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A PARTICLE MICRO-MACRO DECOMPOSITION BASED
NUMERICAL SCHEME FOR COLLISIONAL KINETIC EQUATIONS

IN THE DIFFUSION SCALING∗

ANAÏS CRESTETTO† , NICOLAS CROUSEILLES‡ , AND MOHAMMED LEMOU§

Abstract. In this work, we derive particle schemes, based on micro-macro decomposition, for
linear kinetic equations in the diffusion limit. Due to the particle approximation of the micro part, a
splitting between the transport and the collision part has to be performed, and the stiffness of both
these two parts prevents from uniform stability. To overcome this difficulty, the micro-macro system
is reformulated into a continuous PDE whose coefficients are no longer stiff, and depend on the time
step ∆t in a consistent way. This non-stiff reformulation of the micro-macro system allows the use of
standard particle approximations for the transport part, and extends the work in [Crestetto, Crouseilles,
Lemou, Kin. Rel. Models, 5:787–816, 2012] where a particle approximation has been applied using a
micro-macro decomposition on kinetic equations in the fluid scaling. Beyond the so-called asymptotic-
preserving property which is satisfied by our schemes, they significantly reduce the inherent noise
of traditional particle methods, and they have a computational cost which decreases as the system
approaches the diffusion limit.

Keywords. kinetic models; asymptotic preserving scheme; diffusive scaling; particle-in-cell; micro-
macro decomposition.
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1. Introduction
Particle systems appearing in plasma physics or radiative transfer can be described

at different scales. When the system is far from its thermodynamical equilibrium, a ki-
netic description is necessary. Particles are then represented by a distribution function f
which depends on time t≥0, position x∈Rd and velocity v∈V ⊂Rd, d≥1. The distri-
bution f (t,x,v) satisfies a collisional kinetic equation. Particle methods are often used
for simulating kinetic problems, especially in realistic 3-dimensional situations, d= 3.
However, they are affected by numerical noise due to their probabilistic character. A
simple way to reduce this noise is to increase the number of particles, but then the nu-
merical cost increases as well. Other standard kinetic descriptions, as phase space grid
methods, may require too much memory in the two or three dimensional framework.
Otherwise, macroscopic descriptions depending only on t and x can be sufficient if the
system stays near its thermodynamical equilibrium, and are less expensive since their
unknown does not depend on the velocity variable anymore. Beside the noisy character
of standard particle methods, there is an additional difficulty in kinetic descriptions
which is linked to the presence of various scales in the system. Multi-scale phenomena
may indeed appear in plasma devices or radiative transfer applications, depending on
some physical parameters as for example the mean free path of particles or the Knudsen
number denoted here by ε. This multi-scale character is often represented by stiff terms
in the kinetic equation, and the general challenge is to construct efficient numerical
methods for these multiscale kinetic equations: this means that, without numerically
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resolving the stiffness, the numerical method must solve accurately the kinetic regime,
must have the right asymptotics in the high-stiffness limit (the so-called asymptotic pre-
serving property) and its computational cost should decrease as the system approaches
the equilibrium (a time diminishing property). Note that direct numerical methods
whose parameters resolve the smallest scale of size ε are impossible to use, since they
automatically involve an extremely high computational cost.

Several strategies have been proposed to overcome this strong constraint. Domain
decomposition methods can be applied when we have different regions with different
values of the scaling parameter, see [10, 14, 23, 26]. When the different scales are less
clearly delimited, we have to develop kinetic schemes that naturally reduce to good
approximations of the macroscopic problem when the system goes near its equilibrium,
and overcome the stiffness. Such schemes are often called Asymptotic-Preserving (AP),
see [4,9,13,15–22,25]. Mainly, the numerical cost remains comparable to the one of the
non-stiff kinetic problem, even when ε�1.

Our goal is to design an efficient AP scheme, using particles, for the following kinetic
radiative transport equation (RTE) in the diffusion scaling

∂tf+
1

ε
v∂xf =

1

ε2
(ρM−f), f(t= 0,x,v) =f0(x,v), (1.1)

where x∈Ω⊂R, ρ(t,x) = 1
2

∫
V
f(t,x,v)dv, V = [−1,1], M(v) = 1 ∀v∈V and f0(x,v) is a

given initial condition. Periodic boundary conditions are considered. It is well-known
(see [12, 19]) that when ε goes to zero, the distribution function f(t,x,v) converges
towards ρ̄(t,x)M(v), where ρ̄ satisfies the following diffusion equation

∂tρ̄−
1

3
∂xxρ̄= 0, ρ̄(t= 0,x) =

1

2

∫
V

f0(x,v)dv. (1.2)

An extension to the Vlasov–Poisson–BGK case is presented in Section 5. The kinetic
equation is coupled to a Poisson equation for the electric field denoted by E(t,x). More
precisely, we consider

∂tf+
1

ε
v∂xf+

1

ε
E∂vf =

1

ε2
(ρM−f), (1.3)

∂xE=ρ−1, (1.4)

where x∈Ω⊂R, ρ(t,x) =
∫
V
f(t,x,v)dv, V =R, M (v) = 1√

2π
exp

(
−v

2

2

)
is the absolute

Maxwellian and we consider periodic boundary conditions. Note that an additional
condition

∫
Ω
Edx= 0 is imposed to obtain a well-posed problem. When ε goes to zero,

the asymptotic model is a drift-diffusion equation satisfied by ρ̄(t,x) (see [1])

∂tρ̄−∂x(∂xρ̄− Ēρ̄) = 0, ρ̄(t= 0,x) =

∫
R
f0(x,v)dv, (1.5)

where Ē is linked to ρ̄ by the Poisson equation ∂xĒ= ρ̄−1.
The strategy will be the use of the micro-macro decomposition (see [2, 9, 22, 24]).

It consists in writing the distribution function as the sum of the equilibrium part
ρ(t,x)M(v) and a rest g(t,x,v). One can then derive a system of two equations: a
kinetic one for the rest g(t,x,v) and a macroscopic one for the equilibrium ρ(t,x)M(v).
AP micro-macro schemes for (1.1) have been proposed in [2,9,22]. These schemes consist
in a semi-implicit phase space grid method for the kinetic part, coupled to a classical
spatial grid method for the macro part. Our strategy in this work follows the strategy



CRESTETTO, CROUSEILLES, AND LEMOU 889

of [6] in the case of a fluid scaling: we use particles to sample the kinetic part whereas
an Eulerian solver is used to discretize the macro unknown. The main motivation of
this strategy lies in the fact that the micro part g converges to zero when ε goes to zero,
so that very few particles can sample it. As a consequence, in this regime, the cost of
the global micro-macro solver is almost the same as the cost of an asymptotic solver for
(1.2).

In this work, we focus on a diffusion type scaling (as in (1.1) or (1.3)) so that an
additional scale is involved compared to the fluid scaling considered in [6]. In [9, 22],
a diffusion scaling was studied, but using a fully grid based solver. Hence, the stiffest
term (of order 1/ε2) is considered implicit in time in the micro equation, which enables
to stabilize the transport term (of order 1/ε) and then to derive an AP scheme for (1.1)
and (1.3). The use of particles for the micro part prevents from a similar strategy since
a splitting between the transport term (of order 1/ε) and the source term needs to be
done. Then, a uniformly stable scheme is hard to obtain in this context. To overcome
this difficulty, a suitable formulation of the original model (1.1) is performed, so that the

stiff transport term (1/ε)v∂xg becomes (ε/∆t)(1−e−∆t/ε2)v∂xg where ∆t>0 denotes
a fixed time step of a numerical time discretization, which will be used to solve this
equation (see [7]). This reformulation is correct up to ∆t2 (for fixed ε>0) and ensures
that the transport speed remains finite even when ε→0. This formulation is the starting
point of the design of micro-macro-particle based numerical schemes which enjoy the AP
property and for which the numerical cost diminishes as ε goes to zero. This approach is
extended to the second-order (in time) and to the Vlasov–Poisson–BGK case (1.3)-(1.4).

