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THE GENERALIZED RIEMANN PROBLEM AND INSTABILITY OF
DELTA SHOCK TO THE CHROMATOGRAPHY EQUATIONS∗
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Abstract. The generalized Riemann problem for the nonlinear chromatography equations in a
neighborhood of the origin (t>0) on the (x,t) plane is considered. The problem is quite different
from the previous generalized Riemann problems which have no delta shock wave in the corresponding
Riemann solutions. With the method of characteristic analysis and the local existence and uniqueness
theorem proposed by Li Ta-tsien and Yu Wen-ci [T.T. Li and W.C. Yu, Duck. Univ. Math. Ser. V,
Durham, NC, 1985], we constructively solve the generalized Riemann problem and prove the existence
and uniqueness of the solutions. It is proved that the generalized Riemann solutions possess a structure
similar to the solution of the corresponding Riemann problem for most cases. In case that there is a
delta shock wave in the corresponding Riemann solution, we discover that the generalized Riemann
solution may turn into a combination of a shock wave and a contact discontinuity, which shows the
instability and the internal mechanisms of a delta shock wave.
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1. Introduction
The nonlinear chromatography equations can be expressed as
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where u and v are non-negative functions of variables (x,t)∈R×R+, which express the
concentrations of the two absorbing species, and 1−u+v>0. The equations are not
only a common analytical tool but are also used to study the preparative separations
in the pharmaceutical, food, and agrochemical industries. Yang and Zhang [19], Cheng
and Yang [6] studied the Riemann problem of Equation (1.1) and proved the existence
and uniqueness of the solution. With the method of the splitting delta function, Guo,
Pan and Yin [9] discussed the perturbed Riemann problem for the nonlinear chromatog-
raphy equations (1.1). Equations (1.1) can be derived from a more general nonlinear
chromatography system 
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where a1 and a2 are constants with a2>a1>0; u and v are the non-negative functions
of the variables (x,t)∈R×R+, and 1−u+v>0.

A distinctive [1, 5, 16] feature for Equations (1.1) and (1.2) is that the delta shock
wave with Dirac delta function in both u and v will appear in solutions [6]. This fact
was also captured numerically and experimentally by Mazzotti et al. [13, 14] for (1.2).
This delta shock phenomenon originates in the synergistic-competitive behavior of the
two species as described in [6].

Another system of nonlinear chromatography equations was introduced in [1,5,16].
The model reads 
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where u(x,t)≥0, v(x,t)≥0 express transformations of the concentrations of two solutes.
System (1.3) is widely used by chemists and engineers to study the separation of two
chemical components in a fluid phase. Unlike in systems (1.1) and (1.2), the delta
shock wave does not develop in the solutions of system (1.3) when u(x,t)≥0, v(x,t)≥0,
see [1, 5, 16].

Recently, Ambrosio et al. [1] introduced the change of variables

θ=u−v, η=u+v, (1.4)

then system (1.3) can be changed to
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where η≥0. Because of the conditions u≥0 and v≥0, the change of variables (1.4) is
not one-on-one, which implies that system (1.3) and system (1.5) are not equivalent. The
existence and uniqueness of solutions to (1.5) were proved by employing the self-similar
viscosity vanishing approach in [18]. The delta shock wave appears in the Riemann
solution of (1.5). However, for this kind of delta shock waves, only one state variable θ
contains the Dirac delta function and the other state variable η has bounded variation.
Han and Pan discussed the formation, transition and instability of delta shock waves to
the chromatography equations (1.5) in [10].

From the above discussion, one can observe that the essential difference among the
nonlinear chromatography equations (1.1), (1.3) and (1.5) is the coefficients of the ab-
sorbing species. Consequently, the structures of solutions for these nonlinear chromatog-
raphy equations are quite different, in which the delta shock wave plays an important
role.

The theory of the delta shock wave has been intensively developed in the last twenty
years. The delta shock wave solution and the corresponding Rankine–Hugoniot condi-
tion were presented by Zeldovich and Myshkis [20] in the case of the continuity equation.
In 1999, Sheng and Zhang [17] discussed the Riemann problem for the zero-pressure gas
dynamics, in which a delta shocks appear. The previous investigations mostly focused
on the case that only one state variable develops the Dirac delta function and the oth-
ers have bounded variations. In 2012, Yang and Zhang [19] established a new theory
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of delta shock waves with Dirac delta functions developing in two state variables for a
class of nonstrictly hyperbolic systems of conservation laws. There are numerous ex-
cellent papers on delta shock waves, for the related references one can see [17–19] and
the references cited therein. We specially mention that, in a series of papers [2–4, 7, 8],
Bouchut et al. studied the zero-pressure gas dynamics in different techniques.

In the delta shock wave theories, there are still many open and complicated prob-
lems. Research of this area gives a new perspective in the theory of conservation law
systems. The aim of this study in this paper is to analyze the internal mechanism and
instability of a delta shock wave. We study the nonlinear chromatography equations
(1.1) with the following initial data

(u,v)
∣∣∣
t=0

= (u0(x),v0(x)) =

{
(u−0 (x),v−0 (x)), x<0,

(u+0 (x),v+0 (x)), x>0,
(1.6)

where u±0 (x) and v±0 (x) are all bounded C1 functions with the following property

(u±0 (0±),v±0 (0±)) = (û±, v̂±). (1.7)

Here û± and v̂± are constants with (û−, v̂−) 6= (û+, v̂+). The initial value (1.6) is a
perturbation of Riemann initial value (2.1) at the neighborhood of the origin in the
x− t plane. So we call the initial value problem (1.1) with (1.6) a generalized Riemann
problem.

It is natural and important to study the Cauchy problem (1.1) with initial data (1.6).
For example, error is unavoidable in computation and the error forms a perturbation
of the initial data. The interesting question, in this paper, is to discuss whether the
generalized Riemann solutions of problem (1.1),(1.6) possess a structure similar to the
corresponding Riemann solutions of problem (1.1),(2.1).

Our results show that in a neighborhood of the origin, the Riemann solutions are
able to retain their forms after the perturbation of Riemann initial data, if there are
only classical elementary waves in the corresponding Riemann solutions. However, when
a delta shock wave appears in the corresponding Riemann solution, the perturbation
may bring essential change. A distinctive feature of this problem is that the Riemann
solution has no local structure stability with respect to the above perturbation. We pay
more attention to the differences between Riemann solution and generalized Riemann
solution. However, the previous works [11,12] are about the stability of the correspond-
ing Riemann solution.

It is difficult to solve the generalized Riemann problem (1.1),(1.6) because there is
a delta shock wave in the corresponding Riemann solutions. However, in the previous
work [11, 12] on the generalized Riemann problem, no delta shock wave appears in the
corresponding Riemann solutions. Using the method of characteristic analysis and the
local existence and uniqueness theorem proposed by Li Ta-tsien and Yu Wen-ci [12],
we derive a condition which is used as a criterion to detect the instability of the delta
shock wave. If the generalized Riemann initial datum (1.6) satisfies the above condition,
the Riemann initial perturbation has no essential influence on the delta shock wave.
Furthermore, we analyze some properties of the delta shock wave curve. Conversely, if
the condition fails to hold, we prove that a delta shock wave turns into a shock wave and
a contact discontinuity, which allows us to better investigate the internal mechanism of
a delta shock wave. Finally, we analyze the instability property of the solution of the
nonlinear chromatography equation due to the reasonable perturbation on the Riemann
initial data.
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The paper is organized as follows. In Section 2, we present some preliminary knowl-
edge about the nonlinear chromatography equations (1.1). The construction and proof
of the generalized Riemann solutions to problem (1.1),(1.6) are presented in Section 3.

2. Preliminaries
Consider system (1.1) with Riemann initial data

(u,v)(x,0) = (û±, v̂±) ±x>0, (2.1)

where û± and v̂± are constants with (û−, v̂−) 6= (û+, v̂+), see [6, 19] for a more detailed
study of the model.

The eigenvalues of the chromatography equations (1.1) are

λ1(u,v) = 1+
1

1−u+v
, λ2(u,v) = 1+

1

(1−u+v)2
. (2.2)

The corresponding left eigenvectors are

l1(u,v) = (v,−u), l2(u,v) = (−1,1), (2.3)

and the right eigenvectors are

r1(u,v) = (1,1)T , r2(u,v) = (u,v)T . (2.4)

From Equations (2.2) and (2.4), we have

∇λ1 ·r1 = 0, ∇λ2 ·r2 =
−2(−u+v)

(1−u+v)3
. (2.5)

Therefore λ1 is always linearly degenerate, λ2 is genuinely nonlinear if u 6=v, and linearly
degenerate if u=v. From Equation (2.2), we notice that system (1.1) is no longer strictly
hyperbolic in the region of the (u,v) plane where u=v.

For the chromatography equations (1.1), the Riemann invariants along the charac-
teristic fields are

ζ(u,v) =−u+v, ς(u,v) =
v

u
. (2.6)

Definition 2.1 ( [15, 19]). A pair of (u,v) is called a generalized delta shock wave
solution to (1.1) with the initial data (1.6) on [0,T ), if there exists a smooth curve
l={(xδ(t),t) : 0≤ t<T} and a weight ω(x,t) such that u and v are represented in the
following forms

u=U(x,t)+ω(x,t)δ(l), v=V (x,t)+ω(x,t)δ(l), (2.7)

in which δ(x) is the delta function, ω∈C1(l), U,V ∈L∞(R× [0,T );R) and satisfies∫ T

0

∫ +∞

−∞

(
Uφt+

(
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U

1−U+V

)
φx

)
dxdt

+

∫ T

0
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∂l
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∫ +∞

−∞
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+

∫ T

0

ω(xδ(t),t)
∂φ(x,t)

∂l

√
1+σ2

δdt+

∫ +∞

−∞
v0(x)φ(x,0)dx= 0, (2.9)

for all the test functions φ∈C∞0 ((−∞,+∞)× [0,T )). Here σδ is the tangential derivative

of the curve l, and
∂φ(x,t)

∂l
stands for the tangential derivative of the function φ on the

curve l.

