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THIN FILM FLOW DYNAMICS ON FIBER NETS∗

ROMAN M. TARANETS† AND MARINA CHUGUNOVA‡

Abstract. We analyze existence and qualitative behavior of non-negative weak solutions for fourth
order degenerate parabolic equations on graph domains with Kirchhoff’s boundary conditions at the
inner nodes and Neumann boundary conditions at the boundary nodes. The problem is originated
from industrial constructions of spray coated meshes which are used in water collection and in oil-water
separation processes. For a certain range of parameter values we prove convergence toward a constant
steady state that corresponds to the uniform distribution of coating on a fiber net.
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1. Introduction
Creation of fiber nets for water collection from the air is a new research area in

industrial engineering. Fog represents a large source of drinkable water, and considered
to be one of possible solutions during droughts in arid climates. Different plants and
animals developed special textural and chemical features on their surfaces to harvest this
resource of water. [15] investigated the influence of the surface wettability characteristics,
length scale, and weave density on the fog-harvesting capability of woven meshes.

Bio-inspired fibers have been researched significantly so as to create a new type of
meshes in fogging-collection projects. [7] confirmed that the water-collecting ability of
the spider web is the result of a unique fiber structure. They fabricated different types
of meshes to investigate the water collection behavior and the influence of geometry on
the hanging-drops and used these data to evaluate the length of the three phase contact
line at threshold conditions in conjunction with the maximal volume of a hanging drop
at different modes. They also demonstrated that the geometrical structure of spider-
inspired fiber induced much stronger water hanging ability than that of uniform fiber.

On a rainy day a spider web cannot avoid collision with water droplets. The collision
normally does not destroy the fiber network of the web, and droplet residue is collected
on the fiber after impact. After a series of impacts, the web is covered by a number of
water drops, which are even larger than normal rain drops (see [10, Figure 3.1]). Drop
impact on spiders web is also encountered in engineering problems because the water
harvesting performance crucially depends on the water retention on the fibers. On the
contrary, in air filtration systems using meshes, droplet retention must be suppressed
because it causes clogging of fiber filters (see [3]).

When products in the form of a mesh or grid are coated by spraying coating treat-
ment liquids or quenched by coolants, understanding the dynamics of liquid coating
on fiber net becomes essential. For example, spray coating mesh technology is used in
oil-water separation that is a worldwide problem due to the increasing emission of indus-
trial oily waste water and the frequent oil spill accidents. Technology for construction
of super-hydrophobic attapulgite coated mesh for gravity driven oil water separation
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fabricated by a spray-coating process is described by [14]. Spray coating is also widely
utilized for coating process of solar cells.

For all the problems above the structure of the domains can be represented by
graphs and the coating process in the lubrication limit can be modeled as liquid thin-
film dynamics. The graph domain structure was already used in the analysis of cer-
tain fluid flows (see e. g. [6, 17]). Mean curvature flows on graphs were studied in [12]
and diffuse interface PDE models on graphs were analyzed in [2, 19]. Graph theory
has applications in many different areas of science like: in computer graphics, inter-
net tomography, quantum computing), physics (e.g., Anderson localization, photonic
crystals, mesoscopic systems, waveguides), chemistry (aromatic molecules), and engi-
neering (dynamical system, nanotechnology, microelectronics, fractal devices) (see for
survey [11,13]).

In the present paper, a coupled system of thin-film equations (shortly TFEs) with
Kirchhoff’s boundary conditions at the inner nodes and Neumann boundary condition
at the boundary nodes is used to describe viscous liquid coating of a fiber net. This
model was obtained as lubrication approximation of the Navier–Stokes system for in-
compressible flows. The graphs can be interpreted as narrow grooves on a solid surface
in which extends a viscous fluid. Our study allows to extend the previously obtained
results (see [1, 4, 5, 18]) to the case of surfaces with more complex geometry. To the
best of our knowledge, this result is new and no other authors studied TFEs on graphs
previously.

