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BIFURCATION OF TRAVELING WAVES IN A KELLER–SEGEL TYPE
FREE BOUNDARY MODEL OF CELL MOTILITY∗

LEONID BERLYAND† , JAN FUHRMANN‡ , AND VOLODYMYR RYBALKO§

Abstract. We study a two-dimensional free boundary problem that models motility of eukaryotic
cells on substrates. This problem consists of an elliptic equation describing the flow of the cytoskeleton
gel coupled with a convection-diffusion PDE for the density of myosin motors. The two key properties of
this problem are (i) the presence of cross diffusion as in the classical Keller–Segel problem in chemotaxis
and (ii) a nonlinear nonlocal free boundary condition that involves boundary curvature. We establish
the bifurcation of traveling waves from a family of radially symmetric steady states. The traveling waves
describe persistent motion without external cues or stimuli which is a signature of cell motility. We
also prove the existence of non-radial steady states. Existence of both traveling waves and non-radial
steady states is established via Leray–Schauder degree theory applied to a Liouville-type equation in a
free boundary setting (which is obtained via a reduction of the original system).
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1. Introduction
For decades, the persistent motion exhibited by keratocytes on flat surfaces has at-

tracted attention from experimentalists and modelers alike. Cells of this type are found,
e.g., in the cornea and their movement is of medical relevance as they are involved in
wound healing after eye surgery or injuries. Also, keratocytes are perfect for experi-
ments and modeling since they naturally live on flat surfaces, which allows capturing
the main features of their motion by spatially two dimensional models. The typical
modes of motion of keratocytes are rest (no movement at all) or steady motion with
fixed shape, speed, and direction. That is why the most important solutions will be
steady state solutions (corresponding to a resting cell) and traveling wave solutions (a
steadily moving cell).

Traveling wave solutions for cell motility models have been investigated both analyt-
ically and numerically for free boundary problems in one space dimension, e.g. [2,37,38],
numerically for free boundary models in two dimensions, e.g. [3,43], as well as for phase
field models, analytically in one dimension, e.g. [5], and numerically in two dimensions,
e.g. [40, 41, 48], for an overview we refer to [1, 47] and references therein. In this work
we consider a two-dimensional model that can be viewed both as an extension of the
analytical one-dimensional model from [37, 38] to 2D and as a simplified version of the
computational 2D model from [3]. Our objective is to study the existence of traveling
wave solutions for this model. These solutions describe steady motion without external
cues or stimuli which is a signature of cell motility.

In [37, 38], the authors introduced a one dimensional model capturing actin (more
precisely, filamentous actin or F-actin) flow and contraction due to myosin motors. They
proposed a model that consists of a system of an elliptic and a parabolic equation of
Keller–Segel type in the free boundary setting. It was shown in [37] that trivial steady
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states bifurcate to traveling wave solutions. The Keller–Segel system in fixed domains
was first introduced and analyzed in [22–24] and studied by many authors due to its
fundamental importance in biology most notably for modeling chemotaxis. There is a
vast body of literature on Keller–Segel models with prescribed (fixed rather than free)
boundary, see, e.g., [9,36,44,45], review [18] and references therein. A key issue in such
problems is the possibility of blow up of the solutions depending on the initial data.

In [3] a two-dimensional free boundary model consisting of PDEs for actin flow,
myosin density and, additionally, a reaction-diffusion equation for the cell-substrate
adhesion strength was introduced based on mechanical principles. Simulations of this
model reveal steady state and traveling wave type solutions in two dimensions that
are compared to experimental observations of keratocyte motion on flat surfaces. The
steady state solutions are characterized by a high adhesion strength (high traction)
whereas the moving cell solutions correspond to a low overall adhesion strength. In
both cases, the adhesion strength is spatially almost homogeneous. Therefore in this
work we consider a simplified two-dimensional problem with constant adhesion strength
parameter similar to the one dimensional model of [37, 38]. We further simplify the
model in [3], see also review [39], by considering a reduced rheology of the cytoskeleton
based on the high contrast in numerical values for shear and bulk viscosities cited in [3].
Thus following [33] we consider equations [S1]− [S2] from [3] with shear viscosity µ= 0
and bulk viscosity µb scaled to 1.

The main building block of the model considered in this work is a coupled Keller–
Segel type system of two partial differential equations. The first one (obtained after
the above simplification of equation [S1] from [3]) in dimension-free variables reads as
follows:

∇divu+α∇m=u in Ω(t), (1.1)

where Ω(t) is the time dependent domain in R2 occupied by the cell, u is the velocity of
the actin gel, and m is the myosin density. This equation represents the force balance
between the stress in the actin gel on the left-hand side and the friction (proportional to
the velocity) between the cell and the substrate on the right-hand side. Since the shear
viscosity µ= 0, the stress S is a scalar composed of a hydrodynamic (passive) part divu
and the active contribution αm generated by myosin motors. Identifying S with the
corresponding matrix (tensor SI), Equation (1.1) can be rewritten in the standard form
divS=u. Equation (1.1) is coupled to an advection-diffusion equation for the myosin
density m:

∂tm= ∆m−div(um) in Ω(t). (1.2)

Myosin motors are transported with the actin flow if bound to actin and freely diffuse
otherwise, reflected by the second and first term on the right-hand side of (1.2), respec-
tively. Assuming that the time scale for binding and unbinding is very short compared
to those relevant for our problem, the densities of bound and unbound myosin motors
can be combined into the effective density m (see e.g. [37, 38]).

Following [3], the evolution of the free boundary ∂Ω(t) is described by the kinematic
boundary condition for the normal velocity Vν ,

Vν = (u ·ν)−βκ+λ on ∂Ω(t), (1.3)

where ν is the unit outward normal, κ stands for the curvature of ∂Ω(t), and con-

stant λ defined by λ :=
(

2πβ−
∫
∂Ω(t)

(u ·ν)dσ
)
/|∂Ω(t)| enforces area preservation. The
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kinematic condition (1.3) equates the normal velocity Vν of the boundary to the con-
tributions from the normal component (u ·ν) of the actin velocity, the surface tension
βκ of the membrane (κ being the curvature), and the area preservation term λ. The
latter term is constant along the boundary and is interpreted as actin polymerization
at the membrane, it accounts for the difference between velocities of the actin gel and
the membrane.

On the boundary, Equation (1.1) is supplied with the zero stress condition

divu+αm= 0 on ∂Ω(t). (1.4)

whereas for Equation (1.2), a no-flux condition is assumed:

∂m

∂ν
= (u ·ν−Vν)m on ∂Ω(t). (1.5)

Similar parabolic-elliptic free boundary problems frequently occur in modeling of
biological and physical phenomena. One type of problem arises in tumor growth models,
e.g. [11,14,17,19] (see also reviews [12,31]), however, these are typically linear problems,
and the domain area is not preserved. For these models, steady state solutions have
been described, and bifurcations to different steady states or growing/shrinking domain
solutions have been investigated. Another type of problem arises in the modeling of
wound healing, see, e.g., [20], where a free boundary problem for a reaction diffusion
equation is used to model the evolution of complex wound morphologies. These models
are often agent based rather than continuum models, see, e.g., [7]. More recently,
mechanical tumor models have been devised leading to Hele–Shaw type problems, e.g.
[35].

In the above works the focus is on solutions describing motion with constant velocity
in domains that expand or contract rather than domains of fixed size and shape moving
with constant velocity. Besides this shift of focus, the main novelty of the free boundary
problem under consideration is the cross diffusion term in Equation (1.2) giving rise to
the Keller–Segel structure of the bulk equations. This structure was introduced in one-
dimensional models of cell motility in [37, 38]. While the boundary in one-dimensional
models (e.g. [37,38]) consists of just two points, in two-dimensional free boundary models
the shape of the domain is unknown. This poses questions that do not arise in one-
dimensional settings and leads to novel challenges in analysis, for example, bifurcations
from radially symmetric to non-radially symmetric shapes.

Finally, we briefly summarize the mathematical novelty of the considered problem
and obtained results. Observe that Keller–Segel type problems in a free boundary set-
ting have barely been studied prior to this work except a simple 1D case. We employed
the approach pioneered in [14] and further developed in [13, 17, 19] where branches of
solutions bifurcating from circular steady states are found for tumor growth free bound-
ary problems. Our results are obtained by the following two step procedure. First we
reduce the problem of finding traveling waves/steady states to a Liouville type equation
in a 2D domain. This classical equation historically appeared in geometric problems and
later surfaced in many other applications, e.g., fluid mechanics, relativity, etc. We ob-
serve that this equation also appears in the modeling of cell motility, where it is supplied
with an additional boundary condition due to the free boundary setting. Using methods
from [10] based on the Implicit Function Theorem, we further reduce the problem to a
fixed point problem for a nonlinear compact mapping. Second, Leray–Schauder degree
theory is applied to this fixed point problem to prove the existence of both traveling
waves and nonradial steady states. While most tumor growth problems contain a single
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nonlinearity due to the free boundary, our problem contains the additional nonlinearity
from the Keller–Segel type system (1.1)-(1.2). This feature significantly complicates the
analysis. In particular, this results in a nontrivial analysis of the necessary bifurcation
condition in Section 3 and the use of the Leray–Schauder degree theory in Section 6 in
place of the Crandall-Rabinowitz bifurcation theorem employed (e.g., in [13, 17, 19]) in
the somewhat similar context of tumor growth free boundary problems.

1.1. Main results. We are interested in traveling wave solutions of (1.1) - (1.3),
i.e. solutions of the form Ωt= Ω+V t, u= ũ(x−Vxt,y−Vyt), m=m(x−Vxt,y−Vyt).
Thus after passing to the moving frame and rewriting system (1.1)-(1.5) in terms of the
scalar stress S := divũ+αm we are led to the following free boundary problem

−∆S+S=αm in Ω, and S= 0 on ∂Ω, (1.6)

−∆m+div((∇S−V )m) = 0 in Ω, and
∂m

∂ν
= ((∇S−V ) ·ν)m on ∂Ω, (1.7)

Vν =
∂S

∂ν
−βκ+λ on ∂Ω. (1.8)

We now outline the main result of the paper (see, Section 6 for further details) and
key ingredients of the proof.