The sequel of the paper is organized as follows. In Section 2, we recall the for-
mal derivation of the asymptotic model of (1.3) and (1.1). The first-order (in time)
reformulation of (1.1) is presented in Subsection 3.1 and its Lagrangian discretization
in Subsection 3.2. Its extension to a second-order in time model is detailed in Sec-
tion 4: the continuous model is presented in Subsection 4.1 and its discretization is
developed in Subsection 4.2. Section 5 proposes an extension of our strategy to the
Vlasov–Poisson–BGK system. Finally, Section 6 is devoted to numerical simulations.

2. Diffusion asymptotics
In this section, we recall the main steps of the derivation of the model obtained

from (1.1) when ε goes to zero. To do so, we consider the micro-macro decomposition
(see [2, 22, 24]) of f : f(t,x,v) =ρ(t,x)M(v)+g(t,x,v), with ρ(t,x) = 〈f〉, M(v) = 1 and
the rest g satisfies 〈g〉= 0. Here 〈f〉= 1

2

∫
V
f(v)dv, with V = [−1,1]. The following micro-

macro model is equivalent to the original model (1.1)
∂tρ+

1

ε
∂x〈vg〉= 0,

∂tg+
1

ε
(I−〈·〉)[v∂x(ρM+g)] =− 1

ε2
g.

(2.1)

Since 〈vM〉= 0, the micro equation can be rewritten as

∂tg+
1

ε
vM∂xρ+

1

ε
(I−〈·〉)(v∂xg) =− 1

ε2
g. (2.2)

When ε goes to zero, one gets from (2.2), g=−ε(vM∂xρ)+O(ε2), which gives using
〈v2M〉= 1/3 the following diffusion equation satisfied by the limit ρ̄

∂tρ̄−
1

3
∂xxρ̄= 0.
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The same calculations enable to derive the micro-macro model equivalent to (1.3)
∂tρ+

1

ε
∂x〈vg〉= 0,

∂tg+
1

ε
(I−〈·〉)[v∂x(ρM+g)+E∂v(ρM+g)] =− 1

ε2
g,

(2.3)

where M(v) is now the Maxwellian equilibrium and 〈f〉=
∫
V
f(v)dv, with V =R. When

ε goes to zero, one gets g=−ε(vM∂xρ−vMEρ)+O(ε2), which gives, using 〈v2M〉= 1
the following drift-diffusion equation satisfied by the limit ρ̄

∂tρ̄−∂xxρ̄+∂x(Ēρ̄) = 0, ∂xĒ= ρ̄−1. (2.4)

3. First-order in time reformulation and its discretization
In this part, a first-order reformulation of the micro part is proposed, which enables

to avoid the stiff transport term in space. The strategy is presented in the case of the
Equation (1.1) and its corresponding micro-macro model (2.1).

3.1. First-order in time reformulation. We start with (1.1) (with periodic
boundary condition in space) and consider the micro-macro decomposition of f =ρ+g
(here M(v) = 1 for all v∈ [−1,1]) and the micro-macro model (2.1).

First, using the relation ∂t(e
t/ε2g) =et/ε

2

(g/ε2 +∂tg), we rewrite the micro part
(2.2) as

∂t(e
t/ε2g) =−e

t/ε2

ε
F (ρ,g) , (3.1)

where F (ρ,g) is given by

F (ρ,g) =v∂xρ+v∂xg−∂x〈vg〉. (3.2)

We denote ∆t>0 the time step, tn=n∆t with n∈N. Then, a second stage consists in
integrating (3.1) on [tn,tn+1] to get

g(tn+1) =e−∆t/ε2g(tn)−ε(1−e−∆t/ε2)F (ρ(tn),g(tn))+O(∆t2).

To derive a continuous (in time) equation, we make appear a discrete time derivative
on the left-hand side

g(tn+1)−g(tn)

∆t
=−1−e−∆t/ε2

∆t
g(tn)−ε1−e−∆t/ε2

∆t
F (ρ(tn),g(tn))+O(∆t), (3.3)

which can be rewritten, up to terms of order O(∆t), as

∂tg(tn) =−1−e−∆t/ε2

∆t
g(tn)−ε1−e−∆t/ε2

∆t
F (ρ(tn),g(tn)), ∀n.

We finally obtain the first-order reformulation of (1.1)

∂tρ+
1

ε
∂x〈vg〉= 0, (3.4)

∂tg=−1−e−∆t/ε2

∆t
g−ε1−e−∆t/ε2

∆t
F (ρ,g), (3.5)
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with F (ρ,g) given by (3.2). We remark that the micro equation does not contain any stiff
term and satisfies the following property: for all fixed ε>0, Equation (3.5) is consistent
with the initial micro Equation (2.2) as ∆t goes to zero. Then, it has a suitable form for
a numerical discretization using either a deterministic scheme (described in Appendix
A) or a particle scheme. Note that the main goal of the paper is to present an AP
particle scheme, the cost of which decreases when ε→0, but in the numerical tests, we
will use the deterministic AP scheme based on (3.5) for comparison.

3.2. Lagrangian discretization. This subsection is devoted to the derivation
of an AP-particle based numerical scheme for (3.4)-(3.5).

We propose now a Lagrangian discretization of (3.5). More precisely, we adopt a
weighted particle method, see [3], and consider a set of Np∈N macro particles. The
position of particle k, 1≤k≤Np, is denoted by xk(t)∈Ω = [0,Lx], with Lx>0, its ve-
locity by vk(t)∈V = [−1,1] and its weight by ωk(t)∈R. Let Lv = |V |= 2. The function
g is then assumed to be of the form

g (t,x,v)≈
Np∑
k=1

ωk(t)δ(x−xk(t))δ(v−vk(t)), (3.6)

where δ denotes the Dirac mass function. Weights ωk(t) are related to the distribution
function g through

ωk(t) =g(t,xk(t),vk(t))
LxLv
Np

. (3.7)

Initially, particles are uniformly distributed in the phase-space domain [0,Lx]×V and
their weights are computed following (3.7). Note that another approach can also be
chosen; for example (unweighted) Monte Carlo methods can also be used (see [5,8]) and
in this case, collisions are taken into account through the change of particles velocities,
whereas in our weighted particle method collisions are taken into account through the
variation of the weights ωk.

The density ρ is computed on a uniform spatial grid defined by xi= i∆x, i=
0,. ..,Nx, Nx∈N? and ∆x=Lx/Nx. We denote by ρni the approximation at time
tn=n∆t and position xi of ρ(tn,xi), with ∆t>0 the time step. Moreover, gn(x,v)≈
g(tn,x,v), xnk ≈xk(tn), vnk ≈vk(tn) and wnk ≈wk(tn). Let us remark that v̇k = 0, so
that the velocities vk(t) are constant in time and we will note vnk =v0

k =:vk for all
n. Thus, the unknowns of the method are (ρni ), ∀i= 0,. ..,Nx, n>0, (xnk ) and (ωnk ),
∀k= 1,. ..,Np, n>0.