The Riemann solutions for problem (1.1),(2.1) are divided into the following cases
through the following conditions [6]:

(1) When 0<−û−+ v̂−<−û+ + v̂+, the solution is
←−
S +J ;

(2) When −û−+ v̂−≤0≤−û+ + v̂+, the solution is delta shock wave δS;

(3) When −û−+ v̂−<−û+ + v̂+<0, the solution is J+
−→
S ;

(4) When −û+ + v̂+<0<−û−+ v̂−, the solution is
←−
R 1 +

−→
R 2;

(5) When 0≤−û+ + v̂+<−û−+ v̂−, the solution is
←−
R +J ;

(6) When −û+ + v̂+<−û−+ v̂−≤0, the solution is J+
−→
R .

Here “+” means “followed by”; the capitals S, J and R denote shock wave, contact
discontinuity and rarefaction wave, respectively.

Definition 2.2. For an n×n matrix H= (aij), define

‖H ‖= Max
i=1,···,n

n∑
i=1

|aij |

and

‖H ‖min= inf{‖γHγ−1 ‖;γ=diag{γi},γi 6= 0,i= 1,·· · ,n}.

Lemma 2.1 ( [12]). If A is a 2×2 matrix of form(
0 a
b 0

)
,

then

‖A‖min=
√
|ab |.

Let

D(ε) ={(x,t) |x1(t)≤x≤x2(t),0≤ t<ε}, (2.10)

where x=x1(t) and x=x2(t) are given or unknown C2 curves with

x1(0) =x2(0) = 0, x′1(0)<x′2(0).

On an angular domain (2.10), consider the free boundary problem (1.1) with bound-
ary conditions as follows:

on x=x1(t),

−u∗(x1(t),t)+v∗(x1(t),t) =F (x1(t),t, v̂∗u∗(x1(t),t)− û∗v∗(x1(t),t)), (2.11)
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and

dx1(t)

dt
=f(x1(t),t,u∗(x1(t),t),v∗(x1(t),t)); (2.12)

on x=x2(t),

v̂∗u∗(x2(t),t)− û∗v∗(x2(t),t) =G(x2(t),t,−u∗(x2(t),t)+v∗(x2(t),t)), (2.13)

and

dx2(t)

dt
=g(x2(t),t,u∗(x2(t),t),v∗(x2(t),t)), (2.14)

where F , f , G and g are known C1 functions, u∗(x,t), v∗(x,t) are unknown functions
on D(ε). û∗=u∗(0,0) and v̂∗=v∗(0,0) can be determined uniquely from boundary
conditions (2.11) and (2.13). We assume that λ1<λ2 (the similar discussion can be
done for λ1>λ2) in this section. Set(

U(x,t)
V(x,t)

)
=

(
l1(û∗, v̂∗)
l2(û∗, v̂∗)

)(
u∗(x,t)
v∗(x,t)

)
=

(
v̂∗ −û∗
−1 1

)(
u∗(x,t)
v∗(x,t)

)
. (2.15)

The boundary conditions (2.11) on x=x1(t) and (2.13) on x=x2(t) can be rewritten,
respectively, as on x=x1(t),

V(x1(t),t) =F(x1(t),t,U(x1(t),t)), (2.16)

and on x=x2(t),

U(x2(t),t) =G(x2(t),t,V(x2(t),t)). (2.17)

The characterizing matrix A of this free boundary problem is of the form

A=

(
0 G′3
F ′3 0

)
, (2.18)

where F ′3 and G′3 represent the values at the origin of the first derivatives of F and G
with respect to their third argument, respectively.

Lemma 2.2. ( [12]) Assume that

(1) λ1(u∗(x1(t),t),v∗(x1(t),t))≤f(x1(t),t,u∗(x1(t),t),v∗(x1(t),t)),

(2) λ2(u∗(x2(t),t),v∗(x2(t),t))≥g(x2(t),t,u∗(x2(t),t),v∗(x2(t),t)),

(3) f(0,0,û∗, v̂∗)<λ2(û∗, v̂∗),

(4) f(0,0,û∗, v̂∗)<g(0,0,û∗, v̂∗),

if

‖A‖min<1,

the free boundary problem (1.1) with boundary conditions (2.11)∼ (2.14) admits a unique
solution on a shaped domain R(ε), where ε>0 is sufficiently small.
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3. The generalized Riemann problem and delta shock wave

In this section, we turn our efforts to study the instability of the delta shock wave.
Thus, this section is devoted to the description of the generalized Riemann problem for
the chromatography equations (1.1) with initial data (1.6). We pay more attention to
the differences between the above generalized Riemann solutions and the corresponding
Riemann solutions of problem (1.1),(2.1).

We now seek the solution to the generalized Riemann problem (1.1),(1.6). Us-
ing the method of characteristics, the classical solutions (u−(x,t),v−(x,t)) and
(u+(x,t),v+(x,t)) can be defined in strip domains D− and D+ for local time, re-
spectively, see Figure 3.1. Here the local smooth solutions(u−(x,t),v−(x,t)) and
(u+(x,t),v+(x,t)) are given by solving the initial value problem (1.1) with initial data
(u−0 (x),v−0 (x)) and (u+0 (x),v+0 (x)) on both sides of x= 0, respectively.

-

�
*

6

~

6t

x=α−(t) x=β−(t)

x=β+(t)

x=α+(t)

D+

D−

(u+(x,t),v+(x,t))

(u−(x,t),v−(x,t))

Fig. 3.1. x

In the case −û−+ v̂−<0, the right boundary of domain D− is a I−characteristic
x=α−(t), namely


v−(α−(t),t)

u−(α−(t),t)
=
v̂−

û−
,

dα−(t)

dt
= 1+

1

1−u−(α−(t),t)+v−(α−(t),t)
.

(3.1)

However, in the case of −û−+ v̂−>0, the right boundary of domain D− is a straight
II−characteristic x=β−(t), namely,

−u−(β−(t),t)+v−(β−(t),t) =−û−+ v̂−,

dβ−(t)

dt
= 1+

1

(1−u−(β−(t),t)+v−(β−(t),t))2
.

(3.2)

Similarly, in the case of −û+ + v̂+<0, the left boundary of domain D+ is a straight
II−characteristic x=β+(t), namely,

−u+(β+(t),t)+v+(β+(t),t) =−û+ + v̂+,

dβ+(t)

dt
= 1+

1

(1−u+(β+(t),t)+v+(β+(t),t))2
.

(3.3)

However, in the case of −û+ + v̂+>0, the left boundary of domain D+ is a
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I−characteristic x=α+(t), namely,
v+(α+(t),t)

u+(α+(t),t)
=
v̂+

û+
,

dα+(t)

dt
= 1+

1

1−u+(α+(t),t)+v+(α+(t),t)
.

(3.4)

It is clear that the construction of the generalized Riemann solution for problem
(1.1),(1.6) between the right boundary of domain D− and the left boundary of do-
main D+ is determined completely by the corresponding Riemann problem near the
origin. According to the solutions to the corresponding Riemann problem (1.1),(2.1),
we consider six different cases.

Case 1: 0<−û−+ v̂−<−û+ + v̂+.
As shown in Figure 3.2(a), the solution of the Riemann problem (1.1),(2.1) con-

sists of a backward shock wave
←−
S from (û−, v̂−) to (û∗, v̂∗), a contact discontinu-

ity J from (û∗, v̂∗) to (û+, v̂+). Here the backward shock wave is OÂ1 : x= (1+
1

(1− û−+ v̂−)(1− û+ + v̂+)
)t, the contact discontinuity is OÂ2 : x= (1+

1

1− û+ + v̂+
)t

and the intermediate state is (û∗, v̂∗) = (
−û+ + v̂+

−û−+ v̂−
û−,
−û+ + v̂+

−û−+ v̂−
v̂−).

- -
x x

6
t

6
t

O O

(u−,v−)

(u+,v+)

J

←−
S

(û−, v̂−)

(û+, v̂+)

(û∗, v̂∗)

Â1

Â2

(a) the Riemann solution

(u∗,v∗)

←−
S

J

A1

A2

(b) the generalized Riemann solution

Fig. 3.2. Case 1.

In view of the above Riemann solution, we will prove that the generalized Riemann
problem (1.1) and (1.6) admits a unique solution locally in time as shown in Figure
3.2(b). Here the backward shock wave

OA1 :x=xs(t) (xs(0) = 0)

and the contact discontinuity

OA2 :x=xc(t) (xc(0) = 0)

are free boundaries. On the left boundary curve x=xs(t), we have

dxs(t)

dt
= 1+

1

(1−u−+v−)(1−u∗+v∗)
, (3.5)

u−v∗=u∗v−. (3.6)

On the right boundary curve x=xc(t), we have

dxc(t)

dt
= 1+

1

1−u∗+v∗
, (3.7)



L. PAN, X. HAN, T. LI, AND L. GUO 713

−u∗+v∗=−u+ +v+. (3.8)

The generalized Riemann solution to problem (1.1),(1.6) is (u−(x,t),v−(x,t)) on the
domain {(x,t) |x<xs(t),0≤ t<ε}, ε>0 small. The generalized Riemann solution is
(u+(x,t),v+(x,t)) on the domain {(x,t) |x>xc(t),0≤ t<ε}. However, the generalized
Riemann solution to problem (1.1),(1.6) is unknown on the domain {(x,t) |xs(t)<x<
xc(t),0≤ t<ε}. We denoted it by (u∗(x,t),v∗(x,t)). Moreover, the value

(u∗(0,0),v∗(0,0)) = (û∗, v̂∗) = (
−û+ + v̂+

−û−+ v̂−
û−,
−û+ + v̂+

−û−+ v̂−
v̂−), (3.9)

which is determined uniquely from boundary conditions (3.6) and (3.8).
By using the fact that (u−(x,t),v−(x,t)) and (u+(x,t),v+(x,t)) are known smooth

functions, the generalized Riemann problem (1.1),(1.6) is equivalent to the free boundary
problem (1.1) with boundary conditions (3.5)∼(3.8) on the fan-shaped domain {(x,t) |
xs(t)<x<xc(t),0≤ t<ε}, ε>0 small. We turn our attention now to the above free
boundary problem.

