
COMMUN. MATH. SCI. c© 2018 International Press

Vol. 16, No. 3, pp. 791–807

GLOBAL WELL-POSEDNESS AND ASYMPTOTICS FOR A
PENALIZED BOUSSINESQ-TYPE SYSTEM WITHOUT DISPERSION∗

FRÉDÉRIC CHARVE†

Abstract. J.-Y. Chemin proved the convergence (as the Rossby number ε goes to zero) of the
solutions of the Primitive Equations to the solution of the 3D quasi-geostrophic system when the
Froude number F = 1 that is when no dispersive property is available. The result was proved in the
particular case where the kinematic viscosity ν and the thermal diffusivity ν′ are close. In this article
we generalize this result for any choice of the viscosities, the key idea is to rely on a special feature of
the quasi-geostrophic structure.
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1. Introduction

1.1. Presentation of the models. The Primitive Equations we consider in
this article (also called Primitive System) are a Boussinesq-type system that describes
geophysical flows located in a large scale at the surface of the Earth under the assump-
tion that the vertical motion is much smaller than the horizontal one. Two phenomena
have a great influence on geophysical fluids: the rotation of the Earth around its axis
and the vertical stratification of the density induced by gravity. The former induces a
vertical rigidity in the fluid velocity as described by the Taylor–Proudman theorem, and
the latter induces a horizontal rigidity to the fluid density: heavier masses lay under
lighter ones.

In order to measure the importance of these two concurrent structures, physicists
defined two numbers: the Rossby number Ro and the Froude number Fr. We refer to
the introduction of [6,11] for more details and to [3,4,17,23] for an in-depth presentation.

The smaller are these numbers, the more important become these two phenomena
and we will consider the Primitive Equations in the whole space, under the Boussinesq
approximation and when both phenomena share the same importance i.-e. Ro=ε and
Fr=εF with F >0. In what follows ε will be called the Rossby number and F the
Froude number. The system is then written as follows (we refer to [1,13] for the model):

∂tUε+vε ·∇Uε−LUε+ 1
εAUε= 1

ε (−∇Φε,0),

divvε= 0,

Uε|t=0 =U0,ε.

(PEε)

The unknowns are Uε= (vε,θε) = (v1ε ,v
2
ε ,v

3
ε ,θε) (where vε denotes the velocity of the

fluid and θε the scalar potential temperature), and Φε which is called the geopotential.
The diffusion operator L is defined by

LUε
def
= (ν∆vε,ν

′∆θε),
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where ν,ν′>0 are the kinematic viscosity and the thermal diffusivity. The matrix A is
defined by

Adef
=


0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0

.
We will also precise later the properties satisfied by the sequence of initial data (as ε
goes to zero).

Remark 1.1. This system generalises the well-known rotating fluids system and for
more precisions we refer to [11]. The fact that AUε is divided by the Rossby number
ε imposes formal conditions to the limit system as ε goes to 0, this term is said to be
penalized. The major difference between the classical Navier–Stokes system and (PEε)
consists in this penalized term which involves a skew-symmetric matrix, so that for the
canonical C4 inner product and any L2 or Hs/Ḣs inner products, we have AUε ·Uε= 0
therefore for all fixed ε>0, any energy method will not “see” these penalized terms
and will work as for (NS). Then the Leray and Fujita–Kato theorems are very easily
adapted and provide global in time (unique in 2D) weak solutions if U0,ε∈L2 and local

in time unique strong solutions if U0,ε∈ Ḣ
1
2 (global for small initial data). We refer to

Remark 1.7 for the notion of well/ill-prepared initial data.

Remark 1.2. As explained in [5, 11] two distinct regimes have to be considered
regarding the eigenvalues of the linearized system: the case F 6= 1 where the system
features dispersive properties, and the case F = 1, with simpler operators but where no
dispersion occurs. In the dispersive case (see [6] for weak solutions, [5] for strong solu-
tions), using the approach developped by Chemin, Desjardins, Gallagher and Grenier
in [14–16] for the rotating fluids system, we manage to filter the fast oscillations (going
to zero in some norms thanks to Strichartz estimates providing positive powers of the
small parameter ε) and prove the convergence to the solution of System (QG) below
(even for blowing-up ill-prepared initial data as in [7, 11], less regular initial data as
in [8] or with evanescent viscosities as in [9]). On the contrary when F = 1 no dispersion
is available and only well-prepared initial data are considered. In addition, in [13] the
asymptotics are obtained only when ν and ν′ are very close, in [20] is dealt the inviscid
case. We also refer to [19] for the inviscid case ans to [21,22,24] for results in other con-
text such as periodic domains for example where there is no dispersion, and resonences
have to be studied.

1.2. The limit system. We are interested in the asymptotics, as the small
parameter ε goes to zero. Let us recall that in [6, 13] the limit system, which is a
transport-diffusion system coupled with a Biot–Savart inversion law, is first formally
obtained, and is called the 3D quasi-geostrophic system:{

∂tΩ̃QG+ ṽQG.∇Ω̃QG−ΓΩ̃QG= 0

ŨQG= (ṽQG, θ̃QG) = (−∂2,∂1,0,−F∂3)∆−1F Ω̃QG,
(QG)

where the operator Γ is defined by:

Γ
def
= ∆∆−1F (ν∂21 +ν∂22 +ν′F 2∂23),

with ∆F =∂21 +∂22 +F 2∂23 . Moreover we also have the relation

Ω̃QG=∂1Ũ
2
QG−∂2Ũ1

QG−F∂3Ũ4
QG=∂1ṽ

2
QG−∂2ṽ1QG−F∂3θ̃QG.
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Remark 1.3. he operator ∆F is a simple anisotropic Laplacian but Γ is in general
a tricky non-local diffusion operator of order 2. In the present article we will focus on
the case F = 1 where ∆F = ∆ and Γ =ν∂21 +ν∂22 +ν′∂23 . We refer to [10, 11] for a study
of Γ in the general case (then neither the Fourier kernel nor the singular integral kernel
have a constant sign and no classical result can be used).

Remark 1.4. From now on we will consider the very particular case F = 1. On
one hand the operator Γ is much simpler, but on the other hand (and as explained for
example in [6,10,11]) the system is not dispersive anymore. This lack of dispersive and
Strichartz estimates (that were abundantly used in previous works) will force us to use
completely different methods, part of them coming from [13].