Our goal is then to extend the particle discretization of [6] to diffusion scaling.
Whereas the hydrodynamic scaling is considered in [6], we have here an additional scale
of order 1/ε in front of the transport term. This scale is difficult to handle with a particle
method, since it can not be stabilized by the collision term of order 1/ε2. Moreover, a
specific treatment of the macro flux ∂x〈vg〉 is required in the diffusion scaling to ensure
the AP property, as we will see later. To deal with the additional scale, we exploit the
reformulation (3.5). As already said in [6], we have to use a splitting procedure between
the transport part and the source part. Then, the (first-order) splitting writes

• start with an initial repartition of the Np particles (x0
k,v

0
k), with ω0

k =g(t=
0,x0

k,v
0
k)LxLv/Np,

• solve the transport part

∂tg=ε
1−e−∆t/ε2

∆t
v∂xg,



892 A PARTICLE MICRO-MACRO DECOMPOSITION SCHEME

with the (non stiff) characteristics

ẋk =ε
1−e−∆t/ε2

∆t
vk, (3.8)

• solve the source part

∂tg=−1−e−∆t/ε2

∆t
g−ε1−e−∆t/ε2

∆t
[v∂xρ−∂x〈vg〉] ,

using the equation satisfied by the weights

ω̇k =−1−e−∆t/ε2

∆t
ωk−ε

1−e−∆t/ε2

∆t
[vk∂xρ(xk)−∂x〈vg〉(xk)]

LxLv
Np

. (3.9)

Remark 3.1 (Preservation of the micro-macro structure). As detailed in Subsection
4.2 in [6], we have to correct the particle weights in order to preserve at the numerical
level the micro-macro structure. Indeed, the micro-macro decomposition technique uses
the zero-mean property 〈g〉= 0. This property is preserved at the continuous level
by the couple (3.8)-(3.9). But the splitting breaks the operator (I−〈·〉) and so this
property. Thus, nothing guarantees that this property is satisfied at the discrete level
(on the weights ωk). That is why we have to correct the weights, by applying a discrete
approximation of the operator (I−〈·〉) to the weights (ωk)k, which is consistent with
the continuous model. In the simpler case (that is by using a regularization of order
`= 0, see (3.12) below), it consists in the following correction:

∀k∈Ii :=
{
k / xk ∈ [xi−1/2,xi+1/2]

}
, ωk←ωk−∆x

〈g〉(xi)∑
k∈Ii pk

pk,

where pk :=ρ(xk)M(vk)LxLv/Np is the weight associated to the Maxwellian and 〈g〉(xi)
is computed in the same way as 〈vg〉(xi) in (3.11).
For more details of this correction (called projection step in following algorithms), we
refer the reader to Subsection 4.2 in [6].

Now, we detail the time discretization of the two steps. First, (3.8) is approximated
by a simple forward Euler scheme

xn+1
k =xnk +ε(1−e−∆t/ε2)vk. (3.10)

Second, we compute the last term in (3.9). The term 〈vg〉 is approximated on the spatial
grid xi using

〈vg〉(xi)≈
Np∑
k=1

ωnkB`(xi−xn+1
k )vk, (3.11)

where B`≥0 is a B-spline function of order `:

B`(x) = (B0 ∗B`−1)(x), with B0(x) =

{
1

∆x if |x|<∆x/2,
0 else.

(3.12)

We then approximate the equation on the weights (3.9) using a first-order explicit
integrator

ωn+1
k =e−∆t/ε2ωnk −ε(1−e−∆t/ε2)[αnk +βnk ] , (3.13)
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with

αnk =vk∂xρ
n(xn+1

k )
LxLv
Np

and βnk =−∂x〈vg〉(xn+1
k )

LxLv
Np

. (3.14)

To compute αnk (resp. βnk ), since ρn (resp. 〈vg〉) is known on the spatial grid, we
approximate ∂xρ

n (resp. ∂x〈vg〉) by centered finite differences and evaluate at xn+1
k

using an interpolation with B-spline functions, for example

∂xρ
n(xn+1

k )≈
Nx∑
i=1

ρni+1−ρni−1

2∆x
B`(xi−xn+1

k ).

Let us remark that in the limit ε→0, the particles do not move anymore (see (3.10))
and their weights ωk tend to zero (see (3.13)), as well as ω̇k.

The macro Equation (3.4) is advanced through

ρn+1
i =ρni −

∆t

ε

〈vgn+1〉i+1−〈vgn+1〉i−1

2∆x
, (3.15)

where 〈vgn+1〉i is computed using (3.11).
However, this discretization of the macro equation does not produce a time dimin-

ishing AP scheme, since it is not accurate in the limits ε→0 and Np→0. Indeed, the
error due to the particle approximation of gn+1 is amplified by the factor 1/ε. To ensure
this time diminishing property, we perform a decomposition of (3.13) so that the macro
flux becomes

〈vgn+1〉i=
Np∑
k=1

ωn+1
k B`(xi−xn+1

k )vk,

=

Np∑
k=1

(
e−∆t/ε2ωnk −ε(1−e−∆t/ε2)βnk

)
B`(xi−xn+1

k )vk

−ε(1−e−∆t/ε2)

Np∑
k=1

αnkB`(xi−xn+1
k )vk,

=−ε(1−e−∆t/ε2)

Np∑
k=1

αnkB`(xi−xn+1
k )vk+hni , (3.16)

with B` given by (3.12) and

hni =e−∆t/ε2
Np∑
k=1

ωnkB`(xi−xn+1
k )vk−ε(1−e−∆t/ε2)

Np∑
k=1

βnkB`(xi−xn+1
k )vk. (3.17)

Since αnk is the weight of v∂xρ
n (see (3.14)) and 〈v2〉= 1/3, we can write

〈vgn+1〉i≈−ε(1−e−∆t/ε2)
1

3
∂xρ

n
i +hni ,

so that the macro scheme becomes

ρn+1
i =ρni +∆t(1−e−∆t/ε2)

1

3

ρ
n+1/2
i+1 −2ρ

n+1/2
i +ρ

n+1/2
i−1

∆x2
−∆t

ε

hni+1−hni−1

2∆x
, (3.18)
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where ρn+1/2 can be chosen equal to ρn or to ρn+1 depending on the desired asymp-
totic scheme (explicit or implicit in time). Obviously, the choice of an implicit
scheme (ρn+1/2 =ρn+1 in (3.18)) enables to get rid of the diffusion-type constraint:
∆t=O(∆x2). We can write the following proposition.

Proposition 3.1. The scheme given by (3.10)-(3.13)-(3.18) enjoys the AP property,
i.e. it satisfies the following properties

• for fixed ε>0, the scheme is a first-order (in time) approximation of the original
model (1.1),

• for fixed ∆t>0, the scheme degenerates into an explicit or implicit first-order
scheme of (1.2) (according to the choice of ρn+1/2).

Proof. The consistency follows directly from standard approximation. For the
asymptotic behavior, when ε goes to zero, we get immediately from (3.13) ωn+1

k =O(ε)
∀n≥0. From (3.17), we deduce that hni =O(ε2) ∀n≥1. The macro Equation (3.18)
then reduces when ε→0 to a consistent discretization of (1.2).

The scheme is finally summarized in the following algorithm.

Algorithm 3.1.

• Initialize (x0
k,v

0
k), ω0

k and ρ0
i .

At each time step:

• 1) Advance micro part:
– advance the characteristics with (3.10),

– compute 〈vg〉 with (3.11),

– advance the equation on the weights with (3.13).

• 2) Projection step: compute (I−〈·〉)gn+1 using [6].

• 3) Advance macro part:
– compute hni with (3.17),

– compute ρn+1 with (3.18).

4. Second-order in time reformulation and its discretization

This section is devoted to the derivation of a second-order scheme for the micro-
macro system (2.1). As for the first-order scheme, we will first reformulate the mi-
croscopic Equation (2.2) in order to suppress stiff terms (see Subsection 3.1 for the
first-order case), and then discretize the obtained micro-macro model to get an AP
efficient numerical scheme (see Subsection 3.2 for the first-order case).