We shall rewrite the boundary conditions (3.6) and (3.8) by introducing the variables(
U(x,t)
V(x,t)

)
=

(
l2(û∗, v̂∗)
l1(û∗, v̂∗)

)(
u∗(x,t)
v∗(x,t)

)
=

(
−1 1
v̂∗ −û∗

)(
u∗(x,t)
v∗(x,t)

)
. (3.10)

On x=xs(t), the boundary condition (3.6) then reduces to

V=
(u−v̂∗−v−û∗)U

v−−u−
. (3.11)

On x=xc(t), the boundary condition (3.8) can be written as

U =−u+ +v+. (3.12)

From Equations (3.11) and (3.12), we get the characterizing matrix A of the above free
boundary problem [12]:

A=

 0 0
u−v̂∗−v−û∗

v−−u−
0

 . (3.13)

From Lemma 2.2, if the minimal characterizing number ‖A‖min<1, the free bound-
ary problem under consideration admits a unique piecewise smooth solution on the fan-
shaped domain {(x,t) |xs(t)<x<xc(t),0≤ t<ε}. By Lemma 2.1, it is not difficult to
check

‖A‖min= 0<1 (3.14)

Thus there exists a unique C1 solution to the free boundary problem locally in time.
Based on the above discussion, we know that the generalized solution has the desired

structure which is a backward shock wave followed by a contact discontinuity. That is,
the solution to the Riemann problem is stable near the origin after perturbations (1.6)
of the Riemann initial data.
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Case 2: −û−+ v̂−≤0≤−û+ + v̂+.
The solution to the Riemann problem (1.1),(2.1) consists of a delta shock wave

δS from (û−, v̂−) to (û+, v̂+). Here the speed of the delta shock wave is 1+
1

(1− û−+ v̂−)(1− û+ + v̂+)
, see Figure 3.3(a).

6

-

δS

(û−, v̂−)

O
(a) the Riemann solution

x

6

-
x

(û+, v̂+)

t t

O
(b) the generalized Riemann solution

δS

(u−,v−)

` `
(u+,v+)

−δ− x̃−0 x̃+
0−δ+

(x̃, t̃)

o
x=β−(t) x=β+(t)

1

Fig. 3.3. Subcase 2.1, Subcase 2.2 with −u̇−0 (0)+ v̇−0 (0)>0 and Subcase 2.3 with −u̇+
0 (0)+ v̇+0 (0)>0.

It is natural then to ask whether there is a delta shock wave in the solution of the
generalized Riemann problem (1.1),(1.6). If so, we must choose u and v to satisfy

u=u+ +[u]H(−x+xδ(t))+ω(xδ(t),t)δ(l), (3.15)

v=v+ +[v]H(−x+xδ(t))+ω(xδ(t),t)δ(l).

Hereafter, we use the usual notation [u] =u−−u+ with u− and u+ the values of the func-
tion u on the left-hand and right-hand sides of the discontinuity x=xδ(t) with xδ(0) = 0.
H(x) is the Heaviside function that is 0 when x<0 and 1 when x>0. ω(xδ(t),t) and
σδ are the weight and the tangential derivative of curve l,{(xδ(t),t) : 06 t<T}, which
is given by 

d
√

1+σ2
δω(xδ(t),t)

dt
=−σδ[u]+[

(
1+

1

1−u+v

)
u],

d
√

1+σ2
δω(xδ(t),t)

dt
=−σδ[v]+[

(
1+

1

1−u+v

)
v],

ω(0,0) = 0.

(3.16)

By direct calculation, we find the propagating speed of the delta shock wave

σδ =
dxδ(t)

dt
= 1+

1

(1−u−(xδ(t),t)+v−(xδ(t),t))(1−u+(xδ(t),t)+v+(xδ(t),t))
. (3.17)

In order to show the existence of the delta shock wave, we begin by a definition.

Definition 3.1. If (u,v) satisfies Equation (3.15), then it is an admissible delta
shock wave solution to the initial value problem (1.1),(1.6) in the sense of distributions
on [0,T ), if (u,v) satisfies Definition 2.1 and the entropy condition

λ2(u+,v+)≤λ1(u+,v+)≤ dxδ(t)
dt

≤λ1(u−,v−)≤λ2(u−,v−) (3.18)

on the discontinuity x=xδ(t).

The inequality (3.18) shows that all the four characteristic lines on both sides of
the discontinuity x=xδ(t) are not outgoing. According to Definition 3.1, we first check
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whether the delta shock wave solution (u,v) defined in Definition 3.1 satisfies problem
(1.1),(1.6) in the sense of distributions on [0,T ). It is useful to state explicitly the
following proposition.

Proposition 3.1. The delta shock wave solution (u,v) defined in Definition 3.1
satisfies problem (1.1),(1.6) in the sense of distributions on a domain D(T ) ={(x,t) |
−∞<x<∞,0≤ t<T}, where T >0 is a finite time.

Proof. We define

U(x,t) =u+ +[u]H(−x+xδ(t)), V (x,t) =v+ +[v]H(−x+xδ(t)). (3.19)

Then (3.15) implies

u=U(x,t)+ω(xδ(t),t)δ(l), v=V (x,t)+ω(xδ(t),t)δ(l). (3.20)

Using (3.19) on the left-hand side of Equation (2.8), for any test function φ∈
C∞0 ((−∞,+∞)× [0,T )), it follows that∫ T

0

∫ +∞

−∞

(
Uφt+

(
U+

U

1−U+V

)
φx

)
dxdt

+

∫ T

0

ω(xδ(t),t)
∂φ(x,t)

∂l

√
1+σ2

δdt+

∫ +∞

0

u0(x)φ(x,0)dx

=

∫ T

0

∫ xδ(t)

−∞
(u−φt+

(
u−+

u−

1−u−+v−

)
φx)dxdtdxdt

+

∫ T

0

∫ +∞

xδ(t)

(u+φt+
(
u+ +

u+

1−u+ +v+

)
φx)dxdt

+

∫ T

0

ω(xδ(t),t)
∂φ(x,t)

∂l

√
1+σ2

δdt+

∫ +∞

0

u0(x)φ(x,0)dx.

Since (u−,v−) is a C1 solution to problem (1.1) with initial data (u−0 (x),v−0 (x)) in
the domain D−, using the divergence theorem, we have∫ T

0

∫ xδ(t)

−∞
(u−φt+

(
u−+

u−

1−u−+v−

)
φx)dxdt

=

∫ T

0

∫ xδ(t)

−∞
((u−φ)t+(

(
u−+

u−

1−u−+v−

)
φ)x)dxdt

=−
∫ 0

−∞
u−0 (x)φ(x,0)dx+

∫ T

0

φ(xδ(t),t)(−u−(xδ(t),t)σδ(xδ(t),t)+u−(xδ(t),t)

+
u−(xδ(t),t)

1−u−(xδ(t),t)+v−(xδ(t),t)
)dt.

Similarly, since (u+,v+) is a C1 solution to problem (1.1) with initial data (u+0 (x),v+0 (x))
in the domain D+, we have∫ T

0

∫ +∞

xδ(t)

(u+φt+
(
u+ +

u+

1−u+ +v+

)
φx)dxdt

=

∫ T

0

∫ +∞

xδ(t)

(u+φ)t+(
(
u+ +

u+

1−u+ +v+

)
φ)xdxdt
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=−
∫ +∞

0

u+0 (x)φ(x,0)dx−
∫ T

0

φ(xδ(t),t)(−u+(xδ(t),t)σδ(xδ(t),t)+u+(xδ(t),t)

+
u+(xδ(t),t)

1−u+(xδ(t),t)+v+(xδ(t),t)
)dt.

Finally, it can be proved that∫ T

0

∫ +∞

−∞

(
Uφt+

(
U+

U

1−U+V

)
φx

)
dxdt

+

∫ T

0

ω(xδ(t),t)
∂φ(x,t)

∂l

√
1+σ2

δdt+

∫ +∞

−∞
u0(x)φ(x,0)dx

=−
∫ +∞

−∞
u0(x)φ(x,0)dx+

∫ T

0

φ(xδ(t),t)([u+
u

1−u+v
]− [u]σδ)dt

+

∫ T

0

ω(xδ(t),t)
∂φ(x,t)

∂l

√
1+σ2

δdt+

∫ +∞

−∞
u0(x)φ(x,0)dx

=

∫ T

0

φ(xδ(t),t)([u+
u

1−u+v
]− [u]σδ)dt+

∫ T

0

ω(xδ(t),t)
∂φ(x,t)

∂l

√
1+σ2

δdt

=

∫ T

0

φ(xδ(t),t)([u+
u

1−u+v
]− [u]σδ)dt+

∫ T

0

ω(xδ(t),t)
√

1+σ2
δdφ(xδ(t),t)

=

∫ T

0

φ(xδ(t),t)([u+
u

1−u+v
]− [u]σδ)dt+ω(xδ(t),t)

√
1+σ2

δφ(xδ(t),t)
∣∣∣t=T
t=0

−
∫ T

0

φd(
√

1+σ2
δω(xδ(t),t)) = 0.

That is, the equality (2.8) holds. Substituting line (3.20) into the left-hand side of
Equation (2.9), we can prove similarly that Equation (2.9) holds.

Recalling Definition 3.1, the delta shock wave solution (3.15) should satisfy the
entropy condition (3.18) on the discontinuity x=xδ(t). We next investigate the validity
of the entropy condition along the delta shock curve. There are three subcases: −û−+
v̂−<0<−û+ + v̂+, −û−+ v̂−= 0<−û+ + v̂+ and −û−+ v̂−<0 =−û+ + v̂+.

