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THE DIRECT AND INVERSE ELASTIC SCATTERING PROBLEMS
FOR TWO SCATTERERS IN CONTACT*

JUN GUOT, HAO WU?#, AND LEI XIAO$

Abstract. This paper is concerned with the elastic scattering problem of a combined scatterer,
which consists of a penetrable obstacle and a hard crack touching with each other. By using the
boundary integral equation method, the direct scattering problem is formulated as a boundary integral
system, then we obtain the existence and uniqueness of a weak solution according to Fredholm theory.
The inverse scattering problem we are dealing with is the shape reconstruction of the combined scatterer
from the knowledge of far field patterns due to the incident plane compressional and shear waves. Based
on an analysis of a particular transmission eigenvalue problem, the linear sampling method is established
to reconstruct the combined scatterer. The numerical experiments show the feasibility and validity of
the proposed method.

Keywords. elastic scattering; combined scatterer; linear sampling method.

AMS subject classifications. 35R30; 35Q30.

1. Introduction

The scattering problems of elastic wave by obstacles have attracted great attention
and a lot of achievements have been made for different kinds of obstacle scattering.
Usually, it can be classified into rigid scatterers, cavities, penetrable bodies and cracks.
However, the scatterers may be in contact with each other in practical situation. In this
paper, we consider the elastic scattering of a combined scatterer, which is composed of
a penetrable obstacle and a hard crack in contact. Thus the elastic wave transmits to
the interior of the obstacle from the untouched part of the boundary.

Specifically, assume that the penetrable obstacle occupy a bounded domain D; C R2,
with smooth boundary dD;, and let the open smooth curve ¥ CR? denote the hard
crack. The unbounded domain R?\(D;UY) is denoted by D.. We assume that an
obstacle is located on the crack, the contacted portion of the boundary 0D; is denoted
by I's, the other is denoted by I';. Furthermore, we assume that the crack can be
extended to a closed smooth curve 912 including a bounded domain €, such that D; C §2.
Both domains of D; and D, are occupied by isotropic and homogeneous elastic medium
with constant density p,, Lamé constants u, and A, satisfying pq, > 0,244 + Ao >0, for
a=i,e. The curves I'y and ¥ do not form a cusp, so that D, Q\E and D, are all
Lipschitz domains. Then the scattering of time harmonic elastic plane wave u'™ by the
combined scatterer excites the scattered wave u in D, and transmitted wave v in D;,

which are governed by the Navier equation
peAu+ (pte + ) V(V-u) +pew?u=0 in D, (11)
AV + (1 + M) V(V V) + piw?v=0 in D;, '
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Fia. 1.1. The penetrable isotropic and homogeneous elastic obstacle D;, which is situated on a
hard crack X, is illuminated by the elastic plane wave u'™. The transmitted wave in D; is denoted by
v and the scattered wave in D, is denoted by u

where w >0 is the circular frequency. Hereafter, we will denote by A} the Lamé operator
paA~+ (Lo +Aa)V(V:) for brevity. The total displacement field u® is the superposition
of the incident filed u™ and the scattered field u, i.e., u!=u"+u. The scattering
configuration is shown in Figure 1.1.

A description of some notations is given as follows. For x € R?, let X be the unit
vector X :=x/|x| and x* be the vector obtained by rotating x anticlockwise by /2. As
usual, we use the notations a-b to represent the scalar product and a x b to present the
vector product for a,b €R2. For a vector function u=[u',u?]T and a matrix function

W =[w!,w?]", the symbols Vu and V-W are denoted respectively by
Vu=[Vu!,Vi?", V-W=[V-w!,V.-w?".

Let n be the unit outward normal vector of the boundaries 0D; and 02. The
following transmission boundary conditions are satisfied on the penetrable part of the
boundary 0D;

{ utum=v on I'y, (1.2)

T.u+T.u"=T,v onTI;.
Here, T, is the surface stress operator on I'y which is given by

Tow=(2usn-V+A,nV- —uaanL-)w

Ot 2pa) 20 13,002, (Ou | Ows
_ 6:::1 6x2 5502 aTl n
- (8w1 8102) A 6w1 i ()\ 19 )an :
Hia Oxy 011 * 94 o 2o 0xo

We impose the Dirichlet boundary condition on the touching part I'; and on the crack
Y., respectively for v and u.

v=0 ons. (1.3)
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ut+u”=0 onX. (1.4)

Assume that the incident wave is given by either a longitudinal plane wave with the
form
u'" = u;" =detrexd des

where S is the unit circle in R? and d is the incident direction, or a transversal plane
wave with the form

uin:u'in:qeikrs,exd, q,dGS
where q is the polarization direction such that q_Ld. The wave numbers of compressional
and shear waves k, . and k; ., respectively are given by

Pe Pe
]{j = _ d ,Z{j = —_
pe =W S+ and k,.=w e

The wave numbers k, ; and ks ; can be defined by a similar way.
By the Helmholtz decomposition theorem [1], the scattered field u can be decom-
posed as

1

1
—@V(v-uy U, =——V*+(V+tou)

u=u,tus, u,= 2
s,e

where u, denotes the longitudinal wave and u, is the transversal wave. It is well known
that u,(a=p,s) satisfies the Helmholtz equation
Aug+k] ,u, =0.

