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A UNIFIED SYSTEM OF FB-SDES WITH LÉVY JUMPS AND
DOUBLE COMPLETELY-S SKEW REFLECTIONS∗

WANYANG DAI†

Abstract. We study the well-posedness of a unified system of coupled forward-backward stochastic
differential equations (FB-SDEs) with Lévy jumps and double completely-S skew reflections. Owing
to the reflections, the solution to an embedded Skorohod problem may be not unique, i.e., bifurcations
may occur at reflection boundaries and the well-known contraction mapping approach can not be
extended directly to solve our problem. Thus, we develop a weak convergence method to prove the
well-posedness of an adapted 6-tuple weak solution in the sense of distribution to the unified system.
The proof heavily depends on newly established Malliavin calculus for vector-valued Lévy processes
together with a generalized linear growth and Lipschitz condition that guarantees the well-posedness of
the unified system even under a random environment. Nevertheless, if a stricter boundary condition is
imposed, i.e., the spectral radii of each square submatrix at a corner of the reflections are strictly less
than unity, a unique adapted 6-tuple strong solution (in the sense of sample paths) is considered. In
addition, as applications and economic studies of our unified system, we also develop new techniques
including deriving a generalized mutual information formula for signal processing over possible non-
Gaussian channels with multi-input multi-output (MIMO) antennas and dynamics driven by Lévy
processes.
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1. Introduction

In this paper, we aim to prove the well-posedness of an adapted 6-tuple ((X,Y ),
(V,V̄ ,Ṽ ,F )) weak solution (in the sense of distributions) to the non-Markovian system of
coupled forward-backward stochastic differential equations (FB-SDEs) with Lévy jumps
and double completely-S skew reflections under a given control rule u over time interval
[0,T ], {

X(t) = ξ+Z(t)+RY (t),
V (t) = H(X(T ),∗)+U(t)+S(F (T )−F (t)),

(1.1)

where X in the forward equation is endowed with the given initial value ξ, and V in
the backward equation is endowed with the known terminal value form of H(X(T ),∗).
Furthermore, the “∗” inH(X(T ),∗) denotes known random factors that can be explicitly
expressed in terms of the driving Brownian motion and/or the Lévy process that will
be defined in Section 2.

In many real-world applications (e.g., in quantum physics, queueing systems, and
economics), the processes X and V in system (1.1) are referred as the state process
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and its associated value process. In particular, the processes Z and U are called state-
dependent netput processes. For our purpose of study, we unify existing specific discus-
sions on Z and U to the generalized form with Lévy jumps and feedback control law u
in a forward and backward coupling manner as follows,

dZ(t) = b(t−,X,V,V̄ ,Ṽ ,u)dt+σ(t−,X,V,V̄ ,Ṽ ,u)dW (t)

+
∫
Zh η(t−,X,V,V̄ ,Ṽ ,u,z)Ñ(dt,dz),

dU(t) = c(t−,X,V,V̄ ,Ṽ ,u)dt−α(t−,X,V,V̄ ,Ṽ ,u)dW (t)

−
∫
Zh ζ(t−,X,V,V̄ ,Ṽ ,u,z)Ñ(dt,dz),

(1.2)

where t∈ [0,T ] and Zh is the product of h number of R−{0} (i.e., (R−{0})×·· ·×
(R−{0})) or is Rh+ = [0,∞)h. The process Z in (1.2) is in a forward manner with initial
condition Z(0) = 0 while the process U is in a backward manner with terminal condition
U(T ) = 0. Furthermore, V̄ and Ṽ in (1.2) are two unknown regulating processes that are
part of our 6-tuple solution to be determined. In addition, W is a standard continuous
Brownian motion and Ñ is a centered jump Lévy process. Note that for each functional
f ∈{b,σ,c,α},

f(t,X,V,V̄ ,Ṽ ,u,z)≡f(t,X(t),V (t),V̄ (t),Ṽ (t,·),u(t,X(t)),∗), (1.3)

where the dot “·” in Ṽ (t,·) denotes integration in terms of the Lévy measure, and the
“∗” in (1.3) represents known random factors that can be explicitly expressed in terms
of W and L. However, if f ∈{η,ζ}, the right-hand side of (1.3) should be changed to

f(t,X(t),V (t),V̄ (t),Ṽ (t,z),u(t,X(t)),z,∗). (1.4)

The processes Y and F in system (1.1) are called boundary regulators (e.g., loss potential
processes in practical systems), which are given by{

Yi(t) =
∫ t

0
IDi(X(s))dYi(s),

Fi(t) =
∫ t

0
ID̄i(V (s))dFi(s).

(1.5)

More precisely, X in system (1.1) is a p-dimensional process governed by the F-SDE
with skew reflection matrix R, and V in system (1.1) is a q-dimensional process governed
by the B-SDE with skew reflection matrix S. Furthermore, Y can increase only when
X is on a boundary Di, i∈{1,...,b} and F can increase only when V is on a boundary
D̄i, i∈{1,..., b̄}, where b and b̄ are two nonnegative integers. Both Y and F are the
regulating processes with possible jumps to push X and V back into the state spaces
D and D̄ respectively.

It is not difficult to understand the existence of a solution to the system (1.1)–(1.5)
when the driving processes are continuous Brownian motions (see the related discussion
in [46]). However, the existence of a solution if the driving processes are general Lévy
processes with jumps, in particular when the state space D or D̄ is bounded, is not
obvious. Our interpretation to this existence problem is by way of Skorohod decompo-
sitions as used in diffusion approximations for queueing networks (see [12,13], and [10]).
In other words, for two given netput processes Z and U , we try to find two pairs of Sko-
rohod decomposed processes (X,Y ) and (V,F ) satisfying the required properties. From
the viewpoint of a sample path, this existence issue is consistent with the well-known
Skorohod problem (see [12], [10]). Note that the processes Y and F are parts of the
6-tuple solution to system (1.1)–(1.5), which are frequently called Skorohod regulators
(see, Figure 1.1 for an example).
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The proof for the well-posedness of an adapted 6-tuple weak solution to the system
of FB-SDEs in (1.1)–(1.5) is based on a general boundary reflection condition (called
the completely-S condition in physical queueing systems, see [12], [10], [11]). Besides the
well-known mirror reflection, the condition is concerned with a general non-symmetric
skew reflection over boundaries (see Figure 1.1 for such an illustration). Under this

Fig. 1.1. Skew and Inward Reflection with Skorohod Regulator under Completely-S Condition.

condition, the solution to an embedded Skorohod problem may be not unique, i.e., bi-
furcations may occur at reflection boundaries for quantum particles moving along the
solution paths. Thus, this non-uniqueness property leads to difficulties in our proof,
e.g., the conventional contraction mapping approach by using the well-known Picard’s
iteration can not be directly extended to solve our problem. However, by proving a
stricter oscillation inequality with some related property in the Skorohod topological
space, and by establishing Malliavin calculus for vector-valued Lévy processes, we de-
velop a general weak convergence method to prove the well-posedness of a 6-tuple weak
solution (in the sense of distributions) to system (1.1)–(1.5).

It is worth pointing out that the coefficients of system (1.2) are functionals of the
coupled forward-backward processes, which brings additional complexity to our analysis.
Furthermore, in our proof, the conventional linear growth and Lipschitz constant is
replaced by an adapted stochastic process that may be unbounded but is mean-square
integrable (see, [14,16]), which guarantees the well-posedness of system (1.1)–(1.5) even
under an external random environment. In addition, if the completely-S condition
becomes more strict, e.g., with additional requirements that the spectral radii of each
square submatrix at a corner of a reflection are strictly less than unity, a unique adapted
6-tuple strong solution in the sample pathwise sense will be considered.

Coupled FB-SDEs motivates an active area of research (see, [39] for a discussion
of coupled FB-SDEs with no boundary reflection, and [29] for a study of Brownian
motion driven B-SDE with reflection, and see references therein). However, to the best
of our knowledge, the unified system of coupled FB-SDEs in (1.1)–(1.5) with double
skew reflection matrices is new and should be the most general form of various existing
SDEs. Furthermore, the study of the well-posedness in terms of an adapted 6-tuple
weak solution (in the sense of distributions) with Lévy jumps and under a general
completely-S reflection condition through the Skorohod problem are also new.
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For the purpose of further illustrating the importance of our unified system in
(1.1)–(1.5), we study the applications of its adapted solution in signal processing over
communication channels. In a communication system, or typically in a cloud-computing
associated communication system, the Lévy processes correspond to white non-Gaussian
noises and can be used to model Big Data (see [18]) in its three-dimensional statistical
features: high-volume (amount of data) with batch arrivals, high-velocity (speed of data
in and out) corresponding to batch processing services, and high-variety (range of data
types and sources). Skew reflections are due to buffer storage constraint and heavily
loaded traffic, or due to system idleness and lightly loaded traffic.

To optimize service over an MIMO communication channel, the determination of its
service capacity is crucial. The capacity is originally derived as the Shannon capacity
for a communication channel with a white Gaussian noise corresponding to a continuous
Brownian motion. The key step in obtaining the capacity is the calculation of the so-
called mutual information, i.e., the information contained in the received signal about
the transmitted signal over the channel (see [9]). Recently, the formula to compute
the mutual information was extended to a single-input single-output (SISO) channel
presented by a stochastic equation (a degenerated SDE without feedback) driven by a
white non-Gaussian noise corresponding to a pure jump Lévy process (see, [19]).

Thus, we also aim to derive and prove a generalized formula of mutual information
for a multi-input multi-output (MIMO) channel modeled by general nonlinear SDEs
with feedback, which are driven by both continuous Brownian motions and pure jump
Lévy processes.

MIMO channels are the major technology in current and likely future wireless and
quantum communication systems. The dynamics governing the MIMO channels can
be modeled as a queueing network consisting of arrival processes, service processes,
and data buffer storages with certain service regimes and network architectures (see an
example with p-users in Figure 1.2). The queue length processes in this network are
the real signal processes to be transmitted over the MIMO channels. Thus, we refine
two generalized queueing models under different assumptions and illustrate their well-
posedness by the solution to system (1.1)–(1.5). Furthermore, based on the generalized
formula of mutual information, we can derive the channel capacity region for an MIMO
channel (or channels) with multiple users. Specifically, one can get the capacity region
that is achievable under a coding (e.g., the dirty paper coding) technique in communi-
cation practices when the queueing signals are approximated by models driven by white
Gaussian noise processes (see [23], [27]).

The remainder of the paper is organized as follows. In Section 2, we introduce
our unified system of coupled FB-SDEs and state the main theorem about its well-
posedness. In Section 3, we study the applications and related economical modeling of
our system in signal processing over MIMO wireless channels. Particularly, we derive a
generalized formula of MIMO mutual information with Lévy jumps. In Section 4, we
prove our main results. In Section 5, we present the conclusion of the paper.

2. The unified FB-SDE and its well-posedness

2.1. Conditions on state spaces. We assume that the process X governed
by the forward SDE in (1.1)–(1.5) lives in a state space D that is a general convex
polyhedral (see [11], [12], [10]). Specific examples of a convex polyhedral include the p-
dimensional positive orthant and the p-dimensional rectangle as displayed in Figure 1.2.
There are b boundary faces for the polyhedral with a given integer b∈{0,1,2,...}; the
i-th face is denoted by Di={x∈Rp,x ·ni= bi} for i∈{1,...,b}, where bi is some non-
negative constant and ni is the inward unit normal vector on the boundary face Di.
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Fig. 1.2. A queueing network system with p-job classes.

For convenience, we define N = (n1,...,nb) and let R in (1.1)–(1.5) be a p×b matrix,
whose i-th column denoted by p-dimensional vector vi is the reflection direction of X on
Di. The process Y in (1.1)–(1.5) is a nondecreasing predictable process with Y (0) = 0
and boundary regulating property as explained in (1.1)–(1.5). In queueing system, this
process is called the boundary idle time or blocking process.

Analogously, we suppose that V takes values in a region D̄ with boundary face D̄i=
{v∈Rq,v · n̄i= b̄i} for i∈{1,..., b̄} and a known b̄∈{0,1,2,...}, where n̄i is the inward unit
normal vector on the boundary face D̄i. For convenience, we define N̄ = (n̄1,...,n̄b̄). In
finance, the given constant b̄i is called the early exercise reward. Furthermore, S in
(1.1) is a q× b̄ matrix. In addition, F (·) in (1.1) is a nondecreasing predictable process
with F (0) = 0 and boundary regulating property as explained in (1.1)–(1.5).

Associated with the reflection matrix R (and similarly for S), we impose the fol-
lowing completely-S condition.

Definition 2.1. A p×p square matrix R is called completely-S if and only if there
is x>0 such that R̃x>0 for each principal submatrix R̃ of R (i.e., R̃ is a submatrix in
which the set of row indices that remain is the same as the set of column indices that
remain), where the vector inequalities are to be interpreted componentwise. Furthermore,
a p×b matrix R is called completely-S if and only if each p×p square submatrix of N ′R
and (N ′R)′ is completely-S.