Theorem 1.1. There is a family of (traveling wave) solutions of (1.6)-(1.8) with
nonzero velocities V , bifurcating from radially symmetric steady state solutions. This
family exists for all values of parameters α>0 and β>0 (except, possibly, for a countable
number of values of β, see Theorem 7.1) and for any domain area |Ω|>0.

Without loss of generality we assume motion in x-direction and, slightly abusing
notation, write V = (V,0). Furthermore, for a given S all nonnegative solutions of (1.7)
(m represents the density of myosin and therefore cannot be negative) are given by
m(x,y) =m0e

S(x,y)−xV with some constant m0≥0. Indeed, it is straightforward that
m=eS(x,y)−xV is a solution of (1.7). The uniqueness up to a multiplicative constant
follows from the Krein–Rutman theorem [27], or alternatively using the factorization
m=m0(x,y)eS(x,y)−xV , considering m0 as a unknown function, and proving that m0 =
const. by showing that it satisfies an advection-diffusion equation with zero Neumann
condition. This allows us to eliminate m from (1.6)-(1.7) and rewrite the problem of
finding traveling waves in the following concise form:

−∆S+S= ΛeS−xV in Ω, (1.9)

with boundary conditions

S= 0 on ∂Ω (1.10)

and

V νx=
∂S

∂ν
−βκ+λ on ∂Ω. (1.11)

Note that an ODE similar to the PDE (1.9) was obtained in the analysis of the one
dimensional free boundary problem for the Keller–Segel type system in [37, 38]. In
problem (1.9)-(1.11) S, V , and Λ=m0α≥0 are unknowns and the parameter β is given.
Note that (1.9)-(1.11) is a free boundary problem, that is, the domain Ω is also unknown.
For radially symmetric solutions of (1.9)-(1.10) with V = 0 and Ω being a disk, the
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constant λ can always be chosen so that the boundary condition (1.11) is satisfied. This
observation allows us to construct a one-parameter family of radially symmetric steady
state solutions by solving the nonlinear eigenvalue problem (1.9)-(1.10). Furthermore,
Equation (1.9) contains an exponential nonlinearity, as in the classical Liouville equation
[30] which has explicit radially symmetric solutions, but the additional zero order term
S in the left-hand side of (1.9) complicates the analysis. Note that non-trivial steady
states also exist for the one-dimensional model in [37,38] (they are unstable).

We rely on an argument from [10] (see also [26]) based on the Implicit Function
Theorem to show existence of an analytic curve A1 of radially symmetric solutions of
(1.9)-(1.10). Moreover these solutions are extended to the case of nonzero V in (1.9) and
small perturbations of the domain Ω from a given disk. Then (1.9)-(1.11) is reduced
to selecting solutions of (1.9)-(1.10) that satisfy (1.11). Considering the linear part
of perturbations of radially symmetric solutions we (formally) derive condition (3.8)
(Section 3) for a bifurcation from the steady states to genuine traveling waves (with
V 6= 0). We next show that condition (3.8) is indeed satisfied for a nontrivial radially
symmetric steady state solution belonging to A1, exploiting a subtle bound on the
second eigenvalue of the linearized problem for the Liouville equation from [42]. Yet
another technically involved part of this work is devoted to recasting (1.9)-(1.11) as a
fixed point problem in an appropriate functional setting. Then a topological argument
based on Leray–Schauder degree theory rigorously justifies the existence of traveling
waves with V 6= 0. Both the recasting and the topological argument require spectral
analysis of various linearized operators appearing in these considerations. Next the
techniques developed for establishing traveling wave solutions are also used to find
steady states without radial symmetry.

1.2. Structure of the paper. In Section 2 we find a one-parameter family of
radially symmetric steady state solutions and establish their properties. In Section 3
we derive a necessary condition (3.8) for the bifurcation to a family of traveling wave
solutions (V 6= 0) from the family of radially symmetric steady states and show that
this condition is satisfied on the analytic curve A1 of radially symmetric solutions. In
Section 4 we investigate the spectral properties of the linearized operator of Equation
(1.9) around radially symmetric steady states. This operator appears in a number of
the subsequent constructions. In Section 5 we establish the existence of solutions to the
Dirichlet problem (1.9)-(1.10) and study their properties. This is done for small but not
necessarily zero velocity V in a prescribed domain Ω which is a perturbation of a disk.
Section 6 completes the proof of the main result on the bifurcation of traveling waves
from steady states. To this end we rewrite (1.9)-(1.11) as a fixed point problem and
study the local Leray–Schauder index of the corresponding mapping. We show that this
index jumps at the potential bifurcation point (identified in Section 3). This establishes
the bifurcation at this point. Finally, in Section 7 we prove the existence of nonradial
steady states. In Appendix A we construct three terms of the asymptotic expansion
of traveling wave solutions in powers of small velocity, which allow us to describe the
emergence of non-symmetric shapes both analytically and numerically.
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2. Family of radially symmetric steady states
Problem (1.9)-(1.11) has a family of steady solutions, with V = 0, found in a radially

symmetric form. Namely, let Ω be a disk BR of radius R>0, then we seek radially
symmetric solutions S= Φ(r), r=

√
x2 +y2, of the equation

−1

r
(rΦ′(r))′+Φ = ΛeΦ, 0<r<R, (2.1)

with boundary conditions

Φ′(0) = Φ(R) = 0. (2.2)

Note that (2.1)-(2.2) is a nonlinear eigenvalue problem, i.e. both the constant Λ and the
function Φ(r) are unknowns in this problem. Every solution of (2.1)-(2.2) also satisfies
(1.9)-(1.11) with V = 0 and some constant λ, that is we can always choose λ in this
radially symmetric problem, so that condition (1.11) is satisfied. Equation (2.1) is the
classical Liouville equation [30] with an additional zero order term (the second term
on the left-hand side of (2.1)). Various forms of the Liouville equation arise in many
applications ranging from the geometric problem of prescribed Gaussian curvature to the
relativistic Chern-Simons-Higgs model [34], the mean field limit of point vortices of Euler
flow [8] and the Keller–Segel model of chemotaxis [46]. For a review of the literature
on Liouville type equations we address the reader to [29] and references therein. While
the above works mostly address the issues related to blow-up in the Liouville equation,
see e.g., [28], in contrast our focus is on the construction of a family of solutions and its
properties. Since we are concerned with special solutions of (1.1)-(1.5) such as traveling
waves and steady states rather than general properties of this evolution problem, the
issue of blow-up does not arise.

The following theorem establishes the existence of solutions of problem (2.1)-(2.2),
and the subsequent lemma lists some of their properties.

Remark 2.1. It is natural to expect that the set of solutions of (2.1)-(2.2) has the
same structure as the explicit solutions of the classical Liouville equation [42] in the disk.
However, the presence of the additional term S in (2.1) complicates the analysis even in
the radially symmetric case, in particular, the standard trick based on the Pohozhaev
identity no longer can be used to establish non-degeneracy (see condition (2.8)).

Theorem 2.1. Fix R>0, then

(i) There exists a continuum (a closed connected set) K⊂R×C([0,R]) of non-
negative solutions Λ≥0, Φ≥0 of (2.1)-(2.2), emanating from the trivial solution
(Λ,Φ) = (0,0). There exists a finite positive

Λ0 = max{Λ |(2.1)-(2.2) has a solution (Λ,Φ)},

in particular, Λ≤Λ0 for all (Λ,Φ)∈K. On the other hand ‖Φ‖C([0,R]) is not bounded
in K, and moreover

sup

{∫ R

0

eΦrdr
∣∣(Λ,Φ)∈K

}
=∞. (2.3)

(ii) For every 0≤Λ<Λ0 there exists a pointwise minimal solution Φ (solution taking
minimal values at every point among all solutions) of (2.1)-(2.2), and these minimal
solutions are pointwise increasing in Λ. They form an analytic curve A0 in R×C([0;R])
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which can be extended to an analytic curve A1. The curve A1 is the connected component
of A that contains A0, where

A :={(Λ,Φ)∈K|σ2(Λ,Φ)>0}, (2.4)

and σ2(Λ,Φ) denotes the second eigenvalue of the linearized eigenvalue problem

−∆w+w−ΛeΦw=σw in BR, w= 0 on ∂BR. (2.5)

Remark 2.2. Summarizing part (ii) of the theorem we have the following inclusions

K ⊇ A ⊇ A1 ⊇ A0

continuum of sol.s 2nde.v.>0 component containing A0 min. sol.s

where at most Amay be disconnected. The theorem establishes existence of the analytic
curve of radial solutions A1 from which bifurcations to traveling waves with nonzero
velocity occur (see Lemma 3.1).

Proof.
(i) By the maximum principle every solution of (2.1)-(2.2) with Λ≥0 is positive for

r<R. Let µD>0 denote the first eigenvalue of −∆ in BR with homogeneous Dirichlet
boundary condition, and let U >0 be the corresponding eigenfunction. Then multiplying
(2.1) by rU and integrating we find

(1+µD)

∫ R

0

UΦrdr= Λ

∫ R

0

eΦU rdr≥Λ

∫ R

0

ΦU rdr,

and therefore Λ≤1+µD.
To show the existence of the continuum K, we rewrite (2.1) as

−∆Φ+Φ = Λ̃

(
e2Φ∫

BR
e2Φdxdy

)1/2

in BR, (2.6)

with Φ = Φ(r), r=
√
x2 +y2, and the new unknown parameter Λ̃ in place of Λ. Then

we resolve (2.6) with Dirichlet condition Φ = 0 on ∂BR, considering the right-hand side
of (2.6) as a given function. This leads to an equivalent reformulation of (2.1)-(2.2) as
a fixed point problem of the form

Φ =Λ̃R(Φ). (2.7)

By standard elliptic estimates R is a compact mapping in C([0,R]), moreover
R(C([0,R])) is a bounded subset of C([0,R]). We can therefore apply Leray–Schauder
continuation arguments, see, e.g., [32], to find a continuum of solutions (Λ̃,Φ) of (2.7)
emanating from (0,0), where Λ̃ takes all nonnegative values. In view of the boundedness

of Λ = Λ̃
(
2π
∫ R

0
e2Φrdr

)−1/2
we conclude that sup{‖Φ‖C([0,R]) | (Λ,Φ)∈K}=∞. This in

turn implies (2.3) by Corollary 6 of [6].