In addition, each displacement field u has to satisfy the Kupradze radiation condi-
tion [2]

9u,

lim /7( —ikpeu,)=0, lim \/F(aus

r—>00 or r—00 or

7iks,eus):07 T:|X| (15)

uniformly in all direction X €S. In other words, both of the compressional and shear
wave fields satisfy the Sommerfeld radiation condition. Throughout this paper, the
solution of Navier Equation (1.1) satisfying the Kupradze radiation condition is called
the radiating solution. It is hold that the radiating solution to the Navier equation has
the asymptotic expansions of the forms [3,4]

tkp e |X| tks,e|x|
u(x)="2 PR+ R (R)%E+O(|x Y2, x| oo (1.6)

Vi Vi

and

u""(i{)fcl +O(|x|_1), |x| = o0,

(1.7)
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where u;° (%) is the compressional far field pattern of u and ug®(X) is the shear far field

pattern of u. The far field pattern of the scattered field u is defined by

The direct scattering problem (1.1)—(1.5) is regarded as DP, and the classical
boundary integral equation method will be used to solve it since no related result can
be found. An equivalent boundary integral system of the first kind containing strongly
singular and hypersingular kernels is deduced, and based on the strong ellipticity the-
orem [10], the existence and uniqueness of the solution is obtained. We mention that
there are some results by applying the boundary integral equation method to solve elas-
tic crack scattering problems (see for examples [5-7]) and the elastic obstacle scattering
problems (see for examples [3,8,9,11]).

For the inverse scattering problem, we are interested in the determination of the
crack ¥ and obstacle D;. This problem will be called IP. The inversion data is the
knowledge of the far field pattern u®(x,d;t) of the scattering field u(x,d;t) for the
following: all observation direction x €S, incident direction d €S and the polarization
t=d or q associated with the incident plane wave de’*».<x'd or qet*s«*'d. We aim at
extending the linear sampling method to the inverse elastic scattering problems IP.

The linear sampling method was first introduced by Colton and Kirsch [12] to solve
inverse acoustic scattering problem in 1996. Since then it has been well studied and
proved to be an excellent method for inverse shape problems in acoustic, electromag-
netic, elastic scattering, electrical impedance tomography, as well as been developed
in time dependent partial differential equation. This approach has attracted so much
attention because no a priori information concerning geometry and boundary conditions
of the scattering obstacle is required and the numerical implementation is really simple.
See [13,14] for the mathematical foundations of this method, refer to the book [15]
for a good understanding and survey, and recommend the papers [16,17] for a new
development.

Historically, Arens firstly applied the linear sampling method for inverse elastic scat-
tering problem [18] to two-dimensional elastic scattering for the rigid body problem. The
rigid bodies or cavities in three dimensions are given in [19]. The elastic transmission
scattering problems for isotropic and anisotropic elastic media can be found in [20-22].
Finally, we mention that the near field linear sampling method is adopted to deal with
the reconstruction of elastic scatterers in semi-infinite solid [23] and the inverse fluid—
solid problem [24].

All of the aforementioned works treat with single obstacle or multiple scatterers
with the same properties. However, the mixed type scatterers may appear in the ac-
tual applied Science, and this kind of inverse scattering problem has received a number
of research results. In 2004, Grinberg and Kirsch [25] considered a multiple scatter-
ing problem and established the factorization method in the case when sound-soft and
sound-hard scatterers are a priori geometrically separated. In 2013, Kirsch and Liu [30]
studied the factorization method for recovering the location and shape of the mixed type
scatterer—a bounded impenetrable obstacle and a penetrable inhomogeneous medium
with compact support and later developed by the author Liu [31] for the union of
impenetrable and penetrable scatterers with different physical properties. For more rel-
evant results, please refer to [27-29] and [32], and to monograph [26] for a comprehensive
study of the multiple scattering in general.

Nevertheless, the direct and inverse scattering problems for mixed type scatterers
in contact with each other are rarely reported. The purpose of this paper is to make
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some effort on such issue and seek the solutions to direct elastic scattering problem
DP and inverse elastic scattering problem IP. A similar acoustic scattering problem
has been considered in [33], where the undetermined obstacle touches a known perfect
thin conductor and the linear sampling method is proposed to reconstruct the shape
and location of the obstacle from near field measurements. The under consideration is
different in two aspects: on one hand, we want to completely show the well posedness of
direct scattering problem, on the other, we want to simultaneously recover the obstacle
and the crack from far field data.

The outline of this paper is organized as follows. In Section 2, using the boundary
integral equation approach, an equivalent boundary integral system is deduced and the
Fredholm property of the related operator is proved by the Fredholm theorem. Therefore
the solvability of the problem DP is established. Section 3 gives a rigorous proof of the
linear sampling method for the reconstruction of the combined scatterer. As usual in
transmission problems, a special interior transmission problem needs to be discussed in
order to guarantee the injectivity of the far field operator. The numerical experiments
will be presented in Section 4 to demonstrate the correctness and effectiveness of the
proposed method.

2. The direct scattering problem

This section is concern with the direct scattering problem DP. Recall that the open
arc X belongs to a closed curve 9 surrounding a bounded domain 2. Let H'(Q) and
H! (R*\Q) be the usual Sobolev spaces with H/2(9Q) being the trace space. We
introduce the following trace spaces on X.

(D) = {uls: we [HY2(09)7),
[H'2(2))* = {ue [H"*(0Q)]*: suppul T},

[H 2 (D) = ([Hl/Z‘(z)F)Ia the dual space of [H'/*(2))%,
[H2(2)] = ([Hl/%zﬂ?)/a the dual space of [H'/*(3)]%.

Let us consider a general problem: Assume f € [H'/2(I')]?, g€ [H~'/3(I'1)]? and
h e [H'Y/?(2))? seck a radiating solution u € [H}. ,(D,.)]? and v € [H'(D;)]? such that

loc
Au+p.w?u =0 in D,
Aiv+pw*v =0 in D;,

u-v="~Ff onl}y,

Teu—T;v=g onljy, (2.1)
v =0 only,
u =h on?2.

LEMMA 2.1. The problem (2.1) has at most one solution.