Note that the completely-S condition on the reflection matrices guarantees that the
coupled FB-SDEs are of inward reflection on each boundary and corner of the polyhedral
(see Figure 1.1 and [12]). Furthermore, the reflection appearing here is called a skew
reflection, which is a generalization of the conventional mirror (or symmetry) reflection.
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2.2. Assumptions on the system and its coefficients. To talk about the
existence and uniqueness of an adapted 6-tuple strong or weak solution to the coupled
FB-SDEs in (1.1)–(1.5), we need to introduce the required probability and supporting
topological spaces. More precisely, let (Ω,F ,P ) be a complete probability space on which
we define a standard d-dimensional Brownian motion W ≡{W (t),t∈ [0,T ]} for a given
T ∈ [0,∞) with W (t) = (W1(t) ,..., Wd(t))

′ and a h-dimensional general Lévy pure jump
process (or special subordinator) L≡{L(t),t∈ [0,T ]} with L(t)≡ (L1(t),...,Lh(t))′ (see
[2], [4], and [43]). Note that the prime notation appearing in this paper is used to denote
the transpose of a matrix or of a vector. Furthermore, W , L, and their components are
assumed to be independent of each other. For each vector λ= (λ1,...λh)′>0, which is
called a reversion rate vector in many applications, we let L(λs) = (L1(λ1s),...,Lh(λhs))

′.
Then, we denote a filtration by {Ft}t≥0 with Ft≡σ{G,W (s),L(λs) : 0≤s≤ t} for each
t∈ [0,T ], where G is σ-algebra independent of W and L. In addition, let IA(·) be the
index function over the set A, and let νi be a Lévy measure for each i∈{1,...,h}. Then,
we denote by Ni((0,t]×A)≡

∑
0<s≤t IA(Li(s)−Li(s−)) a Poisson random measure with

a deterministic, time-homogeneous intensity measure dsνi(dzi). Thus, each Li can be
represented by

Li(t) =ai(t)+

∫
(0,t]

∫
Z
ziNi(ds,dzi), t≥0. (2.1)

(see Theorem 13.4 and Corollary 13.7 in [28]). For convenience, we take the constant
ai to be zero, and for later reference, we define

ν(dz) = (ν1(dz1),...,νh(dzh))′. (2.2)

Furthermore, for each t∈ [0,T ] and z∈Zh, we let

Ñ(λdt,dz) = (Ñ1(λ1dt,dz1),...,Ñh(λhdt,dzh))′ (2.3)

with

Ñi(λidt,dzi) =Ni(λidt,dzi)−λidtνi(dzi) (2.4)

for each i∈{1,...,h}.
Next, based on the driven Brownian motion and Lévy process, the required sup-

porting topological space can be defined by

Q2
F ([0,T ])≡D2

F ([0,T ],Rp)×D2
F ([0,T ],Rb)

×D2
F ([0,T ],Rq)×D2

F,p([0,T ],Rq×d)

×D2
F,p([0,T ]×Zh,Rq×h)×D2

F ([0,T ],Rb̄), (2.5)

where for a q×d matrix-valued process V̄ or a q×h matrix-valued process Ṽ , we con-
sider it as a qd-dimensional vector-valued process or a qh-dimensional vector-valued
process whenever a norm is considered. Furthermore, for a positive integer in the
set {p,b,q,qd,qh,b̄}, (e.g., the integer b), we let D2

F ([0,T ],Rb) be the space of Rb-
valued and {Ft}-adapted processes with sample paths in the Skorohod topological space
D([0,T ],Rb) (i.e., each sample path in the space is right-continuous with left-limits and
the space itself is endowed with the Skorohod topology (see [20])). Furthermore, each
process Y ∈D2

F ([0,T ],Rb) is square-integrable in the sense that

E

[∫ T

0

‖Y (t)‖2dt

]
<∞. (2.6)
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In the sequel, we use D2
F,p([0,T ],Rb) to denote the corresponding predictable space.

Similarly, we use D2
p([0,T ]×Zh, Rl×h) to denote the set of all Rl×h-valued random

processes Ṽ (t,z) = (Ṽ1(t,z1), ..., Ṽh(t,zh)) that are predictable for each z∈Zh, and we
endow this space with the norm

E

[
h∑
i=1

∫ T

0

∫
Z

∥∥∥Ṽi(t,zi)∥∥∥2

νi(dzi)dt

]
<∞. (2.7)

In the deterministic case, we let

L2
ν(Zh,Rq×h)≡

{
ṽ :Zh→Rq×h,

h∑
i=1

∫
Z
‖ṽi(zi)‖2νi(dzi)<∞

}
(2.8)

and we endow it with the norm

‖ṽ‖2ν ≡
h∑
i=1

∫
Z
‖ṽi(zi)‖2λiνi(dzi). (2.9)

Finally, to suitably impose conditions on the initial and terminal values, we use
L2
Gl(Ω,R

l) with l∈{p,q} to denote the set of all Rl-valued, square-integrable, and Gl-
measurable random variables with Gp=G and Gq =FT .

We suppose the coefficients in (1.1)–(1.5) are {Ft}-predictable and continuous in
terms of W and L. More precisely, they can be presented in the forms of functionals as
follows,

b(t,x,u)≡ b(t,x,v,v̄, ṽ,u,∗) : [0,T ]×Rp×Rq×Rq×d×Rq×h×U→Rp,

σ(t,x,u)≡σ(t,x,v,v̄, ṽ,u,∗) : [0,T ]×Rp×Rq×Rq×d×Rq×h×U→Rp×d,

η(t,x,u)≡η(t,x,v,v̄, ṽ,u,z,∗) : [0,T ]×Rp×Rq×Rq×d×Rq×h×U×Zh→Rp×h,

c(t,x,u)≡ c(t,x,v,v̄, ṽ,u,∗) : [0,T ]×Rp×Rq×Rq×d×Rq×h×U→Rq,

α(t,x,u)≡σ(t,x,v,v̄, ṽ,u,∗) : [0,T ]×Rp×Rq×Rq×d×Rq×h×U→Rq×d,

ζ(t,x,u)≡ ζ(t,x,v,v̄, ṽ,u,z,∗) : [0,T ]×Rp×Rq×Rq×d×Rq×h×U×Zh→Rq×h.

For each f ∈{b,σ,c,α} and its corresponding values f1,f2 at (x1, v1, v̄1, ṽ1,u) and (x2,
v2, v̄2, ṽ2,u), we assume that

‖f(u)‖≤ L̂(t,ω)(1+‖x‖+‖v‖+‖v̄‖+‖ṽ(·)‖) , (2.10)∥∥f2(u)−f1(u)
∥∥≤ L̂(t,ω)

(∥∥x2−x1
∥∥+
∥∥v2−v1

∥∥ +
∥∥v̄2− v̄1

∥∥+
∥∥ṽ2(·)− ṽ1(·)

∥∥). (2.11)

Note that the conditions in (2.11) and the following (2.13) represent the Lipschitz con-
dition under a given state-dependent feedback control rule u. Meanwhile, for each
f ∈{η,ζ− ṽ} with z∈Zh and and its corresponding values f1,f2 at (x1, v1, v̄1, ṽ1,u)
and (x2, v2, v̄2, ṽ2,u), we suppose that

h∑
i=1

∫
Z
‖fi(u,zi)‖2λiνi(dzi)≤ L̂2(t,ω)

(
1+‖x‖2 +‖v‖2 +‖v̄‖2 +‖ṽ(·)‖2

)
, (2.12)

where fi is the i-th column of f such that

h∑
i=1

∫
Z

∥∥f2
i (u,zi)−f1

i (u,zi)
∥∥2
λiνi(dzi)

≤ L̂2(t,ω)
(∥∥x2−x1

∥∥2
+
∥∥v2−v1

∥∥2
+
∥∥v̄2− v̄1

∥∥2
+
∥∥ṽ2(·)− ṽ1(·)

∥∥2
)
. (2.13)
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We assume the known random factors in H(X(T ),·) and all the coefficients f ∈
{b,σ,η,c,α,ζ} are functionals of W and L that are continuous in W and L. Furthermore,
we suppose that

‖H(x,∗)‖≤ L̂(ω)‖x‖ , (2.14)∥∥H(x2,∗)−H(x1,∗)
∥∥≤ L̂(ω)

∥∥x2−x1
∥∥. (2.15)

Note that L̂(ω) in (2.14)–(2.15) is the same as L̂(T,ω) in (2.10)–(2.13). Furthermore,
L̂(t,ω) is assumed to be a known non-negative, {Ft}-adapted, and square-integrable
random process, i.e.,

E

[∫ T

0

L̂2(t)dt

]
<∞. (2.16)

2.3. Main Theorem. Based on the assumptions and conditions presented in
the previous subsections, we can state our main theorem as follows.

Theorem 2.1. Under the assumptions that
1. The coefficients in (1.1)–(1.5) are {Ft}-predictable for each fixed z∈Zh and

any given (u,v,v̄, ṽ)∈Rp×Rq×Rq×d×L2
ν(Zh,Rq×h);

2. b(t,0,0,0,0,u), σ(t,0,0,0,0,u), η(t,0,0,0,0,u,z), c(t,0,0,0,0,u), α(t,0,0,0,0,u),
and ζ(t,0,0,0,0,u,z) are square-integrable;

3. Conditions (2.10)–(2.16) hold and the initial and terminal values satisfy

(ξ,H)∈L2
G(Ω,Rp)×L2

FT (Ω,Rq), (2.17)

then the following claims are true:

If S and R satisfy the completely-S condition, there exists a unique adapted 6-tuple
weak solution ((X,Y ),(V,V̄ ,Ṽ ,F )) (in the sense of distributions) to system (1.1) under
a given control rule u when at least one of the forward and backward SDEs has reflection
boundary;

In particular, in the special cases in which all the square subprincipal matrices of
N̄ ′S, (N ′S)′, N ′R, and (N ′R)′ are invertible, or if both of the SDEs have no reflection
boundaries, there is a unique adapted 6-tuple strong solution ((X,Y ), (V,V̄ ,Ṽ ,F )) (in
the sample pathwise sense) to system (1.1) under a given control rule u. Furthermore,
there exist two Lipschitz continuous mappings Φ and Ψ such that{

X(t) = Z̄(t)+Φ(Z̄)(t), Φ(Z̄)(t) =Y (t),
V (t) = Ū(t)+Ψ(Ū)(t), Ψ(Ū)(t) =F (T )−F (t),

(2.18)

where the processes Z̄ and Ū in (2.18) are given by{
Z̄(t) = ξ+Z(t),
Ū(t) = H(X(T ),∗)+U(t).

(2.19)

The proof of Theorem 2.1 is given in Section 4. In the proof, the well-posedness for
the system in a general weak sense is our focal point and it needs more involved work.
In this case, due to the assumption of the general completely-S reflection condition,
the solution to an embedded Skorohod problem may be not unique, i.e., bifurcations
may occur at reflection boundaries. This phenomenon frequently appears in physical
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systems (e.g., queueing network systems) and the well-known contraction mapping ap-
proach can not be extended readily to solve our problem. Thus, a weak convergence
method is developed to prove the associated result in Theorem 2.1. However, when
the stricter invertibility condition on reflection matrices is imposed, the conventional
contraction mapping approach can be applied. In this case, the reflection matrices can
be extended to be time and/or queue-state dependent ones (see the related discussions
in [36] and references therein). Furthermore, the uniqueness concerning an adapted 6-
tuple strong solution ((X,Y ), (V,V̄ ,Ṽ ,F )) means that if there is another such solution,
their difference must be zero under the product norm endowed to the space Q2

F ([0,T ])
in (2.5). In other words, corresponding to the given forms of the state-dependent net-
put processes Z and U in (1.1), the related system decomposition in terms of X and
V together with four regulating processes Y , V̄ , Ṽ , and F along each sample path is
unique. Nevertheless, for consistency of the statements and notations in this paper, we
keep the current constant reflection matrix assumption in the theorem.

Finally, before proving Theorem 2.1, we first discuss the applications of our main
result in signal processing over MIMO and Possibly non-Gaussian communication chan-
nels.

3. Applications to signal processing over communication channels

In this section, we study the applications of the solution to the system of SDEs
presented by (1.1)–(1.5) in signal processing over MIMO and possible non-Gaussian
communication channels. E.g., we derive and prove a generalized formula of MIMO
mutual information involving Lévy jumps, we discuss the well-posedness of queueing
networks with applications in related economical modeling, and we determine the ca-
pacity regions of wireless MIMO channels with multiple users.

3.1. A Generalized formula of MIMO mutual information. In this
subsection we derive and prove a generalized formula of mutual information for the sig-
nal processing over an MIMO and possibly non-Gaussian Lévy communication channel
based on the solution to the SDE in (1.1)–(1.5).