Let us briefly describe the contents of the article. In the next section we present
graph structure of mesh domain, some definitions and auxiliary statements. In Section
3, for the non-linearity power n>1, we prove existence of non-negative weak solutions
for TFEs on graph domains. The last Section 4 is devoted to the proof of convergence
toward a constant steady state. This section also includes numerical simulations of
convergence to uniform coating for some different configurations of graphs.

2. Notations and definitions

2.1. Graph structure of mesh domains. Let G= (V,E) be a metric graph
with vertex set V ={ai}mi=1, and the edge set E={ej}lj=1 with |ej |= `j and ej has the
cross-sectional area dj>0. Further, for simplicity, we will assume that dj = 1 (one can
introduce different weights dj to the edges to model more general geometry). Let h(x,t)
be a function defined on G×R+, hj(x,t) be its parameterization realization on ej×R+.
If hj(x,t), j∈{1,2,..,l}, satisfy the partial differential equation

hj,τ +
(
hnj hj,xxx

)
x

= 0, x∈ej := (αj ,βj), (2.1)

where βj−αj = `j>0, then h(x,τ) is called satisfying the TFE on E. For a function
h(x,τ) satisfied the TFE, we can define its normalized realization on ej by

uj(s,t) =hj(αj+s`j ,τ), s∈ (0,1), and τ = `4j t.

Then we have

uj,s(s,t) = `jhj,x(αj+s`j ,τ),
(
hnj hj,xxx

)
x

= `−4j
(
unj uj,sss

)
s
,

uj,t(s,t) = `−4j hj,τ (αj+s`j ,τ).

So we can assume that uj(s,t) satisfies the TFE

uj,t+
(
unj uj,sss

)
s

= 0, s∈ (0,1), j= 1,l. (2.2)
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The function uj(s,t) is called the normalized realization of h(x,τ). In the sequel, we
always use the normalized realization of a function.

At the interior node a∈Vint :=V \∂G we assume that

∂kuj(1,t)
∂sk

= ∂kui(0,t)
∂sk

∀j∈J+(a), i∈J−(a), k= 0,2, (2.3)

∑
j∈J+(a)

∂kuj(1,t)
∂sk

−
∑

j∈J−(a)

∂kuj(0,t)
∂sk

= 0, k= 1,3. (2.4)

Here (2.3) are the nodal continuity of u and its second derivatives or Kirchhoff’s rules,
and (2.4) are the flow continuous conditions. At the boundary node a∈∂G we assume
that

∂kuj(1,t)
∂sk

= ∂kui(0,t)
∂sk

= 0 ∀j∈J+(a), i∈J−(a), k= 1,3, (2.5)

where (2.5) are no-flux conditions. Thus, the corresponding closed loop system is

uj,t+
(
unj uj,sss

)
s

= 0, s∈ (0,1), j=1,l,

∂kuj(1,t)
∂sk

= ∂kui(0,t)
∂sk

∀j∈J+(a), i∈J−(a), a∈Vint, k= 0,2,∑
j∈J+(a)

∂kuj(1,t)
∂sk

−
∑

j∈J−(a)

∂kuj(0,t)
∂sk

= 0, a∈Vint, k= 1,3,

∂kuj(1,t)
∂sk

= ∂kui(0,t)
∂sk

= 0 ∀j∈J+(a), i∈J−(a), a∈∂G, k= 1,3,

uj(s,0) =u0j(s), s∈ (0,1), j=1,l.

(2.6)

2.2. Functional spaces and definitions. Define the function spaces L2(E)
and Hk(E) by

L2(E) ={f(x) :fj(s)∈L2(αj ,βj)},

Hk(E) ={f(x)∈L2(E) :fj(s)∈Hk(αj ,βj)},

and the scalar product

(u(x),v(x)) :=

l∑
j=1

1∫
0

uj(s)vj(s)ds

for arbitrary u(x) = (u1(x),..,ul(x)), v(x) = (v1(x),..,vl(x))∈L2(E).

