν >0 is small enough (the smallness threshold
of ν may again depend on λ1(D) and δ). By applying Theorem 10.1 we conclude that

es(N
a
1,1,N

b
1,1)≤Cmax

{
δ−1,λa

1

}
d(Ωb,Ωa)

s/2. (10.12)

Note furthermore that

es(N
a
1,1,N

b
1,1)=max

{
inf
c∈R

‖ea1−ceb1‖s, inf
c∈R

‖−ea1−ceb1‖s
}

= inf
c∈R

‖ea1−ceb1‖s=
∥∥∥∥ea1−

[ea1 ,e
b
1]s

λb
1

eb1

∥∥∥∥
s

=

√
λa
1−

[ea1 ,e
b
1]

2
s

λb
1

,

which implies

∥
∥
∥
∥
∥

ea1
√

λa
1

−
eb1
√

λb
1

∥
∥
∥
∥
∥

2

s

=2

(

1−

[

ea1
√

λa
1

,
eb1
√

λb
1

]

s

)

≤2

(

1−

[

ea1
√

λa
1

,
eb1
√

λb
1

]2

s

)

=
2

λa
1

es(N
a
1,1,N

b
1,1)

2
.

By combining the above equality with (10.12) we arrive at

∥∥∥∥∥
ea1√
λa
1

− eb1√
λb
1

∥∥∥∥∥
s

≤ C√
λa
1

max
{
δ−1,λa

1

}
d(Ωb,Ωa)

s/2

≤ C√
λ1(D)

max
{
δ−1,λ1(Br)

}
d(Ωb,Ωa)

s/2.

On the other hand, by switching a and b, we obtain

∥∥∥∥∥
eb1√
λb
1

− ea1√
λa
1

∥∥∥∥∥
s

≤ C√
λ1(D)

max
{
δ−1,λ1(Br)

}
d(Ωa,Ωb)

s/2.

Taking the minimum of the right-hand side of both the previous inequalities, we even-
tually establish (1.29).
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