Proof. Assume that (u,v) be a solution pair to the homogeneous boundary value
problem (2.1). For two vector fields p,q€[H'(D)]?, where D CR? is a bounded and
smooth domain, let F,(p,q) be given as

9p1 01 %%) (%% %%)
5‘:51 89c1 8%2 8x2 a 8%2 6932 89c1 axl
o 942 %%) (%% %%)

8131 8x2 81’2 8$1 * 81‘2 6$1 8x1 8582 '

Ea(p.a) = (2u0+Xa) (

+/\a<
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Then for a circle B, center at the origin, with radius r large enough such that D;UY is
included in, Betti’s first formula [2] in the domain D.N B, for u and u yields that by
noting the boundary condition on ¥ in (2.1):

/ Ee(u,ﬁ)dx—/ per\u\2dx:/ Teu~ﬁds—/ T.u-uds.
B,ND. B,ND, 0B Iy

r

Analogously, using the boundary condition on I's, we obtain the following for v in the

domain D;.
/EZ'(V,V)dX—/ piw2|v|2dx:/ T;v-vds.
D; D; ry

The sum of the above two identities and the transmission boundary conditions on
I'y show that

/ {Ee(u,ﬁ)—pew2|u|2}dx—|—/ {Ei(v,V)—piw2|v\2}dx:/ T.u-uds.
B.ND. D; 9B,
(2.2)

Using the orthogonality of the compressional and the shear far field pattern, we have
that from the asymptotic representations (1.6) and (1.7)

) 2
w ww
Tpxu-T= o [0 (%)2
€,X k 7,| p( )l +k§e’r

€ Sy

ug (%) +0(r| /%)

Since ImE,(u,u)=0 and ImE;(v,v)=0, taking the imaginary part of equation (2.2)
we arrive at up°(%) =0 and ug®(x)=0. Thus we obtain that u, =0 and u;,=0 in D, by
Rellich’s lemma [34]. The transmission boundary conditions and Holmgren’s uniqueness
theorem indicate that v=0 in D;. The proof is thus completed. ]

We now introduce the fundamental solution, also called Green’s tensor of the Navier
equation in free space, which is given by

1 1
Paxy) = 1 H0 (bsalx =YD + 575V VaHGY (healx = y1) = Hy Uipalx =)

for x,y € R? and x#y, where H(()l)(~) is the Hankel function of the first kind of order
zZero.

In what follows, to facilitate the description of the notations, we denote by I's
the open curve 3. The four boundary integral operators in terms of the fundamental
solution will be used

() (x) = / T (%, y)e(y)ds(y). xery,

J

(K5i)0) = | [ToaTulxy)] 0)ds(y), €T

(Kire)0= [ ToTatxye@)dsy).  xel,

J

(L28) (%) =T / [Ty Palxy)Tg(y)ds(y), €T,

J

for j,1=1,2,3. They possess the mapping properties (see Chapter 6 in [10])
Hip :[H V(1)) = [HY2(T)]?, Kij :[H'Y2(T)))? = [H'(T)P,
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K [H V()2 = [HY2(1))2, o [HY AT = [H 2]

REMARK 2.1. Note that for density in Sobolev spaces with negative exponent, the
boundary integral operators are understood in general sense. For the sake of consistency,
we still call them boundary integral operators in this paper.

Next we will use the layer potentials to reformulate the problem (2.1) and seek the
solution pair (u,v) in the form of combined single-and double-layer potentials

u() = [ {Tuxy)al) = s ey Tbly) Jds(y) + | Telxy)ely)dsy). xeD..
' ’ (2.3)

V(0= [ {1 T ey by ~Tuxy)al) Jasv)+ | Tutxy)ey)isiy). xeD.
' ’ (2.4)
Here ac [HY/2(T'1)]2, be [HY/2(T'1)]2, ce[H Y/2(T'5)]? and ee [H1/2(T'5)]? are the
undetermined densities. Note that the single-and double-layer potentials with such
functions ensure that (u,v) belongs to [H} (D.)]* x [H'(D;)].
By the well known jump relations of single-and double-layer potentials [10], we
obtain a boundary integral system from the boundary conditions in Equation (2.1)

Hpy + 1y ~Kf -~ Kiy ~Hy 0] [a] [f

K\i+Kyy —LY - Ly —K)y K| |b|_ |8 (2.5)
—Hi, Ki, Hjy 0 ¢ 0
Hy, —K{, 0 Hsg e h

Denote by M the boundary integral operator appearing on the left side of above equa-
tion, and define the Sobolev spaces

X o= [H VAT x [HY2 ()P x [HV2(02)]? < [HV2(Ts)),

X* = [HY2(T))2 < [H V200 x [HY2(Ta)* x [H2(Ts)],

We can to observe that M : X — X* is bounded.
Next we show the solvability of the integral system (2.5).

LEMMA 2.2.  The operator M : X — X* is a Fredholm operator with index zero.

Proof. Extend a, b and c to the whole boundary dD; by zero and denote
them by ac [H~'/2(0D;)]?, be [H/2(0D;)]? and c€ [H~'/2(0D;))?, respectively. Let
e [H~1/2(90))? stand for the zero extension of e to the entire boundary 9. Take

@,@,K}? and I’/JEZ as the boundary integral operators similar to Hﬁ,Kﬁ,K;lo‘ and
L% for 7,0=1,2,3, respectively. The integrals are defined on 0D; for j=1,2, on the
boundary 02 for the case j =3, and take values on the boundary dD; for [=1,2, on the
boundary 92 for the case [=3. Then the operator M becomes a corresponding one M.