4.1. Second-order reformulation. Let us start from the following (equivalent)
reformulation of the micro part of (2.1)

∂t

(
et/ε

2

g
)

=−e
t/ε2

ε
F (ρ(t),g(t)),

where F (ρ,g) is defined by (3.2). We now integrate with respect to t∈ [tn,tn+1] and use
a second-order mid-point quadrature

g(tn+1) =e−∆t/ε2g(tn)−∆te−∆t/2ε2

ε
F
(
ρ(tn+1/2),g(tn+1/2)

)
+O

(
∆t3

)
.
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To derive a continuous (in time) equation, we make appear a discrete time derivative
on the left-hand side

g(tn+1)−g(tn)

∆t
=
e−∆t/ε2−1

∆t
g(tn)− e

−∆t/2ε2

ε
F
(
ρ(tn+1/2),g(tn+1/2)

)
+O

(
∆t2

)
.

We now look for a continuous (in time) equation for which the previous relation is a
second-order numerical scheme. To do so, we perform Taylor expansions of the different
terms at tn+1/2

∂tg(tn+1/2) =
e−∆t/ε2−1

∆t

(
g(tn+1/2)−∆t

2
∂tg(tn+1/2)

)
− e
−∆t/2ε2

ε
F
(
ρ(tn+1/2),g(tn+1/2)

)
+O

(
∆t2

)
. (4.1)

Finally, the microscopic equation of (2.1) is reformulated up to the second-order by

∂tg=
2

∆t

e−∆t/ε2−1

e−∆t/ε2 +1
g− 2

ε

e−∆t/2ε2

e−∆t/ε2 +1
F (ρ,g) ,

and we can now consider the second-order reformulated micro-macro system

∂tρ+
1

ε
∂x〈vg〉= 0, (4.2)

∂tg=
2

∆t

e−∆t/ε2−1

e−∆t/ε2 +1
g− 2

ε

e−∆t/2ε2

e−∆t/ε2 +1
[v∂xρ+v∂xg−∂x〈vg〉] . (4.3)

4.2. Time discretization. We are now interested in the construction of an AP
scheme for system (4.2)-(4.3), based on a second-order splitting method for the time
discretization and a Lagrangian method for the phase space discretization of the micro
part.

In the sequel, we will use the same notations as in Subsection 3.2. The splitting
method is based on a prediction step on ∆t/2 (first-order) and a correction step on ∆t.
Then, a second-order (in time) scheme for (4.2)-(4.3) would read

Prediction step on ∆t/2

gn+1/2 =gn+
e−∆t/ε2−1

e−∆t/ε2 +1
gn−∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
F (ρn,gn) , (4.4)

ρn+1/2 =ρn−∆t

2ε
∂x〈vgn+1/2〉, (4.5)

Correction step on ∆t

gn+1 =gn+2
e−∆t/ε2−1

e−∆t/ε2 +1
g̃− 2∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
F
(
ρn+1/2,gn+1/2

)
,

(4.6)

ρn+1 =ρn−∆t

ε
∂x〈vgn+1/2〉. (4.7)

We still have to fix g̃ in (4.6) in order to get a second-order scheme and to ensure the

convergence of gn+1 to zero as ε goes to zero. It turns out the choice g̃= gn+gn+1

2 ensures
the two conditions. Indeed, we get for the correction step of the micro part

gn+1 =e−∆t/ε2gn−∆t

ε
e−∆t/2ε2F

(
ρn+1/2,gn+1/2

)
.
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Note that g̃=gn+1/2 ensures the second-order accuracy of the scheme but does not
ensure the convergence of gn+1 to zero as ε goes to zero (it gives gn+1 =gn).

Up to now, the micro part converges exponentially fast to zero (when ε goes to
zero), so that the asymptotic behavior of the scheme is ρn+1 =ρn. Hence, the last but
not the least step consists in modifying the macro flux ∂x〈vgn+1/2〉 in (4.7) to capture
the correct asymptotic limit.

As done in Section 3, we will modify the discretization of the macro flux in order to
make appear the diffusion term directly in the macro part (4.7). This allows us to take
the diffusion term implicit and thus to avoid a constraint of diffusion-type ∆t=O(∆x2)
in the limit ε→0 (as done in Section 3). However, the modification has to be of order ∆t3

for a fixed ε>0 to not spoil the second-order accuracy of the scheme. The correction
we propose consists in computing ρn+1

i with (4.7), in which we add a diffusion term
(discretized with a second-order Crank–Nicolson scheme) in front of which we added

the coefficient ∆t(1−e−∆t/ε2)2. This coefficient is of order O(∆t3) for fixed ε>0 and
degenerates to ∆t when ε goes to zero as required. We then obtain

ρn+1
i =ρni −

∆t

ε
∂x〈vgn+1/2〉i+∆t(1−e−∆t/ε2)2 1

3
∂xx

(
ρn+1
i +ρni

2

)
. (4.8)

Note that from (4.4), we see that gn+1/2 behaves like e−∆t/2ε2 when ε→0, and so
the asymptotic model derived from (4.4)-(4.7) reduces to ρn+1 =ρn, which is not the

desired diffusion limit. Therefore we added the term ∆t(1−e−∆t/ε2)2 1
3∂xx

(
ρn+1
i +ρni

2

)
in (4.8) in order to capture the right asymptotic regime. This additional term is of order
∆t3, so we keep the second-order accuracy for all fixed ε>0. However when ε→0, this
term is no longer negligible and provides in this limit the right diffusion asymptotic
limit. Of course other choices than the multiplicative factor (1−e−∆t/ε2)2 are possible.

For example, we could have taken
(

1− 1
1+∆t/

√
ε

)2

, which gives second-order accuracy

for all fixed ε>0 and the right asymptotic limit too.

4.3. Lagrangian discretization. We consider the same notations as in Sub-
section 3.2 and detail here the Lagrangian discretization of the micro-macro system

(4.2)-(4.3). In the prediction step (4.4), we compute x
n+1/2
k with a forward Euler inte-

grator

x
n+1/2
k =xnk +

∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
vk, (4.9)

and advance the weights with

w
n+1/2
k =

2e−∆t/ε2

e−∆t/ε2 +1
wnk −

∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
[vk∂xρ

n(xnk )−∂x〈vkgn(xnk )〉]LxLv
Np

. (4.10)

We end this prediction step by computing the flux 〈vgn+1/2〉 with (3.11) to get the
density

ρ
n+1/2
i =ρni −

∆t

2ε
∂x〈vgn+1/2〉i. (4.11)

Now in the correction step, we compute the position at tn+1 with

xn+1
k =xnk +

∆t

ε
e−∆t/2ε2vk, (4.12)
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then the weights are given by

wn+1
k =e−∆t/ε2wnk −

∆t

ε
e−∆t/2ε2

[
vk∂xρ

n+1/2(x
n+1/2
k )−∂x〈vkgn+1/2(x

n+1/2
k )〉

]LxLv
Np

.

(4.13)
Now, using (4.8) in the last step, we have

ρn+1
i =ρni −

∆t

ε
∂x〈vgn+1/2〉i+∆t(1−e−∆t/ε2)2 1

3
∂xx

(
ρn+1
i +ρni

2

)
, (4.14)

where 〈vgn+1/2〉i is computed using (3.11). The previous scheme is a semi-discrete
and second-order approximation in time of the original Equation (2.1). To get a fully
discretized scheme, the space derivatives are approximated exactly in the same way as
in Subsection 3.2.

We finally have the following result.

Proposition 4.1. The scheme given by (4.9)-(4.10)-(4.11)-(4.12)-(4.13)-(4.14) enjoys
the AP property, i.e. it satisfies the following properties

• for fixed ε>0, the scheme is a second-order (in time) approximation of the
original model (1.1),

• for fixed ∆t>0, the scheme degenerates into an implicit second-order (in time)
scheme of (1.2).