(ii) According to [21] there is a minimal solution Φ of (2.1)-(2.2) for each Λ∈ [0,Λ0)
with Φ depending monotonically on Λ. Consider now any, not necessarily minimal,
solution (Λ,Φ) such that the second eigenvalue σ2(Λ,Φ) of the linearized problem (2.5)
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is positive. By using well-etablished techniques based on the Implicit Function The-
orem, see, e.g. [26], we obtain that all the solutions of (2.1)-(2.2) in a neighborhood
of (Λ,Φ) belong to a smooth curve through (Λ,Φ), provided that either the linearized
problem (2.5) has no zero eigenvalue or this eigenvalue is simple and the corresponding
eigenfunction w satisfies the non-degeneracy condition∫ R

0

eΦ(r)w(r)rdr 6= 0. (2.8)

Since by assumption σ2(Λ,Φ)>0, the zero eigenvalue, if any exists, is the first eigen-
value of (2.5) and therefore w has a fixed sign and necessarily (2.8) holds. Thus A1

is indeed a smooth curve, it contains the minimal solutions (those for which the first
eigenvalue σ1(Λ,Φ) of the linearized problem (2.5) is nonnegative) but extends beyond
these. Finally, since the nonlinearity eΦ in (2.1) is analytic, the curve K1 is analytic as
well, see the proof of Proposition (5.1).

Lemma 2.1. Each solution of (2.1)-(2.2) with Λ≥0 satisfies

Φ′(r)<0 for 0<r≤R. (2.9)

and the following Pohozhaev equalities

1

2
(RΦ′(R))2 +

∫ R

0

Φ2rdr=−Λ

∫ R

0

eΦΦ′r2dr= 2Λ

∫ R

0

eΦrdr−ΛR2. (2.10)

Proof. To show (2.9) we first prove that Φ(r) is decreasing. Assume to the contrary
that Φ takes a local minimum at r0 and there is r1∈ (r0,R] such that Φ(r0) = Φ(r1).
Multiply (2.1) by Φ′(r) and integrate from r0 to r1 to get∫ r1

r0

(
Φ′′+

1

r
Φ′
)

Φ′dr=
1

2
Φ2(r1)−ΛeΦ(r1)− 1

2
Φ2(r0)+ΛeΦ(r0) = 0. (2.11)

On the other hand, the left-hand side of (2.11) is

1

2
(Φ′(r1))2 +

∫ r1

r0

1

r
(Φ′)2dr.

Therefore Φ is constant on (r0,r1), this in turn implies that Φ is constant on (0,R), a
contradiction. Thus Φ′(r)≤0 for 0<r<R. Next, assuming that Φ′(r0) = 0 at a point
0<r0<R we get Φ′′(r0) = 0. This also implies that Φ is constant on (0,R). Finally,
Φ′(R)<0 by the Hopf Lemma.

The equalities in (2.10) are obtained in the standard way, multiplying (2.1) by the
Pohozhaev multiplier r2Φ′(r), then taking the integral from 0 to R and integrating by
parts.

3. Necessary condition for bifurcation of traveling waves
We seek traveling wave solutions with small velocity, i.e. solutions of (1.9)-(1.11)

for small V =ε, as perturbations of radially symmetric steady states given by a pair
(Λ,Φ(r)) of solutions to (2.1)-(2.2). To this end we plug the ansatz

S= Φ+εφ+ .. ., Ω ={(x,y) = r(cosϕ,sinϕ) |ϕ∈ [−π,π),r<R+ερ(ϕ)+ .. .} (3.1)

into (1.9)-(1.11). The function ρ describes the deviation of Ω from the disk BR while φ
describes the deviation of the stress S from Φ. Note that in this first order approximation
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the constant Λ is not perturbed (see Appendix A, where it is shown that the first
correction εΛ1 = 0). Equating like powers of ε, the terms of order ε in (1.9) yield the
linear inhomogeneous equation

−∆φ+φ= ΛeΦ(φ−x) in BR. (3.2)

for φ. Furthermore, equating terms of order ε in the boundary conditions (1.10), (1.11)
we get

φ+Φ′(R)ρ= 0, (3.3)

and

cosϕ=
∂φ

∂ν
+Φ′′(R)ρ+

β

R2
(ρ+ρ′′), (3.4)

where the constant λ1 coming from the expansion of λ, λ=λ0 +ελ1 + .. ., has been
omitted since we only consider area preserving perturbations of the domain as detailed
in Appendix A. To get rid of trivial solutions arising from infinitesimal shifts of the disk
BR, we require ρ to satisfy the orthogonality condition∫ π

−π
ρ(ϕ)cosϕdϕ= 0. (3.5)

A solution of (3.2)-(3.3) is sought in the form of the Fourier component φ= φ̃(r)cosϕ.
Then, φ̃(r) has to satisfy

−1

r
(rφ̃′)′+

(
1+1/r2

)
φ̃= ΛeΦ(φ̃−r), 0<r<R, φ̃(0) = 0, (3.6)

and, owing to (3.3) and (3.5), the boundary condition

φ̃(R) = 0. (3.7)

Now multiply (3.6) by Φ′(r)r and integrate from 0 to R. Taking into account that
differentiating (2.1) yields − 1

r (rΦ′′)′+
(
1+1/r2

)
Φ′= ΛeΦΦ′, we integrate by parts to

obtain

RΦ′(R) = Λ

∫ R

0

eΦ(r)Φ′(r)r2dr, (3.8)

where we have also used (3.4) and (3.7). This is a necessary condition for the existence
of traveling waves bifurcating from the steady state curve at the point (Λ,Φ), and it
can be equivalently rewritten using (2.1)-(2.2),∫ R

0

Φ(r)rdr= ΛR2−Λ

∫ R

0

eΦrdr, (3.9)

or, using (2.10),

RΦ′(R)+
1

2
(RΦ′(R))

2
+

∫ R

0

Φ2(r)rdr= 0. (3.10)

The following Lemma 3.1 shows that there exists a pair (Λ,Φ)∈A1 satisfying (3.8), and
the subsequent Corollary 3.1 specifies such a pair which is used in the proof of Theorem
1.1.
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Lemma 3.1. There are solutions (Λ−,Φ−) and (Λ+,Φ+) of (2.1)-(2.2) which belong
to the curve A1 (see item (ii) of Theorem 2.1) and satisfy∫ R

0

Φ−(r)rdr<Λ−R
2−Λ−

∫ R

0

eΦ−(r)rdr, (3.11)

∫ R

0

Φ+(r)rdr>Λ+R
2−Λ+

∫ R

0

eΦ+(r)rdr. (3.12)

Proof. Let us consider minimal solutions in A1 corresponding to small Λ>0, and
small ‖Φ‖C(BR). We show that the left-hand side of (3.9) is strictly less than its right-
hand side by considering the leading term of the asymptotic expansion of solutions in
the limit Λ→0. Linearizing (2.1)-(2.2) about (0,0) we get

Φ = Λg+O(Λ2), where g solves − 1

r
(rg′)′+g= 1, r<R, g′(0) =g(R) = 0. (3.13)

By the maximum principle we find 0<g(r)<1 for r<R, and therefore on the left-hand
side of (3.9) we have∫ R

0

Φ(r)rdr= Λ

∫ R

0

grdr+O(Λ2)≤Λ(R2/2−δ)+O(Λ2),

for some δ>0 independent of Λ, while on the right-hand side of (3.9),

ΛR2−Λ

∫ R

0

eΦrdr= ΛR2−Λ

∫ R

0

(1+Λg)rdr+O(Λ2) = ΛR2/2+O(Λ2).

Next we show the existence of (Λ+,Φ+)∈A1 satisfying (3.12).

Case 1: R≤4. According to items (i) and (ii) of Theorem 2.1, the curve A1 satisfies

sup

{∫ R

0

eΦrdr
∣∣(Λ,Φ)∈A1

}
=∞, (3.14)

or, if this is false, at least

inf {σ2(Λ,Φ) |(Λ,Φ)∈A1}= 0. (3.15)

If (3.14) holds then right-hand side (3.9) becomes negative, while the left-hand side
is positive, and we are done.

Now consider the case that (3.15) holds. By continuity of σ2(Λ,Φ) there is a pair
(Λ,Φ)∈K1 such that the second eigenvalue of (2.5) is less than 1. In other words, the
second eigenvalue of

−∆v−ΛeΦv=σv in BR, v= 0 on ∂BR (3.16)

is negative. Then, according to Proposition 2 in [42], we have

Λ

∫ R

0

eΦrdr≥4.
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Assume by contradiction, that the right-hand side of (3.9) is bigger than or equal to its
left-hand side, then in view of the equivalent reformulation (3.10) of (3.9), we find

RΦ′(R)+
1

2
(RΦ′(R))

2
+

∫ R

0

Φ2(r)rdr<0, (3.17)

which in turn implies

RΦ′(R)>−2 and

∫ R

0

Φ2(r)rdr≤1/2. (3.18)

On the other hand, multiplying (2.1) by r and integrating we find

Λ

∫ R

0

eΦrdr=

∫ R

0

Φrdr−RΦ′(R). (3.19)

Combining (3.19) with (3.17) and the first inequality in (3.18) we get∫ R

0

Φrdr>2. (3.20)

Finally, applying the Cauchy–Schwarz inequality and using the second inequality in
(3.18) leads to ∫ R

0

Φrdr≤ R√
2

(∫ R

0

Φrdr

)1/2

≤ R
2
. (3.21)

Thus, (3.20) and (3.21) yield the lower bound for the radius, R>4, so that the Lemma
is proved for R≤4.