The assumption on the Lamé constants ensures that the Navier equation is
strongly elliptic. Therefore there exists positive and bounded below operators H}*:

[H=Y/2(0D;))?> — [HY?(8D;))? and —L{ : [H'/2(0D;))? — [H~Y/?(0D;)]? for I=1,2, i.e.,

Re(H{'p.p) 2 c|plfy-1/20p, for pe[H 20D
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and
Re(—=Li'p,p) > cllplfy1/2op,yp  for pe[HY(0D;)]?,

such that HP:=Hg—H®:[HY/2(0D;)]>— [HY2(0D;))2 and L&:=—L3+L%:
[HY2(0D;)]? — [H~'/?(0D;)]? are compact operators (see Chapter 7 in [10]). Here
(-,-) denotes the duality pairing between [H'/2(0D;)]? and [H~/?(0D;)]>. The same
result holds for the operator H\%, the corresponding positive and bounded below
operator is denoted by H$ :[H~1/2(0Q)]? — [H'?(99)]?> and we adopt the notation
}I\g = EI\% —Hg.

Let K[ and Kl," defined as /I_(E and Kl’l“ for [=1,2, respectively, with Hankel
function replaced by —5-In|z—y| in the fundamental solution I'y(-,-). Then R\ZE::
fK\ﬁ—K [ and K l"" =K /l“ -K ll @ are compact operators since their integral kernels are
continuous [34].

Then the operator M can be rewritten in the form

He4HI —K—Ki 0 0 Hi+H{ —K{—K{ —Hj, H,
D L s T R O F s S v
e e
Hy, -K 0 I
::]\%Jrlgc.

Let
Y :=[H~Y2(0D))? x [H2(8D;)]? x [HY/2(8D;)]? x [H/?(60)]?,

Y* =€ [H'?(0D;)]> x [H™2(0D;)]> x [H'?(0D;))* x [H'/*(00)]*.

We see that M :Y — Y* is a bounded operator. Moreover, we have for x := [E,B,E,'é}—r €
Y

(MoX,X) = (H{&,&) + (H{a,&) — (K{b,&) - (K{b,&) + (K,a,b) + (K,'a,b)
—(L$b,b) — (Lib,b) + (H1&,€) + (H5&,8). (2.6)

The real kernels of K{* and K 10‘ indicate that they are adjoint operators, which implies
that

Re [— (Kth,a) — (Kib,a) + (K&, b) + <K;i5,5>} ~0.
Thus taking the real part of (2.6) we obtain that
Re (M())NO)N() > C(||5||[2H—1/2(3Di)]2 + Hb”[QHl/z(aDi)]z + ||E||[2H—1/2(3Di)]2 + HE||[2H—1/2(,9Q)]2)7
which shows that ]\70 is coercive. Noting that X = [5,E,E,€]T is the extension by zero of
x:=[a,b,c,e]" € X, we have the following for the restricted operator Mo, : X — X* of

My

Re (MOTX?X> =Re (Z\A[o%,%) ,
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which leads to the coercive property of ]\7,03

On the other hand, since ff\lg, Eﬁ K l"’ and Ef‘ are compact operators as stated
above, the corresponding restricted operators still maintain compactness. In addition,
the other restricted operators in M, are compact due to_the continuous kernels. We
summarize that the restricted operator M., : X — X* of M, is compact.

Therefore the operator M : X — X* can be decomposed as the sum of a coercive
part and a compact part M = Mw +Mcr Thus we complete the proof of this lemma. O

LEMMA 2.3.  The operator M : X — X* is injective.

Proof. Let x:=[a,b,c,e]" satisfy My =0, and we next prove y =0.

Recall the potentials u,v given by (2.3) and (2.4), respectively. The condition
Mx =0 means that (u,v) solves problem (2.1) with homogeneous boundary value, and
Lemma 2.1 (the uniqueness result) shows that u=0 in D, and v=0 in D;. Therefore,
the jump relation for T.u crossing the boundary I':=X\I's implies

elr=Teu|p- —T.u|p+ =0.

So the density e belongs to [H1/2(I';)]2 and the potential u is essentially defined on
the boundary I'y. In this case, the fourth equation in (2.5) indicates

Now, redefine the potentials u,v still the same forms as before and let u defined
in the domain D; and v defined in the domain D.. Then u and v satisfy the Navier
equation in corresponding region.

Using the jump relations of the single-and-double layer potentials, we reduce that
on the boundary I'y

(v—u)|r, =—(Hi; + Hiy)a+ (Ki; + Kfp )b+ Hy e — Hi e
and
(Tv = Tow)|r, = —(K} + K §)a+ (L, + L§)b+ Ky e — Kfe.
A similar calculation yields that on the boundary I's
Vs = —Hi,a+ Ki,b+ Hj,c,
and
u|- = Hisa— Kb+ He.
We arrive at the following problem from the fact Mx =0 and relation (2.7)
A*u+p.w?u =0 in Dy, B
Aiv+pw?v =0 inR?*\D;,
v—u=0 only,
T;v—T.u=0 onl}y,

v =0 onF;r,
u =0 only,

(2.8)

where v satisfies the Kupradze radiation condition. By a very similar derivation as
Lemma 2.1, it is easy to verify that problem (2.8) possess a unique trivial solution.
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We conclude from foregoing analysis that the following potentials u and v both
equal to zero.

/F {F x,y)a(y) = [Teyle(x,y)] }ds / y)e(y)ds(y), xeR*\D;,

vi) = [ {I1aTien] b)) ~Tixy)at ps)+ [ Tiley)ey)isy). xeR\oD.

)
Hence, we obtain

a:TiV|F1+—TiV|F1— :0, b:V|FIr_V|Ff:O7

c=Tv|p- =Tivlpy =0, e=Teu|.- —Teul+ =0,

which ends the proof of this lemma. 0

From Lemma 2.2 and Lemma 2.3 we derive that M : X — X* is invertible owing to
the Fredholm theorem. Thus the solution of problem (2.1) has the specific representation
(2.3) and (2.4) in term of the densities a, b, ¢ and e determined by M ~1[f g ,0,h]"
This assertion together with Lemma 2.1 imply the well posedness of the direct scattering
problem (2.1), which is stated as follows.