Proof. When ε→0, we get from (4.10) w
n+1/2
k →0 exponentially fast and then

〈vgn+1/2〉i→0. By injecting it in the macro Equation (4.14), we have at the limit

ρn+1
i =ρni + ∆t

3 ∂xx

(
ρn+1
i +ρni

2

)
, which is a Crank–Nicolson discretization of the diffusion

Equation (1.2).

Remark 4.1. Let us emphasize that the moments 〈·〉 have to be computed with B-
spline functions of order `≥1 in order to obtain a second-order in time scheme. Taking
`= 0 would lead to space discontinuities preventing the time scheme to be of second-
order.

The scheme is finally summarized in the following algorithm.

Algorithm 4.1.
• Initialization of (x0

k,v
0
k), ω0

k and ρ0
i .

At each time step:
Prediction step: from tn to tn+1/2.

• 1) Advance micro part:

– advance the characteristics with (4.9),

– compute 〈vg〉 with (3.11) and B-spline functions of order `≥1,

– advance the equation on the weights with (4.10).
• 2) Projection step: compute (I−〈·〉)gn+1/2 using [6].

• 3) Advance macro part:
– compute 〈vgn+1/2〉 with (3.11) and B-spline functions of order `≥1,

– compute the density with (4.11).

Correction step: from tn to tn+1.
• 4) Advance micro part:

– advance the characteristics with (4.12),
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– compute 〈vg〉 with (3.11) and B-spline functions of order `≥1,

– advance the equation on the weights with (4.13).

• 5) Advance macro part with (4.14).

5. Extension to the Vlasov–Poisson–BGK case
This section is devoted to the extension of our method to kinetic equation making

appear an electric field in the velocity direction. We consider the Vlasov–Poisson–BGK
system in the diffusion scaling

∂tf+
1

ε
v∂xf+

1

ε
E∂vf =

1

ε2
(ρM−f), (5.1)

∂xE=ρ−1, (5.2)∫
Ω

Edx= 0, ∀t≥0, (5.3)

where x∈Ω = [0,Lx]⊂R, ρ(t,x) =
∫
Rf(t,x,v)dv and M (v) = 1√

2π
exp

(
−v

2

2

)
is the abso-

lute Maxwellian. Let f0 (x,v) =f (t= 0,x,v) the initial distribution function and let con-
sider periodic boundary conditions in x: f (t,0,v) =f (t,Lx,v), ∀ v∈V , E (t,0) =E (t,Lx)
∀t≥0.

We can extend our schemes to this problem by adapting the computations of Sub-
sections 4.1 and 4.2. We do not give all the details of the computations but insist on
difficulties coming from the electric field term and write the resulting schemes.

The second-order reformulated micro-macro system corresponding to (1.3) is

∂tρ+
1

ε
∂x〈vg〉= 0, (5.4)

∂tg=
2

∆t

e−∆t/ε2−1

e−∆t/ε2 +1
g− 2

ε

e−∆t/2ε2

e−∆t/ε2 +1
[vM∂xρ+v∂xg−∂x〈vg〉M−vMEρ+E∂vg] .

(5.5)

The limit model is here the drift-diffusion equation coupled to Poisson Equation (2.4).
Equipped with this system (5.4)-(5.5), we construct the following Lagrangian,

second-order in time scheme for (5.1)-(5.2)-(5.3). In the prediction step, characteristics
are solved through

x
n+1/2
k =xnk +

∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
vnk , v

n+1/2
k =vnk +

∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
En(xnk ), (5.6)

the weights evolve with

w
n+1/2
k =

2e−∆t/ε2

e−∆t/ε2 +1
wnk −

∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
[vnkM(vnk )∂xρ

n(xnk )−∂x〈vnk gn(xnk )〉M(vnk )

−vnkM(vnk )En(xnk )ρn(xnk )]
LxLv
Np

(5.7)

and the macro equation is advanced with

ρ
n+1/2
i =ρni −

∆t

2ε
∂x〈vgn+1/2〉i+

∆t

2
(1−e−∆t/ε2)∂x

(
∂x

(
ρ
n+1/2
i +ρni

2

)
−Eni ρni

)
.

(5.8)
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In the correction step, characteristics are solved through

xn+1
k =xnk +

2∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
v
n+1/2
k , vn+1

k =vnk +
2∆t

ε

e−∆t/2ε2

e−∆t/ε2 +1
En+1/2(x

n+1/2
k ),

(5.9)
the weights evolve with

wn+1
k =e−∆t/ε2wnk −

∆t

ε
e−∆t/2ε2

[
v
n+1/2
k M(v

n+1/2
k )∂xρ

n+1/2(x
n+1/2
k )

−∂x〈vn+1/2
k gn+1/2(x

n+1/2
k )〉M(v

n+1/2
k )

−vn+1/2
k M(v

n+1/2
k )En+1/2(x

n+1/2
k )ρn+1/2(x

n+1/2
k )

]LxLv
Np

. (5.10)

and the macro equation is advanced with

ρn+1
i =ρni −

∆t

ε
∂x〈vgn+1/2〉i+∆t(1−e−∆t/ε2)2∂x

(
∂x

(
ρn+1
i +ρni

2

)
−En+1/2

i ρ
n+1/2
i

)
.

(5.11)
The limit has been directly written in the macroscopic equation and the diffusion

term is managed by a Crank–Nicolson method, in the prediction as well as in the
correction step. The previous scheme is a semi-discrete and second-order approximation
in time of the original Equation (2.3). To get a fully discretized scheme, the space
derivatives are approximated exactly in the same way as in Subsection 3.2.

We have the following proposition.

Proposition 5.1. The scheme given by (5.6)-(5.7)-(5.8)-(5.9)-(5.10)-(5.11) enjoys
the AP property, i.e. it satisfies the following properties

• for fixed ε>0, the scheme is a second-order (in time) approximation of the
original model (1.3),

• for fixed ∆t>0, the scheme degenerates into a second-order (in time) scheme
of (1.5).

The scheme is finally summarized in the following algorithm.

Algorithm 5.1.
• Initialize (x0

k,v
0
k), ω0

k, and ρ0
i .

• Compute E0
i thanks to FFT or finite differences.

At each time step:
Prediction step: from tn to tn+1/2.

• 1) Advance micro part:

– advance the characteristics with (5.6),

– compute 〈vg〉 with (3.11) and B-spline functions of order `≥1,

– advance the equation on the weights with (5.7).
• 2) Projection step: compute (I−〈·〉)gn+1/2 using [6].

• 3) Advance macro part:
– compute 〈vgn+1/2〉 with (3.11) and B-spline functions of order `≥1,

– compute ρ
n+1/2
i with (5.8),

– compute E
n+1/2
i thanks to FFT or finite differences.

Correction step: from tn to tn+1.
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• 4) Advance micro part:
– advance the characteristics with (5.9),

– compute 〈vg〉 with (3.11) and B-spline functions of order `≥1,

– advance the equation on the weights with (5.10).

• 5) Advance macro part:
– compute ρn+1

i with (5.11),

– compute En+1
i thanks to FFT or finite differences.

Remark 5.1. We propose to use an upwind discretization of the derivative

∂x

(
E
n+1/2
i ρ

n+1/2
i

)
:

∂x

(
E
n+1/2
i ρ

n+1/2
i

)
≈
E
n+1/2,+
i ρ

n+1/2
i +E

n+1/2,−
i ρ

n+1/2
i+1

∆x

−
E
n+1/2,+
i−1 ρ

n+1/2
i−1 +E

n+1/2,−
i−1 ρ

n+1/2
i

∆x
,

where the standard notations u+ = max(u,0) and u−= min(u,0) are used. The same
discretization is done for ∂x (Eni ρ

n
i ) in the prediction step.