Case 2: R≥4. Observe that the maximal value Λ0 of Λ admits the lower bound
Λ0≥1/e. Indeed, considering the initial value problem

−q′′− 1

r
q′+q=eq−1, r>0, q(0) =A,q′(0) = 0, (3.22)

we find that q(R) continuously varies from −∞ to 1 as A decreases from +∞ to 1.
Therefore there exists some A>1 such that Φ = q is a solution of (2.1)-(2.2). Now
consider the minimal solution Φ of (2.1)-(2.2) with Λ = 1/e and introduce the function
w solving the auxiliary problem

−w′′− 1

r
w′+w= (w+1)/e, r>0, w′(0) =w(R) = 0. (3.23)

Since w is a positive subsolution of (2.1)-(2.2), we have

Φ≥w for r<R.

Therefore, in order to prove the inequality

RΦ′(R)+
1

2
(RΦ′(R))

2
+

∫ R

0

Φ2(r)rdr≥0, (3.24)

it suffices to show that ∫ R

0

w2(r)rdr≥1/2. (3.25)
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The solution w of (3.23) is explicitly given by

w(r) =
1

e−1

(
1− I0(θr)

I0(θR)

)
,

where θ=
√

1−1/e, and I0 is the modified Bessel function of the first kind. Since

J(R) :=

∫ R

0

w2rdr=
1

(e−1)2

{
R2

2
−2R

I1(θR)

θI0(θR)
+

R2

2I0(θR)2

(
I0(θR)2−I1(θR)2

)}
,

is increasing in R and

J(4) = 0.78...>1/2,

the inequality (3.25) holds for R≥4, and so does (3.24). This completes the proof of
Lemma 3.1.

Corollary 3.1. There exists a pair (Λ0,Φ0)∈A1 satisfying the necessary bifurcation
condition (3.8). Moreover, in any neighborhood of (Λ0,Φ0) there exist (Λ±,Φ±)∈A1

such that

RΦ′−(R)<Λ−

∫ R

0

eΦ−(r)Φ′−(r)r2dr, RΦ′+(R)>Λ+

∫ R

0

eΦ+(r)Φ′+(r)r2dr. (3.26)

Condition (3.26) shows that (Λ0,Φ0) is a robust root of (3.8).

Proof. The result follows from Lemma 3.1 thanks to the analyticity and connect-
edness of the curve A1.

4. Fourier analysis of the linearized operator
To construct solutions of problem (1.9)-(1.10) as perturbations of radially symmetric

steady states we need to study the properties of the linearized operator for this problem.
That is, we consider the linearized spectral problem

−∆w+w−ΛeΦw=σw in BR, w= 0 on ∂BR, (4.1)

where (Λ,Φ) is a pair satisfying (2.1)-(2.2).

Proposition 4.1. For any n,l= 1,2,. .., the lth eigenvalue σnl corresponding to the
nth Fourier modes wnl(r)cosnϕ and wnl(r)sinnϕ,

−1

r
(rw′nl)

′+
n2

r2
wnl+wnl−ΛeΦwnl=σnlwnl, 0<r<R, wnl(0) =wnl(R) = 0, (4.2)

is positive, σnl>0.

Proof. For each δ>0 and any solution (Λ,Φ) of (2.1)-(2.2), the function Θδ : r 7→
δ−Φ′(r) is strictly positive and satisfies (by differentiating (2.1))

−1

r
(rΘ′δ)

′
+

(
1+

1

r2
−ΛeΦ

)
Θδ =

(
1+

1

r2
−ΛeΦ

)
δ, 0<r<R (4.3)

or, for any given n,

−1

r
(rΘ′δ)

′
+

(
1+

n2

r2
−ΛeΦ

)
Θδ =

(
1+

n2

r2
−ΛeΦ

)
δ− n

2−1

r2
Φ′, 0<r<R. (4.4)
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Multiplying (4.2) by rwnl and integrating from 0 to R yields∫ R

0

(w′nl)
2rdr+

∫ R

0

Υnw
2
nlrdr=σnl

∫ R

0

w2
nlrdr (4.5)

where we introduced the abbreviation

Υn= 1+
n2

r2
−ΛeΦ.

We represent wnl as Θδw̃nl,δ and multiplying (4.4) by Θ2
δw̃

2
nl,δr, integrate from 0 to

R. Integrating by parts in the first term we get∫ R

0

rΘ′δ(Θδw̃
2
nl,δ)

′dr+

∫ R

0

Υn(w2
nl,δ−δΘδw̃

2
nl,δ)rdr=−

∫ R

0

n2−1

r
Φ′Θδw̃

2
nl,δ dr. (4.6)

Subtracting (4.6) from (4.5), we find

σnl

∫ R

0

w2
nlrdr=

∫ R

0

(Θδw̃
′
nl,δ)

2rdr+

∫ R

0

(
Υnδ−

n2−1

r2
Φ′
)

Θδw̃
2
nl,δ rdr. (4.7)

Now pass to the limit in this equality as δ→0. Observing that the liminf as δ→+0 of
the last term in (4.7) is nonnegative we obtain σnl≥0 and if σln= 0, then wnl=−γΦ′(r)
where γ is a constant. In the latter case wnl(R) 6= 0, contradiction. Thus σnl>0.

Corollary 4.1. For each f ∈H1/2(∂BR) satisfying∫ π

−π
f(R,ϕ)dϕ= 0,

the problem

−∆g+g−ΛeΦg= 0 in BR, g=f on ∂BR (4.8)

has a solution. Moreover precisely one such a solution is orthogonal in L2(BR) to all
radially symmetric functions w(r).

Proof. Introduce the solution g̃ of

−∆g̃= 0 in BR, g̃=f on ∂BR, (4.9)

and observe that g̃=
∑∞
n=1r

n(ancosnϕ+bn sinnϕ). Then a solution of the problem

−∆(g− g̃)+(g− g̃)−ΛeΦ(g− g̃) = ΛeΦg̃− g̃ in BR, g− g̃= 0 on ∂BR

is obtained by separation of variables and applying Proposition 4.1.

5. Existence of solutions of the problem (1.9)-(1.10)
For any given R>0 we consider a fixed steady state (Λ0,Φ0)∈A. Using well-

established techniques based on the Implicit Function Theorem, see, e.g., Chapter I
in [26], we construct a family of solutions of (1.9)-(1.10) in domains Ω =Ωη given by

Ωη ={(x,y) = r(cosϕ,sinϕ)|0≤ r<R+η(ϕ),−π≤ϕ<π} (5.1)

with sufficiently small η∈C2,γ(S1), 0<γ<1, and with small, but not necessarily zero,
velocity V . Hereafter, slightly abusing the notation, we identify the angle ϕ∈ [−π,π)
with the corresponding point (cosϕ,sinϕ) on the unit circle S1.
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In order to reduce the construction to a fixed domain we introduce the mapping
Qη : Ωη→BR defined in polar coordinates by

(r,ϕ) 7→Qη(r,ϕ) := (r−χ(r)η(ϕ),ϕ) (5.2)

where χ∈C∞(R) is such that χ(r) = 0 when r<R/3 and χ(r) = 1 when r>R/2. Clearly,
(5.2) defines a C2-diffeomorphism whenever η is sufficiently small together with its first
and second derivatives.

Among all perturbations Ωη we single out those satisfying the area preservation
condition

1

2

∫ π

−π
(R+η)2dϕ=πR2, (5.3)

or in linear approximation ∫ π

−π
η(ϕ)dϕ= 0.

The following proposition establishes the existence of solutions of problem (1.9)-
(1.10). These solutions are obtained as perturbations of the radially symmetric steady
states from Section 2.

Proposition 5.1. There exists some ε>0 such that for all (V,η,z)∈R×C2,γ(S1)×R
in the ε-neighborhood Uε of 0, problem (1.9)-(1.10) admits a solution Λ = Λ(V,η,z),
S=S(x,y,V,η,z) in the domain Ω = Ωη (given by (5.1)). Here z is an auxiliary real
parameter (to be specified in the proof) such that

z 7→ (Λ(0,0,z),S( ·, · ,0,0,z))∈A1 for |z|<ε (5.4)

defines an analytic parametrization of the curve A1 in a neighborhood of (Λ0,Φ0). More-
over, the mappings

(V,η,z) 7→Λ(V,η,z), (V,η,z) 7→P ( ·,V,η,z) :=
∂S

∂ν
(Q−1

η (R ·),V,η,z)
∣∣
∂BR

belong to C1(Uε;R) and C1(Uε;C
1,γ(S1)), respectively. The derivatives ∂V Λ and ∂V P

at (0,0,z) = 0 are given by

∂V Λ = 0, ∂V P =
∂φ1

∂ν
, (5.5)

where φ1 is a unique, as in Corollary 4.1, solution of

−∆φ1 +φ1 = Λ(z)eΦ(r,z)(φ1−rcosϕ) in BR, φ1 = 0 on ∂BR, (5.6)

with Λ(z) := Λ(0,0,z), and Φ(r,z) :=S(x,y,0,0,z). The derivatives ∂ηΛ and ∂ηP at
(0,0,z) satisfy

〈∂ηΛ,ρ〉= 0, 〈∂ηP,ρ〉=∂2
rrΦ(R,z)ρ+

∂φ2

∂ν
(5.7)

for ρ such that
∫ π
−π ρ(ϕ)dϕ= 0, where φ2 is a unique, as in Corollary 4.1, solution of

the problem

−∆φ2 +φ2 = Λ(z)eΦ(r,z)φ2 in BR, φ2 =−Φ′0(R)ρ on ∂BR. (5.8)
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Proof. Using the diffeomorphism Qη (defined by (5.2)), Equation (1.9) in terms

of S̃=S ◦Q−1
η reads

0 = F (Λ,S̃,V,ρ,z) :=−∆S̃+ S̃−ΛeS̃−V r̃cosϕ+
(
(χ′η)2−2χ′η+(χη′)2/r̃2

)
S̃rr

+
(
1/r−1/r̃+χ′η/r̃+χ′′η+χη′′/r̃2

)
S̃r

+χη′S̃rϕ/r̃
2 + S̃ϕϕ(1/r2−1/r̃2), 0≤ r<R, (5.9)

where r̃= |Q−1
η (rcosϕ,rsinϕ)|. The operator

F : R×C2,γ(BR)∩C0(BR)×R×C2,γ(S1)×R→ C0,γ(BR)

(Λ, S̃, V, η,z) 7→ F (Λ,S̃,V,η,z)

is continuously Fréchet differentiable with respect to S̃ in some neighborhood of
(Λ0,Φ0,0,0,0), and the derivative ∂S̃F at the given steady state takes the form

〈∂S̃F (Λ0,Φ0,0,0),w〉=−∆w+w−Λ0e
Φ0w.