Led by the limit system we introduce the following decomposition: for any 4-
dimensional vector field U = (v,θ) we define its potential vorticity Ω(U) (here in the
case F = 1):

Ω(U)
def
= ∂1v

2−∂2v1−∂3θ,

then its quasi-geostrophic and oscillating (or oscillatory) parts:

UQG=Q(U)
def
=


−∂2
∂1
0

−∂3

∆−1Ω(U), and Uosc=P(U)
def
= U−UQG. (1.1)

As emphasized in [6,9] this is an orthogonal decomposition of 4-dimensional vector fields
(similar to the Leray orthogonal decomposition into divergence-free and gradient vector
fields) and if Q and P are the associated orthogonal projectors on the quasi-geostrophic
or oscillating fields, they satisfy (see [5, 6, 13]):

Proposition 1.1. With the same notations, for any function U = (v,θ)∈ Ḣs (for some
s) we have:

(1) P and Q are pseudo-differential operators of order 0.

(2) For any s∈R, (P(U)|Q(U))Ḣs = (AU |P(U))Ḣs = 0 (when defined).

(3) The same is true for nonhomogeneous Sobolev spaces.

(4) P(U) =U⇐⇒Q(U) = 0⇐⇒Ω(U) = 0.

(5) Q(U) =U⇐⇒P(U) = 0⇐⇒ there exists a scalar function Φ such that U =
(−∂2,∂1,0,−∂3)Φ. Such a vector field is said to be quasi-geostrophic and is
divergence-free.

(6) If U = (v,θ) is a quasi-geostrophic vector field, then v ·∇Ω(U) = Ω(v ·∇U).

(7) If U is a quasi-geostrophic vector field, then ΓU =Q(LU).

Thanks to this, System (QG) can for example be rewritten into the following velocity
formulation: 

∂tŨQG+ ṽQG.∇ŨQG−LŨQG=PΦ̃QG,

ŨQG=Q(ŨQG), (or equivalently P(ŨQG) = 0),

ŨQG|t=0 = Ũ0,QG.

(QG2)
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Remark 1.5. We recall that Theorem 2 from [5] claims that if Ũ0,QG∈H1 then System

(QG) has a unique global solution ŨQG∈ Ė0∩ Ė1 (see below for the space notation).
Moreover there exists a constant C>0 such that for all s∈ [0,1] and all t∈R+:

‖ŨQG‖2L∞t Ḣs +min(ν,ν′)

∫ t

0

‖ŨQG(τ)‖2
Ḣs+1dτ ≤C‖Ũ0,QG‖1−sL2 ‖Ũ0,QG‖sḢ1 ≤C|Ũ0,QG‖H1 .

We refer to [8] for more precisions.

Back to System (PEε), if we introduce Ωε= Ω(Uε), Uε,QG=Q(Uε) and Uε,osc=
P(Uε), they satisfy the following systems (see [6] for details):

∂tΩε+vε ·∇Ωε−ΓΩε= (ν−ν′)∆∂3θε,osc+qε, (1.2)

where qε is defined by

qε= q(Uε,osc,Uε) =∂3v
3
ε,osc(∂1v

2
ε−∂2v1ε)−∂1v3ε,osc∂3v2ε

+∂2v
3
ε,osc∂3v

1
ε +∂3vε,QG ·∇θε,osc+∂3vε,osc ·∇θε, (1.3)

and

∂tUε,osc−(L− 1

ε
PA)Uε,osc

=−P(vε ·∇Uε)−


−∂2
∂1
0
−∂3

∆−1
(
−vε ·∇Ωε+qε

)
+(ν−ν′)∂3


∂2θε
−∂1θε

0
∂1v

2
ε−∂2v1ε

 . (1.4)

Remark 1.6. For more conciseness and without any loss of generality, we will write
in what follows

qε=∇Uε,osc ·∇Uε.

Remark 1.7. It is natural to investigate the link between the quasi-
geostrophic/oscillating parts decomposition of the initial data and the asymptotics when
ε goes to zero. This leads to the notion of well-prepared/ill-prepared initial data de-
pending on the fact that the initial data is already close or not to the quasi-geostrophic
structure, i.-e. when the initial oscillating part is small/large (or going to zero/blowing
up as ε goes to zero). We refer to [11] for more details about this subject. For example
in [7, 10, 11] we focussed on the case F 6= 1 for very ill-prepared cases in the sense that
the initial oscillating part norm goes to infinity as ε goes to zero. A way to balance
these large norms was to take advantage of the dispersive estimates satisfied by the
oscillating part, providing positive powers of ε. On the contrary when F = 1, as in [13],
we will consider well-prepared initial data.

1.3. Statement of the main results. The aim of the present article is to
generalize the results of Chemin from [13] which were obtained in the whole space R3

only in the case where ν∼ν′. To the best of our knowledge, this study has never been
investigated any further in the non-dispersive case F = 1. First let us define (in the
whole space R3) the family of spaces ĖsT for s∈R,

ĖsT =CT (Ḣs)∩L2
T (Ḣs+1),
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endowed with the following norm (see the appendix for notations):

‖f‖2
ĖsT

def
= ‖f‖2

L∞T Ḣ
s +min(ν,ν′)

∫ T

0

‖f(τ)‖2
Ḣs+1dτ.

When T =∞ we denote Ės and the corresponding norm is over R+ in time.

Theorem 1.1 (Global existence and uniqueness, F = 1). There exists a positive con-
stant K such that for any sequence of initial data (U0,ε)ε∈]0,ε0] uniformly bounded in

H1 =L2∩Ḣ1, if
‖U0,ε,osc‖Ḣ−1 ≤

1

K2

min(ν,ν′)4

‖U0,ε‖3Ḣ1

exp

(
−K
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)2

)
,

ε≤ 1

K2

min(ν,ν′)4

‖U0,ε‖4Ḣ1

(
‖U0,ε‖

Ḣ
1
2

+max(ν,ν′)
) exp

(
−K
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)2

)
,

(1.5)

then System (PEε) has a unique global solution in the space Ė1 and we have ‖Uε‖Ė1 ≤
2‖U0,ε‖Ḣ1 .