THEOREM 2.1.  Assume that £ [H'Y/?(I')))?, g€[H 71/2(F1)] and he [HY/?(%)]?,
then there exists a unique solution (u,v) € [Hlloc(D )2 x [HY(D;))? to problem (2.1) sat-

1sfying
[l (Bapoe VI (D)2 < C<||fH[H1/2(F1)]2 +llgllig-1/2r 2 + Hh”[Hl/?(Z)]?)a

where B,. is a disk of radius v containing D; UY and c is a constant depending on r but
not on f.g and h.

3. The linear sampling method for IP

This part is devoted to the inverse problem IP by using the linear sampling method.
Some of the arguments depend heavily on the conclusions of the paper [33].

We begin with the elastic Herglotz wavefunction with density 7= (7,,7s) € [L*(S)]?
defined by

) [k ) 1k )
VT(X)Zeim/AL/{ ﬂezkp,cd<xd7_p(d)+ ﬁezks,ed-de_Ts(d)}ds(d)7 xeR2.
s w w

(3.1)
The Hilbert space [L?(S)]? in this paper is equipped with the inner product

(&)= [ahds+ = [afias, hel2E)R
p,e s,e
Denote by W the subset of elastic Herglotz wavefunctions satisfying
W= {VT Ve, :0}.

REMARK 3.1. In this part, the elastic Herglotz wavefunction v, is assumed to belongs
to the subset W, which may be due to the unusual scattering problem. This special
incident waves ensure that the linear sampling can be applied to the inverse problem
IP as we will see later.
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We set a hypothetical condition throughout this paper. Let’s consider the following
problem for f € [H/?(T;)]?

AT+ pow?vl =0 in Dy,
vl =f onTy, (3.2)
vl =0 onTs.

Assumption 1. For a=i,e, the circular frequency w is not a Dirichlet eigenvalue of
problem (3.2), i.e., problem (3.2) with boundary data f =0 has only trivial solution for
such w.

Next we introduce two function spaces related closely to elastic Herglotz wavefunc-
tions. The space U(D;) is given by

U(D;):= {ue [HY(D;))?: Afu+pw?*u=0in D;, u=0 on Fg}.

It is well known that the vector elastic Herglotz wavefunctions are dense in the space
of solutions to the Navier equation in D; with respect to the [H*(D;)]?>-norm [36]. Of
course, the subset W is dense in the subspace U(D;) of [H(D;)]?, and we denote it
by H(D;). Hence it holds that H(D;)=U(D;). We consequently define a subspace of
[H'/2(Ly))? > [H~V/2(T'1)]? by

H(Fl)::{(u|p1,Teu|Fl):u€H(Di)}. (3.3)

Based on the analysis in Theorem 3.1 of the paper [37], one can obtain that every
function in [H'/2(T'3)]? can be approximated by the trace of an elastic Herglotz wave-
function with respect to the [H'/?(T'3)]? norm. Now define the subspace of [H/?(I'3)]?

H(T's) = {u:ue [HY2(T3)]2, ulr, :0}, (3.4)

then the subset W is dense in H(T'3) with respect to [H'/?(T'3)]>-norm, i.e.,

H(T3) := {vT|F3 v, eH(Dl-)}. (3.5)

By an analogous argument as Lemma 4.3 in [33], we have that H(I';) is a closed
subset of [H'/?(T'1)]? x [H~/2(I'1)]? if Assumption 1 is satisfied.
Furthermore, it holds

LEMMA 3.1. H(T,) xH(T3) is a closed subset of [HY?(T'1)]?x [H~/2(I'1))? x
[HY/?(T3)]? if Assumption 1 is satisfied and thus is a Banach space.

Denote by H:[L*(S)]>— [HY?(T1))? x [H~Y?(T1)]? x [HY/?(['3)]> the Herglotz
wave operator which takes values of the Herglotz wavefunction v, on the boundaries,
that is

H7r=(Vr|r,, Teve|r,, Vrlrs ), for v € H(D;). (3.6)

The definitions of the spaces H(I';) and H(I's) imply that
LEMMA 3.2.  The operator H:[L?(S)]> = H(T';) x H(I'3) has dense range.
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According to the superposition principle [34], the elastic far field operator F:
[L2(S)]? —[L%(S)]? can be defined by

(FT)(x):e*”/‘*/{ %u“(x,d;dm(d)ﬂ/%uW(&,d;dL)Ts(d)}ds(d), xes,
; (3.7
where u® is the far field pattern of the scattered field u to the problem (1.1)—(1.5). It
is exactly the far field pattern of the resulted scattered field inspired by the incidence
of Herglotz wavefunction.
We now consider the problem (2.1) with boundary data (f,g,h)€[H'Y/2(I';)]? x
[H~Y/2(T,)]? x H(I'3). The well posedness of this problem defines an operator G map-
ping the boundary data (f,g,h) to the far field pattern u> € [L?(S)]?, i.e.,

G(f,g,h)(x)=u*(x), x€S. (3.8)
Then it follows that
Fr=—G(Hr). (3.9)

Next, we focus our attention on the study of the operators F' and G. To this end,
we introduce the so-called interior transmission problem, which is closely related to the
injectivity of the far field operator F'. The interior transmission problem corresponding
to the scattering problem (2.1) reads: for given f € [H'/?(I'})]?, g€ [H~Y/?(T1)]? , find
w,v e [HY(D;)]? such that

AW+ pow’w =0 in D;,
Afv+pw?v =0 in D,
w—v=Ff onljy,

Tow—T,v=g only, (310)
v =0 only,
w =0 onls.

One can treat this problem following the basic idea of paper [35]. A similar problem
has been investigated in [33] for the case of acoustic scattering. The values of w for
which a non-trivial solution to the homogeneous interior transmission problem exists
are called transmission eigenvalues. Here, we assume, but without any proof, that the
set of transmission eigenvalues w is discrete.