Mutual information is a basic concept in information theory (see [9], [33]) that
originated from the well-known work of Bell Labs scientist Shannon in calculating the
maximal transmission rate over a Gaussian communication channel for a single user [44].
Later on, this work was extended to multiple users and MIMO cases over Gaussian
channels ( [23]). More recently, to capture the jumps of data movements, this calculation
was generalized the case of a non-Gaussian Lévy channel for a single user [19]. With
applications to Big Data (see [18]) in mind as discussed in Section 1 of this paper,
we aim to further derive a mutual information formula for multiple users and MIMO
non-Gaussian Lévy channels.

More precisely, we consider a specific p-dimensional signal process S of the forward
equation in (1.1)–(1.5) as the one to be transmitted over the channel, i.e.,

dS(t) =
(
b0(t−)+b1(t−)S(t−)+σ(t−)ψ

∫
Zh diag(z)diag(λ)ν(dz)

)
dt

+σ(t−)
(
φdW (t)+ψ

∫
Zh diag(z)Ñ(λdt,dz)

)
,

S(0) = s,

(3.1)

where “diag(z)” in (3.1) denotes the diagonal matrix with each entry in the main di-
agonal given by the corresponding component of a given z∈Zh. The channel can be
either linear or nonlinear with the corresponding received p̄-dimensional signal process
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Z given by 
dZ(t) =

(
b̄(t−,S,Z)+

∫
Zh̄ ψ̄(t−,S,Z,z)diag(λ̄)ν̄(dz)

)
dt

+φ̄(t−,S,Z)dW̄ (t)+
∫
Zh̄ ψ̄(t−,S,Z,z) ˜̄N(λ̄dt,dz),

Z(0) = z.

(3.2)

In equations (3.1)–(3.2), W and W̄ are two independent standard d-dimensional and

d̄-dimensional Brownian motions, Ñ and ˜̄N are two independent centered h-dimensional
and h̄-dimensional Lévy processes with associated Lévy measures ν and ν̄ respectively.
Furthermore, the coefficients σ and bi with i∈{0,1} in (3.1) are deterministic and
square-integrable vector or matrix functions in t. Besides the linear growth and Lipschitz
conditions for b̄, φ̄, and ψ̄ as required by Theorem 2.1, the matrices φφ′ and ψψ′, the
matrical function σ̄(t)σ̄(t)′, and the matrical processes φ̄φ̄′(·) and ψ̄ψ̄′(·) for all t∈ [0,T ]
are invertible.

We define the mutual information between the transmitted signal S and the received
signal Z over time interval [0,T ] by

I(T,S,Z) =E

[
ln

dF(S,Z)

d(FS×FZ)
(S,Z)

]
, (3.3)

where FS , FZ , and F(S,Z) denote the distributions of the processes S, Z, and (S,Z).
Furthermore, the expression dF(S,Z)/d(FS×FZ) in (3.3) is the Radon–Nikodym deriva-
tive (or density) of the joint distribution F(S,Z) with respect to the product distribution
FS×FZ . In other words, I(t,S,Z) represents the information contained in the received
signal Z about the transmitted signal S over time interval [0,t] [9]. Furthermore, we
define two processes by

γ(t,S,Z)≡ b̄(t,S,Z)′
(
φ̄(t,S,Z)φ̄(t,S,Z)′

)−1
φ̄(t,S,Z), (3.4)

η(t,S,Z,z) = (η1(t,S,Z,z1),...,ηh̄(t,S,Z,zh̄))′ (3.5)

with the convention that

lnη(t,S,Z,z)≡ (lnη1(t,S,Z,z1),..., lnηh̄(t,S,Z,zh̄))
′
. (3.6)

Note that for each i∈{1,...,h̄} and z∈Z h̄, each component of η is a positive rate process
given by

ηi(t,S,Z,zi)≡
p̄∑
j=1

ψ̄ij(t,S,Z,zi). (3.7)

Then, we have the following proposition.

Proposition 3.1. Under the conditions in Theorem 2.1 and Equation (3.7) for the
system presented by the SDEs in (3.1)–(3.2), the mutual information I(T,S,Z) defined
in (3.3) can be calculated by the formula

E

[∫ T

0

{
− 1

2

((
γ(t−,S,Z)γ(t−,S,Z)′− γ̂(t−,S,Z)γ̂(t−,S,Z)′

)
+

∫
Zh̄

(η(t,S,Z,z)− η̂(t,S,Z,z))
′
diag(z)ν̄(λ̄dz)

)
+

∫
Zh̄

(
ln
(
(η(t,S,Z,z)+e)

′
diag(z)

)
− ln

(
(η̂(t,S,Z,z)+e)

′
diag(z)

))
ν̄(λ̄dz)

}
dt

]
, (3.8)
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where,

γ̂(t,S,Z) =
ES [M(t)γ(t,S,Z)]

ES [M(t)]
, (3.9)

η̂(t,S,Z,z) =
ES [M(t)η(t,S,Z,z)]

ES [M(t)]
, (3.10)

and ES is the expectation in terms of the measure dFS. Furthermore, M(t) is a stochas-
tic exponential given by

exp

{
−
∫ t

0

(
1

2
γ(s−,S,Z)γ(s−,S,Z)′+

∫
Zh̄

(
η(s−,S,Z,z)′diag(z)

)
ν̄(λ̄dz)

)
ds

+

∫ t

0

γ(s−,S,Z)dW̄ (s)

+

∫ t

0

∫
Zh̄

ln
((
η(s−,S,Z,z)+e

)′
diag(z)

)
N̄(λ̄ds,dz)

}
, (3.11)

where “e” denotes the h̄-dimensional column vector of ones.

The proof of Proposition 3.1 is given in Section 4.

3.2. Queueing signal processes. In this subsection, we interpret the sig-
nal process S in (3.1) as the queue length processes which appears in many real-
world network applications (see an example with p-users in Figure 1.2). The main
performance measure for such a network is the queue length process denoted by
S(·) = (S1(·),...,Sp(·))′, where Si(t) is the number of i-th class jobs stored in the i-
th buffer for each i∈{1,...,p} at time t∈ [0,∞). Then, the queueing dynamics of the
network can be modeled by

S(t) =S(0)+A(t)−D(t), (3.12)

where the i-th component Ai(t) of A(t) for each i∈{1,...,p} is the total number of jobs
that arrive at buffer i by time t, and the i-th component Di(t) of D(t) is the total
number of jobs that depart from buffer i by time t. In the following studies, we use two
generalized ways to characterize the arrival and departure processes.

3.2.1. Case I: Brownian networks with nominal balanced rates. In
this Brownian network case, we assume that both the arrival and service processes are
described by renewal processes or doubly stochastic renewal processes. In this case,
the driven processes for the queueing system do not have the nice statistical properties
such as memorylessness and stationarity of increments. Thus, it is usually impossible
to conduct exact analysis concerning the distribution of S(·). However, under certain
conditions (e.g., the arrival rates close to the associated service rates), one can show
that the corresponding sequence of diffusion-scaled queue length processes converges
in distribution to a p-dimensional reflecting Brownian motion (RBM) (see [12,13], [10],
[11]), or more generally, to a reflecting diffusion with regime switching (RDRS) (see [15]).
In other words, we have that

Ŝr(·)≡ 1

r
S(r2·)⇒ Ŝ(·) along r∈{1,2,...}, (3.13)

where “⇒” means “converges in distribution” and Ŝ(·) is an RBM or an RDRS. For
simplicity, we consider the case that the limit Ŝ(·) in (3.13) is an RBM living in the
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state space D introduced in Section 2. Furthermore, let θ be a vector in Rp and Γ be a
p×p symmetric and positive definite matrix. Then, we can introduce the definition of
an RBM (see [12]) as follows.

Definition 3.1. A semimartingale RBM associated with the data (S,θ,Γ,R) that has
initial distribution π is a continuous, {Ft}-adapted, p-dimensional process Z defined on
some filtered probability space (Ω,F ,{Ft},P) such that under P,

X(t) =Z(t)+RY (t) for all t≥0, (3.14)

where,

(1) X has continuous paths in S, P-a.s.,

(2) under P, Z is a p-dimensional Brownian motion with drift vector θ and covariance
matrix Γ such that {Z(t)−θt,Ft,t≥0} is a martingale and PZ−1(0) =π,

(3) Y is a {Ft}-adapted, b-dimensional process such that P-a.s., for each i∈{1,...,b},
the i-th component Yi of Y satisfies

(a) Yi(0) = 0,

(b) Yi is continuous and non-decreasing,

(c) Yi can increase only when Z is on the face Di, i.e., as given in system (1.1).

Corollary 3.1. If the reflection matrix R in (3.14) satisfies the conditions as required
in Theorem 2.1, an RBM in Definition 3.1 is well-posed either in the weak sense or in
the strong sense.

The proof of Corollary 3.1 is a direct conclusion of Theorem 2.1. In the literature
there are also some specific discussions about this particular type of SDEs. The proof
for SRBMs in the weak sense over a general convex polyhedral can be found in [11] and
the proof over a special positive orthant can be found in [47]. The proof in the strong
sense over a special positive orthant can be found in [24].

3.2.2. Case II: Lévy networks with controllable rates. In this Lévy net-
work case, we suppose that system arrival and service rates are designed in a dynamical
controllable way. More precisely, we suppose that the job arrival rate Ai(·) to buffer i
at time t, for i∈{1,...,p}, is a time-inhomogeneous Lévy process with intensity measure
ai(t,S,zi)dtνi(dzi) that depends on the queue state at time t. Analogously, we suppose
that the assigned service rate Di(·) to buffer i at time t is also a time-inhomogeneous
Lévy process with intensity measure di(t,S,zi)dtνi(dzi). Furthermore, we assume that
the routing proportion from buffer j to buffer i for jobs finishing service at buffer j is
pji(t,S,zj). In addition, the service rate di(t,S) will be set to zero when Si(t) = 0, i.e.,
system (3.15) is designed in a controllable manner. Thus, by the discussion in [2], the
queue length process in (3.12) for this case can be further expressed by a forward SDE
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(a special form of the unified system in (1.1)), i.e.,

dSi(t) =

∫
Z

(
ai(t,S,zi)−di(t,S,zi)I{Si(t)>0}

)
νi(dzi)dt

+
∑
j 6=i

∫
Z
pji(t,S,zj)dj(t,S,zj)I{Sj(t)>0}νj(dzj)dt

+

∫
Z

(
ai(t,S,zi)−di(t,S,zi)I{Si(t)>0}

)
Ñi(dt,dzi)

+
∑
j 6=i

∫
Z
pji(t,S,zj)dj(t,S,zj)I{Sj(t)>0}Ñj(dt,dzj)

+

b∑
j=1

Rij(t,S(t))dYj(t), (3.15)

where Z=R+. Furthermore, Yj(t) for each j∈{1,...,b} in (3.15) is the Skorohod reg-
ulator process that can increase only at time t when Sj(t) = 0. Examples and specific
formulations of system (3.15) can be found in [35], [36], and [31]. We have the following
corollary.

Corollary 3.2. If the reflection matrix in (3.15) is constant-valued (i.e., R(t,S(t)) =
R) and if the conditions imposed in Theorem 3.1 hold for system (3.15) corresponding
to Case II, then the system (3.15) is well-posed either in the weak sense or in the strong
sense.

The proof of Corollary 3.2 is a direct conclusion of Theorem 2.1. To be clear, we
give some comments about the conditions on the reflection matrix in the corollary. As
pointed out in the remark to Theorem 3.1 that the reflection matrix R(t,S(t)) may
be time- and queue-state dependent (see the related discussions in [36] and references
therein). Furthermore, the coefficients in (3.15) may be discontinuous at the queue
state Si(t) = 0. However, for our current purpose, and since the system in (3.15) is
designed in a controllable manner, the routing probabilities in a queueing network can
be designed in a stationary way and the service rate di(s,S(s)) can always be set to be
zero when Si(t) = 0. Thus, the constant reflection matrix can be assumed. Moreover, the
generalized Lipschitz and linear growth conditions in (2.10)–(2.13) may also be imposed
onto system (3.15).