Definition 2.1. For node a∈V , let J+(a) denote the index set of the incoming
edges to a and J−(a) denote the index set of the outgoing edges from a, and

lim
s→1

uj(s) =uj(1) if j∈J+(a), lim
s→0

uj(s) =uj(0) if j∈J−(a),

where uj is the normalized realization of u(x) on ej.
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Definition 2.2. A function u(x) defined on G is said to be the incoming contin-
uous at a∈V if u(x) is continuous on E and has limits at two endpoints of each edge
in E, moreover it satisfies

uj(1) =u(a) ∀j∈J+(a),

where uj is the normalized realization of u(x) on ej. It is said to be the outgoing
continuous at a if u(x) is continuous on E and has limits at two endpoints of each
edge in E, and

ui(0) =u(a) ∀i∈J−(a).

For a multiple node a, u(x) is said to be continuous at a if lim
x→a

u(x) =u(a) or equivalently

u(a) =uj(1) =ui(0) ∀j∈J+(a), i∈J−(a).

A function u defined on G is said to be a continuous function if it is continuous on
E, and continuous at each interior vertex a∈Vint, and at each boundary vertex ai∈∂G,
it holds that

lim
s→1

u(s) =uj(1) if j∈J+(ai), lim
s→0

u(s) =uk(0) if k∈J−(ai).

One denotes the set of all continuous function on G by C(G).

For more details about definitions in graph theory, see e. g. [20].

3. Main result
Let us denote by

G0(z) :=

z∫
A

v∫
A

dydv
|y|n , A>0.

Theorem 3.1. Assume that n>1 and

06u0(s)∈H1(E),

l∑
j=1

1∫
0

G0(u0j(s))ds<+∞.

Let G be a connected, simple, plane graph with ∂G 6=∅. Then there exists a nonnegative
solution u(s,t) = (u1(s,t),..,ul(s,t))∈L∞(0,T ;H1(E))∩L2(0,T ;H2(E)) satisfying

ut∈L2(0,T ;(H1(E))∗),

l∑
j=1

T∫
0

1∫
0

unj (s,t)u2j,sss(s,t)dsdt<∞,

l∑
j=1

1∫
0

uj(s,t)ds=

l∑
j=1

1∫
0

u0j(s)ds (mass conservation),

and (2.6) in the following sense:

T∫
0

<ut,ψ>(H1)∗,H1 dt−
l∑

j=1

T∫
0

1∫
0

unj (s,t)uj,sss(s,t)ψj,s(s,t)dsdt= 0

for all ψ(s,t) = (ψ1(s,t),..,ψl(s,t))∈L2(0,T ;H1(E)) and T >0 such that

ψj(1,t) =ψi(0,t) ∀j∈J+(a), i∈J−(a), a∈V.
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3.1. Proof of Theorem 3.1.

3.1.1. Approximation solutions. We write the approximation of the problem
(2.6) in the following form

uj,t−
(
fε(uj)wj,s

)
s

= 0, s∈ (0,1), j= 1,l,

wj =−uj,ss, j=1,l,

uj(1,t) =ui(0,t) ∀j∈J+(a), i∈J−(a), a∈Vint,

wj(1,t) =wi(0,t) ∀j∈J+(a), i∈J−(a), a∈Vint,∑
j∈J+(a)

uj,s(1,t)−
∑

j∈J−(a)

uj,s(0,t) = 0, a∈Vint,

∑
j∈J+(a)

wj,s(1,t)−
∑

j∈J−(a)

wj,s(0,t) = 0, a∈Vint,

uj,s(1,t) =ui,s(0,t) = 0 ∀j∈J+(a), i∈J−(a), a∈∂G,

wj,s(1,t) =wi,s(0,t) = 0 ∀j∈J+(a), i∈J−(a), a∈∂G,

uj(s,0) =uε0j(s)>u0j(s)+εθ, s∈ (0,1), j= 1,l,

(3.1)

where fε(z) := |z|n+ε, θ∈ (0, 12 ). To prove the local in time existence, we apply the

Galerkin method. Let {φik}l,Ni,k=1 be the eigenfunctions of the Laplace operator

−φ′′ik(s) =λikφik(s), s∈ (0,1), i=1,N, k= 1,l,

with the continuity conditions

φik(1) =φij(0) ∀k∈J+(a), j∈J−(a), a∈Vint,

∑
k∈J+(a)

φ′ik(1)−
∑

k∈J−(a)

φ′ik(0) = 0, a∈Vint,

φ′ik(1) =φ′ij(0) = 0 ∀k∈J+(a), j∈J−(a), a∈∂G.