That means, if the problem

−∆w+w−Λ0e
Φ0w= 0 in BR, w= 0 on ∂BR (5.10)

has only the trivial solution w= 0, then FS̃(Λ0,Φ0,0,0) :C2,γ(BR)∩C0(BR)→C0,γ(BR)
is an isomorphism and by the Implicit Function Theorem, Equation (5.9) can be solved
for S̃ by a continuous mapping (V,ρ,z) 7→ S̃( ·, · ,V,ρ,z) in a neighborhood of (Λ0,0,0),
where we defined the parameter z by setting z := Λ−Λ0 (equivalently providing Λ(z) =
Λ0 +z).

In case (5.10) has a nonzero solution w we know from the proof of Theorem 2.1
that there are no other linear independent solutions and w satisfies the non-degeneracy
condition ∫

BR

eΦ0wdxdy 6= 0. (5.11)

We then seek S̃ in the form S̃= Φ0 +zw+φ with a new unknown φ orthogonal (in
L2(BR)) to w, i.e.

φ∈Y =

{
φ∈C2,γ(BR)∩C0(BR)

∣∣ ∫
BR

φwdxdy= 0

}
.

Then problem (5.9) can be rewritten as G(Λ,φ,V,η,z) :=F (Λ,Φ0 +zw+φ,V,η,z) = 0.
We consider z as well as V and ρ as parameters, and note that the operator

G : R×Y 3 (Λ,φ) 7→G(Λ,φ,V,η,z)∈C0,γ(BR).

has a continuous Fréchet derivative ∂(Λ,φ)G whose value at (Λ0,0,0,0,0) =:p0 is given
by

〈∂(Λ,φ)G(p0),(ζ,w)〉=−∆w+w−Λ0e
Φ0w−ζeΦ0 .

We claim that ∂(Λ,φ)G(p0) is a one-to-one mapping of R×Y onto C0,γ(BR). Indeed,
given f ∈C0,γ(BR), there exists a unique solution w∈Y of the problem

−∆w+w−Λ0e
Φ0w−ζeΦ0 =f in BR, w= 0 on ∂BR (5.12)
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if and only if ζ=−
∫
BR

fwdxdy/
∫
BR

eΦ0wdxdy, i.e. for every f ∈C0,γ(BR) there is a

unique pair (ζ,v)∈R×Y such that (5.12) holds. Also, both the operator ∂(Λ,φ)G(p0)
and its inverse (∂(Λ,φ)G(p0))−1 are continuous: for ∂(Λ,φ)G(p0) this fact is obvious while
the continuity of (∂(Λ,φ)G(p0))−1 follows by classical elliptic estimates (see, e.g. [16]).
Thus we can apply the Implicit Function Theorem to establish the existence of Λ(z,V.η)
and S̃( ·, · ,z,V,η).

To prove (5.4) we can complexify the construction by allowing z take complex values
z∈C. Then calculating the derivative ∂/∂z of (5.9) at (0,0,z) we obtain that h :=∂zS̃
solves

−∆h+h−ΛeΦ(r,z)h=∂zΛe
Φ(r,z) in BR, h= 0 on ∂BR, (5.13)

where Λ = Λ(0,0,z) and Φ(r,z) = S̃(x,y,0,0,z). Recall that if (5.10) has no nontrivial
solutions, then Λ = Λ0 +z. Hence ∂zΛ = 0 which in turn implies h= 0 for sufficiently
small |z|.

Now assume that there is a nontrivial solution w of (5.10) satisfying (5.11) and
assume that either h 6= 0 or ζ :=∂zΛ 6= 0. Then we can normalize the pair (ζ,h) so that
either ζ= 1 or ζ= 0 and ‖h‖C2,γ(BR) = 1. In case ζ= 1 the function h still satisfies the
a priori bound ‖h‖C2,γ(BR)≤C for sufficiently small |z| thanks to the fact that h∈Y .
This allows us to pass to the limit as |z|→0 (along a subsequence), to get a nontrivial
pair (ζ,h)∈C×Y satisfying

−∆h+h−ΛeΦ0h= ζeΦ0 in BR, h= 0 on ∂BR.

This contradiction completes the proof of analyticity.
To calculate the derivatives ∂V Λ and ∂V P at (0,0,z) we linearize (5.9) in V to find

that H1 :=∂V S̃ satisfies

−∆H1 +H1−ΛeΦ(r,z)(H1−rcosϕ) =∂V ΛeΦ(r,z) in BR, H1 = 0 on ∂BR. (5.14)

Subtract the solution φ1 of (5.6) to get the following problem for ∂V Λ and H̃1 :=H1−φ1:

−∆H̃1 +H̃1−ΛeΦ(r,z)H̃1 =∂V ΛeΦ(r,z) in BR, H1 = 0 on ∂BR. (5.15)

Following exactly the same reasoning as for (5.13), problem (5.15) has only the zero
solution for sufficiently small |z| (note that φ1 is orthogonal in L2(BR) to all radially
symmetric functions w(r)).

Finally we calculate 〈∂ηΛ,ρ〉 and H2 := 〈∂ηS̃,η〉 at (0,0,z). Linearizing (5.9) in η
we find that H2 solves

−∆H2 +H2−ΛeΦH2 +2χ′ρ∂2
rrΦ+

(
χρ/r2 +χ′ρ/r+χ′′ρ+χρ′′/r2

)
∂rΦ = 〈∂ηΛ,ρ〉eΦ

(5.16)
in BR with the boundary condition H2 = 0 on ∂BR. Note that the auxiliary function

H3(r,ϕ) :=χ(r)ρ(ϕ)∂rΦ(r,z)+φ2(r,ϕ)

satisfies

−∆H3 +H3−ΛeΦH3 +2χ′ρ∂2
rrΦ+

(
χρ/r2 +χ′ρ/r+χ′′ρ+χρ′′/r2

)
∂rΦ = 0 (5.17)

in BR, therefore subtracting (5.17) from (5.16) we find

−∆(H2−H3)+(H2−H3)−ΛeΦ(H2−H3) = 〈∂ηΛ,ρ〉eΦ in BR, H2 =H3 on ∂BR.
(5.18)

This problem has only trivial solution for sufficiently small |z|, i.e. 〈∂ηΛ,ρ〉= 0 and
∂
∂νH2 =ρ∂2

rrΦ(R,z)+∂rφ2(R,ϕ).



LEONID BERLYAND, JAN FUHRMANN, AND VOLODYMYR RYBALKO 751

6. Bifurcation of traveling waves
In this section we will show that at the potential bifurcation point found in Section

3, a bifurcation to traveling waves does take place.
Let (Λ0,Φ0)∈A1 be as in Corollary 3.1. According to Proposition 5.1 there is a

family of solutions Λ = Λ(V,η,z), S=S(x,y,V,η,z) of (1.9)-(1.10) in the domains Ω = Ωη
(given by (5.1)). These solutions are guaranteed to exist in an ε-neighborhood (ε>0) of
(V,η,z) = (0,0,0) in the parameter space R×C2,γ(S1)×R where they continuously (ac-
tually smoothly) depend on the parameters. Thus for given V 6= 0, problem (1.9)-(1.11)
is reduced to finding ρ such that S|η=ρ satisfies (1.11) on ∂Ω =∂Ωρ. The parameter z
now acts as bifurcation parameter.