3.2.3. Case III: modeling of network economics. Based on the queueing
system in (3.12) (either an RBM in Definition 3.1 or a controllable form in (3.15)),
we can formulate its corresponding economic model by an B-SDE with q=p. More
precisely, in this model, each user l∈{1,...,p} is contracted to use the system resource
at each time t through a utility function cl(t,Ql), e.g.,

cl(t,Ql) =

0 if Ql(t) = 0,
clQl(t) if Ql(t)∈ (0,bl),
clbl if Ql(t)≥ bl,

(3.16)

where cl is some nonnegative constant. Just as in financial option management [14,16],
the system manager has an economic objective associated with a terminal condition Hl

during a certain time period [0,T ] for a given T ∈ [0,∞), e.g.,

Hl(Ql(T )) = clQl(T ). (3.17)
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More exactly, the system manager wishes to maximize expected revenue while minimiz-
ing financial risk (i.e., by minimizing certain related variances). This can be done by
suitably managing the value process together with controlling the arrival and service
rates for each user l∈{1,...,p}, i.e., an B-SDE given by

Vl(t) =Hl(Ql(T ))+

∫ T

t

cl(s
−,Ql)ds−

∫ T

t

V̄l·(s
−)dW (s)

−
∫ T

t

∫
Zh
Ṽl·(s

−,z)Ñ(ds,dz)+
(
Fl(T )−Fl(t)

)
, (3.18)

where V̄l· and Ṽl· are, respectively, the lth rows of V̄ and Ṽ . Furthermore, Fl(t) can
increase only at a time t when Vl(t) = b̄l. The constant b̄l can be determined according
to the mean and variance of the terminal target Hl(Ql(T )). The process Fl(t) is the
payback process to the user l∈{1,...,p}, which looks like the early exercise reward
process in a conventional finance system [29].

Corollary 3.3. Under the conditions imposed in Corollary 3.2, the coupled system
of FB-SDEs in (3.15) and (3.18) is well-posed either in a weak sense or in a strong
sense.

The proof of Corollary 3.3 is a direct conclusion of Theorem 2.1. It is worth pointing
out that a system of FB-SDEs with Lévy jumps and/or reflections has the potential to be
used in finance engineering and game theory. Interested readers can find such examples
in [16] where an B-SDE with Lévy jumps is considered, and in [29] where an B-SDE
driven by a standard Brownian motion with reflection is considered.

3.3. Multi-Users’ MIMO channel capacity region. In this subsection, we
illustrate how to use the mutual information derived in Proposition 3.1 and the RBM
defined in Definition 3.1 or system (3.15) to determine the capacity region and schedule
the capacity for wireless MIMO channels with multi-users.

More precisely, we are concerned with a channel (or channels) that can be considered
as a base station having multi-antennas and p-users (p-mobiles). Each user corresponds
to a queue storage buffer and may be also equipped with multi-antennas. The antennas
in both base station and user’s mobiles have the ability to cooperate in the sense that
they can perform joint beam-forming and/or power control. Hence, the p-users can
be served at the same time by a single server (called a p-parallel server) with rate
allocation vector c(t) = (c1(t),...,cp(t))

′ that takes values in a capacity region R at a
time t. However, in doing so, there is a constraint on the total power that the antennas
in the base station can share or a constraint on the power to each individual user.

Determining the capacity region R that is achievable under a coding technique is
an important research area in both academia and communication practices [23], [27].

Along this direction, the most popular convention imposed is the Gaussian channel
assumption. In this situation, the input signal in (3.1) (e.g., the queue length process
in (3.12), (3.14), and (3.15)) reduces to a Brownian motion. Furthermore, the received
signal Z in (3.2) also reduces to a Brownian motion driven process. Then, a convex
capacity region that consists of the origin and L (>p) boundary pieces can be derived for
a constant channel (e.g., a p-user MIMO multiple access channel (MAC) or a broadcast
channel (BC) in real-world wireless communication systems). In Figure 3.1, we display
such an example of the capacity region for the purpose of illustration.

Note that by combining the mutual information in Proposition 3.1 and the studies
in Goldsmith et al. [23], Jindal et al. [27], it is possible for one to derive the capacity
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Fig. 3.1. A capacity region for an MIMO channel.

region for a non-Gaussian MIMO channel with multiple users and power constraint. In
addition, one can also develop some techniques to handle the gap between the achievable
capacity derived theoretically and the required one corresponding to real-world channels.
For example, the queue based rate scheduling policy corresponding to specific service
rate controls in (3.15) is designed and justified in Dai [15] to optimize the utility and
performance of the achievable maximal capacity for MIMO channels with multiple users.

4. Proofs of Theorem 2.1 and Proposition 3.1
To provide the proofs for Theorem 2.1 and Proposition 3.1, we first recall the

Skorohod problem with jumps and study its properties.

4.1. The Skorohod problem. Let D([0,T ],Rb) with b∈{1,2,...} be the space
of all functions z : [0,T ]→Rb that are right-continuous with left limits and are endowed
with the Skorohod topology [5], [26]. Then, we have the Skorohod problem as follows.

Definition 4.1 (The Skorohod problem). Given z∈D([0,T ],Rp) with z(0)∈D, a
(D,R)-regulation of z over [0,T] is a pair (x,y)∈D([0,T ],D)×D([0,T ],Rb+) such that

x(t) =z(t)+Ry(t) for all t∈ [0,T ],

where for each i∈{1,...,b},
(1) yi(0) = 0,

(2) yi is nondecreasing,

(3) yi can increase only at a time t∈ [0,T ] with x(t)∈Fi.

Definition 4.2 (Maximal Set). A set K⊆{1,...,b} is called “maximal” if K 6=∅,
DK 6=∅, and DK 6=DK̃ for any K̃⊃K such that K̃ 6=K, where D∅=D and

DK ≡∩i∈KDi. (4.1)
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Furthermore, we define the modulus of continuity with respect to a function z(·)∈
D([0,T ],Rb) and a real number δ>0 by

w(z,δ,T )≡ inf
tl

max
l

Osc(z,[tl−1,tl)), (4.2)

where the infimum takes over all the finite sets {tl} of points satisfying 0= t0<t1<...<
tm=T and tl− tl−1>δ for l= 1,...,m, and

Osc(z,[tl−1,tl]) = sup
t1≤s≤t≤t2

‖z(t)−z(s)‖. (4.3)

Then, we have the following lemma.

Lemma 4.1. Suppose that the reflection matrix R in Definition 4.1 satisfies the
completely-S condition. Then, any (D,R)-regulation (x,y) of z∈D([0,T ],Rp) with
z(0)∈D satisfies the oscillation inequality over [t1,t2] with t1,t2∈ [0,T ]

Osc(x, [t1,t2])≤κOsc(z,[t1,t2]), (4.4)

Osc(y,[t1,t2])≤κOsc(z,[t1,t2]), (4.5)

where κ is some nonnegative constant depending only on the inward normal vector N
and the reflection matrix R.

Note that the oscillation inequalities (4.4)–(4.5) for continuous paths can be found
in [3], [11]. The first such inequalities for discontinuous paths with jumps can be found
in [12] where the quantities in the right-hand sides of (4.4)–(4.5) are subject to an
additional constraint of bounded jump sizes (see also the related discussions in [10]
and [48]). Nevertheless, for the purpose of this paper, we remove such an additional
constraint and directly extend the inequalities in (4.4)–(4.5) to a general discontinuous
case with jumps.

Proof. (Proof of Lemma 4.1.) First, for a set K⊆{1,2,...,b}, let d(x,DK)
denote the Euclidean distance between x and DK for a point x∈D. Then, it follows
from Lemma 3.2 in [12] or Lemma B.1 in [11] that there exist two constants C≥1 such
that

d(x,DK)≤C
∑
i∈K

(ni ·x−bi). (4.6)

Now, for each ε≥0, and K⊆{1,...,b} (including the empty set), we let

Dε
K ≡{x∈Rq : 0≤ni ·x−bi≤Cε for all i∈K,

ni ·x−bi>ε for all i∈{1,...,b}\K} , (4.7)

where Cε=Cpε. Thus, by Lemmas 4.1–4.2 in [11], we know that

D=∪K∈GDε
K , (4.8)

where G is the collection of subsets of {1,...,b} consisting of all maximal sets in {1,...,b}.
Second, let (N ′R)K be the square matrix corresponding to a maximal set K and

consider a (Dε
K ,(N

′R)K)-regulation problem. Without loss of generality, we assume
that Dε

K is the p-dimensional positive orthant. Then, for each t∈ [t1,t2], we define

∆z(t)≡z(t)−z(t−), (4.9)

∆x(t)≡x(t)−x(t−), (4.10)

∆y(t)≡y(t)−y(t−). (4.11)
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Since the reflection matrix (N ′R)K =R satisfies the completely-S condition, it is easy
to check that the linear complementarity problem (LCP)

∆x(t) = ∆z(t)+R∆y(t),

∆x(t)∈D,
∆y(t)≥0,

∆xi(t)∆yi(t) = 0 for i= 1,...,p,

(bi−∆xi(t))∆yi(t) = 0 for i=p+1,...,b,

is completely solvable (see also Theorem 2.1 in [34] for a related discussion). Further-
more, we can conclude that

∆y(t)≤C∆z(t) (4.12)

for some nonnegative constant C depending only on the inward normal vector N and
the reflection matrix R.

Third, the rest of the proof is the direct conclusion of the proof for Theorem 3.1
in [12] or the proof for Theorem 4.2 in [10].

Lemma 4.2. For any maximal set K⊆{1,...,b}, if (N ′R)K and (N ′R)′K are invertible,
the Skorohod problem in Definition 4.1 is well-posed. Furthermore, there is a Lipschitz
continuous mapping Φ such that

x=z+RΦ(z), y= Φ(z). (4.13)

Proof. Consider a maximal set K⊆{1,...,b} and its corresponding (Dε
K ,(N

′R)K)-
regulation problem. For convenience, we let yK denote the |K|-dimensional vector whose
components corresponding to the indices in K and ycK denote the (b−|K|)-dimensional
complement of yK in y. Then, if ycK does not increase over [t1,t2), it follows from the
proof of Part (a) for Theorem 3.1 in [12] or Theorem 4.2 in [10] that

x(t+ t1) =x(t1)+(z(t+ t1)−z(t1))+(N ′R)K (yK(t+ t1)−yK(t1)). (4.14)

Since the matrix (N ′R)K is invertible, it follows from Theorem 7.2 in [6] that the corre-
sponding (Dε

K ,(N
′R)K)-regulation problem is well-posed. Then, by the same method

as was used to prove Theorem 3.1 in [12] or Theorem 4.2 in [10], we can finish the rest
proof of Lemma 4.2.

Lemma 4.3. Assume that (xn,yn)→ (x,y) along n∈{1,2,...} in D([0,T ],Rp)×
D([0,T ],Rb) and yn(·) is of bounded variation for each n∈{1,2,...}. Furthermore, sup-
pose that ∫ t

0

f(xn(s))dyn(s) = 0 (4.15)

for all n∈{1,2,...} and each t∈ [0,T ], where f ∈Cb([0,T ],Rb) is a b-dimensional bounded
vector function. Then, for each t∈ [0,T ], we have that∫ t

0

f(x(s))dy(s) = 0. (4.16)
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Proof. It follows from the discussion in pages 123-124 of [5] or Theorem 1.14
of [26] that there is a sequence {γn,n∈{1,2,...}} of continuous and strictly increasing
functions mapping from [0,T ]→ [0,T ] with γn(0) = 0 and γn(T ) =T such that

sup
t∈[0,T ]

|γn(t)− t|→0, (4.17)

sup
t∈[0,T ]

|(xn,yn)(γn(t))−(x,y)(t)|→0. (4.18)

Then, by the uniform convergence of (4.17)–(4.18) and condition (4.15), we know that∫ t

0

f(x(s))dy(s) = lim
n→∞

∫ t

0

f(xn(γn(s)))dyn(γn(s))

= lim
n→∞

∫ γ−1
n (t)

0

f(xn(u))dyn(u)

= 0,

where γ−1
n (·) is the inverse function of γn(·) for each n∈{1,2,...}. This completes the

proof of Lemma 4.3.

4.2. Malliavin calculus of vector-valued Lévy processes. In this sub-
section, we study the Malliavin calculus for vector-valued Lévy processes by gener-
alizing the discussions for single-dimensional Lévy processes in the existing literature
(see [17], [40], [45], and [32]).

First, let m= max{d,h} and define a vector-valued measure µ(t,z) = (µ1(t,z1) ,...,
µm(t,zm))′ in terms of (t,z)∈R+×Zm, where µj(t,zj) for each j∈{1,...,m} is given by

µj(dt,dzj)≡ I{j≤d}dtdδ0(zj)+I{j≤h}λjz
2
j dtνj(dzj). (4.19)

Then, for each Borel set E=E0×E1×·· ·×Em∈B(R+×Zm) such that µj(Ej)<∞
for each j∈{1,...,m}, we define a vector-valued random measure M(E) = (M1(E0×
E1),...,Mm(E0×Em))′, where Mj is given by

Mj(E0×Ej)≡ I{j≤d}
∫
Ej(0)

dWj(t)

+I{j≤h} lim
n→∞

∫ ∫
{(s,zj)∈E′j :(1/n)≤zj≤n}

zjÑj(λjds,dzj), (4.20)

and M is centered and independently scattered. Note that in (4.20), Ej(0) ={s≥
0 : (s,0)∈E0×Ej}, E′j =E0×Ej−{(s,0)∈E0×Ej}, and the limit is taken in L2(Ω).
Furthermore, µ is the control measure of M since E [M(A) ·M(B)] =µ(A∩B) for any
A,B∈B(R+×Zm), where the dot “·” between M(A) and M(B) is taken in the Eu-
clidean sense. In the sequel, we will consider the restriction of M to [0,T ]×Zm (with
the same notation).