6. Numerical results
This section is devoted to some numerical experiments comparing the here designed

micro-macro model with particles (denoted by MiMa-Part-1 for the first-order scheme
and by MiMa-Part-2 for the second-order scheme) to the micro-macro Eulerian model
(denoted by MiMa-Grid), the moment guided method (denoted by Moment G.) and
(i) the Full PIC method in kinetic regimes (ε of order 1) or (ii) the limit scheme in
diffusion regime (ε�1). MiMa-Part-1 corresponds to Proposition 3.1 and MiMa-Part-
2 corresponds to Proposition 4.1. The micro-macro Eulerian scheme is presented in
Appendix A. The moment guided method was first presented in [11] and is adapted to
our context in Appendix B. The Full PIC method [3] consists in applying the particle
representation (3.6) to the whole function f (and not only to the perturbation g) and
to solve the characteristics and the equations on weights coming from Equation (1.1) or
(1.3).

In the sequel, we consider three families of test cases: radiative transport equation
(RTE) test cases with periodic boundary conditions (see Equation (1.1)) in Subsection
6.1, Vlasov–Poisson–BGK test cases (see Equations (1.3)-(1.4)) of Landau damping type
in Subsection 6.2 and two-stream instability (TSI) test cases in Subsection 6.3.

6.1. RTE with periodic boundary conditions. We consider the RTE test
case given by the initial condition

f (t= 0,x,v) = 1+cos

(
2π

(
x+

1

2

))
, x∈ [0,1],v∈ [−1,1], (6.1)

with M (v) = 1, ∀v∈ [−1,1], and periodic boundary conditions in x.
We propose here to verify numerically the convergence of MiMa-Part-2 (presented

in Subsection 4.3), Lagrangian in space, of second-order in time and with an implicit
treatment of the diffusion term (see Algorithm 4.1). In Figure 6.1, we plot the error in
L∞ norm of the density ρ at time T = 0.1 as a function of ∆t (from 10−4 to 0.1) for
the following parameters: Nx= 16, Np= 1000. For ε≥10−3, the reference solution is
computed with MiMa-Part-2 using the same parameters but with ∆t= 10−7. Whereas
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for ε<10−3, the reference is a numerical solution of the diffusion equation (computed
on a space grid, with Nx= 16 and ∆t= 10−7). In Figure 6.2, the error in L∞ norm
is now represented as a function of ε for different values of ∆t: 10−1, 10−2, 10−3 and
10−4. The reference solution is computed as previously.
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Fig. 6.1. Error in L∞ norm of ρ at time
T = 0.1 as a function of ∆t for Nx = 16, Np =
1000, ε= 1, 0.5, 0.1, 10−3 and 10−6.
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Fig. 6.2. Error in L∞ norm of ρ at time
T = 0.1 as a function of ε for Nx = 16, Np =
1000, ∆t= 10−1, 10−2, 10−3 and 10−4.

These plots confirm the fact that MiMa-Part-2 is second-order accurate in time for
any fixed ε>0, and also when ε→0. However, for intermediate regimes (for instance
ε= 0.1 and ε= 10−3), order reduction is observed. This is a classical observation for AP
schemes. Note that similar behaviour is obtained with L2 norm.

In Figure 6.3, we verify the AP property of the MiMa-Part-2 scheme and plot the
density ρ(T = 0.1,x) as a function of x for different values of ε: 1, 0.25, 10−2 and 10−6.
We take fixed parameters: Nx= 64, ∆t= 10−3 and Np= 104. We compare the solutions
obtained by MiMa-Part-2 to a numerical solution of the diffusion equation (computed
on a space grid, with Nx= 512 and ∆t= ∆x2) and see that the ε-dependent solutions
come closer to the diffusion one when ε decreases.

Moreover, we illustrate in Figure 6.4 the fact that the cost of our method is very
small at the limit. For that, we plot the density ρ(T = 0.1,x) as a function of x for
ε= 10−6 (Nx= 64 and ∆t= 10−2) and see that Np= 100 is sufficient to represent in a
good way (without noise) the density. The numerical cost is then very close to the one
of the asymptotic model.

6.2. Landau damping. In this subsection, we present Landau damping test
cases in both regimes (kinetic when ε=O(1) and diffusive when ε→0). This test is
known to be relevant to check the accuracy of the numerical method. In particular,
conventional PIC methods have difficulties to capture the long-time behaviour due to
the statistical noise. The initial distribution function is given by

f (t= 0,x,v) =
1√
2π

exp

(
−v

2

2

)
(1+αcos(kx)), x∈

[
0,

2π

k

]
, v∈R, (6.2)

with the wave number k= 0.5 and α= 0.05. For the micro-macro model (1.3), the initial
condition is ρ(t= 0,x) = 1+αcos(kx) and g (t= 0,x,v) = 0. For the limit drift-diffusion
Equation (1.5), we have ρ(t= 0,x) = 1+αcos(kx).

We first verify the order in time of the MiMa-Part-2 scheme detailed in Section 5
and plot in Figure 6.5 the error in L∞ norm of the density ρ at time T = 0.1 as a function
of ∆t (from 10−4 to 0.1) for the following parameters: Nx= 16, Np= 1000. For ε≥10−3,
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the reference solution is computed with MiMa-Part-2 using the same parameters but
with ∆t= 10−7. Whereas for ε= 10−6 the reference is a numerical solution of the drift-
diffusion equation (computed on a space grid, with Nx= 16 and ∆t= 10−7).

Results are similar to the RTE case: the second-order in time is preserved for big
and small values of ε but not for intermediate regimes.

We are now interested in more qualitative tests by considering the time history of

the electric energy E (t) =
√∫ Lx

0
E (t,x)

2
dx in semi-logarithmic scale for different values

of ε. We compare the results obtained by MiMa-Part-2 (detailed in Algorithm 5.1) to
other schemes: MiMa-part-1, Moment G. and Full PIC (for ε of order 1) or the scheme
for the drift-diffusion model (for small values of ε).

We expect that the number of particles that is necessary to represent in a good way
the perturbation g in MiMa-Part methods decreases when ε diminishes and consider
Np= 105 if ε≥0.5, Np= 104 if ε= 0.1 and Np= 102 if ε= 10−4. For comparison, we take
the same Np for moment guided and Full PIC methods.

Results for ε= 10 are given in Figure 6.6. For the four particle methods, we take
∆t= 0.1, and Nx= 128. With the same parameters, results for ε= 1 are presented
in Figure 6.7. For ε= 0.5, we consider ∆t= 0.01 and Nx= 256 for the four particle
methods. Results are given in Figure 6.8. For these three values of ε, the reference
is given by MiMa-Grid with Nx=Nv = 512 and ∆t= ∆x2≈6×10−4. First, we note
that the behaviour of the electric energy is well described during time by micro-macro
schemes (MiMa-Part and MiMa-Grid). As observed in [6], the Full PIC method suffers
from numerical noise. This is due to the probabilistic character of particle methods
(for instance the random initialization of particles). To reduce this noise, we should
consider more particles, which would increase the numerical cost. As expected, the
moment guided method gives better results than the Full PIC one, but suffers however
also from this noise. In MiMa-Part schemes, only the perturbation g is represented by
particles (not the whole distribution function f), that is why for the same Np, the noise
is lower, which enables to capture the reference solution for large times. In addition,
MiMa-Part-2 is closer to the reference MiMa-Grid than the first-order version MiMa-
Part-1.