Next we rewrite the additional boundary condition (1.11) as a fixed point problem
for a compact operator. Calculating the curvature κ of ∂Ωρ and the normal vector ν in
polar coordinates we have

V
(R+ρ)cosϕ+ρ′sinϕ√

(ρ′)2 +(R+ρ)2
=P −β (R+ρ)2 +2(ρ′)2−(R+ρ)ρ′′

((ρ′)2 +(R+ρ)2)
3/2

+λ, (6.1)

where P =P (ϕ,V,ρ,z) = ∂S
∂ν (Q−1

ρ (R,ϕ),V,ρ,z) is defined in Proposition 5.1. Introducing

the notation H :=
√

(ρ′)2 +(R+ρ)2, rewrite (6.1) as

(R+ρ)ρ′′−(ρ′)2

(ρ′)2 +(R+ρ)2
=

1

β

(
V (R+ρ)cosϕ+V ρ′sinϕ−H

(
P +λ

))
+1,

or

d

dϕ

(
arctan

ρ′

R+ρ

)
=

1

β

(
V (R+ρ)cosϕ+V ρ′sinϕ−H

(
P +λ

))
+1. (6.2)

It follows that λ is given by

λ=
1∫ π

−πHdϕ

(∫ π

−π
(V (R+ρ)cosϕ+V ρ′sinϕ−HP )dϕ+2πβ

)
. (6.3)

To proceed further we impose three natural conditions on Ωρ. First, we only consider
domains Ωρ symmetric with respect to the x-axis (this is suggested by the symmetry
of the problem and the assumption that the motion occurs in the direction of the x-
axis), that is we require ρ to be an even function of ϕ. Second, to avoid translated (in
x-direction) copies of the solutions, we fix the center of mass of Ωρ at the origin:∫

Ωρ

xdxdy= 0, or in polar coordinates
1

3

∫ π

−π
(R+ρ)3 cosϕdϕ= 0. (6.4)

Third, we impose the linearized counterpart of the area preservation condition (5.3),∫ π

−π
ρ(ϕ)dϕ= 0. (6.5)

From (6.2), taking into account the fact that ρ′(0) = 0 (ρ is even) and (6.5), we get

ρ=K(ρ,V ;z)− 1

2π

∫ π

−π
K(ρ,V ;z)dϕ, (6.6)
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where

K(ρ,V ;z)

:=

∫ ϕ

0

(R+ρ)tan

(
ψ1 +

1

β

∫ ψ1

0

(
V (R+ρ)cosψ2 +V ρ′sinψ2−H

(
P +λ

))
dψ2

)
dψ1

with λ given by (6.3). Thus the traveling wave problem (1.9)-(1.11) is reduced to the
fixed point problem (6.6) in the space

ρ∈H=
{
ρ∈C2,γ(S1)

∣∣ρ is even and satisfies (6.5)
}
. (6.7)

The following Lemma shows that the operator on the right-hand side of (6.6) maps H
into itself.

Lemma 6.1. We have(
K(ρ,V ;z)− 1

2π

∫ π

−π
K(ρ,V ;z)dϕ

)
∈H whenever ρ∈H. (6.8)

Proof. The only non-obvious fact is that the operator in (6.8) maps even function
to even ones. This fact follows from the symmetry of the solutions of (1.9)-(1.10) with
respect to x-axis in domains Ω = Ωρ with the same symmetry. The latter property is the
consequence of the uniqueness of solutions Λ and S constructed in Proposition 5.1, it
also follows from general results [15] on the symmetry of solutions of semilinear PDEs.

We also consider the velocity V as unknown, supplementing (6.6) with the equation

V =V +
1

3

∫ π

−π
(R+ρ)3 cosϕdϕ, (6.9)

which is obtained by adding (6.4) to the tautological equality V =V . Then we obtain
the fixed point problem

(ρ,V ) = (Kρ(ρ,V ;z),KV (ρ,V ;z)) in H×R, (6.10)

where

Kρ(ρ,V ;z) =K(ρ,V ;z)− 1

2π

∫ π

−π
K(ρ,V ;z)dϕ,

KV (ρ,V ;z) = V +
1

3

∫ π

−π
(R+ρ)3 cosϕdϕ.

Note that K is a compact operator of class C1. This allows us to employ Leray–Schauder
degree theory to show the existence of nontrivial solutions of (6.10) bifurcating from the
trivial solution branch (represented by the curve of radially symmetric steady states).
Specifically, traveling wave solutions are obtained as a new branch emanating from the
bifurcation point corresponding to the parameter value z= 0 where the local Leray–
Schauder index jumps.

Recall that the local Leray–Schauder index of I−K( · ;z) (where I denotes the
identity operator) at zero is defined by means of the linearized operator L(·) of K(· ;z)
by

indLS(I−K(· ;z),0) = (−1)N(z),
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where N(z) is the number of eigenvalues of L(· ;z) contained in (1,+∞), counted with
(algebraic) multiplicities. The linearized operator L(· ;z) = (Lρ( ·;z),LV (· ;z)) is given
by

Lρ(ρ,V ;z)

=
R2

β

∫ ϕ

0

∫ ψ1

0

(
V cosψ2−V ∂V P (ψ2,0,0,z)−〈∂ηP (ψ2,0,0,z),ρ〉−

βρ

R2

)
dψ2 dψ1−C,

(6.11)

LV (ρ,V ;z) =V +R2

∫ π

−π
ρcosϕdϕ, (6.12)

where C is the mean value of the first term in (6.11).

Lemma 6.2. The eigenvalues of the linearized operator L(· ;z) are the pairs of eigen-
values E=E0,1(z) solving the equation

π

RΦ′(R;z)

∫ R

0

Φ′(r;z)r2dr−π=
β(E−1)2

R4
(6.13)

and those given by

El(z) =
1

l2
+
R2h′l(R;z)

βl2
+
R2Φ′′(R;z)

βl2
, l= 2,3,. .. (6.14)

via solutions hl(r;z) of problem (6.16).

Proof. Consider an eigenvalue E corresponding to an eigenvector (V,ρ) with V = 1.
Then we have ∫ π

−π
ρcosϕdϕ= (E−1)/R2, (6.15)

Differentiate the equation Lρ(ρ,1;z) =Eρ twice with respect to ϕ:

cosϕ−∂V P (ϕ,0,0,z)−〈∂ηP (ϕ,0,0,z),ρ〉− βρ
R2

=
βE

R2
ρ′′,

multiply this by cosϕ and integrate from −π to π to get

π−
∫ π

−π
(∂V P (ϕ,0,0,z)+〈∂ηP (ϕ,0,0,z),ρ〉)cosϕdϕ=−β(E−1)2

R4
.

Note that ∂V P (ϕ,0,0,z) and 〈∂ηP (ϕ,0,0,z),ρ〉 are identified in Proposition (5.1) by
means of problems (5.6) and (5.8). We can calculate the integral on the left-hand side
multiplying (5.6) and (5.8) by Φ′(r)rcosϕ, and integrating over BR:∫ π

−π
(∂V P (ϕ,0,0,z)+〈∂ηP (ϕ,0,0,z),ρ〉)cosϕdϕ=

π

RΦ′(R;z)

∫ R

0

Φ′(r;z)r2dr.

Thus solutions of (6.13) are eigenvalues corresponding to eigenvectors (1,ρ0,1) with
ρ0,1 = (E0,1−1)cosϕ/(πR2) (cf. (6.15)) if E0,1 6= 1. In the special case E0,1 = 1, there is
the only eigenvector (1,0) and the adjoint vector (0,cosϕ/(πR2)).
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Other eigenvectors are (0,ρ) with ρ= coslϕ, l= 2,3,. ... To calculate the correspond-
ing eigenvalues we seek solutions of problem (5.8) in the form hl(r)coslϕ, resulting in

−1

r
(rh′l(r))

′+

(
l2

r2
+1

)
hl(r) = Λ(z)eΦ(r;z)hl(r) 0<r<R,

hl(0) = 0 hl(R) =−Φ′(R;z).

(6.16)

We next identify 〈∂ηP (ϕ,0,0,z),ρ〉=h′l(r)coslϕ using Proposition 5.1. Plugging these
relations into the equations Lρ(ρ,0;z) =Eρ leads to the formula (6.14) for the eigenvalues
E=El.

Assume now that none of the eigenvalues (6.14) is 1 for z= 0 (El 6= 1, l= 2,3,. ..),
i.e.

β 6=βl ≡
R2

l2−1
(h′l(R;0)+Φ′′0(R)), l= 2,3,. ... (6.17)

It is not hard to show that the exceptional values βl form a sequence converging to zero.
Moreover, the following result holds.

Lemma 6.3. Eigenvalues (6.14) have the following uniform, in −ε<z<ε and β>0,
bound

El≤C
(

1

βl
+

1

l2

)
, l= 2,3,. ... (6.18)

Proof. Consider functions h̃l+l0 = (r/R)l+l0 which are solutions of

−1

r
(rh̃′l+l0(r))′+

( l+ l0
r

)2

h̃l+l0(r) = 0 0<r<R, h̃′l+l0(0) = 0, h̃l+l0(R) = 1. (6.19)

For sufficiently large l0, the functions hl(r;z), being solutions of (6.16), are all superso-
lutions of (6.19), therefore hl(r)≥−Φ′(R;z)h̃l+l0(r). This leads to the uniform bound
(6.18).

This Lemma implies that under condition (6.17) none of the eigenvalues (6.14) is
equal to 1 when −ε0≤z≤ε0, for some 0<ε0<ε. On the other hand, by Lemma (3.1)
in any neighborhood of z= 0 there are z such that E0,1(z) has nonzero imaginary part
and there are other z such that both E0,1(z) are real and the smallest one, say E0(z),
satisfies E0(z)<1 while E1(z)>1. This shows the jump of the local Leray–Schauder
index through z= 0 and yields the following theorem which is the main result of this
work.

Theorem 6.1. Let (Λ0,Φ0)∈A1 be as in Corollary 3.1. Assume also that the pa-
rameter β from (1.8) satisfies β 6=βl with βl being defined in (6.17), and let hl(r) be
solutions of (6.16) with Λ = Λ0, Φ = Φ0. Then there exists a family of solutions of (6.10)
(traveling waves) with V 6= 0 bifurcating from trivial solutions (steady states) at z= 0.

Remark 6.1. By the construction above in this section, problem (6.9)-(6.10) is
equivalent to the original problem (1.9)-(1.11), thus Theorem 6.1 and Lemma 6.3 yield
Theorem 1.1.

Remark 6.2. The exceptional values β=βl, l= 2,3,. .. correspond to bifurcations of
non-radial steady states, see Section 7. It is conjectured that for the exceptional β=βl
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the bifurcations to traveling waves and to non-radial steady states occur simultaneously.
Since the set of exceptional values has zero measure, this case is not further investigated
here.