Second, let H=L2([0,T ]×Zm,Rm,µ) denote the space of all real vector-valued
functions h(t,z) = (h1(t,z1),...,hm(t,zm))′ with the norm

‖h‖2H =

m∑
j=1

∫
[0,T ]×Z

h2
j (t,zj)µj(dt,dzj). (4.21)
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For each hn≡ (h,...,h)∈Hn≡H×H×·· ·×H, we let h2 = (h2
1,...,h

2
m)′ and define

‖h‖2Hn =

∫
([0,T ]×Zm)n

n∏
k=1

〈
h2(tk,zk),µ(dtk,dzk)

〉
. (4.22)

In addition, let Mn be a vector-valued multiple (m+1)-parameter integral in terms of
the random measure M defined by

Mn(hn)≡
∫

([0,T ]×Zm)n

n∏
k=1

〈
h(tk,zk),M(dtk,dzk)

〉
=

∫
[0,T ]n

n∏
k=1

〈
h(tk,0),dW (tk)

〉
+

∫
((0,T ]×Zm)n

n∏
k=1

〈
h(tk,zk),Ñ(λdtk,dzk)

〉
, (4.23)

where W and Ñ are the corresponding m-dimensional standard Brownian motion and
compensated Poisson random measure, respectively.

Third, let D1,2 be the set of all random vectors F ∈L2
FT (Ω,Rq) with chaos expansion

Fr =

∞∑
n=0

Mn(hn,r) and norm ‖Fr‖2D1,2
=

∞∑
n=0

nn!‖hn,r‖2Hn (4.24)

for some hn,r ∈Hn and each r∈{1,...,q} such that

‖F‖2D1,2
≡ max
r∈{1,...,q}

‖Fr‖2D1,2
<∞. (4.25)

Then we know that D1,2 is strictly contained in L2
FT (Ω,Rq) when it is endowed with

the following norm. For each F ∈L2
FT (Ω,Rq),

‖F‖2L2(Ω,P )≡ max
r∈{1,...,q}

‖Fr‖2L2(Ω,P )<∞, ‖Fr‖
2
L2(Ω,P ) =

∞∑
n=0

n!‖hn,r‖2Hn . (4.26)

Definition 4.3. For each F ∈D1,2, its Malliavin derivative DF is defined by the
matrix

Dt,zF ≡ (Dt,zF1,...,Dt,zFq)′ (4.27)

with (t,z)∈ [0,T ]×Zm, where

Dt,zFr = (Dt,z1Fr,...,Dt,zmFr) , r∈{1,...,q}, (4.28)

Dt,zjFr =

∞∑
n=1

nMn−1(hn,r(·,t,zj)), j∈{1,...,m}. (4.29)

In (4.29), Mn−1(hn,r(·,t,zj)) means that the (n−1)-fold iterated integral of hn,r is re-
garded as a function of its (n−1) first pairs of variables (t1,z1),...,(tn−1,zn−1) while
the final pair (t,zj) is kept as a parameter.
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Lemma 4.4. If a random vector F ∈D1,2, we can conclude that

DF ∈L2
FT (µ×P ) =L2

FT (Ω× [0,T ]×Zm,Rq×m).

Proof. For an F ∈D1,2, the claim in the lemma follows from the following calcula-
tion,

‖DF‖2L2
FT

(µ×P ) = max
r∈{1,...,q}

 m∑
j=1

∫
[0,T ]×Z

E
[(
Dt,zjFr

)2]
µj(dt,dzj)


= max
r∈{1,...,q}

 m∑
j=1

(∫
[0,T ]×Z

∞∑
n=0

n2(n−1)!‖hr‖2Hn−1 µj(dt,dzj)

)
= max
r∈{1,...,q}

( ∞∑
n=0

nn!‖hr‖2Hn

)
=‖F‖2D1,2

<∞, (4.30)

where the second equality in (4.30) follows from Definition 4.3. This completes the proof
of the lemma.

Lemma 4.5. Let L2(Ω,Rq) be the space of square-integrable Rq-valued random vectors
and L2(Ω,Hq) be the space of Hq-valued processes, which is endowed with the norm
(4.25). Then, the unbounded operator in Definition 4.3 is closable from L2(Ω,Rq) to
L2(Ω,Hq).

Proof. Let {F i : i∈{1,2,...}} be a sequence of smooth random vectors with chaos
expansions, which converges to zero along i∈{1,2,...} in L2(Ω,Rq). Then, we have that

F ir→0 along i∈{1,2,...} in L2(Ω,P ) for each r∈{1,...,q}. (4.31)

We suppose that the corresponding sequence related to the Malliavin derivatives con-
verges to some η in L2(Ω,Hq). Then, by (4.31), we know that

m∑
j=1

∫
[0,T ]×Z

E
[(
Dt,zjF ir

)2]
µj(dt,dzj) =

∞∑
n=0

nn!
∥∥hir∥∥2

Hn
→0 (4.32)

along i∈{1,2,...} for each r∈{1,...,q}, which implies that ηr = 0 and hence η= 0. There-
fore, by the definition of the closable operator [49], we conclude that the claim in the
lemma is true.

In the sequel, we will use D∞1,2 to denote the domain of the unbounded operator

D : L2(Ω,Rq)→L2(Ω,Hq). (4.33)

Owing to Lemma 4.5, this domain is the closure of the class of smooth random variables
D1,2 with the norm (4.25). Furthermore, we will use L2

1,2(Ω,Rq) to denote the space of
product measurable and Ft-adapted processes, which is endowed with the norm,

‖F‖21,2 =‖F‖2D1,2
+‖DF‖2L2(Ω,Hq) . (4.34)



W. DAI 679

Lemma 4.6. For a matrix-valued process Z ∈D2
F,p([t,T ]×Zm,Rq×m) with each t∈

[0,T ] and corresponding space H over [t,T ], we have

Z ∈L2
1,2(Ω,Hq) if and only if F ≡

∫
[t,T ]×Zm

Z(s,z)M(ds,dz)∈D∞1,2. (4.35)

Furthermore, for each θ∈ [0,T ],

Dθ,zF (t) =

{∫
[t,T ]×ZmDθ,zZ(s,y)M̃(ds,dy) if θ≤ t,
Z ′r(θ,z)+

∫
[t,T ]×ZmDθ,zZ(s,y)M̃(ds,dy) if θ>t,

(4.36)

where M̃ is a mm×m matrix measure given by M̃ = (M ′,...,M ′)′.

Proof. Without loss of the generality, we let t= 0 and assume that the (rj)-th
entry of Z for each r∈{1,...,q} and j∈{1,...,m} has the chaos expansion

Zrj(s,zj) =Mn(hn,rj(·,s,zj)), (4.37)

where hn,rj(t
1,z1,...,tn,zn,s,zj)∈Hn is defined as in (4.24). Since Z ∈D2

F,p([0,T ]×
Zm,Rq×m), the expression in (4.37) is unique for each r∈{1,...,q} and j∈{1,...,m}.
Then, the remaining proof of the lemma reduces to the one for the single-dimensional
Lévy processes, see the proof of Lemma 3.3 in [17] and the associated proof of Theorem
6.1 of [45]. This completes the proof of the lemma.

Lemma 4.7. Let F ∈D1,2 and φ be a real continuous vector function on Rq. If
φ(F )∈L2(Ω,R) and φ(F +(Dt,zF )e)∈L2(Ω× [0,T ]×Zm,R), then we have φ(F )∈D1,2,
which satisfies

Dt,zφ(F ) =φ(F +(Dt,zF )e)−φ(F ), (4.38)

where “e” is the m-dimensional column vector of ones.

Proof. First, for given h1,...,hq ∈H, we define each component of their corre-
sponding exponential random vector R(T ) = (R1(T ),...,Rq(T ))′ by

Rr(T ) = exp

{∫
[0,T ]×Zm

〈
hr(s,z),M(ds,dz)

〉}
for each r∈{1,...,q}. (4.39)

Then, by replacing the terminal time T by a time t∈ [0,T ], it follows from Itô’s formula
[38] that

dRr(t) =Rr(t
−)

∫
Zm

〈
er(t,z),M(dt,dz)

〉
, (4.40)

where er(t,z) is a row vector function given by

er(t,z) =
(
eh

r(t,z1)−1,...,eh
r(t,zm)−1

)
.

Now, for any n∈{1,2,...} and (t1,...,tn)∈ [0,T ]n, let ern be the function corresponding to
er(t,z) as in (4.24). Then, we can extend the discussion given for Example 12.5 of [40]
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to our vector case with the combination of Gaussian and Pure Jump Lévy noises. More
precisely, for t1≤ ...≤ tn,

Rr(T ) = 1+

∫
[0,T ]×Zm

Rr(t
1,−)

〈
er(t1,z1),M(dt1,dz1)

〉
= 1+

∫
[0,T ]×Zm

〈
er(t1,−,z1),M(dt1,dz1)

〉
+

∫
[0,T ]×Zm

∫
[0,t1]×Zm

Rr(t
2,−)

〈
er(t1,z1),M(dt1,dz1)

〉〈
er(t2,z2),M(dt2,dz2)

〉
·
·
·

=

n−1∑
k=0

1

k!
Mk(erk)+

∫
[0,T ]×Zm

∫
[0,t1]×Zm

· · ·
∫

[0,tn]×Zm
Rr(t

n,−)〈
er(t1,z1),M(dt1,dz1)

〉
· · ·
〈
er(tn,zn),M(dtn,dzn)

〉
·
·
·

=

∞∑
n=0

1

n!
Mn(ern), (4.41)

where the third equality follows from the fact that the set Sn={(t1,...,tn)∈ [0,T ]n : 0≤
t1≤ ...≤ tn≤T} occupies the fraction 1/n! of the whole n-dimensional box [0,T ]n, and
the last equality follows from the mean-square convergence.

Next, let Fr =Rr(T ) for each r∈{1,...,q}. Then, it follows from (4.24), (4.41), and
Definition 4.3 that

Dt,zFr =

∞∑
n=1

n

n!
Mn−1(ern(·,t,z))

=er(t,z)

∞∑
n=1

1

(n−1)!
Mn−1(ern−1)

=er(t,z)Fr. (4.42)

Thus, we can conclude that

Dt,z(y1F1 + ...+yqFq) =e(t,y,z)(y1F1 + ...+yqFq), (4.43)

for any given real number point y∈Rq, where

e(t,y,z) =
(
ey1h

1(t,z1)+...+yqh
q(t,z1)−1,...,ey1h

1(t,zm)+...+yqh
q(t,zm)−1

)
.

Furthermore, let DE1,2 be the set of linear combinations of all exponential random vectors

F =R(T ) as in (4.39). Then, for each F ∈DE1,2 and a given y∈Rq, it follows from
induction with respect to n∈{1,2,...} that

Dt,z((y1F1 + ...+yqFq)
n) =

(
(y1F1 + ...+yqFq)+(Dt,z(y1F1 + ...+yqFq))e

)n
−
(
y1F1 + ...+yqFq

)n
. (4.44)
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For example, when n= 2, it follows from (4.42) that

Dt,z((y1F1 + ...+yqFq)
2) =e2(t,y,z)(y1F1 + ...+yqFq)

2

=
(

(y1F1 + ...+yqFq)+(Dt,z(y1F1 + ...+yqFq))e
)2

−
(
y1F1 + ...+yqFq

)2

,

where

e2(t,y,z) =
(
e2(y1h

1(t,z1)+...+yqh
q(t,z1))−1,...,e2(y1h

1(t,zm)+...+yqh
q(t,zm))−1

)
.

Now, assuming that φ has compact support and F ∈DE1,2, then

φ(F ) =

(
1√
2π

)−q∫
y∈Rq

ei(y1F1+...+yqFq)φ̂(y)dy,

φ̂(y) =

(
1√
2π

)−q∫
x∈Rq

e−i〈x,y〉φ(x)dx,

where φ̂ is the Fourier transform of φ. Furthermore, it follows from (4.44) and Lemma 4.5
that

Dt,zφ(F ) =

(
1√
2π

)−q∫
y∈Rq

∞∑
n=0

1

n!
in
(

(y1F1 + ...+yqFq)+Dt,z(y1F1 + ...+yqFq)
)n

−(y1F1 + ...+yqFq)
)
φ̂(y)dy

=

(
1√
2π

)−q∫
y∈Rq

(
ei((y1F1+...+yqFq)+Dt,z(y1F1+...yqFq)e)−ei(y1F1+...yqFq)

)
φ̂(y)dy

=φ(F +(Dt,zF )e)−φ(F ),

where i is the unit imaginary number. Next, for a general F ∈D1,2, the lemma is
proved using an approximation by a sequence Fn∈DE1,2 (see Lemma 9.8 and the proof
for Theorem 12.8 [40]).This completes the proof of the lemma.