The eigenfunctions φik are orthogonal in the H1(0,1) and orthonormal in the L2(0,1)
scalar product, i. e.

1∫
0

φjk(s)φik(s)ds= 0 if j 6= i, and = 1 if j= i;

1∫
0

φ′jk(s)φ′ik(s)ds= 0 if j 6= i, and =λjk if j= i.

For more details about Sturm–Liouville theory on graphs, see e. g. [8, 9, 16]. Now, we
consider the following Galerkin ansatz

uN,εj (s,t) =

N∑
i=1

cij(t)φij(s), wN,εj (s,t) =

N∑
i=1

dij(t)φij(s).



768 THIN FILM FLOW DYNAMICS ON FIBER NETS

a1
a2

a5

a4
a3

a8

a7
a6

Fig. 3.1. An example of the graph with nonempty set of boundary nodes.

Plugging this ansatz into (2.6)1,2 and multiplying by φij(s), we obtain

dij(t) =λijcij(t),

c′ij(t) =−
N∑
k=1

λkjckj(t)

1∫
0

fε

( N∑
k=1

ckj(t)φkj(s)
)
φ′kj(s)φ

′
ij(s)ds, (3.2)

cij(0) =

1∫
0

uε0j(s)φij(s)ds, (3.3)

which have to hold for i=1,N , j=1,l. Since the right-hand side of (3.2) is Lipschitz
continuous on cij . Thus by the Picard–Lindelöf and Cauchy theorems a unique global
in time solution to (3.2)–(3.3) exists.

Global solvability for arbitrary but fixed T >0 can be proved by using a priori
estimates (uniformly in N and ε) which will be obtained in the following subsection.

Example 3.1. Let G be a planar graph such that the directed edges are defined by

e1 = (a1,a5), e2 = (a2,a6), e3 = (a3,a7), e4 = (a4,a8),

e5 = (a5,a6), e6 = (a6,a8), e7 = (a7,a8), e8 = (a5,a7),

the boundary of G is ∂G={a1,a2,a3,a4} (see Figure 3.1).
On the edges ek, k= 1,2,3,4, we have the problems

−φ′′ik(s) =λikφik(s), φ′ik(0) =φ′ik(1) = 0, k=1,4.

The solutions are

φik(s) =
√

2cos(
√
λiks), λik = (πi)2, k=1,4, i=1,N.



ROMAN M. TARANETS AND MARINA CHUGUNOVA 769

On the edges ek, k= 5,6,7,8, we get the problems

−φ′′i5(s) =λi5φi5(s), φi1(1) =φi5(0) =φi8(0), φ′i5(0) =−φ′i8(0);

−φ′′i6(s) =λi6φi6(s), φi2(1) =φi6(0) =φi5(1), φ′i6(0) =φ′i5(1);

−φ′′i7(s) =λi7φi7(s), φ′i7(1) =−φ′i6(1);

−φ′′i8(s) =λi8φi8(s), φi3(1) =φi8(1) =φi7(0), φ′i8(1) =φ′i7(0);

The corresponding solutions are

φi5(s) = (−1)i
√

2cos(
√
λi5s), λi5 = (2πi)2, i= 1,N,

φi6(s) = (−1)i
√

2cos(
√
λi6s), λi6 = (πi)2, i=1,N,

φi7(s) = (−1)i
√

2cos(
√
λi7s), λi7 = (πi)2, i=1,N,

φi8(s) = (−1)i
√

2cos(
√
λi8s), λi8 = (2πi)2, i= 1,N.