Proof. We just make the arguments described above more precise and detailed.
Let ε0 be such that none of the eigenvalues (6.14) is equal to 1 for −ε0≤z≤ε0. By
Corollary 3.1 there are z±∈ [−ε0,ve0] such that the left-hand side of (6.13) is negative
at z− and positive at z+. Since the linearized operators L( ·;z±) do not have 1 as
eigenvalue, the Leray–Schauder degree degLS(I−K( ·;z±),Uδ,0) is well defined for every
δ-neighborhood

U δ ={(V,ρ) ||V |<δ, ‖ρ‖C2,γ(S1)<δ}

of zero in R×C2,γ(S1), 0<δ<ε1, for some ε1∈ (0,ε0/2). Moreover,

degLS(I−K( ·;z±),Uδ,0) = indLS(I−K(· ;z±),0) = (−1)N(z±),

where N(z±) is the number of eigenvalues of L(· ;z±) contained in (1,+∞). Since the
number of eigenvalues (6.14) contained in (1,+∞) coincides at z− and z+ while among
the eigenvalues E0,1 it differs by one, we conclude that

degLS(I−K( ·;z−),Uδ,0) 6= degLS(I−K( ·;z+),U δ,0).

It follows that for some z∗(δ)∈ [−ε0,ε0] the mapping K( ·;z∗) has a fixed point (Vδ,ρδ)
on ∂U δ. It remains to show that among these solutions there are true traveling waves.
To this end we prove that Vδ =±δ for sufficiently small δ>0, arguing by contradiction.
Assume that ‖ρδ‖C2,γ(S1) = δ and |Vδ|<δ along a subsequence δ= δn→0. Then plug
V =Vδ and ρ=ρδ into (6.10):

(Vδ,ρδ) =K(Vδ,ρδ;z∗(δ)) =L(Vδ,ρδ;z∗(δ))+O(δ2), (6.20)

divide the resulting identity by δ and pass to the limit as δ→0. Extracting a further
subsequence (if necessary), we obtain

Vδ/δ→V, and ρδ/δ→ρ strongly in C2,γ(S1),

and

(V,ρ) =L(V,ρ;z∗),

with some −ε0≤z∗≤ε0. Thus L(· ;z∗) has the eigenvalue 1 and a corresponding eigen-
vector (V,ρ) with ‖ρ‖C2,γ(S1) = 1. But this contradicts the proof of Lemma 6.2 (recall
that ε0 is chosen so that none of the eigenvalues (6.14) equals 1). The Theorem is
proved.

In the particular case that the bifurcation occurs from minimal solutions, which
for example, takes place for R≥4 according to the proof of Lemma 3.1, case 2, we can
calculate several terms of the asymptotic expansion of the traveling wave solutions in
powers of the velocity V . Here we present the first three terms in the expansion of ρ
which determines the shape of the domain,

ρ=−V 2 S̃2(R)

Φ′0(R)
cos2ϕ−V 3 S̃3(R)

Φ′0(R)
cos3ϕ+ .. . (6.21)

where S̃2 solves (A.13)-(A.14), S̃3 solves (A.19)-(A.20) and φ̃ is a solution of (3.6)-(3.7)
with Λ = Λ0 and Φ = Φ0.
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Fig. 6.1. Approximate traveling wave shape with velocity V = 0.22 bifurcated from a radial steady
state with R= 4, β= 5/8. The shape captures terms up to third order in V computed as detailed in
Appendix A.

Figure 6.1 illustrates the change in shape when the radially symmetric steady state
bifurcates to a non-radial traveling wave. The calculations are presented in Appendix
A.

7. Nonradial steady states
While the main focus of this work is on traveling wave solutions, we also establish

the existence of steady state solutions lacking radial symmetry which, like traveling
waves, form branches bifurcating from the family of radially symmetric steady states.
Our analysis is restricted to bifurcations from pointwise minimal solutions of (2.1)-(2.2)
whose existence is guaranteed by statement (ii) of Theorem 2.1.

As before we fix R>0 and perform a local analysis in a neighborhood of some radi-
ally symmetric steady state (Λ0,Φ0). We assume that (Λ0,Φ0)∈A1, and moreover that
Φ0 is a pointwise minimal solution of (2.1)-(2.2) for Λ = Λ0. Therefore, by Proposition
(5.1) there exists a family of solutions Λ = Λ(V,η,z), S=S(x,y,V,η,z) of (1.9)-(1.10)
in domains Ωη. The problem of finding solutions of (1.9)-(1.11) with V = 0 can be
rewritten as the fixed point problem (6.10). Furthermore, in terms of the linearized
operator Lρ( · ;z), given by (6.11), the necessary condition for a bifurcation of steady
states at (Λ0,Φ0) is that 1 is an eigenvalue of Lρ(· ;z) with V = 0 and an eigenfunction ρ
satisfying the orthogonality condition

∫ π
−π ρ(ϕ)cosϕdϕ= 0. In view of Lemma 6.2, this

necessary condition can be reformulated as El(0) = 1 for some l= 2,3,. .., where El(z)
are the eigenvalues given by (6.14).

Lemma 7.1. Let Φ0 be a pointwise minimal solution of (2.1)-(2.2) with Λ = Λ0≥0,
and let Lρ( · ;z) be the family of linearized operators given by (6.11), such that z= 0
corresponds to the linearization around (Λ0,Φ0). Then, the eigenvalues El(z), l= 2,3,. ..
of Lρ( ·;z), given by (6.14), are strictly increasing in z for sufficiently small z, and if
El1(0) =El2(0) = 1 for l1,l2≥2, then l1 = l2.

Proof. Rewrite problem (6.16), which determines hl(r;z), in terms of the new
unknown ψl(r;z) :=hl(r;z)+Φ′(r;z):

−1

r
(rψ′l(r))

′+

(
l2

r2
+1−Λ(z)eΦ(r;z)

)
ψl(r) =

l2−1

r2
Φ′(r;z) 0<r<R,

ψl(0) =ψl(R) = 0.

(7.1)
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Since Φ(r;z) are minimal solutions of (2.1)-(2.2) for small z, we can employ a comparison
argument to prove that ψl(r;z1)<ψl(r;z2), 0<r<R, whenever z1>z2. Indeed, we have

− 1

r

(
r(ψ′l(r;z2)−ψ′l(r;z1))

)′
+

(
l2

r2
+1−Λ(z2)eΦ(r;z2)

)
(ψl(r;z2)−ψl(r;z1))

=
l2−1

r2
(Φ′(r;z2)−Φ′(r;z1))+(Λ(z2)eΦ(r;z2)−Λ(z1)eΦ(r;z1))ψl(r;z1). (7.2)

Using the same factorization idea as in Lemma 4.1 we can show that every solution
of (7.1) is negative in (0,R), therefore the last term in (7.2) is positive. The same
factorization trick applied to the equation

− 1

r

(
r(Φ′(r;z2)−Φ′(r;z1))′

)′
+

(
1

r2
+1−Λ(z2)eΦ(r;z2)

)
(Φ′(r;z2)−Φ′(r;z1))

=(Λ(z2)eΦ(r;z2)−Λ(z1)eΦ(r;z1))Φ′(r;z1)

shows that Φ′(r;z2)−Φ′(r;z1)>0 if Φ(r;z1)>Φ(r;z2) on (0,R) and Λ(z1)>Λ(z2). Thus
the right-hand side of (7.2) is positive and the inequality ψl(r;z1)<ψl(r;z2) follows.
Moreover the Hopf Lemma applied after a proper factorization (again as in Lemma 4.1)
implies that ψ′l(R;z1)<ψ′l(R;z2). This proves the monotonicity of El(z).

To complete the proof of the Lemma assume by contradiction that El1(0) =El2(0)
for different l1,l2≥2, say l1>l2. Then by (6.14) we have

ψ′l1(R;0)/(l21−1) =ψ′l2(R;0)/(l22−1) =β/R2. (7.3)

On the other hand, the functions ψ′li(r;0)/(l2i −1), i= 1,2 solve

−1

r
(rψ′li/(l

2
i −1))′+

(
l2i
r2

+1−Λ0e
Φ0

)
ψli/(l

2
i −1) =

1

r2
Φ′0, 0<r<R. (7.4)

Then the pointwise inequalities 0>ψl1 >ψl2 on (0,R) follow, and we have ψ′l1(R;0)/(l21−
1)<ψ′l2(R;0)/(l22−1), contradiction.

The following theorem establishes the existence of bifurcations to not radially sym-
metric steady states if the surface tension parameter β is sufficiently small.

Theorem 7.1. Given R>0, and l= 2,3,. .., for sufficiently small β>0 there is a
family of steady states solutions of (1.6)-(1.8) with domians Ω = Ωρδ whose boundary is
given by

∂Ωρδ ={(x,y) = (R+ρδ(ϕ))(cosϕ,sinϕ)| −π≤ϕ<π} with ρδ = δcoslϕ+o(δ) (7.5)

and δ>0 being a small parameter.

Remark 7.1. If we fix R and sufficiently small β>0 we can guarantee bifurcation
of only finitely many nonradial steady states as follows from the proof of Theorem 7.1
and bounds obtained in Lemma 6.3.

Proof. The argument follows the line of Theorem 6.1. The bifurcation condition
(3.8) for traveling waves is now replaced by

ψ′l(R;0)

l2−1
=β/R2, (7.6)
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where ψl(r;0) is a solution of (7.1) for z= 0, and this latter condition is always satisfied
at some pair (Λ0,Φ0)∈A0, provided β>0 is sufficiently small. Note that in contrast to
(3.8) the condition (7.6) depends on β. Considering β>0 so small that the eigenvalues
E0,1(z) (of the linearized operator L( · ;z)), given by (6.13), are bounded away from 1,
and using Lemma 7.1 we see that for sufficiently small z only the eigenvalue El(z) takes
value 1 and the sign of El(z)−1 changes. This allows us to establish the bifurcation of
non-radial steady states analogously to Theorem 6.1.