Lemma 4.8. Any F ∈L2
FT (Ω,Rq) can be approximated by a sequence {Fn,n∈

{1,2,...}}⊂D1,2 in the sense that

‖Fn−F‖2L2(Ω,P )→0 as n→∞, (4.45)

where the norm (4.45) is defined in (4.26).

Proof. By combining the discussion for Theorem 4.3.3 [37] and for Theorem
9.10 [40], we have the following Itô’s representation formula

Fr =E [Fr]+

∫
[0,T ]×Zm

〈
Ψr(t,z),M(dt,dz)

〉
for each F ∈L2

FT (Ω,Rq) and r∈{1,...,q}, where Ψr(t,z) is an m-dimensional predictable
process for (t,z)∈ [0,T ]×Zm. Then, as in (4.41) for proving Lemma 4.7, we can obtain

Fr =E [Fr]+

∫
[0,T ]×Zm

〈
E
[
Ψr

1(t1,z1)
]
,M(dt1,dz1)

〉
+

∫
[0,T ]×Zm

∫
[0,t1]×Zm

〈
Ψr

2(t2,z2)M(dt2,dz2),M(dt1,dz1)
〉
,
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where Ψr
2(t2,z2) is an m×q predictable matrix process. Along this line of iterative

calculations, we can conclude that

F =

∞∑
k=0

Mk(hk)

for some hn∈Hn (see the proof for Theorem 10.2 in [40]). Finally, for each n∈{1,2,...},
we define

Fn=

n∑
k=0

Mk(hk).

Then, we know that Fn∈D1,2 and Fn→F as n→∞ in the sense as stated in (4.45).
This completes the proof of the lemma.

4.3. Proof of Theorem 2.1. We divide the proof of the theorem into four parts
which correspond to the different boundary reflection conditions.

Part A (Existence). We consider the case that L̂(t,ω) as it appeared in (2.10)–
(2.15) is a constant and both the forward and the backward SDEs have reflection bound-
aries. In this case, we need to prove the claim that there is an adapted weak solution
((X,Y ),(V,V̄ ,Ṽ ,F )) to the system in (1.1)–(1.5).

In fact, for a positive integer b, let D2
F ([0,T ],Rb) be the space of Rb-valued and {Ft}-

adapted process Y with sample paths in the Skorohod topological space D([0,T ],Rb),
which is square-integrable, i.e.,

E

[∫ T

0

‖Y (t)‖2dt

]
<∞. (4.46)

Furthermore, we use D2
F,p([0,T ],Rb) to denote the corresponding predictable space.

Then, for a given n∈{1,2,...} and a 4-tuple

(Xn,V n,V̄ n,Ṽ n)∈D2
F ([0,T ],Rp)×D2

F ([0,T ],Rq)×D2
F,p([0,T ],Rq×d)

×D2
F,p([0,T ]×Zh,Rq×h) (4.47)

with Xn(0)∈D and V n(T )∈ D̄, and by the study of the continuous dynamic comple-
mentarity problem (DCP) [3], [12], [10], [34], [42], we know that there is a 2-tuple process
(Xn+1,Y n+1)∈D2

F ([0,T ],Rp)×D2
F ([0,T ],Rb) such that

Xn+1(t) =X(0)+Zn(t)+RY n+1(t)∈D (4.48)

along each sample path. Furthermore, the process Z in (4.48) has the decomposition

Zn(t) =Zn1 (t)+Zn2 (t),

where,

Zn1 (t) =

∫ t

0

b(s−,Xn,V n,V̄ n,Ṽ n,u)ds,

Zn2 (t) =

∫ t

0

σ(s−,Xn,V n,V̄ n,Ṽ n,u)dW (s)

+

∫ t

0

∫
Zh
η(s−,Xn,V n,V̄ n,Ṽ n,u,z)Ñ(ds,dz).
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In addition, (Xn+1,Y n+1) satisfies property (3) in Definition 3.1, i.e., for all t≥0,∫ t

0

IDi(X
n+1(s))dY n+1

i (s) =Y n+1
i (t). (4.49)

Since Y n+1(t) is finite a.s. along each sample path, it can be approximated by a sequence
of non-decreasing continuous processes. Thus, without loss of generality, we assume that
it is non-decreasing and continuous. Therefore, we have the expression

Y n+1
i (t) =

∫ t

0

αn+1
i (s)ds (4.50)

where αn+1
i (t)≥0 is the corresponding derivative of Y n+1

i (t) along each sample path
a.s. However, αn+1 may be unbounded. Hence, we approximate it by a sequence of b-
dimensional bounded vector processes αc,n+1(t) for each c∈{1,2,...} whose component
associated with each i∈{1,...,b} is given by

αc,n+1
i (t)≡αn+1

i (t)I
{
αn+1
i (t)≤ c

}
. (4.51)

Then, by the monotone convergence theorem, we have that∥∥Y n+1−Y c,n+1
∥∥

[0,T ]
= sup
t∈[0,T ]

∥∥Y n+1(t)−Y c,n+1(t)
∥∥

≤ max
i∈{1,...,b}

∫ T

0

αn+1
i (s)I

{
αn+1
i (s))≥ c

}
ds

→0 a.s. as c→∞. (4.52)

Furthermore,

E
[∥∥Y n+1−Y c,n+1

∥∥2

[0,T ]

]
→0 as c→∞. (4.53)

In addition, for each given c, it follows from Lemma 2.4 of [30] that there exists a
sequence

{
αr,c,n+1,r∈{1,2,...}

}
of simple processes such that

E

[∫ T

0

∥∥αr,c,n+1(s)−αc,n+1(s)
∥∥2
ds

]
→0 as r→∞. (4.54)

Next, for each sufficiently large c and r, let ti denote a dissection point of [0,T ]
with t0 = 0 such that ∪i∈{0,1,...,I−1}[ti,ti+1) = [0,T ] for some integer I ∈{1,2,...}. Due
to Lemma 4.8, each random vector αr,c,n+1(ti) can be approximated by a sequence
{αv,r,c,n+1(ti),v∈{1,2,...}} of random vectors that are Malliavin differentiable such
that

E
[∥∥{αv,r,c,n+1(ti)−αr,c,n+1(ti)

∥∥2
]
→0 as v→∞. (4.55)

Then, it follows from (4.55) that the corresponding simple process αv,r,c,n+1(t) con-
structed by {αv,r,c,n+1(ti)}{0≤i≤I−1} with t∈ [0,T ] for each v∈{1,2,...} is Malliavin
differentiable. Hence, we know that

Y v,r,c,n+1(t)≡
∫ t

0

αv,r,c,n+1(s)ds (4.56)
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is also Malliavin differentiable for each t∈ [0,T ]. Furthermore, we can write the equation
corresponding to (4.48) and Y v,r,c,n+1(t) along n∈{1,2,...} as

Xv,r,c,n+1(t) =X(0)+Zv,r,c,n(t)+RY v,r,c,n+1(t). (4.57)

Then, iterating in terms of n∈{1,2,...}, and owing to Lemma 4.8, we know that
Xv,r,c,n+1(t) is Malliavin differentiable. More precisely, for each t,θ∈ [0,T ], we have

Dθ,zXv,r,c,n+1(t) =Dθ,zX(0)+Dθ,zZv,r,c,n(t)+Dθ,z
(
RY v,r,c,n+1(t)

)
. (4.58)

Note that if any component of z in (4.58) is zero, the corresponding Malliavin derivatives
are in terms of the associated Brownian motion component. Furthermore, by Lemma 4.6
and Lemma 4.7, we have that

Dθ,zZv,r,c,n(t) = Θv,r,c,n(t,z)+Dθ,zZv,r,c,n1 (t)+Dθ,zZv,r,c,n2 (t), (4.59)

where if we use h̄ to denote the number of zero components of z, the initial value can
be calculated as

Θv,r,c,n(t,z) =


0 if θ∈ [t,T ],

σ(t,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u) if z= 0,θ<t,

η(t,Xv,r,,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u,z) if z∈Zh−h̄×{0}h̄,θ<t,
(4.60)

where h̄<h in the second equation of (4.60) and the notion {0}h̄ denotes the product of h̄

number of sets {0}, i.e., {0}h̄={0}× ...×{0}. In addition, we have

Dθ,zZv,r,c,n1 (t) =

∫ t

0

Dθ,zb(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u)ds,

Dθ,zZv,r,c,n2 (t) =

∫ t

0

Dθ,zσ(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u)dW̃ (s)

+

∫ t

0

∫
Zh
Dθ,zη(s−,Xv,r,,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u,y) ˜̃N(ds,dy),

where W̃ is a hd×d matrix process given by W̃ = (W ′, ...,W ′)′ and ˜̃N is a hh×h measure

given by ˜̃N = (Ñ ′, ...,Ñ ′)′. Note that for each f ∈{b,σ,η} (e.g., f = b) and by the chain rule in
Lemma 4.7, we can interpret the Malliavin derivative of f as follows,

Dθ,zb(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u)

= b(s−,Xv,r,c,n+Dθ,zXv,r,c,neh,V
v,r,c,n+Dθ,zV v,r,c,neh,

V̄ v,r,c,n+Dθ,zV̄ v,r,c,nedh,Ṽ v,r,c,n+Dθ,zṼ v,r,c,nehh,∗+Dθ,z∗,u)

−b(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u), (4.61)

where em for each m∈{p,dh,hh} is the m-dimensional vector of ones and Dθ,z∗ denotes the
Malliavin derivative in terms of the known random factors as explained in (1.3).

Now, it follows from the martingale representation theorem (see Theorem 5.3.5 in [2]), the
discussion about BSDEs with Lévy jumps (see Proposition 18 in [16]), and the above mentioned
study on DCP, we know that there is a 4-tuple process

(V n+1,V̄ n+1,Ṽ n+1,Fn+1))

∈D2
F ([0,T ],Rq)×D2

F,p([0,T ],Rq×d)

×D2
F,p([0,T ]×Zh,Rq×h)×D2

F ([0,T ],Rq×b̄) (4.62)

such that

V n+1(t) =H(Xn(T ), ·)+SFn(T )+Un(t)−SFn+1(t)∈ D̄ (4.63)
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along each sample path. Furthermore, (V n+1,Fn+1) satisfies property (3) in Definition 3.1.
More precisely, Fn+1 is a q-dimensional {Ft}-adapted process such that the i-th component
Fn+1
i of Fn+1 for each i∈{1, ..., b̄} P-a.s. has the properties that Fn+1

i (0) =0, Fn+1
i is non-

decreasing and Fn+1
i can increase only when V n+1 is on the corresponding boundary face D̄i,

i.e., ∫ t

0

ID̄i(V
n+1(s))dFn+1

i (s) =Fn+1
i (t) for all t≥0. (4.64)

In addition, the process Un(t) in (4.63) has the decomposition

Un(t) =Un1 (t)−Un2 (t)−Un3 (t), (4.65)

where

Un1 (t) =

∫ T

t

c(s−,Xn,V n,V̄ n,Ṽ n,u)ds,

Un2 (t) =

∫ T

t

(
α(s−,Xn,V n,V̄ n,Ṽ n,u)− V̄ n(s−)

)
dW (s)

+

∫ T

t

∫
Zh

(
ζ(s−,Xn,V n,V̄ n,Ṽ n,u,z)− Ṽ n(s−,z)

)
Ñ(ds,dz),

Un3 (t) =

∫ T

t

V̄ n+1(s−)dW (s)+

∫ T

t

∫
Zh
Ṽ n+1(s−,z)Ñ(ds,dz).

Just as in the case for (4.57), there is a sequence {βv,r,c,n+1(ti),v∈{1,2, ...}} of random vectors
that are Malliavin differentiable such that

F v,r,c,n+1(t)≡
∫ t

0

βv,r,c,n+1(s)ds (4.66)

is also Malliavin differentiable for each n∈{1,2, ...} and v∈{1,2, ...}. Thus, we can express the
equation corresponding to (4.63) as

V v,r,c,n+1(t) =H(Xv,r,c,n(T ), ·)+SF v,r,c,n(T )+Uv,r,c,n(t)−SF v,r,c,n+1(t), (4.67)

where

Uv,r,c,n(t) =Uv,r,c,n1 (t)−Uv,r,c,n2 (t)−Uv,r,c,n3 (t). (4.68)

Furthermore, we have the following expressions for all Uv,r,c,ni (t) with i∈{1,2,3}:

Uv,r,c,n1 (t) =

∫ T

t

c(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u)ds,

Uv,r,c,n2 (t) =

∫ T

t

(
α(s−,Xv,r,c,n,V n,V̄ v,r,c,n,Ṽ v,r,c,n,u)− V̄ v,r,c,n(s−)

)
dW (s)

+

∫ T

t

∫
Zh

(
ζ(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u,z)

−Ṽ v,r,c,n(s−,z)
)
Ñ(ds,dz),

Uv,r,c,n3 (t) =

∫ T

t

V̄ v,r,c,n+1(s−)dW (s)+

∫ T

t

∫
Zh
Ṽ v,r,c,n+1(s−,z)Ñ(ds,dz).