Remark 1.8. Of course, interpolating with the Leray estimates, we obtain that in
fact all norms in Ės for s∈ [0,1] are uniformly bounded and more precisely, for all t≥0,

‖Uε(t)‖2Ḣs +min(ν,ν′)

∫ t

0

‖Uε(τ)‖2
Ḣs+1dτ ≤‖U0,ε‖2(1−s)L2 (2‖U0,ε‖Ḣ1)2s.

Remark 1.9. If the sequence of initial data (U0,ε)ε is uniformly bounded in H1 by
C0, then

1

K2

min(ν,ν′)4

‖U0,ε‖3Ḣ1

exp

(
−K
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)2

)
≥ min(ν,ν′)4

K2C3
0

exp

(
− KC2

0

min(ν,ν′)2

)
>0,

so (1.5) is realized when
‖U0,ε,osc‖Ḣ−1 ≤

min(ν,ν′)4

K2C3
0

exp

(
− KC2

0

min(ν,ν′)2

)
,

ε≤ 1

K2

min(ν,ν′)4

C4
0

(
C0 +max(ν,ν′)

) exp

(
− KC2

0

min(ν,ν′)2

)
.

The second result is devoted to the asymptotics as ε→0:

Theorem 1.2 (Convergence, F = 1). Let (U0,ε)ε∈]0,ε0] be a family of initial data, uni-

formly bounded in L2∩Ḣ1. Assume in addition that U0,ε,osc∈ Ḣ−1 and there exists a

quasi-geostrophic function Ũ0,QG∈ Ḣ1 such that:U0,ε,osc−→
ε→0

0 in Ḣ−1∩Ḣ1,

U0,ε,QG−→
ε→0

Ũ0,QG in Ḣ1,

then there exists ε1∈]0,ε0] such that for any ε<ε1, the assumptions from the previous
theorem are fulfilled so that System (PEε) admits a unique global solution Uε and the
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family (Uε)ε∈]0,ε1] converges to the unique global solution ŨQG of System (QG) with

initial data Ũ0,QG in the following sense:Uε,osc−→ε→0
0 in Ės for any s∈ [−1,1[,

Uε,QG− ŨQG−→
ε→0

0 in Ės for any s∈]0,1].

Remark 1.10. The assumptions imply that in fact Ũ0,QG∈H1.

Remark 1.11. Obtaining that the oscillating part Uε,osc goes to zero only requires

that U0,ε,osc goes to zero in Ḣ−1 whereas the fact that U0,ε,osc goes to zero in Ḣ1 is
needed only at the very end when proving the convergence of the quasi-geostrophic
part.

2. Proof of Theorem 1.1

In this section, we will follow some parts of the method from [13], we will also
explain which parts are useless if we do not assume ν∼ν′ anymore, and explain how
(as in [11]) the quasi-geostrophic structure can once more help obtaining the result.

Let us recall that according to Remark 1.1, as U0,ε∈L2 we have a global weak

Leray-type solution Uε∈L∞(L2)∩L2(Ḣ1). Moreover as in addition U0,ε∈ Ḣ1 then it

also belongs to Ḣ
1
2 and thanks to the Fujita and Kato theorem, and the weak-strong

uniqueness, Uε is also the unique local strong solution in Ė
1
2

T for all T <T ∗ε (which
denotes the maximal lifespan).

Moreover we recall the classical propagation of regularity estimates (we refer for
example to [2, 12], or [13] section 2, for more details in the Navier–Stokes setting, and
the proofs which only rely on energy estimates, are still valid in our case), for all
s∈ [−1,1], for all t,

‖Uε(t)‖2Ḣs +min(ν,ν′)

∫ t

0

‖∇Uε(τ)‖2
Ḣs
dτ ≤‖U0,ε‖2Ḣs exp

(
C

min(ν,ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2
dτ

)
,

(2.1)
Thanks to this we also have Uε∈ Ė1

T for all T <T ∗ε and finally we have the classical
blowup criterion:

T ∗ε <∞⇒
∫ T∗ε

0

‖∇Uε(τ)‖2
Ḣ

1
2
dτ =∞. (2.2)

Remark 2.1. Let us emphasize that the previous blowup criterion is given by results
adapted to the general Navier–Stokes system (the penalization term is invisible to them
so we can use them) but according to our computations, and as also observed in [13],

it is in fact the smaller quantity
∫ T∗ε
0
‖∇Uε,osc(τ)‖2

Ḣ
1
2
dτ that controls the lifespan (see

(2.14)).

2.1. First step: estimates on ∂tUε+ 1
εAUε,osc. The first important idea

in [13] consists in changing the formulation of System (PEε): taking the divergence of
the first three equations from (PEε) we get:

−1

ε
∆Φε= div(vε ·∇Uε)+

1

ε
div(AUε) =

∑
1≤i,j≤3

∂i∂j(v
i
εv
j
ε)−

1

ε
Ωε.
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Observing that AUε,QG=−(∇∆−1Ωε,0), we end up with the following equivalent for-
mulation of (PEε):

∂tUε+vε ·∇Uε−LUε+ 1
εAUε,osc= (∇pε,osc,0)

def
=
(
∇

∑
1≤i,j≤3

∂i∂j∆
−1(viεv

j
ε),0

)
,

divvε= 0,

Uε|t=0 =U0,ε.

(PEε,2)

From this reformulation, Chemin connects the Ḣ−1 or L2 norm of the block ε−1Uε,osc
to ∂tUε through the following proposition, that we state here in the general setting for
ν,ν′:

Proposition 2.1. There exists a constant C>0 such that for any Uε solution of (PEε)
in CT (L2∩Ḣ1), the following estimates hold for all t≤T :

∥∥∥∂tUε(t)+
1

ε
AUε,osc(t)

∥∥∥
Ḣ−1
≤‖Uε(t)‖Ḣ1

(
max(ν,ν′)+C‖Uε(t)‖

Ḣ
1
2

)
,∥∥∥∂tUε(t)+

1

ε
AUε,osc(t)

∥∥∥
L2
≤‖Uε(t)‖Ḣ2

(
max(ν,ν′)+C‖Uε(t)‖

Ḣ
1
2

)
.