Subcase 2.1: −û−+ v̂−<0<−û+ + v̂+.
By virtue of −û−+ v̂−<0<−û+ + v̂+, it can be proved that there exist constants

δ−>0 and δ+>0 so small that the C1 functions u−0 (x),v−0 (x),u+0 (x) and v+0 (x) satisfy
the inequality

−u−0 (x−0 )+v−0 (x−0 )<0<−u+0 (x+0 )+v+0 (x+0 ) (3.21)

for any x−0 ∈ (−δ−,0] and x+0 ∈ [0,−δ+).
Let x=β−(t) (resp. x=β+(t)) be the downwards left (resp. right)

II−characteristic from any point (x̃, t̃) on the delta shock wave curve x=xδ(t), see
Figure 3.3(b). When the time t̃ is small enough, the II−characteristic x=β−(t) (resp.
x=β+(t)) starting at (x̃, t̃) will intersect at a point (x̃−0 ,0) (resp. (x̃+0 ,0)) on the initial
axis t= 0 with 0>x̃−0 >−δ− (resp. 0<x̃+0 <δ

+). Along the II−characteristic x=β−(t)
(resp. x=β+(t)), the Riemann invariant ζ(u,v) =−u+v must be a constant. Then we
get

ζ(u−(β−(t),t),v−(β−(t),t)) =−u−(β−(t),t)+v−(β−(t),t) =−u−(x̃, t̃)+v−(x̃, t̃)
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= ζ(u−0 (x̃−0 ),v−0 (x̃−0 )) =−u−0 (x̃−0 )+v−0 (x̃−0 ), (3.22)

and

ζ(u+(β+(t),t),v+(β+(t),t)) =−u+(β+(t),t)+v+(β+(t),t) =−u+(x̃, t̃)+v+(x̃, t̃)

= ζ(u+0 (x̃+0 ),v+0 (x̃+0 )) =−u+0 (x̃+0 )+v+0 (x̃+0 ). (3.23)

Using Equations (3.22) and (3.23) in Rankine–Hugoniot condition (3.17), we have
the propagation speed of the delta shock wave x=xδ(t) at the point (x̃, t̃)

σδ(x̃, t̃) =
dxδ(t)

dt

∣∣∣
t=t̃

= 1+
1

(1−u−(x̃, t̃)+v−(x̃, t̃))(1−u+(x̃, t̃)+v+(x̃, t̃))

= 1+
1

(1−u−0 (x̃−0 )+v−0 (x̃−0 ))(1−u+0 (x̃+0 )+v+0 (x̃+0 ))
.

(3.24)

This, together with inequality (3.21), gives

λ2(u+(x̃, t̃),v+(x̃, t̃)) = 1+
1

(1−u+0 (x̃+0 )+v+0 (x̃+0 ))2
<λ1(u+(x̃, t̃),v+(x̃, t̃))

= 1+
1

1−u+0 (x̃+0 )+v+0 (x̃+0 )
<σδ(x̃, t̃)

= 1+
1

(1−u−0 (x̃−0 )+v−0 (x̃−0 ))(1−u+0 (x̃+0 )+v+0 (x̃+0 ))

<λ1(u−(x̃, t̃),v−(x̃, t̃)) = 1+
1

1−u−0 (x̃−0 )+v−0 (x̃−0 )

= 1+
1

1−u−(x̃, t̃)+v−(x̃, t̃)

<λ2(u−(x̃, t̃),v−(x̃, t̃)) = 1+
1

(1−u−0 (x̃−0 )+v−0 (x̃−0 ))2

= 1+
1

(1−u−(x̃, t̃)+v−(x̃, t̃))2
. (3.25)

From inequality (3.25), it is obvious that the entropy condition holds at any point (x̃, t̃)
on the curve x=xδ(t) locally in time. We can now prove the following proposition.

Proposition 3.2. In the case −û−+ v̂−<0<−û+ + v̂+, the generalized Riemann
solution to problem (1.1),(1.6) is a delta shock wave locally in time, which is given by
Equation (3.15). The delta shock wave curve x=xδ(t) has the following property:

(1) If (1− û+ + v̂+)2(−u̇−0 (0)+ v̇−0 (0))< (1− û−+ v̂−)2(−u̇+0 (0)+ v̇+0 (0)), the curve x=
xδ(t) is convex;

(2) If (1− û+ + v̂+)2(−u̇−0 (0)+ v̇−0 (0))> (1− û−+ v̂−)2(−u̇+0 (0)+ v̇+0 (0)), the curve x=
xδ(t) is concave.

The generalized Riemann problem has a solution in the form similar to the corresponding
Riemann solution; see Figure 3.3.

Proof. Proposition 3.1 implies that the delta shock wave solution (3.15) satisfies
problem (1.1),(1.6) in the sense of distributions. From inequality (3.25), we have that
the entropy condition holds along the delta shock wave curve x=xδ(t) locally in time.
Hence, by Definition 3.1, we know that the generalized Riemann solution to problem
(1.1),(1.6) is a delta shock wave in a neighborhood of the origin (0,0). Namely, the
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generalized Riemann problem has a solution in the form similar to the corresponding
Riemann solution locally in time.

To determine the behavior of the delta shock wave curve x=xδ(t) near the origin,
we need to calculate the value of ẍδ(0) as follows. From Equation (3.17), it follows that

(1−u−+v−)(1−u+ +v+)
dxδ(t̃)

dt̃
= (1−u−+v−)(1−u+ +v+)+1. (3.26)

Differentiating Equation (3.26) with respect to t̃ and let t̃= 0, then one obtain

(1− û−+ v̂−)(1− û+ + v̂+)ẍδ(0) =(1− ẋδ(0))(1− û+ + v̂+)
d(−u−+v−)

dt̃

∣∣∣
t̃=0

+(1− ẋδ(0))(1− û−+ v̂−)
d(−u+ +v+)

dt̃

∣∣∣
t̃=0

. (3.27)

From Equation (3.27), we turn next to the values of
d(−u−+v−)

dt̃

∣∣∣
t̃=0

and

d(−u+ +v+)

dt̃

∣∣∣
t̃=0

, respectively. Using Equation (1.1), we write

d(−u+v)

dt
=
∂(−u+v)

∂t
+
∂(−u+v)

∂x

dx

dt
=

∂

∂x

{(
1+

1

1−u+v

)
(u−v)

}
+
∂(−u+v)

∂x

dx

dt
= (

dx

dt
−1− 1

(1−u+v)2
)
∂(−u+v)

∂x
. (3.28)

If we let (u(x,t),v(x,t)) = (u−(x,t),v−(x,t)), along the delta shock wave curve x=xδ(t),

together with ẋδ(0) = 1+
1

(1− û−+ v̂−)(1− û+ + v̂+)
, the equality (3.28) implies

d(−u−+v−)

dt̃

∣∣∣
t̃=0

=(ẋδ(0)−1− 1

(1− û−+ v̂−)2
)(−u̇−0 (0)+ v̇−0 (0))

=
−û−+ v̂−+ û+− v̂+

(1− û−+ v̂−)2(1− û+ + v̂+)
(−u̇−0 (0)+ v̇−0 (0)). (3.29)

Similarly, letting (u(x,t),v(x,t)) = (u−(x,t),v−(x,t)), we get

d(−u+ +v+)

dt̃

∣∣∣
t̃=0

=(ẋδ(0)−1− 1

(1− û+ + v̂+)2
)(−u̇+0 (0)+ v̇+0 (0))

=
−û+ + v̂+ + û−− v̂−

(1− û+ + v̂+)2(1− û−+ v̂−)
(−u̇+0 (0)+ v̇+0 (0)). (3.30)

Using equalities (3.29) and (3.30) in Equation (3.27) yields

(1− û−+ v̂−)(1− û+ + v̂+)ẍδ(0) =(1− ẋδ(0))
−û−+ v̂−+ û+− v̂+

(1− û−+ v̂−)2
(−u̇−0 (0)+ v̇−0 (0))

+(1− ẋδ(0))
−û+ + v̂+ + û−− v̂−

(1− û+ + v̂+)2
(−u̇+0 (0)+ v̇+0 (0)).

(3.31)

With inequalities 1− û−+ v̂−>0, 1− û+ + v̂+>0 and 1− ẋδ(0)<0 in mind, Equation
(3.31) shows that the second derivative of the delta shock wave curve at the origin
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ẍ(0)>0 when (1− û+ + v̂+)2(−u̇−0 (0)+ v̇−0 (0))< (1− û−+ v̂−)2(−u̇+0 (0)+ v̇+0 (0)), other-
wise ẍ(0)<0 when (1− û+ + v̂+)2(−u̇−0 (0)+ v̇−0 (0))> (1− û−+ v̂−)2(−u̇+0 (0)+ v̇+0 (0)).

Subcase 2.2: −û−+ v̂−= 0<−û+ + v̂+.
We classify the discussion into two subcases:−u̇−0 (0)+ v̇−0 (0)>0 and −u̇−0 (0)+

v̇−0 (0)<0. We first consider the subcase −u̇−0 (0)+ v̇−0 (0)>0. Due to this subcase son-
dition and −û−+ v̂−= 0<−û+ + v̂+, it can be proved that there exist constants δ−>0
and δ+>0 so small that the C1 functions u−0 (x),v−0 (x),u+0 (x) and v+0 (x) satisfy the in-
equality (3.21) for any x−0 ∈ (−δ−,0) and x+0 ∈ (0,−δ+). Similar to the Subcase 2.1, we
find that the delta shock wave δS solution (3.15) satisfies the entropy condition (3.18)
along the delta shock wave curve x=xδ(t) locally in time. Furthermore, Proposition
3.1 implies that the delta shock wave solution (3.15) satisfies problem (1.1),(1.6) in the
sense of distributions. Based on the above discussion and the Definition 3.1, we see that
the generalized Riemann solution of problem (1.1),(1.6) is a delta shock wave locally
in time. We depict the generalized Riemann solution and the corresponding Riemann
solution in Figure 3.3, which implies that the delta shock wave solution to the Riemann
problem can retain its form near the origin after the perturbation of Riemann initial
data in this subcase.