Then, for every t,θ∈ [0,T ] and by taking Malliavin derivatives on both sides of (4.68), we have

Dθ,zV v,r,c,n+1(t) =Dθ,zH(Xv,r,c,n(T ), ·)+Dθ,z(SF v,r,c,n(T ))

+Dθ,zUv,r,c,n(t)−Dθ,z(SF v,r,c,n+1(t)). (4.69)
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Furthermore, it follows from Lemma 4.6 and Lemma 4.7 that

Dθ,zUv,r,c,n(t) =Υv,r,c,n(t,z)+Dθ,zUv,r,c,n1 (t)−Dθ,zUv,r,c,n2 (t)−Dθ,zUv,r,c,n3 (t), (4.70)

where if θ≤ t, we have

Υv,r,c,n(t,z) =0. (4.71)

Otherwise, for z= 0, we have

Υv,r,c,n(t,z)≡Υv,r,c,n(t)

=−
(
α(t,Xv,r,c,n,V n,V̄ v,r,c,n,Ṽ v,r,c,n,u)− V̄ v,r,c,n(t)

)
−V̄ v,r,c,n+1(t). (4.72)

Moreover, as explained in (4.60), for each z∈Zh−h̄×{0}h̄ with h̄<h, we have

Υv,r,c,n(t,z) =−
(
ζ(t,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u,z)− Ṽ v,r,c,n(t,z)

)
−Ṽ v,r,c,n+1(t,z). (4.73)

In addition, for each t,θ∈ [0,T ], we have that

Dθ,zUv,r,c,n1 (t) =

∫ T

t

Dθ,zc(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u)ds,

Dθ,zUv,r,c,n2 (t) =

∫ T

t

Dθ,z
(
α(s−,Xv,r,c,n,V n,V̄ v,r,c,n,Ṽ v,r,c,n,u)− V̄ v,r,c,n(s−)

)
dW̃ (s)

+

∫ T

t

∫
Zh
Dθ,z

(
ζ(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u,y)

−Ṽ v,r,c,n(s−,y)
)

˜̃N(ds,dy),

Dθ,zUv,r,c,n3 (t) =

∫ T

t

Dθ,zV̄ v,r,c,n+1(s−)dW̃ (s)+

∫ T

t

∫
Zh
Dθ,zṼ v,r,c,n+1(s−,y) ˜̃N(ds,dy),

where W̃ and ˜̃N are defined in (4.58). Furthermore, for each f ∈{c,α,ζ}, its Malliavin deriva-
tive Dθ,zf in the corresponding integral is interpreted as in (4.61). Note that if we take θ= t
and replace T by a time s∈ [θ,T ] in the associated integrals of (4.70), the Itô integral corre-
sponding to the Brownian motion is continuous a.s. with respect to s∈ [θ,T ], while the integral
corresponding to the pure Lévy jump process is cádlág a.s. in terms of s∈ [θ,T ] (see Theorem
4.2.12 and 4.2.14 [2] and the proof for Corollary 4.1 in [17]). Then, by taking s↓ t, it follows
from (4.70) and (4.72) that

V̄ v,r,c,n+1(t) =α(t,Xv,r,c,n,V n,V̄ v,r,c,n,Ṽ v,r,c,n,u)− V̄ v,r,c,n(t)

−Dt,0Uv,r,c,n(t) (4.74)

for almost all (t,ω)∈ [0,T ]×Ω. Furthermore, it follows from (4.70) and (4.73) that

Ṽ v,r,c,n+1(t,z) = ζ(t,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u,z)− Ṽ v,r,c,n(t,z)

−Dt,zUv,r,c,n(t) (4.75)

for any z∈Zh−h̄×{0}h̄ with the corresponding h̄<h as explained in (4.60).
Thus, by summarizing the discussions for (4.48) and (4.63), we have the conclusion that

there is a 6-tuple process

((Xn+1,Y n+1),(V n+1,V̄ n+1,Ṽ n+1,Fn+1))∈Q2
F ([0,T ]) (4.76)
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with the properties as required by (1.1)–(1.5), where Q2
F ([0,T ]) is defined in (2.5). Then, we

can prove that the following sequence of stochastic processes along n∈{1,2, ...},

Ξn= ((Xn+1,Y n+1),(V n+1,V̄ n+1,Ṽ n+1(·),Fn+1)), (X1,V 1,V̄ 1,Ṽ 1) =(0,0,0,0) (4.77)

is relatively compact in the Skorohod topology over the space

P[0,T ]≡D2
F ([0,T ],Rp)×D2

F ([0,T ],Rb)

×D2
F ([0,T ],Rq)×D2

F,p([0,T ],Rq×d)

×D2
F,p([0,T ],Rq×h)×D2

F ([0,T ],Rb̄). (4.78)

Along the lines of [12, 15], [10], and by Corollary 7.4 in [20], it suffices to prove the following
two conditions are true. First, for each ε>0 and rational t>0, there is a constant C(ε,t) such
that

liminf
n→∞

P
{
‖Ξn‖2≤C(ε,t)

}
≥1−ε; (4.79)

Second, for each ε>0 and T >0, there is a constant δ>0 such that

limsup
n→∞

P
{
w(Ξn,δ,T )≥ ε

}
≤ ε, (4.80)

where the definition of w is stated in (4.2).

To prove the two conditions in (4.79) and (4.80) to be true, we first define the norm along
each sample path

‖f‖[a,b] = sup
a≤t≤b

‖f(t)‖

for every f ∈{Xn,Zn,Un,V n,V̄ n,Ṽ n} with a,b∈ [0,T ]. Then, for some constant γ >0 that will
be chosen and explained in the following proof, we introduce the space

Qγ [0,T ]≡D2
F ([0,T ],Rp)×D2

F ([0,T ],Rq)×D2
F,p([0,T ],Rq×d)

×D2
F,p([0,T ]×Zh,Rq×h). (4.81)

Note that for each 4-tuple process (X,V,V̄ ,Ṽ ) in this space, the norm is defined by

∥∥∥(X,V,V̄ ,Ṽ )
∥∥∥2

Qγ [0,T ]
≡E

[
sup
t∈[0,T ]

(
‖X(t)‖2 +‖V (t)‖2

)
e2γt

]

+E

[∫ T

0

∥∥V̄ (t)
∥∥2
e2γtdt

]
+E

[∫ T

0

∥∥∥Ṽ (t, ·)
∥∥∥2

ν
e2γtdt

]
. (4.82)

Thus, by Lemma 4.1, there is a positive constant C1 such that

∥∥(Xn+1,Y n+1)(t)
∥∥

≤
∥∥(Xn+1,Y n+1)(0)

∥∥+κOsc(Zn, [0,T ])

≤C1

(
‖X(0)‖+‖Zn‖[0,T ]

)
. (4.83)
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Furthermore, there are two nonnegative constants C̄1 and C̄2 such that∥∥∥(V n+1,V̄ n+1,Ṽ n+1(·),Fn+1)(t)
∥∥∥

≤
∥∥∥(V n+1,V̄ n+1,Ṽ n+1(·))(t)

∥∥∥+
∥∥Fn+1(t)

∥∥
≤
∥∥V n+1(T )

∥∥+
∥∥Fn+1(0)

∥∥+2κOsc(Un, [0,T ])

+
∥∥∆V̄ v,r,c,n+1(t)

∥∥+
∥∥∥∆Ṽ v,r,c,n+1(·)(t)

∥∥∥+‖Dt,0Uv,r,c,n(t)‖+‖Dt,·Uv,r,c,n(t)‖
)

≤ C̄1

(
‖V n(T )‖+‖Fn(T )‖+‖Un‖[0,T ]

+
∥∥∆V̄ v,r,c,n+1(t)

∥∥+
∥∥∥∆Ṽ v,r,c,n+1(·)(t)

∥∥∥+‖Dt,0Uv,r,c,n(t)‖+‖Dt,·Uv,r,c,n(t)‖
)

≤ C̄2

(
1+‖Xn(T )‖+

∥∥Un−1
∥∥

[0,T ]
+‖Un‖[0,T ]

+
∥∥∆V̄ v,r,c,n+1(t)

∥∥+
∥∥∥∆Ṽ v,r,c,n+1(·)(t)

∥∥∥+‖Dt,0Uv,r,c,n(t)‖+‖Dt,·Uv,r,c,n(t)‖
)

≤C1

(
1+‖X(0)‖+

∥∥Zn−1
∥∥

[0,T ]
+
∥∥Un−1

∥∥
[0,T ]

+‖Un‖[0,T ]

+
∥∥∆V̄ v,r,c,n+1(t)

∥∥+
∥∥∥∆Ṽ v,r,c,n+1(·)(t)

∥∥∥+‖Dt,0Uv,r,c,n(t)‖+‖Dt,·Uv,r,c,n(t)‖
)
,

(4.84)

where the second inequality follows from (4.74) and (4.75), and moreover,

∆V̄ v,r,c,n+1(t) = V̄ n+1(t)− V̄ v,r,c,n+1(t), (4.85)

∆Ṽ v,r,c,n+1(·)(t) = Ṽ n+1(·)(t)− Ṽ v,r,c,n+1(·)(t), (4.86)

Dt,·Uv,r,c,n(t) =

∫
Zh
Dt,zUv,r,c,n(t)λν(dz) (4.87)

with λν(dz) =(λ1ν1(dz1), ...,λhνh(dzh))′. Therefore, it follows from Markov’s inequality and
the linear growth condition that

P
{
‖Zn1 ‖[0,T ]≥K

}
≤ 2L̂2T

K− L̂T

∥∥∥(Xn,V n,V̄ n,Ṽ n)
∥∥∥
Qγ [0,T ]

(4.88)

for each n∈{1,2, ...} and any constant K>L̂T . Furthermore, by Lemma 4.2.8 in [2] (or the
related theorem in [22]) and the linear growth condition, we know that

P
{
‖Zn2 ‖[0,T ]≥K

}
≤ K̄

K2
+

L̂2T

K̄− L̂2T

∥∥∥(Xn,V n,V̄ n,Ṽ n(·))
∥∥∥2

Qγ [0,T ]
(4.89)

for all constant K̄ >L̂2T . Using similar reasoning as was applied to the inequalities in (4.84)–
(4.83), we know that

P
{
‖Un1 ‖[0,T ]≥K

}
≤ 2L̂2T

(K− L̂T )2

∥∥∥(Xn,V n,V̄ n,Ṽ n)
∥∥∥2

Qγ [0,T ]
, (4.90)

P
{
‖Un2 ‖[0,T ]≥K

}
≤ K̄

K2
+

L̂2T

K̄− L̂2T

∥∥∥(Xn,V n,V̄ n,Ṽ n)
∥∥∥2

Qγ [0,T ]
, (4.91)

P
{
‖Un3 ‖[0,T ]≥K

}
≤ K̄

K2
+

1

K̄

∥∥∥(Xn+1,V n+1,V̄ n+1,Ṽ n+1)
∥∥∥2

Qγ [0,T ]
. (4.92)

Note that for any t∈ [0,T ], it follows from the proof of Proposition 18 for an BSDE with jumps
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in [16] and from Lemma 4.1 that

∥∥∥(Un,V̄ n,Ṽ n)
∥∥∥2

Qγ [t,T ]

≤Kγ

(
2L̂2(T − t)+

∥∥∥(Xn−1,V n−1,V̄ n−1,Ṽ n−1)
∥∥∥2

Qγ [t,T ]

)
≤Kγ

(
2L̂2(T − t)+e2γTE

[∥∥V n−1
∥∥2

[t,T ]

]
+e2γT

∫ T

t

E
[∥∥Xn−1

∥∥2

[0,s]

]
ds

)
+Kγ

∥∥∥(Un−1,V̄ n−1,Ṽ n−1)
∥∥∥2

Qγ [t,T ]
, (4.93)

where there exists a nonnegative constant K̃ depending only on L̂, T , d, and h such that

Kγ =
K̃

γ
<1 (4.94)

for some suitable chosen γ >0. Therefore, by Lemma 4.1, the Itô’s isometry formula, and
(4.93), we know that

E
[
‖V n‖2[t,T ]

]
≤ K̄1

(
E
[
‖V n(T )‖2

]
+E

[
‖Fn−1(T )‖2

]
+κ2E

[
Osc(Un−1,[t,T ])2])

≤K1

(
1+E

[
‖Xn‖2[0,T ]

]
+κ2E

[
Osc(Un−2, [0,T ])2]+κ2E

[
Osc(Un−1, [t,T ])2])

≤K1

(
1+24κ2L̂2T 2 +24κ2L2(T − t)2

)
+K1E

[
‖Xn‖2[0,T ]