(2.3)

Then we differentiate in time System (PEε,2) and obtain (we easily adapt [13], Section
2 step 3, and skip details) that for all t:

‖∂tUε(t)‖2Ḣ−1 +min(ν,ν′)

∫ t

0

‖∂tUε(τ)‖2L2dτ

≤‖∂tUε(0)‖2
Ḣ−1 exp

(
C

min(ν,ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2
dτ

)
. (2.4)

Using (2.3) to roughly estimate ‖∂tUε(0)‖Ḣ−1 we obtain:

‖∂tUε(t)‖2Ḣ−1 +min(ν,ν′)

∫ t

0

‖∂tUε(τ)‖2L2dτ

≤
(1

ε
‖U0,ε,osc‖Ḣ−1 +‖U0,ε‖Ḣ1

(
max(ν,ν′)+C‖U0,ε‖

Ḣ
1
2

))2
×exp

(
C

min(ν,ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2
dτ

)
. (2.5)

Then, writing

‖1

ε
AUε,osc(t)‖Ḣ−1 ≤‖

1

ε
AUε,osc(t)+∂tUε(t)‖Ḣ−1 +‖∂tUε(t)‖Ḣ−1 ,

and thanks once more to (2.3), we get (as F = 1, for any function ‖Af‖Ḣs =‖f‖Ḣs):

‖Uε,osc(t)‖Ḣ−1 =‖AUε,osc(t)‖Ḣ−1 ≤ε‖Uε(t)‖Ḣ1

(
max(ν,ν′)+C‖Uε(t)‖

Ḣ
1
2

)
+
(
‖U0,ε,osc‖Ḣ−1 +ε‖U0,ε‖Ḣ1

(
max(ν,ν′)+C‖U0,ε‖

Ḣ
1
2

))
×exp

(
C

2min(ν,ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2
dτ

)
. (2.6)

Thanks to (2.1) we end up with:



798 GLOBAL WELL-POSEDNESS FOR A PENALIZED BOUSSINESQ SYSTEM

‖Uε,osc(t)‖Ḣ−1 ≤
(
‖U0,ε,osc‖Ḣ−1 +2ε‖U0,ε‖Ḣ1

(
max(ν,ν′)+C‖U0,ε‖

Ḣ
1
2

))
×exp

(
C

min(ν,ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2
dτ

)
. (2.7)

Similarly, we obtain that for all t:

min(ν,ν′)

∫ t

0

‖Uε,osc(τ)‖2L2dτ ≤4
(
‖U0,ε,osc‖Ḣ−1 +ε‖U0,ε‖Ḣ1

(
max(ν,ν′)+C‖U0,ε‖

Ḣ
1
2

))2
×exp

(
C

min(ν,ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2
dτ

)
. (2.8)

2.2. Second step: Energy estimates. In [13], Chemin uses the quasi-
geostrophic/oscillating orthogonal decomposition of the solution and estimates each
part by energy methods applied to Systems (1.2) and (1.4), combining them through:

‖Uε‖2Ḣ1 =‖Uε,QG‖2Ḣ1 +‖Uε,osc‖2Ḣ1 ∼‖Ωε‖2L2 +‖Uε,osc‖2Ḣ1 ,

More precisely, instead of (1.4), using the changes in the pressure term that lead to
System (PEε,2), Chemin studied the following system (that we write here in a more
accurate QG/osc decomposition):

∂tUε,osc+vε ·∇Uε,osc−LUε,osc+
1

ε
AUε,osc= (∇pε,osc,0)+


[vε ·∇,∂2∆−1]
−[vε ·∇,∂1∆−1]

0
−[vε ·∇,∂3∆−1]

Ωε

+


−∂2
∂1
0
−∂3

(−(ν−ν′)∂3θε+∆−1qε

)
+(ν−ν′)


0
0
0
∂3

Ωε. (2.9)

In the general case where ν−ν′ is not assumed to be small, this method is bound to
fail. Indeed taking the L2-inner product of (1.2) with Ωε, we obtain:

1

2

d

dt
‖Ωε‖L2 +min(ν,ν′)‖∇Ωε‖L2 ≤ (ν−ν′)(∂3∆Θε,osc,Ωε)L2 +(qε,Ωε)L2 .

As remarked in [11] the first term of the right-hand side features too many derivatives
for us to be able to prove it is small, the best we can hope for is to bound it by
‖Uε,osc‖Ḣ2‖Ωε‖Ḣ1 and obtain that this term is at most bounded whereas we need it to
go to zero with ε.

Any hope to neutralize this term thanks to the Ḣ1-innerproduct of (2.9) by Uε,osc
is also completely out of reach as the last term in (2.9) will produce the exact same
term in the right-hand side of the energy estimate instead of a cancellation.

The only way to get rid of this difficulty is to go back to the original system and
use another very important feature of the quasi-geostrophic decomposition. As was first
obtained in [11] (in the case F 6= 1, see Section 4, let us emphasize that even in this case,
dispersion cannot help when it is about estimating in L2), we can take advantage of
Point 6 from Proposition 1.1 (this property was first observed in [5]) and gain important
cancellations. Taking the Ḣ1-inner product of (PEε) with Uε, we obtain that

1

2

d

dt
‖Uε‖2Ḣ1−(LUε|Uε)Ḣ1 =−(vε ·∇Uε|Uε)Ḣ1 . (2.10)
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As before −(LUε|Uε)Ḣ1 ≥min(ν,ν′)‖∇Uε‖2Ḣ1 and thanks to the decomposition Uε=
Uε,osc+Uε,QG we develop the right-hand side as follows:

(vε ·∇Uε|Uε)Ḣ1 = (vε ·∇Uε|Uε,osc)Ḣ1 +(vε ·∇Uε,osc|Uε,QG)Ḣ1

+(vε,osc ·∇Uε,QG|Uε,QG)Ḣ1 +(vε,QG ·∇Uε,QG|Uε,QG)Ḣ1

def
= A1 +A2 +A3 +A4. (2.11)

Then, as emphasized in [11], the last term (which is the most dangerous term as it does
not involve any occurence of the evanescent oscillating part, and therefore has no reason,
at first sight, to go to zero as ε goes to zero) is equal to zero. This is the key property
allowing us to complete the proof. To show this we simply use the following elementary
computation related to the quasi-geostrophic decomposition: for any function f , we
have (here in the particular case F = 1):

(f |Uε,QG)Ḣ1 =−(f |


−∂2
∂1
0
−∂3

Ωε)L2 = (Ω(f)|Ωε)L2 .

Then, thanks to Point 6 from Proposition 1.1 and the fact that divvε,QG= 0, we obtain:

(vε,QG ·∇Uε,QG|Uε,QG)Ḣ1 = (Ω(vε,QG ·∇Uε,QG)|Ωε)L2 = (vε,QG ·∇Ωε|Ωε)L2 = 0.