For smaller values of ε, we compare the four AP schemes (MiMa-Part-1, MiMa-
Part-2, MiMa-Grid and Moment G.) to the limit scheme. Results for ε= 0.1 are
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Fig. 6.8. Time history of the electric en-
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given in Figure 6.9. Parameters are the following: ∆t= 10−3 and Nx= 128 for par-
ticle methods, ∆t= 0.1∆x2≈3.5×10−3 and Nx=Nv = 64 for MiMa-Grid. We ob-
serve that MiMa-Part-2 is the best method since it almost coincides with the refer-
ence MiMa-Grid method. Finally, results for ε= 10−4 are given in Figure 6.10, where
we have ∆t= 10−2 and Nx= 128 for particle methods, ∆t= 0.1∆x2≈3.5×10−3 and
Nx=Nv = 64 for MiMa-Grid. The asymptotic regime is well recovered by all these AP
methods. As in [6], we remark that few particles are sufficient in the particle-micro-
macro schemes to describe in a good way the solution when ε is small. The cost is then
reduced at the limit.

In Figures 6.11 and 6.12, we plot the spatial dependency of the densities (at T = 1)
obtained by MiMa-Part-2 and Full PIC methods for different numbers of particles for
∆t= 0.1, Nx= 128 and ε= 1. The statistical error observed for MiMa-Part-2 is lower
than the one observed for Full PIC when Np= 105 is fixed. As expected, when Np
increases (Np= 106), the noise decreases for both methods. Even with Np= 104, MiMa-
Part-2 gives rise to satisfactory results, whereas the corresponding Full PIC density
would be not acceptable (not plotted on Figure 6.12).

6.3. Two stream instability. We propose now a study in which the perturba-
tion g is not zero initially and consider the Two-Stream Instability (TSI) test case in
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both regimes (kinetic and diffusive). The initial distribution function is given by

f (t= 0,x,v) =
1√
2π
v2exp

(
−v

2

2

)
(1+αcos(kx)), x∈

[
0,

2π

k

]
, v∈R, (6.3)
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with the wave number k= 0.5 and α= 0.05. The initial condition for
the micro-macro model (1.3) is ρ(t= 0,x) = 1+αcos(kx) and g (t= 0,x,v) =

1√
2π

(
v2−1

)
exp

(
−v

2

2

)
(1+αcos(kx)). For the limit drift-diffusion Equation (1.5), we

have as in the Landau damping case ρ(t= 0,x) = 1+αcos(kx).

We first verify the order in time of the MiMa-Part-2 scheme detailed in Section 5 and
plot in Figure 6.13 the error in L∞ norm of the density ρ at time T = 0.1 as a function of
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Fig. 6.20. Time history of the electric en-
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∆t (from 10−4 to 0.1) for the following parameters: Nx= 16, Np= 1000. For ε≥10−3,
the reference solution is computed with MiMa-Part-2 using the same parameters but
with ∆t= 10−7. Whereas for ε= 10−6, the reference is a numerical solution of the
drift-diffusion equation (computed on a space grid, with Nx= 16 and ∆t= 10−7).

As for the RTE and the Landau damping cases, the second-order in time is preserved
for big and small values of ε but not for intermediate regimes.

We are now interested in the time evolution of the electric energy E (t) =√∫ Lx

0
E (t,x)

2
dx in all regimes.

Results for ε= 10 are given in Figure 6.14. For the four particle methods, we
take Np= 106, ∆t= 0.1, and Nx= 128. By taking Np= 105, ∆t= 0.1, and Nx= 128 for
particle methods, we obtain results for ε= 1 presented in Figure 6.15. For ε= 0.5, we
consider Np= 105, ∆t= 0.01 and Nx= 256 for the four particle methods. Results are
given in Figure 6.16. For these three values of ε, the reference is given by MiMa-Grid
with Nx=Nv = 512 and ∆t= ∆x2≈6×10−4. The behaviour of the electric energy is
well described during time by micro-macro schemes (MiMa-Part and MiMa-Grid). As
previously, the Full PIC method, as well as moment guided method suffer from numerical
noise.

To illustrate the efficiency of the method, we plot f(T = 5,x,v) obtained by the
reference MiMa-Grid, by MiMa-Part-2 and by Full PIC for ε= 10 on Figure 6.17 and
for ε= 0.5 on Figure 6.18. For MiMa-Grid and MiMa-Part-2, f is reconstructed from
g, ρ and M , whereas the approximation of f is directly given by the Full PIC scheme.
The numerical parameters are the same as previously (see comments on Figures 6.14
and 6.16). On Figure 6.17, we observe that the result obtained by MiMa-Part-2 and
Full PIC are in good agreement with MiMa-Grid; however, some numerical noise can
be distinguished on f obtained by the Full PIC method. On Figure 6.18 (ε= 0.5), we
can see clearly that the level of the noise is higher for Full PIC, which prevents it from
giving good results. On the contrary, MiMa-Part-2 produces good results compared to
MiMa-Grid, since the noise only affects the micro part g, which is small in this regime.

For smaller values of ε, we compare the four AP schemes (MiMa-Part-1, MiMa-
Part-2, MiMa-Grid and Moment G.) to the limit scheme. Results for ε= 10−1 are
given in Figure 6.19. Parameters are the following: ∆t= 10−3 , Nx= 128 and Np=
104 for particle methods, ∆t= 0.1∆x2≈3.5×10−3 and Nx=Nv = 64 for MiMa-Grid.
As in the Landau damping case, MiMa-Part-2 gives the best result comparing to the
reference MiMa-Grid. Finally, results for ε= 10−4 are given in Figure 6.20, where we
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have ∆t= 10−2, Nx= 128 and Np= 100 for particle methods, ∆t= 0.1∆x2≈3.5×10−3

and Nx=Nv = 64 for MiMa-Grid. The asymptotic regime is well recovered by all these
AP methods.

7. Conclusion
In this paper, we have presented new micro-macro models for the kinetic radiative

transport equation (RTE), as well as for the Vlasov–Poisson–BGK system, in the dif-
fusion scaling with periodic boundary conditions. First-order in time and second-order
in time models are derived, and their Lagrangian discretizations are detailed. The ob-
tained schemes are proved to degenerate into implicit discretizations of the limit model
(the diffusion equation in the RTE case and the drift-diffusion equation in the Vlasov–
Poisson–BGK case) when ε→0. This asymptotic property is shown in the numerical
results too.

Moreover, thanks to the use of particle methods for the microscopic equation, the
numerical cost is reduced when ε diminishes. Finally, compared to a standard PIC
method (where f is represented by particles, and not g), the numerical noise is reduced.

In future works, we would like to extend the present approach to high-dimensional
Vlasov–Maxwell–BGK case on the one side. On the other side, we would like to combine
our approach to Monte Carlo ones to handle diffusion or drift-diffusion limits, in the
spirit of what has been proposed for the hydrodynamic limit of Vlasov–BGK in [8].
Indeed, this would enable us to adapt automatically the number of particles with respect
to ε which is of great importance in applications (recall that in the present work, Np has
to be fixed at the beginning). The main idea is to replace the equation of the weights
ωk by an equation on the velocities vk to take into account the source part (see [8] for
more details), as usual in Monte Carlo PIC methods.

Appendix A. Time discretization for Eulerian schemes. We present the
time discretization of (2.1) having in spirit a Eulerian discretization of the phase space.
Obviously, the numerical scheme proposed in [2, 9, 22] works well. Now, (3.5) also
provides a numerical scheme that we will exploit in this appendix.