LEMMA 3.3. Assume that w is not the transmission eigenvalue, then the far field
operator F' is injective with dense range.

Proof.  As is presented in [20], we can examine that the adjoint F*:[L?(S)]? —
[L2(S)]? of the far field operator F is F*7 = RF R7,7 € [L*(S)]?, where (Rf)(d):=f(—d)
is the reflection operator. In view of this relation, the injectivity of F' implies the
denseness of its range. Hence we just need to show that F' is injective.

Now consider the solution (u,v) of the scattering problem (1.1)—(1.5) for the in-
cidence of Herglotz wavefunction v,. Assume that F'7=0 with 70, that is, the far
field pattern of scattered field u is zero. Then Rellich’s lemma gives that u=0 in
the domain D, and thus v,|s =0 from the boundary condition, which indicates that
v.|r, =0. Consequently, the non-zero function pair (v,v,) satisfies the homogeneous
interior transmission problem (3.10), which is contrary to the assumption. The proof is
then completed. ]



J.GUO, H.WU, AND L.XIAO 869

We next turn to explore the properties of the operator GG and the discussion follows
the basic ideas in [33]. It is different from the case of impenetrable scatterers, the
operator GG is no longer injective. In fact, the well posedness of the problem (3.2)
defines the Dirichlet-to-Neumann operator A:[H'/2(TI"})]? — [H~Y/2(I'})]? by

A =T, fr,

. Following the proof procedure in Theorem 4.1 of paper [33], one can prove the result
below with necessary modifications.

LEMMA 3.4.  The kernel space of G is given by N (G)= {(f,Af,O):fe [Hl/Q(Fl)P}

under Assumption 1.

However, by restricting the domain of definition, we will show that the operator G
becomes injective. Let Gy be the restriction of G to the space H(I'y) x H(T'3).

LEMMA 3.5.  The operator Gy is compact, injective and has dense range in [L*(S)]? if
w 1s not a transmission eigenvalue.

Proof. Since Gy can be decomposed into the product of a bounded operator,
which maps the boundary data (f,g,h) e H(I';) x H(I'3) to the scattering solution (u,v)
of problem (2.1), and a compact operator, which maps the radiating solution u to its
far field pattern, we observe that G is compact.

To prove the injectivity of Gy, let Go(f,g,h) =0, in other words, the far field pattern
of the radiating solution u is zero. Then u vanishes in D, by the Rellich’s lemma, and
the trace theorem shows that u|r, =0,T.u|r, =0 and h=u|p, =0. By the definition of
the space H(I'y), there exists we H(D;) such that f =w|p,,g=T.w|r,. We conclude
that (w,v) satisfies the homogeneous interior transmission problem (3.10). It follows
w=0,v=0 from the assumption that w is not a transmission eigenvalue, whence f =
0,g2=0. So the injectivity of Gy is proved.

Notice that the range of the far field operator F' is included in the range of G, from
Lemma 3.3 we know that G possesses dense range if w is not a transmission eigenvalue.
In order to prove the denseness of Gy, it is enough to demonstrate R(G) C R(Gp). Let
u® € R(G) with u® being the far field pattern of the radiating part u of the solution
pair (u,v). Consider the unique solution (w,v) of interior transmission problem with
boundary data (u|r,,Teu|r,), it follows immediately that (u,v) solves problem (2.1)
with boundary data (w|r,,Tew|r, ,ulr,) €H(I'1) xH(I'3). As a result, u>® eR(Gy),
thus complete the proof. ]

The reconstruction algorithm of the linear sampling method is based on solving the
far field equation

(F7)(%)=®>(x) for T€[L*(S))?, x€S, (3.11)

where ®*° is the far field pattern of the following potential

wm:A;u&wmmMWH[jn@uxwfﬂw@w>

1

+/1uxwwwwwxxem (3.12)
Lo

with (,,1) being any functions in the space [H~Y/2(I)|2 x [HY/2(I)]? x [H~Y/2(L)]2
such that ®|p, =0. Here L1, Ly are any two smooth non intersecting arcs without cusps
such that LN Ly =0.
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In Equation (3.11), the measured data is stored in the far field operator F', and
®° is selected as the test function for any two open curves. However, why can this
information be used to find out the scatterers. The following result gives the answer by
noting the relation F'=—GyH between F and Gy.

LEMMA 3.6. Assume that w is not a transmission eigenvalue, then the far field pattern
O (x) of the potential ®(x) given by (3.12) is in the range of Gy if and only if L1 C D;
and Lo CT'3.

Proof. 1f Ly C D; and Ly C T3, consider the solution (w,v) of the interior transmis-
sion problem (3.10) with boundary data f=®|r,,g=T.®|r,. We observe that (v,®)
solves problem (2.1) with boundary data (w|r,,Tew|r,,®|r,) € H(I'1) x H(T3). It fol-
lows that ®>°(x) € R(Gy) from the definition of the operator Gy.

Now we assume that at least one of the situation: L; CD; and Lo CI'3, is not
satisfied. Without loss of generality, let Ly ¢ D; and Ly CT's, and on the contrary,
assume that ®°°(%X) belongs to R(Go). Then there exists we H(D;) and heH(T's)
such that

Go(W‘Fl,T€W|F1,h) :(I)OO.

Let (u,v) be the solution to problem (2.1) with boundary data (w|p,,Tew|r,,h), then
we have u® =& by the injectivity of Gg. Rellich’s lemma and unique continuation
principle yield that u equals to ® in the domain D.\L;, which contradicts to the fact
that u belongs to H. .(D.) but ® does not, because of the singularity of ® on the curve
Ly.