8. Conclusions
We introduce and study a two dimensional Keller–Segel type elliptic-parabolic sys-

tem (1.1)-(1.5) with free boundary governed by a nonlocal kinematic condition which
involves boundary curvature. This system models the motility of a eukaryotic cell on a
flat substrate and is obtained as a reduction [33] of a more complicated model from [3].
We show that this model captures the key biological features of cell motility such as
persistent motion and breaking of symmetry which have been studied in numerous exper-
imental works, e.g., [3,25]. Specifically, these two features correspond to the bifurcation
from radial steady states to non-radial steady states and traveling waves. In particular,
our analytical and numerical calculations capture the emergence of asymmetric shapes
of the traveling waves in this bifurcation, see Figure 6.1. Moreover, the asymmetry of
the cell shape depicted in Figure 6.1 qualitatively agrees with that of an actual moving
cell observed in [4].

Appendix A. Asymptotic expansion of traveling waves near the bifurca-
tion point and emergence of asymmetric shapes. In this appendix we construct
several terms of the asymptotic expansion of the free boundary problem (1.9)-(1.11).
This is done for the case when the necessary bifurcation condition (3.8)(Section 3) is
satisfied at a pair (Λ0,Φ0) with Φ0 being a minimal solution of (2.1)-(2.2). Then, the
bifurcating traveling waves can be expanded in a (formal) series in a small parameter
ε :=V . This expansion can be rigorously justified using Lyapunov–Schmidt reduction.
While the first order approximation is already introduced in Section 3, we now calculate
the first three terms in this asymptotic expansion and justify the assumption that the
first order correction to Λ0 is zero. Note that the first order correction to the shape of
the domain is zero, the second order is symmetric with respect to the y-axis, and the
asymmetry emerges in the third correction term.

We seek the unknown domain Ω in the form Ω ={(rcosϕ,rsinϕ) |ϕ∈ [−π,π),0≤
r<R+ρ(ϕ)} and introduce the following expansions for the solutions of (1.9)-(1.11)

ρ=ερ1 +ε2ρ2 +ε3ρ3 +O(ε4), S= Φ0(r)+εS1 +ε2S2 +ε3S3 +O(ε4),

Λ = Λ0 +εΛ1 +ε2Λ2 +ε3Λ3 +O(ε4), and λ=λ0 +ελ1 +ε2λ2 +ε3λ3 +O(ε4),

where λ0 =β/R−Φ′0(R) follows from the leading term in the expansion of (1.11) in
ε=V . Plugging the above expansions into (1.9)-(1.11) and equating the terms of order
ε, ε2, ε3 yields the following equations

−∆S1 +S1 =Λ0e
Φ0(r)(S1−x)+Λ1e

Φ0(r), (A.1)

−∆S2 +S2 =Λ0e
Φ0(r)S2 +

Λ0

2
eΦ0(r)(S1−x)2 +Λ1e

Φ0(r)(S1−x)+Λ2e
Φ0(r), (A.2)

−∆S3 +S3−Λ0e
Φ0(r)S3 = Λ0e

Φ0(r)
(
(S1−x)S2 +(S1−x)3/6

)
+Λ1e

Φ0(r)
(
S2 +(S1−x)2/2

)
+Λ2e

Φ0(r)(S1−x)+Λ3e
Φ0(r) (A.3)
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in BR with boundary conditions

S1(R,ϕ)+Φ′0(R)ρ1(ϕ) = 0 (A.4)

S2(R,ϕ)+Φ′0(R)ρ2(ϕ) =T1(ϕ) (A.5)

S3(R,ϕ)+Φ′0(R)ρ3(ϕ) =−∂rS1(R,ϕ)ρ2 +T2(ϕ) (A.6)

and

cosϕ=∂rS1(R,ϕ)+Φ′′0(R)ρ1(ϕ)+
β

R2
(ρ′′1(ϕ)+ρ1(ϕ))+λ1, (A.7)

0 =∂rS2(R,ϕ)+Φ′′0(R)ρ2(ϕ)+
β

R2
(ρ′′2(ϕ)+ρ2(ϕ))+T3(ϕ)+λ2 (A.8)

1

R
ρ′2(ϕ)sinϕ=∂rS3(R,ϕ)+Φ′′0(R)ρ3(ϕ)

+∂2
rS1(R,ϕ)ρ2(ϕ)−∂ϕS1(R,ϕ)

ρ′2(ϕ)

R2
+

β

R2
(ρ′′3(ϕ)+ρ3(ϕ))+T4(ϕ)+λ3,

(A.9)

where Ti, i= 1,. ..4 denote various terms containing factors ρ1(ϕ) or ρ′1(ϕ) which will
be shown to vanish.

As explained in Section 6, due to the symmetry of the problem we only consider
even functions ρ. Moreover we impose the condition that the area of Ω is equal to
that of the disk BR and fix the center of mass of the domain at the origin to get rid
of solutions obtained by infinitesimal shifts of the domain. To the order ε these two
conditions yield ∫ π

−π
ρ1dϕ= 0,

∫ π

−π
ρ1 cosϕdϕ= 0. (A.10)

Since Φ0 is a minimal solution of (2.1)-(2.2) we can locally parametrize solutions
(Λ,Φ(r,Λ)) of (2.1)-(2.2) by Λ so that Φ0(r) = Φ(r,Λ0). Expanding ρ1 into a Fourier
series ρ1 =

∑
cl coslϕ we find from (A.1),(A.4) that

S1 = φ̃(r,Λ0)cosϕ+Λ1∂ΛΦ(r,Λ0)+
∑

clhl(r)coslϕ,

where φ̃(r,Λ) are solutions of (3.6)-(3.7) and hl are solutions of the problems (6.16)
with Λ = Λ0 and Φ = Φ0 (since Φ0 is a minimal solution of (2.1)-(2.2), solutions hl of
(6.16) are uniquely defined). By (A.10) the first Fourier coefficients satisfy c0 = c1 = 0.
Moreover, assuming that the condition (6.17) is satisfied we find by virtue of (A.7) that
all other Fourier coefficients cl are also zero, i.e. ρ1 = 0. Thus

S1 = φ̃(r,Λ0)cosϕ+Λ1∂ΛΦ(r,Λ0) (A.11)

(next we show that actually Λ1 = 0).
Similarly to the considerations above, applying Fourier analysis to problem

(A.2),(A.5), (A.8) we find

S2 = Λ1∂Λφ̃(r,Λ0)cosϕ+ S̃2(r)cos2ϕ+G(r), ρ2 =− S̃2(R)

Φ′0(R)
cos2ϕ, (A.12)
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where S̃2 solves

−S̃′′2 −
1

r
S̃′2 +(1+4/r2)S̃2−Λ0e

Φ0(r)S̃2 =
Λ0

4
eΦ0(r)(φ̃(r,Λ0)−r)2 (A.13)

on (0,R) with

S̃2(0) = 0, S̃′2(R) =
Φ′′0(R)−3β/R2

Φ′0(R)
S̃2(R), (A.14)

and G(r) is some function whose particular form is not important for the further analy-
sis. Note that under the condition (6.17), problem (A.13)-(A.14) has a unique solution.

Considering the Fourier mode corresponding to cosϕ in (A.8) we obtain that Λ1 = 0,
provided that ∂Λφ̃

′(R,Λ0) 6= 0. The latter inequality is proved as follows. Multiply (3.6)
by Φ′(r,Λ)r and integrate from 0 to R to find that

φ̃′(R,Λ) =
Λ

RΦ′(R,Λ)

∫ R

0

eΦ(r,Λ)Φ′(r,Λ)r2dr

= 1+
ΛR2−

∫ R
0

Φ(r,Λ)rdr−Λ
∫ R

0
eΦ(r,Λ)rdr∫ R

0
Φ(r,Λ)rdr−Λ

∫ R
0
eΦ(r,Λ)rdr

. (A.15)

Then

∂Λφ̃
′(R,Λ0)>

R2−
∫ R

0
∂ΛΦ(r,Λ0)rdr−

∫ R
0
eΦ(r,Λ0)rdr∫ R

0
Φ(r,Λ0)rdr−Λ0

∫ R
0
eΦ(r,Λ0)rdr

, (A.16)

where we have used the fact that minimal solutions Φ(r,Λ) are increasing in Λ and the
denominator in (A.15) is negative. Since the pair (Λ,Φ) = (Λ0,Φ0) satisfies (3.9) we have

∂Λφ̃
′(R,Λ0)>−

∫ R
0

(∂ΛΦ(r,Λ0)−Φ(r,Λ0)/Λ0)rdr∫ R
0

Φ(r,Λ0)rdr−Λ0

∫ R
0
eΦ(r,Λ0)rdr

. (A.17)

Furthermore we obtain that the function w=∂ΛΦ(r,Λ0)−Φ(r,Λ0)/Λ0 is positive apply-
ing the maximum principle to the equation −∆w+w= Λ0e

Φ0(r)∂ΛΦ(r,Λ0)>0. Thus
∂Λφ̃

′(R,Λ0)>0.
Finally, to identify S3 and ρ3 we apply Fourier analysis to (A.3), (A.6), (A.9). The

resulting formula for ρ3 is

ρ3 =− S̃3(R)

Φ′0(R)
cos3ϕ, (A.18)

where S̃3 is the solution of

−S̃′′3 −
1

r
S̃′3 +(1+9/r2)S̃3−Λ0e

Φ0(r)S̃3 =
Λ0

2
eΦ0(r)(φ̃(r)−r)S̃2(r)+

Λ0

24
eΦ0(r)(φ̃(r)−r)3

(A.19)
on (0,R) with boundary conditions

S̃3(0) = 0, S̃′3(R) =
Φ′′0(R)−8β/R2

Φ′0(R)
S̃3(R)+

φ̃′′(R)−2/R

2Φ′0(R)
S̃2(R). (A.20)
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Thus the first terms of the asymptotic expansion of the function ρ which determine the
shape of the domain are

ρ=−ε2 S̃2(R)

Φ′0(R)
cos2ϕ−ε3 S̃3(R)

Φ′0(R)
cos3ϕ+ .. . (A.21)

where S̃2 solves (A.13)-(A.14), S̃3 solves (A.19)-(A.20), and φ̃ is a solution of (3.6)-(3.7)
with Λ = Λ0 and Φ = Φ0.
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