3.1.2. A priori estimates. Next, for brevity, we denote by uj :=uN,εj . Inte-
grating (3.1)1 on s and summing on j, we find that

d
dt

l∑
j=1

1∫
0

uj(s,t)ds=

l∑
j=1

fε(uj(1,t))wj,s(1,t)−
l∑

j=1

fε(uj(0,t))wj,s(0,t)

=

m∑
k=1

[ ∑
j∈J+(ak)

fε(uj(1,t))wj,s(1,t)−
∑

j∈J−(ak)

fε(uj(0,t))wj,s(0,t)
]
(3.1)3

=

m∑
k=1

fε(u(ak,t))
[ ∑
j∈J+(ak)

wj,s(1,t)−
∑

j∈J−(ak)

wj,s(0,t)
]
(3.1)6

= 0,

whence we get

l∑
j=1

1∫
0

uj(s,t)ds=

l∑
j=1

1∫
0

uε0j(s)ds. (3.4)

The energy function is defined by

Eε(t) := 1
2

l∑
j=1

1∫
0

u2j,s(s,t)ds.
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Thus

dEε(t)
dt =

l∑
j=1

1∫
0

uj,s(s,t)uj,st(s,t)ds

=

l∑
j=1

1∫
0

wj(s,t)uj,t(s,t)ds+

m∑
k=1

[ ∑
j∈J+(ak)

uj,s(1,t)uj,t(1,t)−
∑

j∈J−(ak)

uj,s(0,t)uj,t(0,t)
]

=

m∑
k=1

[ ∑
j∈J+(ak)

fε(uj(1,t))wj(1,t)wj,s(1,t)−
∑

j∈J−(ak)

fε(uj(0,t))wj(0,t)wj,s(0,t)
]

+

m∑
k=1

[ ∑
j∈J+(ak)

uj,s(1,t)uj,t(1,t)−
∑

j∈J−(ak)

uj,s(0,t)uj,t(0,t)
]

−
l∑

j=1

1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds

(3.1)3,4
=

m∑
k=1

fε(u(ak,t))w(ak,t)
[ ∑
j∈J+(ak)

wj,s(1,t)−
∑

j∈J−(ak)

wj,s(0,t)
]

+

m∑
k=1

ut(ak,t)
[ ∑
j∈J+(ak)

uj,s(1,t)−
∑

j∈J−(ak)

uj,s(0,t)
]
−

l∑
j=1

1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds,

whence, due to (3.1)5 and (3.1)6, we obtain

Eε(t)+

l∑
j=1

t∫
0

1∫
0

fε(uj(s,t))w
2
j,s(s,t)dsdt=Eε(0); (3.5)

hence Eε(t)6Eε(0). This means that the energy of the closed loop system (3.1) is
dissipative.

a3

a1 a2

a4

a1

a4 a2

a3
(a) (b)

Fig. 3.2. The graph structure of the mesh domain that is used for numerical simulations of
convergence to uniform coating for 3-edges case with non-empty set of boundary nodes (a) and for
4-edges case with an empty set of boundary nodes (b).
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Fig. 3.3. Snapshots of numerical time evolution for coating flow on 3-edge graph domain (sym-
metric initial values). Local time dynamics (on the top) and long time dynamics (on the bottom).
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0

0.05

0

0.1

0.15

1

0.2

0.25

0.2 0.80.4 0.60.6 0.40.8 0.21 0

0

0.05

0

0.1

0.15

0.2

10.80.5 0.60.40.21 0

Fig. 3.5. Snapshots of numerical time evolution for coating flow on 4-edges graph domain (non-
symmetric initial values). Local time dynamics (on the top) and long time dynamics (on the bottom).

The entropy function is defined by

Gε(u) :=

u∫
A

v∫
A

dydv
fε(y)

, G′′ε (u) = 1
fε(u)

>0, A>0.