For the case of L1 CD; and Lo ¢ T's or Ly ¢ D; and Lo ¢ I's, we can also derive a
contradiction by a similar discussion as above. The proof is completed. 0

The foregoing analysis leads to the mathematical foundation of the linear sampling
method, which shows the relation between the behavior of solution to (3.11) and the test
curves Ly and Ls. When L; C D; and Ly CI's the norm of the solution 7 is bounded,
otherwise, its becomes large and this phenomenon exactly reports the location of the
scatterers. So we can say that the behavior of the approximate solution to the far field
Equation (3.11) plays as an indicator function to characterize the mixed scatterer.

THEOREM 3.1. Assume that w is not a transmission eigenvalue and Assumption 1
is satisfied. Then for the far field Equation (3.11) the following holds:

(1) If L1 C D; and Ly CT'3, for every >0 there exists a solution 17 1 € [L2(S))? sat-
1sfying

1FTL, 0, + R, Lo lz2)2 <e

(2) If Ly ¢ D; or Ly ¢ T's, then for every e >0 and § >0, there exists a function Tz’f’LZ €
[L2(S)]? such that

5
IFTE) 1, + P Ll z2(s)2 <€+0,

and

lim |75, |liz2(sy2 = 00.
5o L1l [L2(S)]

Proof.
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(1) For the case Ly CD; and Lo CTI's, there exists a solution (w,v) of the interior
transmission problem (3.10) with boundary data f =®|p,,g=T.®|r,. We observe that
(v,®) solves problem (2.1) with boundary data (w|r,,T.w|r,,®|r,) € H(I'1) x H(T'3).
From Lemma 3.2, for every e >0 there exists a function 7§ ;€ [L*(S)]* such that

IHTL, L, — (Wlry, Tew ey @lrg) /2 )2 x [ -172 (0012 x [51/2(1g))2 < €/[|Golls
(3.13)
since the operator GGy is bounded and we have

HG()(’HTEML2)—GO(W|F1aTeW|F1a(I)|F3)||[L2(S)]2 <e.
Hence we obtain
IETL, L, + O, 1, iz <€

due to F'=—GoH and Go(w|r,,T.w|r,,®|r,) =7 ;,. Noting that w and v,

Lqy,Lo

belong to H(D;), the inequality (3.13) implies that Urg ,, converges to w in the space
[H'(D;)]? as e—0. As a result the norm [|7f ;_ |[i2(s)2 is bounded.

(2) Next, we assume that L1 ¢ D; or Lo ¢ T's. In this case, Lemma 3.6 makes us
know that 7, 1, is not in the range of Gy, but Lemma 3.5 shows that Gy is com-
pact, injective and with dense range in [L%(S)]?. Hence, for every §>0 we can con-
struct an unique Tikhonov regularized solution (f#,g? h?)eH(I'1) x H(T's) of equation
Go(f,g,h) =% ;, such that

HGO(fpagpvhp) - ¢ﬁ,L2 || [L2(S)]? < 57

where p is the regularization parameter (chosen by a regularization strategy, e.g., the
Morozov’s discrepancy principle). Then we obtain

(£7,8” D7) |1 m1/2(r) )2 x (=172 (00 )2 [H1/2(T))2 — 00 @S p— 0.

By Theorem 3.2, H has dense range, thus for e >0 sufficiently small there exists TL Lo
such that

|17l 1, — (87,87 D) (a2 ry 2 x (-1/2(00))2 x /2 ()2 < €/ | Goll-
Combining the above two equations we obtain that for every e >0 and § >0 there exists

5”1, €[L3(S)]? such that

||FTL1 Lo +(I’Ll,LzH [L2(S))2 — ||GO(7'LTL1 LQ) (I)fl,LQH[m(S)P
<NGo(Hrl 1) —Go(£°,8° 0 [|2(s))2
+|Go(£7,8°,17) = @F" 1, ll{r2(s)2
<€+0.

Since limg_,0p(0) =0, it arrives at
L [|(£7, 87 07) |72 0,2 12 0012 172 ()2 = 00

So we deduce that lim(;_)o ||’HTz’lp7L2 H[H1/2(F1)]2><[H*1/2(F1)]2><[H1/2(F3)}2 — oo and thus
lims o |77 1, l122(s)2 — 00 due to the boundedness of H. The proof is completed.
O



872 INVERSE ELASTIC SCATTERING FOR TOUCHING SCATTERERS

4. The numerical examples

In this part, we present some numerical experiments to verify the validity of the
established linear sampling method in two dimensions. In all examples we assume that
the host elastic medium has Lamé constants A\, =1,u. =2, the included medium has
Lamé constants A; =1.5,u; =2.5 and the mass densities take value p.=p; =1.

The scheme of the numerical experiment for the linear sampling method is described
in the following steps.

F1G. 4.1. The exact objects: the shape of circle arc and line (left), the shape of semi-ellipse and
line (right)

a. w=3 b. w=4 c. w=6

FIG. 4.2. Reconstruction of the circle arc and line for q=[0,1]T, noise level=1%, with different
circular frequencies w.

a. w=3 b. w=6 c. w=3§8
FIG. 4.3. Reconstruction of the semi-ellipse and line for q=[0,1]T , noise level=1%, with different

circular frequencies w.