Next let us estimate the first three terms. Thanks to the Sobolev injections or product
laws (see appendix),{

|A1|≤‖vε ·∇Uε‖
Ḣ

1
2
‖Uε,osc‖

Ḣ
3
2
≤C‖vε‖Ḣ1 ·‖Uε‖Ḣ2 ·‖Uε,osc‖

Ḣ
3
2
,

|A2|≤‖vε ·∇Uε,osc‖L2‖Uε,QG‖Ḣ2 ≤C‖vε‖Ḣ1 ·‖∇Uε,osc‖
Ḣ

1
2
·‖Uε‖Ḣ2 .

(2.12)

Next

|A3|= |
∑

i=1,...,3

∫
R3

∂i(vε,osc ·∇Uε,QG) ·∂iUε,QGdx|

= |
∑

i=1,...,3

∫
R3

∂ivε,osc ·∇Uε,QG ·∂iUε,QGdx+

∫
R3

vε,osc ·∇∂iUε,QG ·∂iUε,QGdx|. (2.13)

The last integral is zero because divvε,osc= 0 and we end up with

|A3|≤C‖∇Uε,osc‖L3 ·‖∇Uε,QG‖L6 ·‖∇Uε,QG‖L2 ≤C‖∇Uε,osc‖
Ḣ

1
2
·‖Uε‖Ḣ2 ·‖Uε‖Ḣ1 .

Plugging this into (2.10) and thanks to the classical estimates 2ab≤a2 +b2 we get:

d

dt
‖Uε‖2Ḣ1 +min(ν,ν′)‖∇Uε‖2Ḣ1 ≤

C

min(ν,ν′)
‖Uε‖2Ḣ1 ·‖Uε,osc‖2

Ḣ
3
2
,

and thanks to the Gronwall estimates, we end up (see Remark 2.1) with for all t<T ∗ε :

‖Uε(t)‖2Ḣ1 +min(ν,ν′)

∫ t

0

‖∇Uε(τ)‖2
Ḣ1dτ

≤‖U0,ε‖2Ḣ1 exp
( C

min(ν,ν′)

∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2
dτ
)
. (2.14)
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Consequently, if ∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2
dτ ≤ ln2

C
min(ν,ν′),

then we have

‖Uε(t)‖2Ḣ1 +min(ν,ν′)

∫ t

0

‖∇Uε(τ)‖2
Ḣ1dτ ≤2‖U0,ε‖2Ḣ1 , (2.15)

and thanks to the Leray estimates together with interpolation:∫ t

0

‖Uε(τ)‖2
Ḣ

3
2
dτ ≤

(∫ t

0

‖Uε(τ)‖2
Ḣ1dτ

) 1
2
(∫ t

0

‖Uε(τ)‖2
Ḣ2dτ

) 1
2 ≤
√

2
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)
,

which allows us to state some analoguous to Corollary 2.1 from [13]:

Proposition 2.2. Let Uε∈C([0,T ∗ε [,Ḣ1)∩L2
loc([0,T

∗
ε [,Ḣ2) be a solution of (PEε).

If there exists some Tε>0 such that∫ Tε

0

‖Uε,osc(τ)‖2
Ḣ

3
2
dτ ≤ ln2

C
min(ν,ν′),

then for all t≤Tε,
‖Uε(t)‖2Ḣ1 +min(ν,ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ2dτ ≤2‖U0,ε‖2Ḣ1 ,∫ t

0

‖Uε(τ)‖2
Ḣ

3
2
dτ ≤

√
2
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)
.

(2.16)

Remark 2.2. If A4 was not zero, we could only bound it through Uε and we would
end up with (2.1), which is useless if not combined with something else.

2.3. Third step: boostrap and proof of Theorem 1.1.
Proof. From the previous estimates we will develop a boostrap argument to prove

the first theorem. For ε>0 fixed (and which will be precised later), we consider the
unique local strong solution Uε built in the beginning of the previous section. We
recall that Uε∈ Ėst for all t<T ∗ε and s∈ [0,1] and that in addition, thanks to the Leray
estimates, ‖Uε‖Ė0

t
≤‖U0‖L2 for all t<T ∗ε .

Let us define:

Tε= sup{t∈]0,T ∗ε [,

∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2
dτ ≤ ln2

C
min(ν,ν′)}. (2.17)

Obviously, Tε∈]0,T ∗ε ], and if Tε=T ∗ε then by Proposition 2.2 and the blowup criterion
from (2.2) we immediately obtain that Uε is global and (2.16) becomes valid for any
time.

If not then, as Tε∈]0,T ∗ε [, it is finite and∫ Tε

0

‖Uε,osc(τ)‖2
Ḣ

3
2
dτ =

ln2

C
min(ν,ν′). (2.18)

Moreover for all t≤Tε, combining (2.7), (2.8) with (2.16), we get that for all t≤Tε

max

(
‖Uε,osc(t)‖2Ḣ−1 ,min(ν,ν′)

∫ t

0

‖Uε,osc(τ)‖2L2dτ

)
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≤4
(
‖U0,ε,osc‖Ḣ−1 +ε‖U0,ε‖Ḣ1

(
max(ν,ν′)+C‖U0,ε‖

Ḣ
1
2

))2
×exp

(
C
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)2

)
. (2.19)

As Uε,osc=PUε (with P homogeneous Fourier multiplier of order zero), the first majo-
ration from (2.16) is also true for Uε,osc, and combining it with the previous estimates
through interpolation (3/2 = (1−θ) ·0+θ ·2 with θ= 3/4) we obtain:∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2
dτ

≤
2

5
4 ‖U0,ε‖

3
2

Ḣ1

min(ν,ν′)
×
(
‖U0,ε,osc‖Ḣ−1 +ε‖U0,ε‖Ḣ1

(
max(ν,ν′)+C‖U0,ε‖

Ḣ
1
2

)) 1
2

×exp

(
C
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)2

)
. (2.20)

This quantity is therefore less than ln2
2C min(ν,ν′) as soon as

‖U0,ε,osc‖Ḣ−1 +ε‖U0,ε‖Ḣ1

(
max(ν,ν′)+C‖U0,ε‖

Ḣ
1
2

)
≤ (ln2)2

C22
9
2

min(ν,ν′)4

‖U0,ε‖3Ḣ1

exp

(
−C
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)2

)
, (2.21)

which is realized when ε and U0,ε,osc satisfy (1.5) and then we have proved that for any
t≤Tε, we have in fact ∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2
dτ ≤ ln2

2C
min(ν,ν′),

which contradicts (2.18) and the definition of Tε, then Tε=T ∗ε =∞ and (2.16) and (2.19)
are valid for any time and Theorem 1.1 is proved.