Next consider the subcase −u̇−0 (0)+ v̇−0 (0)<0. In the same way as Subcase 2.1, we
have (3.22)∼(3.24) correspondingly for this subcase. Since −û−+ v̂−= 0 and −u̇−0 (0)+
v̇−0 (0)<0, we find that there exist constants δ−>0 and δ+>0 small so that the C1

functions u−0 (x),v−0 (x),u+0 (x) and v+0 (x) satisfy

0<−u−0 (x−0 )+v−0 (x−0 )<−u+0 (x+0 )+v+0 (x+0 ) (3.32)

for any x−0 ∈ (−δ−,0) and x+0 ∈ (0,−δ+). From the above inequality, we get

λ1(u+(x̃, t̃),v+(x̃, t̃)) =1+
1

1−u+0 (x̃+0 )+v+0 (x̃+0 )
>σδ(x̃, t̃)

=1+
1

(1−u−0 (x̃−0 )+v−0 (x̃−0 ))(1−u+0 (x̃+0 )+v+0 (x̃+0 ))
(3.33)

on the delta shock curve x=xδ(t). Comparing the inequality (3.33) with (3.18), we see
that in this subcase the entropy condition fails to hold on the curve x=xδ(t). According
to the Definition 3.1, we conclude that the generalized Riemann solution is no longer a
delta shock wave for this subcase.

For the subcase −u̇−0 (0)+ v̇−0 (0)<0, we will prove that the generalized Riemann
problem (1.1),(1.6) is resolved by a backward shock wave and a contact discontinuity,

as depicted in Figure 3.4(b). To see this, the backward shock wave
←−
S :x=xs(t) and the

contact discontinuity J :x=xc(t) satisfy the boundary conditions (3.5)∼(3.6) and the
boundary conditions (3.7)∼(3.8), respectively. (u−(x,t),v−(x,t)) and (u+(x,t),v+(x,t))
are known smooth functions. The intermediate state (u∗(x,t),v∗(x,t)) is an unknown
solution to system (1.1) with initial value (1.6). Due to −û−+ v̂−= 0, instead of Equa-
tion (3.9), in this subcase we have

û∗= lim
(x,t)→(0,0)

u∗(x,t) = +∞, v̂∗= lim
(x,t)→(0,0)

v∗(x,t) = +∞.

We now consider the free boundary problem (1.1) with boundary conditions
(3.5)∼(3.8) on the fan-shaped domain {(x,t) |xs(t)<x<xc(t),0≤ t<ε}, ε>0 small. As
we have analyzed in Case 1, the characterizing matrix of this free boundary problem
is (3.13), which is completely analogous to Case 1. Then we have the inequality (3.14)
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for this subcase. This means that the above free boundary problem admits a unique
solution on the above fan-shaped domain. We obtain the following proposition.

Proposition 3.3. In case of −û−+ v̂−= 0<−û+ + v̂+ and −u̇−0 (0)+ v̇−0 (0)<0, the
generalized Riemann solution to problem (1.1),(1.6) is a backward shock wave followed by
a contact discontinuity locally in time. The generalized solution is dramatically different
from the corresponding Riemann solution of problem (1.1),(2.1), which is a delta shock
wave, see Figure 3.4.

It is possible to give another proof of the proposition. We let x=β∗(t) be the
upwards right II−characteristic from any point (x,t) on the shock wave curve x=xs(t)
(as depicted in Figure 3.4(b)). The II−characteristic curve x=β∗(t) intersects the
contact discontinuity x=xc(t) at the point (x0,t0). It is known that the Riemann
invariant ζ(u,v) =−u+v must be a constant along II−characteristic, so we have

ζ(u∗,v∗) =−u∗(x,t)+v∗(x,t) =−u∗(β∗(t),t)+v∗(β∗(t),t) =−u∗(x0,t0)+v∗(x0,t0)

=−u∗(xs(t),t)+v∗(xs(t),t) =−u∗(xc(t0),t0)+v∗(xc(t0),t0). (3.34)

Using Equation (3.34), we find

dβ∗(t)

dt
= 1+

1

(1−u∗(β∗(t),t)+v∗(β∗(t),t))2
= 1+

1

(1−u∗(x0t0)+v∗(x0,t0))2
. (3.35)

This means that the propagating speed of II−characteristic is a constant. Namely, the
characteristic x=β∗(t) is a straight line. From the above equality, we have

xs(t)−xc(t0)

t− t0
=1+

1

(1−u∗(xs(t),t)+v∗(xs(t),t))2
=1+

1

(1−u∗(xc(t0),t0)+v∗(xc(t0),t0))2
.

(3.36)

We may write the equality (3.36) in the form

(xs(t)−xc(t0))(1−u∗(xs(t),t)+v∗(xs(t),t))
2

=(t− t0)(1−u∗(xs(t),t)+v∗(xs(t),t))
2 + t− t0. (3.37)

Differentiating the above equation with respect to t and let t= 0, then one obtains

(ẋs(0)− ẋc(0)
dt0
dt

∣∣∣
t=0

)(1− û∗+ v̂∗)2

+2(xs(0)−xc(0))(1− û∗+ v̂∗)
d(−u∗(xs(t),t)+v∗(xs(t),t))

dt

∣∣∣
t=0

= (1− dt0
dt

∣∣∣
t=0

)(1− û∗+ v̂∗)2 +1− dt0
dt

∣∣∣
t=0

. (3.38)

Substituting

xs(0) =xc(0) = 0 (3.39)

and

ẋs(0) = ẋc(0) = 1+
1

(1− û−+ v̂−)(1− û+ + v̂+)
= 1+

1

1− û+ + v̂+
(3.40)

into Equation (3.38), and using −û+ + v̂+>0, we have

dt0
dt

∣∣∣
t=0

= 1. (3.41)
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Moreover, differentiating the last equality in Equation (3.34) with respect to t and
letting t= 0, we obtain

d(−u∗(xs(t),t)+v∗(xs(t),t))

dt

∣∣∣
t=0

=
d(−u∗(xc(t0),t0)+v∗(xc(t0),t0))

dt0

∣∣∣
t0=0

dt0
dt

∣∣∣
t=0

.

(3.42)
Using equality (3.41) in Equation (3.42), we get

d(−u∗(xs(t),t)+v∗(xs(t),t))

dt

∣∣∣
t=0

=
d(−u∗(xc(t0),t0)+v∗(xc(t0),t0))

dt0

∣∣∣
t0=0

. (3.43)

In what follows, we will compute two important values ẍs(0) and ẍc(0). The first is
the second derivative of the shock wave curve at the origin, and the second is the second
derivative of the contact discontinuity wave curve at the origin. Firstly, we compute the
value ẍs(0). Along x=xs(t), from equality (3.5), it can be easily checked that

(1−u−+v−)(1−u∗+v∗)
dxs(t)

dt
= (1−u−+v−)(1−u∗+v∗)+1. (3.44)

Differentiating the above equality with respect to t and letting t= 0, together with
condition (3.8) and Equation (3.34), we have

(1− û+ + v̂+)ẍs(0)

=
d(−u−(xs(t),t)+v−(xs(t),t))

dt

∣∣∣
t=0

(1− û+ + v̂+)+
d(−u∗(xs(t),t)+v∗(xs(t),t))

dt

∣∣∣
t=0

−d(−u−(xs(t),t)+v−(xs(t),t))

dt

∣∣∣
t=0

(1− û+ + v̂+)ẋs(0)

−d(−u∗(xs(t),t)+v∗(xs(t),t))

dt

∣∣∣
t=0

ẋs(0). (3.45)

On the one hand, in view of equality (3.28), we obtain

d(−u−(xs(t),t)+v−(xs(t),t))

dt
= (

dxs(t)

dt
−1− 1

(1−u−+v−)2
)
∂(−u−+v−)

∂x
. (3.46)

Using Equations (3.40) and (3.46), together with −û−+ v̂−= 0, one can get that

d(−u−(xs(t),t)+v−(xs(t),t))

dt

∣∣∣
t=0

=
û+− v̂+

1− û+ + v̂+
(−u̇−0 (0)+ v̇−0 (0)). (3.47)

On the other hand, due to Equations (3.43) and (3.8), we have

d(−u∗(xs(t),t)+v∗(xs(t),t))

dt

∣∣∣
t=0

=
d(−u∗(xc(t0),t0)+v∗(xc(t0),t0))

dt0

∣∣∣
t0=0

=
d(−u+(xc(t0),t0)+v+(xc(t0),t0))

dt0

∣∣∣
t0=0

. (3.48)

Along the contact discontinuity wave curve x=xc(t), it follows from Equations (3.28),
(3.40), and (3.48)

d(−u∗(xs(t),t)+v∗(xs(t),t))

dt

∣∣∣
t=0

=
d(−u∗(xc(t0),t0)+v∗(xc(t0),t0))

dt0

∣∣∣
t0=0
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=
−û+ + v̂+

(1− û+ + v̂+)2
(−u̇+0 (0)+ v̇+0 (0)). (3.49)

Then, using Equations (3.40), (3.47), and (3.49) in Equation (3.45), we get

(1− û++ v̂+)ẍs(0)=
v̂+− û+

1− û++ v̂+
(−u̇−0 (0)+ v̇−0 (0))− v̂+− û+

(1− û++ v̂+)3
(−u̇+

0 (0)+ v̇+0 (0)). (3.50)

Secondly, we now compute the value ẍc(0). Along x=xc(t), from equality (3.7), it
is easy to see that

(1−u∗+v∗)
dxc(t0)

dt0
= 2−u∗+v∗. (3.51)

Differentiating Equation (3.51) with respect to t0 and letting t0 = 0 yields

d(−u∗(xc(t0),t0)+v∗(xc(t0),t0))

dt0

∣∣∣
t0=0

ẋc(0)+(1− û+ + v̂+)ẍc(0)

=
d(−u∗(xc(t0),t0)+v∗(xc(t0),t0))

dt0

∣∣∣
t0=0

. (3.52)

Using Equations (3.40) and (3.49) in Equation (3.52), we get

(1− û+ + v̂+)ẍc(0) =− v̂+− û+

(1− û+ + v̂+)3
(−u̇+0 (0)+ v̇+0 (0)). (3.53)

Thirdly, since we have the two values ẍs(0) and ẍc(0), combining Equations (3.50)
and (3.53) gives

(1−u+ +v+)(ẍs(0)− ẍc(0)) =
v̂+− û+

1− û+ + v̂+
(−u̇−0 (0)+ v̇−0 (0))<0. (3.54)

This implies that ẍs(0)<ẍc(0).