Thus

d
dt

l∑
j=1

1∫
0

Gε(uj(s,t))ds

=

l∑
j=1

1∫
0

G′ε(uj(s,t))uj,t(s,t)ds=−
l∑

j=1

1∫
0

uj,s(s,t)wj,s(s,t)ds
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+

m∑
k=1

[ ∑
j∈J+(ak)

G′ε(uj(1,t))fε(uj(1,t))wj,s(1,t)

−
∑

j∈J−(ak)

G′ε(uj(0,t))fε(uj(0,t))wj,s(0,t)
]

=−
l∑

j=1

1∫
0

w2
j (s,t)ds

−
m∑
k=1

[ ∑
j∈J+(ak)

uj,s(1,t)wj(1,t)−
∑

j∈J−(ak)

uj,s(0,t)wj(0,t)
]

+

m∑
k=1

[ ∑
j∈J+(ak)

G′ε(uj(1,t))fε(uj(1,t))wj,s(1,t)

−
∑

j∈J−(ak)

G′ε(uj(0,t))fε(uj(0,t))wj,s(0,t)
]
(3.1)3,4

= −
l∑

j=1

1∫
0

w2
j (s,t)ds

−
m∑
k=1

w(ak,t)
[ ∑
j∈J+(ak)

uj,s(1,t)−
∑

j∈J−(ak)

uj,s(0,t)
]

+

m∑
k=1

G′ε(u(ak,t))fε(u(ak,t))
[ ∑
j∈J+(ak)

wj,s(1,t)−
∑

j∈J−(ak)

wj,s(0,t)
]
,

whence, due to (3.1)5 and (3.1)6, we obtain

l∑
j=1

1∫
0

Gε(uj(s,t))ds+

l∑
j=1

t∫
0

1∫
0

w2
j (s,t)dsdt=

l∑
j=1

1∫
0

Gε(u
ε
0j(s))ds. (3.6)

This means that the entropy of the closed loop system (3.1) decays.
As a result, in view of u0∈H1(E), from (3.4), (3.5) and (3.6) we obtain that

{uN,ε}N>1,ε>0 is uniformly bounded in L∞(0,T ;H1(E)),

{wN,ε}N>1,ε>0 is uniformly bounded in L2(QT ),

{uN,εt }N>1,ε>0 is uniformly bounded in L2(0,T ;(H1(E))∗),

{Gε(uN,ε)}N>1,ε>0 is uniformly bounded in L∞(0,T ;L1(E)),

{(uN,ε)n
2 wN,εs }N>1,ε>0 is uniformly bounded in L2(QT ).

Following [1], we can let N→+∞, ε→0, and prove nonnegativity of u(s,t) for n>1.
As a result, the proof of Theorem 1 is complete.

4. Convergence to steady state and numerical simulations
By the Cauchy inequality we have

s∫
s0

uj(s,t)wj,s(s,t)ds6
( 1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds

) 1
2
( 1∫
0

u2
j (s,t)

fε(uj(s,t))
ds
) 1

2
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for all s0, s∈ (0,1), and j= 1,l. On the other hand,

s∫
s0

uj(s,t)wj,s(s,t)ds=uj(s,t)wj(s,t)+ 1
2u

2
j,s(s,t)

−uj(s0,t)wj(s0,t)− 1
2u

2
j,s(s0,t), where wj =−uj,ss.

From this we get

uj(s,t)wj(s,t)+ 1
2u

2
j,s(s,t)−fj(s0,t)

6
( 1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds

) 1
2
( 1∫
0

u2
j (s,t)

fε(uj(s,t))
ds
) 1

2

,

where fj(s0,t) :=uj(s0,t)wj(s0,t)+ 1
2u

2
j,s(s0,t). Integrating in s over (0,1), after sum-

ming on j, gives

3
2

l∑
j=1

1∫
0

u2j,s(s,t)ds−
m∑
k=1

[ ∑
j∈J+(ak)

uj(1,t)uj,s(1,t)−
∑

j∈J−(ak)

uj(0,t)uj,s(0,t)
]
−

l∑
j=1

fj(s0,t)

6
l∑

j=1

( 1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds

) 1
2
( 1∫
0

u2
j (s,t)

fε(uj(s,t))
ds
) 1

2

6
( l∑
j=1

1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds

) 1
2
( l∑
j=1

1∫
0

u2
j (s,t)

fε(uj(s,t))
ds
) 1

2

.