By interpolation we deduce that for all s∈ [−1,1[ (U0,ε is uniformly bounded by
C0),

‖Uε,osc‖Ės ≤C
(
‖U0,ε,osc‖Ḣ−1 +ε‖U0,ε‖Ḣ1

(
max(ν,ν′)+C‖U0,ε‖

Ḣ
1
2

)) 1−s
2

×exp

(
C
‖U0,ε‖L2‖U0,ε‖Ḣ1

min(ν,ν′)2

)
‖U0,ε‖

1+s
2

Ḣ1

≤CC
1+s
2

0

(
‖U0,ε,osc‖Ḣ−1 +εC0(max(ν,ν′)+C0)

) 1−s
2

exp

(
CC2

0

min(ν,ν′)2

)
. (2.22)

If ‖U0,ε,osc‖Ḣ−1 is only bounded, this estimate is useless if we want convergence, but
if we consider the initial data from Theorem 1.2, we can rewrite it as follows (M0,ν,ν′

denotes a positive constant):

‖Uε,osc‖Ės ≤M0,ν,ν′

(
‖U0,ε,osc‖Ḣ−1 +εM0,ν,ν′

) 1−s
2 −→

ε→0
0,

which ends the proof of the first half of Theorem 1.2.
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3. End of the proof of Theorem 1.2
Proof. Here we prove in a direct way the convergence (in [13], (Ωε)0<ε<ε1 was

proved to be a Cauchy sequence).

Let us emphasize that, as in Theorem 1.2 the sequence of initial data (U0,ε)ε∈]0,ε0]
is assumed to be bounded in L2∩Ḣ1, then the same is true for its quasi-geostrophic
part U0,ε,QG (we recall that Q is a homogeneous operator of order zero). Moreover as

U0,ε,QG goes to some quasi-geostrophic vector field Ũ0,QG in Ḣ1 then we immediately
obtain (thanks to the uniqueness of limits in the sense of tempered distributions) that

Ũ0,QG is also in L2. Next, we only have to use Theorem 2 from [5] claiming that System

(QG) has a unique global solution ŨQG∈ Ė0∩ Ė1 as soon as Ũ0,QG∈H1.
Let us consider the initial data according to the assumptions of Theorem 1.2 and

the unique global solution given by Theorem 1.1 for a small enough ε. In the previous
section we already proved that the oscillating part goes to zero and we only have to
study the convergence of the quasi-geostrophic part as ε goes to zero. Let us define
δΩ = Ωε− Ω̃QG where Ω̃QG is the potential vorticity of the global solution ŨQG of the
limit system. It satisfies the following system:

∂tδΩ+vε,QG ·∇δΩ−ΓδΩ =
∑

i=1,...,4

Bi

=−(vε,QG− ṽQG) ·∇Ω̃QG+(ν−ν′)∂3∆θε,osc+∇Uε ·∇Uε,osc−vε,osc ·∇Ωε, (3.1)

supplemented by the initial data δΩ(0) = Ω(U0,ε,QG− Ũ0,QG), which goes to zero in L2.
Taking the L2 inner product with δΩ we obtain:

1

2

d

dt
‖δΩ‖2L2 +min(ν,ν′)‖δΩ‖2

Ḣ1 ≤
∑

i=1,...,4

|(Bi,δΩ)L2 |. (3.2)

Three terms are easily estimated:

|(B1,δΩ)L2 |≤‖(vε,QG− ṽQG) ·∇Ω̃QG‖Ḣ−1‖δΩ‖Ḣ1

≤‖vε,QG− ṽQG‖Ḣ1‖∇Ω̃QG‖
Ḣ−

1
2
‖δΩ‖Ḣ1 ≤‖δΩ‖L2‖∇Ω̃QG‖

Ḣ−
1
2
‖δΩ‖Ḣ1

≤min(ν,ν′)

8
‖δΩ‖2

Ḣ1 +
C

min(ν,ν′)
‖δΩ‖2L2‖ŨQG‖2

Ḣ
3
2
. (3.3)

Similarly we get that:
|(B3,δΩ)L2 |≤ min(ν,ν′)

8
‖δΩ‖2

Ḣ1 +
C

min(ν,ν′)
‖∇Uε‖2L2‖∇Uε,osc‖2

Ḣ
1
2
,

|(B4,δΩ)L2 |≤ min(ν,ν′)

8
‖δΩ‖2

Ḣ1 +
C

min(ν,ν′)
‖Uε‖2Ḣ2‖Uε,osc‖2

Ḣ
1
2
.

(3.4)

The last term seems more delicate at first sight, as the same problem as before appears
here due to the three derivatives: we wish this term to go to zero and from the previous
section Uε,osc goes to zero but only in Ės for s∈ [−1,1[. As we cannot transfer more

than one derivative to δΩ we are stuck as Uε,osc is only bounded in Ė1. To overcome
this difficulty we will simply cut the low and high frequencies in order to take advantage
of both and obtain two parts that will be small each for a different reason (we refer to
the appendix for the definition of the operator Ṡm):
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|(B2,δΩ)L2 |≤ |ν−ν′|
(
|(∂3∆θε,osc,ṠmδΩ)L2 |+ |(∂3∆θε,osc,(Id− Ṡm)δΩ)L2 |

)
def
= C5 +C6. (3.5)

For the low frequencies we take advantage of the convergence of Uε,osc to zero:

C5≤|ν−ν′|‖∂3∆θε,osc‖
Ḣ−

3
2
‖ṠmδΩ‖

Ḣ
3
2
≤|ν−ν′|‖Uε,osc‖

Ḣ
3
2

2
m
2 ‖δΩ‖Ḣ1

≤min(ν,ν′)

8
‖δΩ‖2

Ḣ1 +C2m
|ν−ν′|2

min(ν,ν′)
‖Uε,osc‖2

Ḣ
3
2
. (3.6)

Estimating the high frequencies as follows, we will not rely anymore on Uε,osc, it is then
about to choose m large enough so that this term is small:

C6≤|ν−ν′|‖∂3∆θε,osc‖Ḣ−1‖(Id− Ṡm)δΩ‖Ḣ1

≤|ν−ν′|‖Uε‖Ḣ2

(
‖(Id− Ṡm)Ωε‖Ḣ1 +‖(Id− Ṡm)Ω̃QG‖Ḣ1

)
def
= |ν−ν′|‖Uε‖Ḣ2 (D1 +D2). (3.7)

The scheme of the proof will be, for some fixed η>0 small, to choose m large enough so
a part of the right-hand side from (3.2) (after time integration) is bounded by η

2 , then
to choose ε small enough so that the rest (which features in particular 2m multiplied by
functions going to zero as ε goes to zero) is also bounded by η

2 . In (3.7), due to D1 such
an m a priori depends on ε which makes the previous argument impossible to perform,
so we will try to cut the dependancy in ε and give a majoration by an expression going
to zero as m goes to infinity independantly of ε. It is not necessary for D2 but for
more simplicity we use the same argument for both terms, let us begin with D2 as it is
simpler. Thanks to the initial regularity of ŨQG we will not need sharp estimates, and
it will be sufficient to write that (no need to introduce commutators):

∂t(Id− Ṡm)Ω̃QG−Γ(Id− Ṡm)Ω̃QG=−(Id− Ṡm)
(
ṽQG ·∇Ω̃QG

)
. (3.8)

Next we compute the inner product in L2 with (Id− Ṡm)Ω̃QG:

1

2

d

dt
‖(Id− Ṡm)Ω̃QG‖2L2 +min(ν,ν′)‖(Id− Ṡm)Ω̃QG‖2Ḣ1

≤‖(Id− Ṡm)
(
ṽQG ·∇Ω̃QG

)
‖Ḣ−1‖(Id− Ṡm)Ω̃QG‖Ḣ1 . (3.9)

Thanks to the classical estimates 2ab≤a2 +b2 and using that for all f ∈ Ḣs∩Ḣs+α

(α≥0),

‖(Id− Ṡm)f‖Ḣs ≤C

(∫
|ξ|≥ 3

4 2
m

|ξ|2s|f̂(ξ)|2dξ

) 1
2

≤ C

2αm
‖f‖Ḣs+α , (3.10)

we get (with s=−1, α= 1
2 ):

‖(Id− Ṡm)Ω̃QG(t)‖2L2 +min(ν,ν′)

∫ t

0

‖(Id− Ṡm)Ω̃QG(τ)‖2
Ḣ1dτ

≤‖(Id− Ṡm)Ω̃QG(0)‖2L2 +
C

2m
1

min(ν,ν′)

∫ t

0

‖ṽQG ·∇Ω̃QG(τ)‖2
Ḣ−

1
2
dτ
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≤‖(Id− Ṡm)Ω̃QG(0)‖2L2 +
C

2m
1

min(ν,ν′)

∫ t

0

‖ṽQG(τ)‖2
Ḣ1‖ṽQG(τ)‖2

Ḣ2dτ. (3.11)

Finally, thanks to the L2 estimates for the limit system (see Remark 1.5), we obtain:

‖(Id− Ṡm)Ω̃QG(t)‖2L2 +min(ν,ν′)

∫ t

0

‖(Id− Ṡm)Ω̃QG(τ)‖2
Ḣ1dτ

≤‖(Id− Ṡm)Ω̃QG(0)‖2L2 +
C

2m
‖Ũ0,QG‖4Ḣ1

min(ν,ν′)2
. (3.12)

We do the same for the last part (i.-e. D1), starting from:

∂t(Id− Ṡm)Ωε−Γ(Id− Ṡm)Ωε=
∑

i=1,2,3

Ei

=−(Id− Ṡm)(vε ·∇Ωε)+(ν−ν′)∆∂3(Id− Ṡm)θε,osc+(Id− Ṡm)(∇Uε ·∇Uε,osc),
(3.13)

and, as before,

‖(Id− Ṡm)Ωε(t)‖2L2 +min(ν,ν′)

∫ t

0

‖(Id− Ṡm)Ωε(τ)‖2
Ḣ1dτ

≤‖(Id− Ṡm)Ωε(0)‖2L2 +
1

min(ν,ν′)

∫ t

0

∑
i=1,2,3

‖Ei(τ)‖2
Ḣ−1dτ. (3.14)

Similarly (we skip details):∫ t

0

(
‖E1(τ)‖2

Ḣ−1 +‖E3(τ)‖2
Ḣ−1

)
dτ ≤ C

2m
‖U0,ε‖4Ḣ1

min(ν,ν′)
, (3.15)

and for the last term,∫ t

0

‖E2(τ)‖2
Ḣ−1dτ ≤

|ν−ν′|2

min(ν,ν′)

∫ t

0

‖(Id− Ṡm)Uε(τ)‖2
Ḣ2dτ, (3.16)

we cannot perform as for the other terms as we do not have enough regularity, instead
we repeat once more the same argument of truncation: applying (Id− Ṡm) to (PEε) we
get that:

∂t(Id− Ṡm)Uε−L(Id− Ṡm)Uε+
1

ε
A(Id− Ṡm)Uε

=
1

ε
(−∇(Id− Ṡm)Φε,0)−(Id− Ṡm)(vε ·∇Uε) , (3.17)

and computing the innerproduct in Ḣ1 with (Id− Ṡm)Uε, we obtain (skipping details
as they are close to the previous computations):

‖(Id− Ṡm)Uε(t)‖2Ḣ1 +min(ν,ν′)

∫ t

0

‖(Id− Ṡm)Uε(τ)‖2
Ḣ2dτ

≤‖(Id− Ṡm)U0,ε‖2Ḣ1 +
C

min(ν,ν′)

∫ t

0

‖(Id− Ṡm)(vε ·∇Uε)‖2L2dτ
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≤‖(Id− Ṡm)U0,ε‖2Ḣ1 +
C

min(ν,ν′)

1

2m

∫ t

0

‖vε ·∇Uε‖2
Ḣ

1
2
dτ

≤‖(Id− Ṡm)U0,ε‖2Ḣ1 +
C

2m
‖U0,ε‖4Ḣ1

min(ν,ν′)2
. (3.18)