Finally, by virtue of Equations (3.39), (3.40), and (3.54), it can be proven that the
generalized Riemann solution to problem (1.1),(1.6) in this subcase clearly consists of

a backward shock
←−
S from (u−,v−) to (u∗,v∗), followed by a contact discontinuity J

from (u∗,v∗) to (u+,v+) near the origin, see Figure 3.4(b). Thus we have completed
the construction and proof of the generalized Riemann solution for this subcase.

6
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(û−, v̂−)

O
(a) the Riemann solution

x

6

-
x
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t t

O
(b) the generalized Riemann solution

Fig. 3.4. Subcase 2.2 with −u̇−0 (0)+ v̇−0 (0)<0.
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Fig. 3.5. Subcase 2.3 with −u̇+
0 (0)+ v̇+0 (0)<0.
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Subcase 2.3: −û−+ v̂−<0 =−û+ + v̂+.
We classify the discussion into two subcases:−u̇+0 (0)+ v̇+0 (0)>0 and −u̇+0 (0)+

v̇+0 (0)<0. We first consider the subcase −u̇+0 (0)+ v̇+0 (0)>0. Due to this subcase con-
dition and −û−+ v̂−<0 =−û+ + v̂+, it can be proved that there exist constants δ−>0
and δ+>0 so small that the C1 functions u−0 (x),v−0 (x),u+0 (x) and v+0 (x) satisfy the in-
equality (3.21) for any x−0 ∈ (−δ−,0) and x+0 ∈ (0,−δ+). In what follows, the discussion
is the same as in Case 1. We prove that the generalized Riemann solution to problem
(1.1),(1.6) is a delta shock wave locally in time, which has a structure similar to the
Riemann solution to problem (1.1),(2.1) for this subcase, see Figure 3.3. We omit the
discussion.

We turn our efforts to the second subcase −u̇+0 (0)+ v̇+0 (0)<0. Since −û+ + v̂+ = 0
and −u̇+0 (0)+ v̇+0 (0)<0, we find that there exist constants δ−>0 and δ+>0 so small
that the C1 functions u−0 (x),v−0 (x),u+0 (x) and v+0 (x) satisfy

−u−0 (x−0 )+v−0 (x−0 )<−u+0 (x+0 )+v+0 (x+0 )<0 (3.55)

for any x−0 ∈ (−δ−,0) and x+0 ∈ (0,−δ+). From the above inequality, we get

1+
1

(1−u−0 (x̃−0 )+v−0 (x̃−0 ))(1−u+0 (x̃+0 )+v+0 (x̃+0 ))
=σδ(x̃, t̃)>λ1(u−(x̃, t̃),v−(x̃, t̃))

=1+
1

1−u−0 (x̃−0 )+v−0 (x̃−0 )
(3.56)

on the delta shock curve x=xδ(t). Comparing inequality (3.56) with (3.18), we see that
in this subcase the entropy condition fails to hold on the curve x=xδ(t). According to
Definition 3.1, we conclude that the generalized Riemann solution is no longer a delta
shock wave for this subcase.

For the subcase −u̇+0 (0)+ v̇+0 (0)<0, we will prove that the generalized Riemann
problem (1.1),(1.6) is resolved by a contact discontinuity followed by a forward shock
wave, as depicted in Figure 3.5(b). For the contact discontinuity OA1 :x=xc(t) (xc(0) =
0), on which we have

dxc(t)

dt
= 1+

1

1−u−+v−
, (3.57)

−u−+v−=−u∗+v∗. (3.58)

For the forward shock wave OA2 :x=xs(t)(xs(0) = 0) on which we have

dxs(t)

dt
= 1+

1

(1−u∗+v∗)(1−u+ +v+)
, (3.59)
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u+v∗=u∗v+. (3.60)

The generalized Riemann solution to problem (1.1),(1.6) is (u−(x,t),v−(x,t)) on the
domain {(x,t) |x<xc(t),0≤ t<ε} (ε>0 so small). The generalized Riemann solution is
(u+(x,t),v+(x,t)) on the domain {(x,t) |x>xs(t),0≤ t<ε}. However, the generalized
Riemann solution to problem (1.1),(1.6) is unknown on the domain {(x,t) |xc(t)<x<
xs(t),0≤ t<ε}. We denote it by (u∗(x,t),v∗(x,t)). The value of (û∗, v̂∗) is determined
uniquely from boundary conditions (3.58) and (3.60). Due to −û+ + v̂+ = 0, we have

û∗= lim
(x,t)→(0,0)

u∗(x,t) = +∞, v̂∗= lim
(x,t)→(0,0)

v∗(x,t) = +∞.

In what follows, we have to solve the free boundary problem (1.1) with bound-
ary conditions (3.57)∼(3.60) on the fan-shaped domain {(x,t) |xc(t)<x<xs(t),0≤ t<
ε} (ε>0 so small). We introduce the change of variables (2.15). Boundary condition
(3.58) on x=xc(t) then reduces to

V=−u−+v−. (3.61)

Boundary condition (3.60) on x=xs(t) can be written as

U =
(u+v̂∗−v+û∗)V

v+−u+
. (3.62)

From Equations (3.61) and (3.62), we find the characterizing matrix A of above free
boundary problem is [12]:

A=

0
u+v̂∗−v+û∗

v+−u+
0 0

 .
By Lemma 2.1, it is easy to prove that

‖A‖min= 0<1.

Using the local existence and uniqueness theorem proposed by Li Ta-tsien and Yu Wen-
ci [12], we see that the free boundary problem under consideration admits a unique
piecewise C1 solution on the fan-shaped domain {(x,t) |xc(t)<x<xs(t),0≤ t<ε}, ε>0
small. Then the generalized Riemann solution has the desired structure, as depicted in
Figure 3.5(b). We obtain the following proposition.

Proposition 3.4. In case of −û−+ v̂−<0 =−û+ + v̂+ and −u̇+0 (0)+ v̇+0 (0)<0, the
generalized Riemann solution to problem (1.1),(1.6) is a contact discontinuity followed
by a forward shock wave locally in time. The generalized solution is different from the
corresponding Riemann solution of problem (1.1),(2.1), which is a delta shock wave, see
Figure 3.5.

It is possible to give another proof of the proposition. We let x=β∗(t) be the
upwards right II−characteristic from any point (x,t) on the contact discontinuity curve
x=xc(t) (as depicted in Figure 3.5). The II−characteristic curve x=β∗(t) intersects
the shock wave curve x=xs(t) at the point (x0,t0). It is known that the Riemann
invariant ζ(u,v) =−u+v must be a constant along II−characteristic, so we have

ζ(u∗,v∗) =−u∗(x,t)+v∗(x,t) =−u∗(β∗(t),t)+v∗(β∗(t),t) =−u∗(x0,t0)+v∗(x0,t0)
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=−u∗(xc(t),t)+v∗(xc(t),t) =−u∗(xs(t0),t0)+v∗(xs(t0),t0). (3.63)

Using Equation (3.63), we have

dβ∗(t)

dt
= 1+

1

(1−u∗(β∗(t),t)+v∗(β∗(t),t))2
= 1+

1

(1−u∗(x0.t0)+v∗(x0,t0))2
. (3.64)

This means that the propagating speed of II−characteristic is a constant. Namely, the
characteristic x=β∗(t) is a straight line. From the above equality, we have

xc(t)−xs(t0)

t− t0
=1+

1

(1−u∗(xc(t),t)+v∗(xc(t),t))2

=1+
1

(1−u∗(xs(t0),t0)+v∗(xs(t0),t0))2
. (3.65)

We may write equality (3.65) in the form

(xc(t)−xs(t0))(1−u∗(xc(t),t)+v∗(xc(t),t))
2

=(t− t0)(1−u∗(xc(t),t)+v∗(xc(t),t))
2 + t− t0. (3.66)

Differentiating the above equation with respect to t and let t= 0, one obtains

(ẋc(0)− ẋs(0)
dt0
dt

∣∣∣
t=0

)(1− û−+ v̂−)2

+2(xc(0)−xs(0))(1− û−+ v̂−)
d(−u−(xc(t),t)+v−(xc(t),t))

dt

∣∣∣
t=0

= (1− dt0
dt

∣∣∣
t=0

)(1− û−+ v̂−)2 +1− dt0
dt

∣∣∣
t=0

. (3.67)

Substituting

xc(0) =xs(0) = 0 (3.68)

and

ẋs(0) = ẋc(0) = 1+
1

(1− û−+ v̂−)(1− û+ + v̂+)
= 1+

1

1− û−+ v̂−
(3.69)

into Equation (3.67), and using −û−+ v̂−<0, we get

dt0
dt

∣∣∣
t=0

= 1. (3.70)

Moreover, differentiating the last equality in (3.63) with respect to t and letting t= 0,
we obtain

d(−u∗(xc(t),t)+v∗(xc(t),t))

dt

∣∣∣
t=0

=
d(−u∗(xs(t0),t0)+v∗(xs(t0),t0))

dt0

∣∣∣
t0=0

dt0
dt

∣∣∣
t=0

.