Let us consider staggered grids in the phase-space domain and adopt the following
notations: xi= i∆x and xi+1/2 = i∆x+∆x/2, i∈N, define two grids in space and vj =
j∆v, j∈N, defines a grid in velocity, where ∆x (resp. ∆v) is the step in space (resp. in
velocity). Time is also discretized with a time step ∆t and we note tn=n∆t, n∈N. The
density ρ is discretized on the first space grid: ρni approximates ρ(tn,xi), whereas the
perturbation g is discretized on the second one: gni+1/2,j approximates g(tn,xi+1/2,vj).

Let an approximation D of the spatial derivative, the numerical scheme we propose
consists in computing gn+1

i+1/2,j with

gn+1
i+1/2,j =e−∆t/ε2gn+1

i+1/2,j−ε(1−e
−∆t/ε2)

[
vj
ρni+1−ρni

∆x

+(I−〈·〉)
(
v+
j (D−x g

n)i+1/2,j+v−j (D+
x g

n)i+1/2,j

)]
, (A.1)

where 〈h〉i+1/2,j = (
∑
j hi+1/2,j∆v), and then to compute ρn+1

i with

ρn+1
i =ρni −

∆t

ε

∑
j

(
vj
gn+1
i+1/2,j−g

n+1
i−1/2,j

∆x

)
∆v. (A.2)

Proposition A.1. The scheme given by (A.1)-(A.2) enjoys the AP property, i.e. it
satisfies the following properties
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• for fixed ε>0, the scheme is a first-order (in time) approximation of the original
model (1.1),

• for fixed ∆t>0, the scheme degenerates into an explicit first-order (in time)
scheme of (1.2).

Proof. We observe easily that when ε goes to zero, (A.1) gives

gn+1
i+1/2,j =−εvj

ρni+1−ρni
∆x

+O(ε2),

which, injected in the time discretization (A.2) for ρ, gives up to terms of order O(ε2)

ρn+1
i =ρni +∆t

∑
j

v2
j∆v

 ρni+1−2ρni +ρni−1

∆x2
.

Since
∑
j v

2
j∆v is an approximation of

∫ 1

−1
v2dv= 1/3, we obtain a consistent discretiza-

tion of the diffusion equation.

Proposition A.1 is of big interest for impliciting the diffusion term ∂xxρ. Indeed,
let us rewrite (A.1) as follows

gn+1
i+1/2,j =−ε(1−e−∆t/ε2)vj

ρni+1−ρni
∆x

+hi+1/2,j ,

with

hi+1/2,j =e−∆t/ε2gn+1
i+1/2,j−ε(1−e

−∆t/ε2)
[
(I−〈·〉)

(
v+
j (D−x g

n)i+1/2,j

+v−j (D+
x g

n)i+1/2,j

)]
.

Injecting this relation into the macro part, we get

ρn+1
i =ρni +∆t(1−e−∆t/ε2)

∑
j

(v2
j )∆v

ρni+1−2ρni +ρni−1

∆x2

−∆t

ε

∑
j

(
vj
hi+1/2,j−hi−1/2,j

∆x

)
∆v. (A.3)

Since hi+1/2,j =O(ε2) as ε goes to zero after two iterations, the asymptotic preserving
property is ensured. Moreover, the diffusion term can now be chosen as implicit, so that
the macro equation becomes

ρn+1
i =ρni +∆t(1−e−∆t/ε2)

∑
j

(v2
j )∆v

ρn+1
i+1 −2ρn+1

i +ρn+1
i−1

∆x2

−∆t

ε

∑
j

(
vj
hi+1/2,j−hi−1/2,j

∆x

)
∆v, (A.4)

and the scheme is now free from the usual diffusion condition on the time step.
The algorithm finally writes

Algorithm A.1.
• Initialize g0

i+1/2,j and ρ0
i .

At each time step:
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• Advance micro part with (A.1).

• Advance macro part with (A.4).

And we have the following result.

Proposition A.2. The scheme given by (A.1)-(A.4) enjoys the AP property, i.e. it
satisfies the following properties

• for fixed ε>0, the scheme is a first-order (in time) approximation of the original
model (1.1),

• for fixed ∆t>0, the scheme degenerates into an implicit first-order (in time)
scheme of (1.2).

We do not present here the extension to the Vlasov–Poisson–BGK case, but it is
straightforward.

Appendix B. Moment guided. In this section, we present the adaptation of
the moment guided particle method proposed in [11] to our context. For the sake of
simplicity, we present it in the RTE case but note that these computations can also be
extended to the Vlasov–Poisson–BGK case, without difficulty.

The kinetic equation on f has to be reformulated to avoid the singularity linked to
the transport term. To do that, we proceed as previously, but from (1.1). Indeed, we
rewrite Equation (1.1) as

∂t(e
t/ε2f) =

et/ε
2

ε

[
−v∂xf+

1

ε
ρ

]
,

and we integrate between tn and tn+1 to get

f(tn+1) =e−∆t/ε2f(tn)− e
−tn+1/ε2

ε

∫ tn+1

tn
et/ε

2

[
v∂xf−

1

ε
ρ

]
dt.

We make the following approximation

fn+1 =e−∆t/ε2fn−ε(1−e−∆t/ε2)

[
v∂xf

n− 1

ε
ρn
]
,

where fn≈f(tn) and ρn≈ρ(tn), ∀n.
Making appear the discrete time derivative enables to write

fn+1−fn

∆t
=
e−∆t/ε2−1

∆t
fn−ε1−e−∆t/ε2

∆t

[
v∂xf

n− 1

ε
ρn
]
,

which we approximate by

∂tf =
e−∆t/ε2−1

∆t
f−ε1−e−∆t/ε2

∆t

[
v∂xf−

1

ε
ρ

]
. (B.1)

Following the spirit of the moment guided method (see [11]), this equation is coupled
with the macro one, that is

∂tρ+
1

ε
∂x〈vf〉= 0,

∂tf+ε
1−e−∆t/ε2

∆t
v∂xf =

e−∆t/ε2−1

∆t
f+

1−e−∆t/ε2

∆t
ρ.
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To derive an AP scheme for this latter system satisfied by (ρ,f), we adapt the
strategy presented in [11] to our diffusion framework. To do so, we first remark that
〈vf〉= 〈vg〉 and using the expression of g obtained by (3.5), we get the following ap-
proximation for the macro flux (considered implicit in time)

1

ε
∂x〈vgn+1〉=−(1−e−∆t/ε2)∂xxρ

n+
1

ε
e−∆t/ε2∂x〈vgn〉.

Then, we get the following scheme for ρ

ρn+1 =ρn+∆t(1−e−∆t/ε2)∂xxρ
n−∆t

ε
e−∆t/ε2∂x〈vfn〉. (B.2)

A Lagrangian method can be used to approximate the equation on f . As for the
micro-macro scheme, we use a splitting procedure

• solve ∂tf+ε
1−e−∆t/ε2

∆t
v∂xf = 0

• solve ∂tf =−1−e−∆t/ε2∆t

f
+

1−e−∆t/ε2

∆t
ρ.

To do that, the transport part is solved with the (non stiff) characteristics

ẋk(t) =ε
1−e−∆t/ε2

∆t
vk(t). (B.3)

The source part is solved using the equation satisfied by the weights

ω̇k(t) =−1−e−∆t/ε2

∆t
ωk(t)+

1−e−∆t/ε2

∆t
ρ(t,xk(t)). (B.4)

The last step consists in matching the moment of fn+1 obtained by the particle
method with ρn+1 obtained with (B.2). This can be done using the techniques proposed
in [6]. Indeed, considering the function g=f−ρ, its weight can be written as

γk =ωk−βk, with βk =ρ(xk)
LxLv
Np

.

Then, we apply the discrete version of (I−〈·〉) to the weights γk as in [6]

ωnewk =βk+(I−〈·〉)(ωk−βk).
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