Gathering (3.2), (3.3), (3.4), (3.6) and (3.7) and performing an integration in time, we
end up for all t with:

‖δΩ(t)‖2L2 +min(ν,ν′)

∫ t

0

‖(δΩ(τ)‖2Ḣ1dτ ≤‖U0,ε,QG− Ũ0,QG‖2Ḣ1

+
C

min(ν,ν′)

∫ t

0

(
‖δΩ‖2L2‖ŨQG‖2

Ḣ
3
2

+‖∇Uε‖2L2‖∇Uε,osc‖2
Ḣ

1
2

+‖Uε‖2Ḣ2‖Uε,osc‖2
Ḣ

1
2

)
dτ

+C2m |ν−ν′|2

min(ν,ν′)

∫ t

0

‖Uε,osc‖2
Ḣ

3
2
dτ

+ |ν−ν′|
(∫ t

0

‖Uε‖2Ḣ2dτ

) 1
2
(∫ t

0

(
‖(Id− Ṡm)Ωε‖2Ḣ1 +‖(Id− Ṡm)Ω̃QG‖2Ḣ1

)
dτ

) 1
2

. (3.19)

Thanks to the Gronwall estimates (first term in the first integral of the right-hand
side), using that ∫ t

0

‖ŨQG‖2
Ḣ

3
2
dτ ≤

‖Ũ0,QG‖L2‖Ũ0,QG‖Ḣ1

min(ν,ν′)
,

and combining it with (3.12) to (3.18) we obtain:

‖δΩ(t)‖2L2 +min(ν,ν′)

∫ t

0

‖(δΩ(τ)‖2
Ḣ1dτ ≤ exp

(
C
‖Ũ0,QG‖L2‖Ũ0,QG‖Ḣ1

min(ν,ν′)2

)

×

[
‖U0,ε,QG− Ũ0,QG‖2Ḣ1 +

C

min(ν,ν′)2
‖Uε,osc‖2

Ė
1
2

(
‖U0,ε‖2Ḣ1 +2m|ν−ν′|2

)
+
C|ν−ν′|
min(ν,ν′)

‖U0,ε‖Ḣ1×
{
‖(Id− Ṡm)Ω̃0,QG‖2L2 +‖(Id− Ṡm)Ωε(0)‖2L2

+
|ν−ν′|2

min(ν,ν′)2
‖(Id− Ṡm)U0,ε‖2Ḣ1 +

C

2m
1

min(ν,ν′)2

×
(
‖Ũ0,QG‖4Ḣ1 +(1+

|ν−ν′|2

min(ν,ν′)2
)‖U0,ε‖4Ḣ1

)} 1
2

]
. (3.20)

We have to be careful that in the previous estimates, for any fixed ε, ‖(Id− Ṡm)Ωε(0)‖2L2

and ‖(Id− Ṡm)U0,ε‖2Ḣ1 go to zero when m goes to infinity, but nothing ensures the
convergence does not depend on ε. To solve the problem, we use here the fact that
U0,ε,osc→0 in Ḣ1 (this is the only place where this is used):

‖(Id− Ṡm)Ωε(0)‖L2 ≤C‖(Id− Ṡm)U0,ε‖Ḣ1

=C‖(Id− Ṡm)
(
U0,ε,osc+(U0,ε,QG− Ũ0,QG)+ Ũ0,QG

)
‖Ḣ1

≤‖U0,ε,osc‖Ḣ1 +C‖U0,ε,QG− Ũ0,QG‖Ḣ1 +C‖(Id− Ṡm)Ũ0,QG‖Ḣ1 .
(3.21)
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To sum up we obtained that

‖δΩ‖Ė0 ≤ (1+2m)F (ε)+G(m),

where F (ε)−→
ε→0

0 and G(m) −→
m→∞

0. For a given η>0, let us fix m large enough so that

G(m)≤ η
2 , then fix ε small enough so that (1+2m)F (ε)≤ η

2 and Theorem 1.2 is proved.

Remark 3.1. One could wonder why not using extra regularity on U0,ε,osc from the
beginning in (3.5)

|(B2,δΩ)L2 |≤ |ν−ν′|‖∂3∆θε,osc‖Ḣ−1+δ‖δΩ‖Ḣ1−δ .

This would imply that we can prove that this additional regularity is transmitted for
any time to Uε,osc, which is not clear as taking the Ḣ1+δ inner-product of (2.9) with
Uε,osc we would have to deal with the term

|ν−ν′|(∂3Ωε,θε,osc)Ḣ1+δ .

As ∂3Ωε can only be estimated in L2, we put 2+2δ derivatives on the other term which
is not possible as θε,osc is at most in Ḣ2+δ. So we are not able to estimate this term
and propagate the extra regularity on Uε,osc unless we ask extra regularity also on the
quasi-geostrophic part.

Appendix. Notations: For s∈R, Ḣs and Hs are the classical homoge-
neous/inhomogeneous Sobolev spaces in R3 endowed with the norms:

‖u‖2
Ḣs

=

∫
R3

|ξ|2s|û(ξ)|dξ, and ‖u‖2Hs =

∫
R3

(1+ |ξ|2)s|û(ξ)|dξ.

We also use the following notations: if E is a Banach space and T >0,

CTE=C([0,T ],E), and LpTE=Lp([0,T ],E).

We make abundant use of the Sobolev injections, and product laws:

Proposition 3.1. There exists a constant C>0 such that if s< 3
2 , then for any

u∈ Ḣs, u∈Lp(R3) with p= 6
3−2s and

‖u‖Lp ≤C‖u‖Ḣs .

Proposition 3.2. There exists a constant C such that for any (u,v)∈ Ḣs×Ḣt, if

s,t< 3
2 and s+ t>0 then uv∈ Ḣs+t− 3

2 and we have:

‖uv‖
Ḣs+t−

3
2
≤C‖u‖Ḣs‖v‖Ḣt .

Finally, we introduce the frequency truncation operator Ṡm: consider a smooth radial
function χ supported in the ball B(0, 43 ), equal to 1 in a neighborhood of B(0, 34 ) and
such that r 7→χ(r.e1) is nonincreasing over R+. For any u,

Ṡmu=χ(2−mD)u
def
= F−1

(
χ(2−mξ)û(ξ)

)
.

This operator smoothly cuts the frequencies of size greater than 2m. For more details
on general dyadic decompositions and Besov spaces we refer to [2, 12].
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