(3.71)
If we use equality (3.70) in Equation (3.71), we derive

d(−u∗(xc(t),t)+v∗(xc(t),t))

dt

∣∣∣
t=0

=
d(−u∗(xs(t0),t0)+v∗(xs(t0),t0))

dt0

∣∣∣
t0=0

. (3.72)
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In what follows, we will compute two important values ẍc(0) and ẍs(0). The first
is the second derivative of the contact discontinuity wave curve at the origin, and the
second is the second derivative of the shock wave curve at the origin. Firstly, we compute
the value ẍc(0). Along x=xc(t), with equality (3.57), it holds that

(1−u−+v−)
dxc(t)

dt
= 2−u−+v−. (3.73)

Differentiating the above equality with respect to t and letting t= 0, yields

d(−u−(xc(t),t)+v−(xc(t),t))

dt

∣∣∣
t=0

ẋc(0)+(1− û−+ v̂−)ẍc(0)

=
d(−u−(xc(t),t)+v−(xc(t),t))

dt

∣∣∣
t=0

. (3.74)

From Equation (3.28), we have

d(−u−(xc(t),t)+v−(xc(t),t))

dt

=
∂(−u−+v−)

∂t
+
∂(−u−+v−)

∂x

dxc(t)

dt

=
∂

∂x

{(
1+

1

1−u−+v−

)
(u−−v−)

}
+
∂(−u−+v−)

∂x

dxc(t)

dt
= (

dxc(t)

dt
−1− 1

(1−u−+v−)2
)
∂(−u−+v−)

∂x
. (3.75)

Noting Equations (3.69) and (3.75), together with −û+ + v̂+ = 0, we have

d(−u−(xc(t),t)+v−(xc(t),t))

dt

∣∣∣
t=0

=
−û−+ v̂−

(1− û−+ v̂−)2
(−u̇−0 (0)+ v̇−0 (0)). (3.76)

Inserting Equations (3.69) and (3.76) into Equation (3.74) yields

(1− û−+ v̂−)ẍc(0) =
û−− v̂−

(1− û−+ v̂−)3
(−u̇−0 (0)+ v̇−0 (0)). (3.77)

Secondly, we compute the value ẍs(0). Along x=xs(t), with (3.59), it holds that

(1−u∗+v∗)(1−u+ +v+)
dxs(t0)

dt0
= (1−u∗+v∗)(1−u+ +v+)+1. (3.78)

By Equations (3.58) and (3.63), differentiating Equation (3.78) with respect to t0 and
letting t0 = 0 yields

(1− û−+ v̂−)ẍs(0) =
d(−u∗(xs(t0),t0)+v∗(xs(t0),t0))

dt0

∣∣∣
t0=0

+(1− û−+ v̂−)
d(−u+(xs(t0),t0)+v+(xs(t0),t0))

dt0

∣∣∣
t0=0

−d(−u+(xs(t0),t0)+v+(xs(t0),t0))

dt0

∣∣∣
t0=0

(1− û−+ v̂−)ẋs(0)

−d(−u∗(xs(t0),t0)+v∗(xs(t0),t0))

dt0

∣∣∣
t0=0

ẋs(0). (3.79)
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In view of Equations (3.58) and (3.72), we get

d(−u∗(xs(t0),t0)+v∗(xs(t0),t0))

dt0

∣∣∣
t0=0

=
d(−u∗(xc(t),t)+v∗(xc(t),t))

dt

∣∣∣
t=0

=
d(−u−(xc(t),t)+v−(xc(t),t))

dt

∣∣∣
t=0

. (3.80)

Along the delta shock wave curve x=xs(t), it follows from Equations (3.28), (3.69), and
(3.80) that

d(−u∗(xs(t0),t0)+v∗(xs(t0),t0))

dt0

∣∣∣
t0=0

=
d(−u∗(xc(t),t)+v∗(xc(t),t))

dt

∣∣∣
t=0

=
−û−+ v̂−

(1− û−+ v̂−)2
(−u̇−0 (0)+ v̇−0 (0)). (3.81)

On the other hand, based on Equations (3.28) and (3.69), we obtain

d(−u+(xs(t0),t0)+v+(xs(t0),t0))

dt0

∣∣∣
t0=0

= (
1

1− û−+ v̂−
−1)(−u̇+0 (0)+ v̇+0 (0)). (3.82)

Substituting Equations (3.69), (3.81), and (3.82) into Equation (3.79), we get

(1− û−+ v̂−)ẍs(0) =
û−− v̂−

(1− û−+ v̂−)3
(−u̇−0 (0)+ v̇−0 (0))− û−− v̂−

1− û−+ v̂−
(−u̇+0 (0)+ v̇+0 (0)).

(3.83)

Thirdly, combing Equations (3.77) and (3.83), it follows that

(1−u−+v−)(ẍs(0)− ẍc(0)) =
v̂−− û−

1− û−+ v̂−
(−u̇+0 (0)+ v̇+0 (0))>0. (3.84)

This implies that ẍs(0)>ẍc(0).

Finally, by virtue of Equations (3.68), (3.69), and (3.84), we obtain that the gen-
eralized Riemann solution to problem (1.1),(1.6) in this subcase clearly consists of a

contact discontinuity J from (u−,v−) to (u∗,v∗), followed by a forward shock
−→
S from

(u∗,v∗) to (u+,v+) near the origin. Thus we have completed the construction and proof
of the generalized Riemann solution for this subcase as depicted in Figure 3.5.

Case 3: −û−+ v̂−<−û+ + v̂+<0.

The Riemann solution to problem (1.1),(1.6) is to connect the state (û−, v̂−) on the

left to the intermediate state (û?, v̂?) = (
−û−+ v̂−

−û+ + v̂+
û+,
−û−+ v̂−

−û+ + v̂+
v̂+) through a contact

discontinuity J , and then connect the intermediate state (û?, v̂?) to the state (û+, v̂+)

on the right through a forward shock wave
−→
S . We depict the structure of the Rie-

mann solution in Figure 3.6(a), where the contact discontinuity curve is OÂ1 : x= (1+
1

1− û−+ v̂−
)t and the shock wave curve is OÂ2 : x= (1+

1

(1− û−+ v̂−)(1− û+ + v̂+)
)t.
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Fig. 3.6. Case 3.
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Motivated by the corresponding Riemann solution, we will prove that the general-
ized Riemann solution to problem (1.1),(1.6) admits a unique local solution, which is a
contact discontinuity and a forward shock wave together. As shown in Figure 3.6(b),
on the contact discontinuity curve x=xc(t), we have

dxc(t)

dt
= 1+

1

1−u?+v?
, (3.85)

−u−+v−=−u?+v?. (3.86)

On the shock wave curve x=xs(t), we have

dxs(t)

dt
= 1+

1

(1−u?+v?)(1−u+ +v+)
, (3.87)

u+v?=u?v+. (3.88)

Both of them are free boundaries. Here the unknown generalized Riemann solution
of problem (1.1),(1.6) on the domain {(x,t) |xc(t)<x<xs(t),0≤ t<ε} is denoted by
(u?(x,t),v?(x,t)). From the boundary conditions (3.86) and (3.88), we find the value

(u?(0,0),v?(0,0)) = (û?, v̂?) = (
−û−+ v̂−

−û+ + v̂+
û+,
−û−+ v̂−

−û+ + v̂+
v̂+).

In this case, the generalized Riemann problem is equivalent to the free boundary
problem (1.1) with the boundary conditions (3.85)∼(3.88). We turn next to the above
free boundary problem. By a standard method, we introduce the change of invariant(

U(x,t)
V(x,t)

)
=

(
l1(û?, v̂?)
l2(û?, v̂?)

)(
u?(x,t)
v?(x,t)

)
=

(
v̂? −û?
−1 1

)(
u?(x,t)
v?(x,t)

)
. (3.89)

Using this change of invariant, on x=xc(t), the boundary condition (3.86) can be rewrit-
ten as

V=−u−+v−. (3.90)

On x=xs(t), the boundary condition (3.88) can be written as

U =
(u+v̂?−v+û?)V

v+−u+
. (3.91)

Hence, the characterizing matrix A of this free boundary problem is of the form [12]:

A=

0
u+v̂?−v+û?

v+−u+
0 0

 . (3.92)
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By Lemma 2.1, it is easy to prove that ‖A‖min= 0<1 for this subcase. Using Lemma
2.2, it follows that the above free boundary problem admits a unique piecewise C1 so-
lution locally in time. As depicted in Figure 3.6(b)), the generalized Riemann solution
has the same structure as the corresponding Riemann solution in this case. This im-
plies that the Riemann solution has a local structure stability near the origin after the
perturbation of Riemann initial data.

Case 4: −û+ + v̂+<0<−û−+ v̂−.
As shown in Figure 3.7(a), the corresponding Riemann solution to problem

(1.1),(2.1) consists of two rarefaction waves
←−
R 1 and

−→
R 2, which is separated by a vacuum

intermediate state (0,0). Here

OÂ1 :x= (1+
1

(1− û−+ v̂−)2
)t (3.93)

and

OÂ2 :x= (1+
1

(1− û+ + v̂+)2
)t (3.94)

are II-characteristics.
Motivated by the Riemann problem, we solve the generalized Riemann problem

(1.1),(2.1) in the hope of obtaining a solution containing two centred waves near the
origin. The generalized Riemann solution has the construction shown in Figure 3.7(b).
On the boundary OA1 :x=β−(t), we have

dβ−(t)

dt
= (1+

1

(1−u(β−(t),t)+v(β−(t),t))2
)t, (3.95)

−u∗(β−(t),t)+v∗(β−(t),t) =−u−(β−(t),t)+v−(β−(t),t). (3.96)

Equation (3.95) shows that x=β−(t) actually is a known left most II-characteristic
curve. On the boundary condition OA2 :x=β+(t), we have

dβ+(t)

dt
= (1+

1

(1−u(β+(t),t)+v(β+(t),t))2
)t, (3.97)

−u∗(β+(t),t)+v∗(β+(t),t) =−u+(β+(t),t)+v+(β+(t),t). (3.98)

Equation (3.97) implies that x=β+(t) is also a known right most II-characteristic
curve. We denote the generalized Riemann solution on the triangle-like domain A1OA2

by (u∗,v∗), which is an unknown regular solution to system (1.1).
In order to solve the free boundary problem (1.1) with boundary conditions

(3.95)∼(3.98), we introduce the Riemann invariants (2.6) as new unknown functions.
The system (1.1) can be expressed in the following diagonal form

ςt+(1+
1

1+ζ
)ςx= 0,

ζt+(1+
1

(1+ζ)2
)ζx= 0.