It follows from the boundary conditions in the problem (2.6) that there exists s0∈ [0,1]
such that fj(s0,t)60. So, by (3.6) we deduce that

9E2ε (t)6
( l∑
j=1

1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds

)( l∑
j=1

1∫
0

u2
j (s,t)

fε(uj(s,t))
ds
)

6
( l∑
j=1

1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds

)( l∑
j=1

1∫
0

|uj(s,t)|2−nds
)

6C(uε0j)

l∑
j=1

1∫
0

fε(uj(s,t))w
2
j,s(s,t)ds. (4.1)

From (3.5), due to (4.1), we arrive at

d

dt
Eε(t)+ 9

C(uε
0j)
E2ε (t)60,

whence

Eε(t)6Eε(0)
(
1+ 9

C(uε
0j)
Eε(0)t

)−1
.

Passing to the limit as ε→0, we obtain

E0(t)6E0(0)
(
1+ 9

C(u0j)
E0(0)t

)−1→0 as t→+∞. (4.2)
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As a result, uj,s(s,t)→0 as t→+∞, by continuity u(x,t) in each vertex, implies
uj(s,t)→K for all j=1,l, where K>0 is some constant. By the mass conservation

(3.4) with ε= 0, we find that K= 1
l

l∑
j=1

1∫
0

u0j(s)ds . Hence, we obtained the following

result.

Corollary 4.1. For any j=1,l

uj(s,t)→ 1
l

l∑
j=1

1∫
0

u0j(s)ds as t→+∞.

Two different types of graph domains, which were used in numerical simulations
described below, are illustrated in Figure 3.2. For the case (a) we ran Matlab finite
element numerical simulations for symmetric initial values (see Figure 3.3) and for non-
symmetric initial values (see Figure 3.4). Neumann (no-flux) boundary conditions were
used at 3 boundary nodes u1,x=u2,x=u3,x= 0, u1,xxx=u2,xxx=u3,xxx= 0 and Kirch-
hoff’s boundary conditions were applied at the only inner node u1,x+u2,x+u3,x= 0,
u1,xxx+u2,xxx+u3,xxx= 0 with continuity conditions u1 =u2 =u3, u1,xx=u2,xx=u3,xx.
On the top pictures (Figure 3.3, 3.4) bold lines are used to indicate initial data (for
all edges initial data are given by droplet concentrated near the inner node). For local
(short time dynamics) in both cases the initial droplets spread over their edges with
the only difference that in case of symmetry all 3 first derivatives at the inner node are
equal to 0. The last values of the numerical short time dynamics are used as initial
values (see bold lines on the bottom pictures in Figure 3.3, 3.4) for long time dynam-
ics time evolution snapshots. This long time numerics clearly illustrates convergence
toward uniform coating in both (symmetric and non-symmetric) cases.

For the case (b) with an empty set of boundary nodes and non-symmetric initial
values (see Figure 3.5). Kirchhoff’s boundary conditions were applied at the 4 inner
nodes: u1,x+u2,x= 0, u2,x+u3,x= 0, u3,x+u4,x= 0, u4,x+u1,x= 0, u1,xxx+u2,xxx= 0,
u2,xxx+u3,xxx= 0, u3,xxx+u4,xxx= 0, u4,xxx+u1,xxx= 0 with corresponding continuity
conditions u1 =u2, u1,xx=u2,xx, u2 =u3, u2,xx=u3,xx, u3 =u4, u3,xx=u4,xx, and u4 =
u1, u4,xx=u1,xx. On the top pictures (Figure 3.5) bold lines are used to indicate initial
data (for edges 1 and 3 (blue and green) initial data are given by bigger droplets to
compare to the edges 2 and 4 (yellow and red)). The long time numerical simulations
show the difference in convergence toward uniform coating between the edges. On the
edges 1 and 3 solutions approach the constant value from above and at the same time
on the edges 2 and 4 solutions approach the constant value from below.
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