Firstly, the forward data is generated synthetically by solving the direct scattering
problem (1.1)~ (1.5), where the collocation and quadrature approaches [38,39] are
used to treat the numerical solution procedure. Then the far field data of the elastic
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P S S G

Lo
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A

a. no noise b. 5% noise c. 10% noise

Fic. 4.4. Reconstruction of the circle arc and line for w=4, q= [1,0]T with different noise levels.

s @ o

L

4
3
2
1
0
1
2
3
4

L N
°

Lo

P S S

-4 -2 0 2 4 -4 -2 0 2 4 7*4 -2 0 2 4
a. 1o noise b. 5% noise c. 15% noise

Fi1c. 4.5. Reconstruction of the semi-ellipse and line for w=4, q= [0,1}T with different noise levels.

scattering field can be calculated through the combined potential (2.3), in which, the
far field patterns of the single-and double-layer potentials are computed by

(H7.8) (%) =fa /F | Ta()g(y)e= kY ds(y)
and
(Kﬁlg)(x):’}/a/rvJa(X)B(X,y)g(y)e—ika,ef{‘yds(y),

respectively, with the coefficients

5 1 z7r/4 1 ei‘n’/4
P 2M€+A \/ p e ,ue 87’(’]{53767
—ZTI'/4 p, —i7r/4 ks7e
T 2/te 2t + Ne
and the matrices J, =x% " /|%|?, Js=1—J, and

Bk, y)=Axn(y) " +pen(y)x" +pen(y) %I

The second step involves dealing with far field Equation (3.11). For N incident
directions d; = (cos(2wl/N), sin(27rl/N))T,l =1,...,N, and for N observation directions
X = (cos(2mm/N),sin(2rm/N)) T ,m=1,..., N, the limited data of the far field patterns

u*(x,d;d) and u (x,d,dl) for N plane compressional and shear waves, respectively,
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©
s e

a. q=1[v2/2,v2/2]" b. q=[-1,0] c. q=[-v3/2,-1/2]"

Fic. 4.6. Reconstruction of the circle arc and line for w=4, noise level = 1% with different
polarization directions q.

a. q=[1/2,V3/2]" b. q=[-V/(3)/2,1/2]" c. q=[1/2,—V3/2]"

Fic. 4.7. Reconstruction of the semi-ellipse and line for w=4, noise level = 1% with different
polarization directions q.

-4 -2 o 2 4 -4 -2 0 2

are obtained and the discretized far field operator F' is approximated by matrix Fy €

C2NV>2N given by
o2 2T i Vw2 (%, disdy) (/s (R, dis )

N Vg (o disdr) /s (S, disd)

Another aspect concerns the test function ®*°(x) appearing on the right hand side
of the Equation (3.11), which is the far field pattern of the combined potential ® given by
(3.12) and integrating on the test curve Ly and Ly. It is hard to make the curve located
in the actual boundary I'; and the crack ¥. Furthermore, the assumption that =0 on
I’y can not be ensured since the location of I's is unknown. As a result, the numerical
experiment here is not completely consistent with the previous theoretical analysis. So,
we take the second best and choose the far field pattern (I';°,(X,2;p),['e, (X,2;p)) of an
elastic point source I'x(x,z)-p in z € R? with the polarization direction p €S as the test
function. We think it will not fundamentally affect the numerical experiment because
the numerical integration on the test curve needs to be discretized into the values at
some points. This treatment has been adopted by Cakoni [37] to recovery cracks in
acoustic scattering. Thus the test function can be approximated by a column vector
% € C*V given by

1 elr/4
oo _ | 20FX\Joxk,
N 1 in/4

B8k

Due to the ill posedness of the far field equation, the Tikhonov regularization

efzk:pxm-zf(m p

—iksXm 23 L
s m Xm.p
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method is employed to solve the normal equation
Ok 10 18 F 00
pT+EFN FyT=Fy @% (- 2,p)

with regularization parameter p, where ¢ is the error level of the far field operator, i.e.,
|F{ — Fn|l12(s) < 6. For each given € and 4, the regularization parameter p is chosen by
the generalized Morozov’s discrepancy principle, i.e., |F47(-,2,p) -0 (+,2,p)|lL2(s) =
€+0||7(,2,p)| £2(s)- Assume €< § and thus can be ignored in above identity. We can
obtain the solution 7(-,z,p) by using a singular system {aj,¢j,1/)j}?i_vl for the operator
F§ as

2N

a; 0o
7(z,p) =) p+]02 (OF (,2,P),¥5) 12(5) ;>
j J

where p is the root of the monotonically increasing function

2N ,02 —(5202
f(p) ::ZWKQ)%("ZJ))J/U)L?(S”?
J

J

The last step is to choose a region covering the expected obstacle, then for each
sampling point z lying in this region, the norm of ||7(-,z,p)||L2s) is calculated and we
plot 1/{|7(-,2,p)| £2(s) with 100 contour lines at fixed polarization p. The value of which
becomes large when z lies in the exact boundary I'y and the crack ¥ and thereby can
be used as an indicator function to characterize the combined elastic scatterer. In the
reconstruction, the far-field data are given for 40 incident directions and 40 observation
directions equally distributed on the unit circle and we use a grid of 161 x 161 equally
spaced sampling points on the rectangle [—4,4] x [—4,4].

We show the reconstruction results in the following two examples. Consider the
circle arc

lying on the line

3 3 1
E::{(—gcot%,—g+§)21§8§5}

in Figure 4.2, 4.4 and 4.6, and consider the semi-ellipse
7 . 1
= { (\@cosms,smﬂs+ 5) 0<s< 1}

lying on the line

in Figure 4.3, 4.5 and 4.7. In all the examples, we show the reconstructions by using
the MATLAB routine contour (z,,2zy,1/||7(-,2,p)|/z2(s))-

The numerical experiments show the viability of our method. In addition, we ob-
serve that:
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(1)

The reconstructed scatterer is stable for noise, the quality of the reconstructions

increases with decreasing error level.

(2)

The polarization direction p has a certain influence on the experiments, since the

norm of the indicator function ||7(-,z,p)|/z2(s) is related to the polarization direction,
different polarization direction implies different norm.

(3)

The reaction to the circular frequency w is sensitive in the numerical examples and

the experimental effect is just relatively good for w=4,5,6, this phenomenon may be
related to the size of the scatterer.
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