(3.99)

In terms of the Riemann invariants (ζ,ς), the preceding boundary condition (3.96) on
OA1 can be rewritten in the form of

ζ(u∗(β−(t),t),v∗(β−(t),t)) = ζ(u−(β−(t),t),v−(β−(t),t)), (3.100)
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and boundary condition (3.98) on OA2 can be rewritten as

ζ(u∗(β+(t),t),v∗(β+(t),t)) = ζ(u+(β+(t),t),v+(β+(t),t)). (3.101)

Solving the characteristic problem (3.99) with data (3.100) and (3.101), we obtain a
group of II-characteristics drawn from the origin O, which is a centred wave with centre
O. In this case, the generalized Riemann problem (1.1),(1.6) admits a unique piecewise
C1 solution locally in time, and this solution has two centred waves. As depicted in
Figure 3.7, the structure of the solution to the Riemann problem is stable near the
origin after the perturbation of Riemann initial data.

6

(û−, v̂−)

(a) the Riemann solution

6t t

(b) the generalized Riemann solution

Fig. 3.7. Case 4.

Â1
←−
R1

Â2

(û+, v̂+)

-
O

-
x

(u−,v−)

A1←−
R1

A2

(u+,v+)

O x

−→
R2

−→
R2

3
(0,0)

6

(û−, v̂−)

(a) the Riemann solution

6t t

(b) the generalized Riemann solution

Fig. 3.8. Case 5.

Â1
←−
R

(û∗, v̂∗)

(û+, v̂+)

-
O

-
x

(u−,v−)

A1←−
R

J(u∗,v∗)

(u+,v+)

O x

Â2

J

A2

Case 5: 0≤−û+ + v̂+<−û−+ v̂−.
For this case, the corresponding Riemann solution to problem (1.1),(2.1) consists

of a backward rarefaction wave
←−
R followed by a contact discontinuity J . As shown in

Figure 3.8(a),

OÂ1 :x= (1+
1

(1− û−+ v̂−)2
)t (3.102)

is a II-characteristic;

OÂ2 :x= (1+
1

1− û+ + v̂+
)t (3.103)

is a contact discontinuity and the intermediate state

(û∗, v̂∗) = (
−û+ + v̂+

−û−+ v̂−
û−,
−û+ + v̂+

−û−+ v̂−
v̂−).
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It is natural to try to solve the generalized Riemann problem (1.1),(1.6) by a similar
structure near the origin. We depict the solution in Figure 3.8(b). OA1 :x=β−(t) is
actually a known left most characteristic curve, on which we have

dβ−(t)

dt
= 1+

1

(1−u−+v−)2
, (3.104)

−u−+v−=−u∗+v∗. (3.105)

OA2 :x=xc(t) is a contact discontinuity, which satisfies the boundary conditions (3.7)
and (3.8) as Case 1 completely. (u−(x,t),v−(x,t)) and (u+(x,t),v+(x,t)) are known
smooth functions, The intermediate state (u∗,v∗) is an unknown regular solution to the
generalized Riemann problem (1.1),(1.6). Moreover, the value

(u∗(0,0),v∗(0,0)) = (û∗, v̂∗) = (
−û+ + v̂+

−û−+ v̂−
û−,
−û+ + v̂+

−û−+ v̂−
v̂−),

is determined uniquely from boundary conditions (3.8) and (3.105).
What remains is to solve the free boundary problem (1.1) with boundary conditions

(3.7)∼(3.8) and (3.104)∼(3.105) on the fan-shaped domain {(x,t) |β−(t)<x<xs(t),0≤
t<ε}, ε>0 small. We turn next to this problem. By a standard method, we introduce
the change of invariant (3.10). The boundary condition (3.105) on x=β−(t) can be
reduced to the following form

V=u∗v̂∗−v∗û∗=u−v̂∗−v−û∗, (3.106)

the right side of which is actually a known function of t. The boundary condition (3.8)
on x=xc(t) still can be rewritten as (3.12). Hence, for this case, the characterizing
matrix A of the above free boundary problem has a simpler form

A=

(
0 0
0 0

)
.

We get that the minimal characterizing number

‖A‖min= 0<1.

By Lemma 2.2, the free boundary problem under consideration admits a unique piece-
wise smooth solution locally in time. This shows that the generalized Riemann solution
to problem (1.1),(1.6) near the origin is a centred wave and a contact discontinuity
together as depicted in Figure 3.8(b).

Comparing the generalized Riemann solution with corresponding Riemann solution
in this case, we see that the Riemann solution has a local structure stability after the
perturbation of Riemann initial data.

Case 6: −û+ + v̂+<−û−+ v̂−≤0.
As depicted in Figure 3.9(a), the corresponding Riemann solution to problem

(1.1),(2.1) consists of a contact discontinuity J from (û−, v̂−) to (û?, v̂?), and a for-

ward rarefaction wave
−→
R from (û?, v̂?) to (û+, v̂+) for this case. Here the intermediate

state (û?, v̂?) = (
−û−+ v̂−

−û+ + v̂+
û+,
−û−+ v̂−

−û+ + v̂+
v̂+). The contact discontinuity J is defined by

OÂ1 :x= (1+
1

1− û−+ v̂−
)t,



732 THE GENERALIZED RIEMANN PROBLEM AND INSTABILITY OF DELTA SHOCK

and the II-characteristic is given by

OÂ2 :x= (1+
1

(1− û+ + v̂+)2
)t.

Noting the above Riemann solution, we still hope that the generalized solution of
problem (1.1),(1.6) consists of a contact discontinuity J from (u−,v−) to (u?,v?), and

a centred wave
−→
R from (u?,v?) to (u+,v+). Here the intermediate state (u?,v?) is an

unknown regular solution to system (1.1),(1.6); see Figure 3.9(b). On the boundary
OA1 :x=xc(t)(xc(0) = 0), we have

dxc(t)

dt
= 1+

1

1−u−+v−
, (3.107)

−u−+v−=−u?+v?, (3.108)

which is a contact discontinuity. On the boundary OA2 :x=β+(t), we have

dβ+(t)

dt
= 1+

1

(1−u+ +v+)2
, (3.109)

−u?+v?=−u+ +v+, (3.110)

which is actually a known right most characteristic curve.
In this case, the generalized Riemann problem is equivalent to the free boundary

problem (1.1) with boundary conditions (3.107)∼(3.110). Then it remains to determine
whether the above free boundary problem has a unique solution on on the triangle-like
domain A1OA2 locally in time. By a similar method as in Case 3, we introduce the
change of variables (3.89). With this, on x=xc(t), the boundary condition (3.108) then
reduces to (3.90), and the boundary condition (3.110) on can be reduced to the following
form

U =u?v̂?−v?û?=u+v̂?−v+û?. (3.111)

By virtue of Equations (3.90) and (3.111), it is easy to check that the boundary con-
dition (3.90) and (3.111) are actually known functions of t. Hence, for this case, the
characterizing matrix is

A=

(
0 0
0 0

)
,

which implies the minimal characterizing number ‖A‖min= 0<1. With this fact, the
local solvability of the generalized solution to problem (1.1),(1.6) is established, see
Figure 3.9(b).

6

(û−, v̂−)

(a) the Riemann solution

6t t

(b) the generalized Riemann solution

Fig. 3.9. Case 6.
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−→
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JA1
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The generalized Riemann solution shows that the Riemann solution in this case is
stable near the origin after the perturbation of Riemann initial data.

Thus, the construction of the solution for the generalized Riemann problem
(1.1),(1.6) is completed. In fact, we complete our proof of the following theorem.

Theorem 3.1. For any wave strength ‖ (û+, v̂+)−(û−, v̂−)‖, system (1.1) with initial
data (1.6) always admits a unique local solution on a domain

R(ε) ={(x,t) |−∞<x<∞,0≤ t<ε},

where ε>0 is small. In a neighborhood of the origin (0,0) in the x− t plane, this solution
has a similar structure to that of the corresponding Riemann problem (1.1),(2.1) in all of
the cases except Case 2: −û−+ v̂−≤0≤−û+ + v̂+. In Case 2, we have three different
subcases:

(1) If −û−+ v̂−<0<−û+ + v̂+, or −û−+ v̂−= 0<−û+ + v̂+ with −u̇−0 (0)+ v̇−0 (0)>0,
or −û−+ v̂−<0 =−û+ + v̂+ with −u̇+0 (0)+ v̇+0 (0)>0, then the solution of the gen-
eralized Riemann problem (1.1),(1.6) is a delta shock wave.

(2) If −û−+ v̂−= 0<−û+ + v̂+ with −u̇−0 (0)+ v̇−0 (0)<0, then the solution of the gen-
eralized Riemann problem (1.1),(1.6) is a contact discontinuity followed by a shock
wave.

(3) If −û−+ v̂−<0 =−û+ + v̂+ with −u̇+0 (0)+ v̇+0 (0)<0, then the solution of the gen-
eralized Riemann problem (1.1),(1.6) is a shock wave followed by a contact discon-
tinuity.

Theorem 3.1 shows that a delta shock wave in the corresponding Riemann solution
may turn into a combination of a shock wave and a contact discontinuity after the per-
turbations of Riemann initial data. The local structure stability of the Riemann solution
fails, which is a new development on the generalized Riemann problem. Furthermore,
the result allows us to better investigate the internal mechanism and instability of a
delta shock wave.
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