]
+24K1κ

2L̂2T

(∫ T

0

E
[∥∥Xn−2

∥∥2

[0,s]

]
ds+E

[∥∥V n−2
∥∥2

[0,T ]

])
+24K1κ

2L̂2(T − t)
(∫ T

t

E
[∥∥Xn−1

∥∥2

[0,s]

]
ds+E

[∥∥V n−1
∥∥2

[t,T ]

])
+24K1κ

2L̂2T
∥∥∥(Un−2,V̄ n−2,Ṽ n−2)

∥∥∥2

Qγ [0,T ]

+4K1κ
2
∥∥∥(Un−1,V̄ n−1,Ṽ n−1)

∥∥∥2

Qγ [0,T ]

+24K1κ
2L̂2(T − t)

∥∥∥(Un−1,V̄ n−1,Ṽ n−1)
∥∥∥2

Qγ [t,T ]

+4K1κ
2
∥∥∥(Un,V̄ n,Ṽ n)

∥∥∥2

Qγ [t,T ]

≤K3 +K2

(∫ T

0

E
[∥∥Xn−1

∥∥2

[0,s]

]
ds+

∥∥∥(Un−2,V̄ n−2,Ṽ n−2)
∥∥∥2

Qγ [0,T ]

+
∥∥∥(Un−1,V̄ n−1,Ṽ n−1)

∥∥∥2

Qγ [0,T ]
+
∥∥∥(Un,V̄ n,Ṽ n)

∥∥∥2

Qγ [0,T ]

)
, (4.95)

where Ki for i∈{1,2,3} are some nonnegative constants depending only on T , L̂, κ, and
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E
[
‖V (T )‖2

]
. Furthermore, for any t∈ [0,T ], we have

E
[
‖Xn‖2[0,t]

]
≤2E

[
‖X(0)‖2

]
+2κ2E

[
Osc(Zn−1, [0,t])2]

≤2E
[
‖X(0)‖2

]
+6κ2L̂2t2

+6κ2L̂2t

(∫ t

0

E
[∥∥Xn−1

∥∥2

[0,s]

]
ds+E

[∥∥V n−1
∥∥2

[0,T ]

])
+6κ2L̂2t

∥∥∥(Un−1,V̄ n−1,Ṽ n−1)
∥∥∥2

Qγ [0,T ]

≤2E
[
‖X(0)‖2

]
+12κ4L̂2t2 +6κ2L̂2tE

[∥∥V 2(T )
∥∥]

+6κ2L̂2t

∫ t

0

E
[∥∥Xn−1

∥∥2

[0,s]

]
ds

+6κ2L̂2t
(
1+2κ2)∥∥∥(Un−1,V̄ n−1,Ṽ n−1)

∥∥∥2

Qγ [0,T ]
. (4.96)

Thus, by repeating the calculations in (4.90)–(4.96) for all n∈{1,2, ...}, we have that∥∥∥(Xn,V n,V̄ n,Ṽ n)
∥∥∥2

Qγ [0,T ]
≤A0 +

n∑
k=1

Ak+1
1 T k+1

(k+1)!

(
1+Kk

γ

)
+A2

n∑
k=1

Kk
γ , (4.97)

where A0, A1, and A2 are some constants depending only on L̂, T , d, and h. Summarizing the
inequalities in (4.90)–(4.92), we know that

P
{
‖Un‖[0,T ]≥K

}
≤C2 max

{
K̄

K2
,

1

K̄
,

1

K̄− L̂2T
,

1

(K̄− L̂2T )2

}
(4.98)

for some nonnegative constant C2.
Now, for each Malliavin differentiable 4-tuple process (X,V,V̄ ,Ṽ )∈Qγ [0,T ], we define

Dθ,z(X,V,V̄ ,Ṽ )≡ (Dθ,zX,Dθ,zV,Dθ,zV̄ ,Dθ,zṼ ) (4.99)

for t∈ [0,T ], θ∈ [t,T ], z= 0 or z∈Zh−h̄×{0}h̄ with h̄<h. To discuss the solutions of the
corresponding Malliavin derivative based systems of FB-SDEs, we introduce some support
spaces. More precisely, if z= 0, this support space for a given t∈ [0,T ] and a constant β>0
(which can be similarly chosen as in (4.81)) can be constructed as follows:

Qβ [t,T ]≡D2
F ([t,T ],Rp×h)×D2

F ([t,T ],Rq×h)×D2
F,p([t,T ],Rq×d×h)

×D2
F,p([t,T ]×Zh,Rq×h×h), (4.100)

where the norm endowed to this space for a process in (4.99) and θ∈ [t,T ] is given by∥∥∥D0(X,V,V̄ ,Ṽ )
∥∥∥2

Qβ [t,T ]
≡E

[
sup
θ∈[t,T ]

(
‖Dθ,0X(t)‖2 +‖Dθ,0V (t)‖2

)
e2βθ

]

+E

[∫ T

t

∥∥Dθ,0V̄ (t)
∥∥2
e2βθdθ

]
+E

[∫ T

t

∥∥∥Dθ,0Ṽ (t, ·)
∥∥∥2

ν
e2βθdθ

]
. (4.101)

On the other hand, corresponding to z 6= 0, we need to define a support space with a norm
related to double integral with respect to Lévy measure in z∈Zh. Specifically, this space, for
a given t∈ [0,T ] and a constant ζ >0 is defined as

Qζ [t,T ]≡D2
F ([t,T ],Rp×h)×D2

F ([t,T ],Rq×h)×D2
F,p([t,T ],Rq×d×h)

×D2
F,p([t,T ]×Zh,Rq×h×h). (4.102)
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where the norm endowed to this space for θ∈ [t,T ] is given by

∥∥∥D(X,V,V̄ ,Ṽ )
∥∥∥2

Qζ [t,T ]
≡E

[
sup
θ∈[t,T ]

(
‖Dθ,·X(t)‖2ν +‖Dθ,·V (t)‖2ν

)
e2ζθ

]

+E

[∫ T

t

∥∥Dθ,·V̄ (t)
∥∥2

ν
e2ζθdθ

]
+E

[∫ T

t

∥∥∥∥∥∥∥Dθ,·Ṽ (t, ·)
∥∥∥2

ν

∥∥∥∥2

ν

e2ζθdθ

]
. (4.103)

Next, corresponding to the coupled Malliavin derivative based system of FB-SDEs in (4.58)
and (4.69) with a possible solution of the form in (4.99), we let

Dθ,z(X,V,V̄ ,Ṽ )v,r,c,n≡ (Dθ,zXv,r,c,n,Dθ,zV v,r,c,n,Dθ,zV̄ v,r,c,n,Dθ,zṼ v,r,c,n). (4.104)

In this case, the process (X,V,V̄ ,Ṽ )v,r,c,n can be considered as a given random environment
to the Malliavin derivative based system in (4.58) and (4.69). Furthermore, this coupled
system is endowed with initial value Θv,r,c,n(t,z) in (4.60) and terminal condition Υv,r,c,n(t,z)
in (4.72) and (4.73) respectively. However, the Malliavin derivatives Dθ,z(RY v,r,c,n+1(t)) and
Dθ,z(SF v,r,c,n+1(t)) in (4.58) and (4.69) may be unbounded. Therefore, we truncate them with
each g∈{1,2, ...} as follows,

Dθ,z(RY g,v,r,c,n+1(t))≡g
∧
Dθ,z(RY v,r,c,n+1(t)), (4.105)

Dθ,z(SF g,v,r,c,n+1(t))≡g
∧
Dθ,z(SF v,r,c,n+1(t)), (4.106)

Θg,v,r,c,n(t,z)≡g
∧

Θv,r,c,n(t,z), (4.107)

Υg,v,r,c,n(t,z)≡g
∧

Υv,r,c,n(t,z), (4.108)

(X,V,V̄ ,Ṽ )g,v,r,c,n≡g
∧

(X,V,V̄ ,Ṽ )v,r,c,n, (4.109)

where the operator
∧

denotes the smaller of two numbers and is interpreted in a componentwise
way. Then, along g∈{1,2, ...}, we have the following convergence either in the a.s. sample
pathwise sense or in the mean-square sense due to the monotone convergence theorem: as
g→∞,

Dθ,z(RY g,v,r,c,n+1(t))→Dθ,z(RY v,r,c,n+1(t)), (4.110)

Dθ,z(SF g,v,r,c,n+1(t))→Dθ,z(SF v,r,c,n+1(t)), (4.111)

Θg,v,r,c,n(t,z)→Θv,r,c,n(t,z), (4.112)

Υg,v,r,c,n(t,z)→Υv,r,c,n(t,z), (4.113)

(X,V,V̄ ,Ṽ )g,v,r,c,n→ (X,V,V̄ ,Ṽ )v,r,c,n. (4.114)

Thus, associated with (4.105)–(4.109), the counterpart of system (4.58) and (4.69) can be
written as

Dθ,zXg,v,r,c,n+1(t) = Dθ,zX(0)+Dθ,zZg,v,r,c,n(t)+Dθ,z
(
RY g,v,r,c,n+1(t)

)
,

Dθ,zV g,v,r,c,n+1(t) = Dθ,zH(Xg,v,r,c,n(T ),·)+Dθ,z(SF g,v,r,c,n(T ))
+Dθ,zUg,v,r,c,n(t)−Dθ,z(SF g,v,r,c,n+1(t)).

(4.115)

Due to the truncation in (4.105)–(4.109), the system in (4.115) is not a real Malliavin derivative
process oriented partial differential system. In other words, the original Malliavin derivative-
based sequence indexed by (v,r,c,n) is replaced by a sequence indexed by (g,v,r,c,n), i.e.,

Dθ,z(X,V,V̄ ,Ṽ )g,v,r,c,n, (4.116)
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which corresponds to the truncated values defined in (4.105)–(4.109). For example, by the
corresponding discussion in (4.61), the coefficient in (4.115) has the form

b(s−,Xg,v,r,c,n+Dθ,zXg,v,r,c,neh,V
g,v,r,c,n+Dθ,zV g,v,r,c,neh,

V̄ g,v,r,c,n+Dθ,zV̄ g,v,r,c,nedh,Ṽ g,v,r,c,n+Dθ,zṼ g,v,r,c,nehh,∗+Dθ,z∗,u)

−b(s−,Xv,r,c,n,V v,r,c,n,V̄ v,r,c,n,Ṽ v,r,c,n,u). (4.117)

Thus, if we consider the sequence (4.116) as a solution to system (4.115) for each n∈
{1,2, ...}, it follows from (4.117) that the sequence (X,V,V̄ ,Ṽ )g,v,r,c,n along n∈{1,2, ...} is
the given random environment. Therefore, for system (4.115), the binding Lipschitz process
L̂g,v,r,c,n(ω) corresponding to its counterpart L̂(ω) in conditions (2.10)–(2.16) is a functional
of (X,V,V̄ ,Ṽ )g,v,r,c,n, so L̂g,v,r,c,n(ω) = L̂((X,V,V̄ ,Ṽ )g,v,r,c,n,ω). Due to the truncation in
(4.109), it can be assumed to be a constant for each g∈{1,2, ...}.

In the subsequent discussion, we first fix the 4-tuple number (g,v,r,c) and consider system
(4.115) with the initial value Θg,v,r,c,n(t,z) and terminal condition Υg,v,r,c,n(t,z) as a conven-
tional system of FB-SDEs without reflection boundaries. Then, for the case z= 0, it follows
from Lemma 4.7 and the conditions in (2.10)–(2.16) that we can get inequalities analogous to
those in (4.83)–(4.92) by suitably handling constants K and K̄:

P
{
‖D0Z

g,v,r,c,n
1 ‖[t,T ]≥K

}
≤ 2L̂2T

K− L̂T

∥∥∥D0(X,V,V̄ ,Ṽ )g,v,r,c,n
∥∥∥2

Qβ [t,T ]
, (4.118)

P
{
‖D0Z

g,v,r,c,n
2 ‖[t,T ]≥K

}
≤ K̄

K2
+

L̂2T

K̄− L̂2T

∥∥∥D0(X,V,V̄ ,Ṽ )g,v,r,c,n
∥∥∥2

Qβ [t,T ]
, (4.119)

P
{
‖D0U

g,v,r,c,n
1 ‖[t,T ]≥K

}
≤ 2L̂2T

(K− L̂T )2

∥∥∥D0(X,V,V̄ ,Ṽ )g,v,r,c,n
∥∥∥2

Qβ [t,T ]
, (4.120)

P
{
‖D0U

g,v,r,c,n
2 ‖[t,T ]≥K

}
≤ K̄

K2
+

L̂2T

K̄− L̂2T

∥∥∥D0(X,V,V̄ ,Ṽ )g,v,r,c,n
∥∥∥2

Qβ [t,T ]
, (4.121)

P
{
‖D0U

g,v,r,c,n
3 ‖[t,T ]≥K

}
≤ K̄

K2
+

1

K̄

∥∥∥D0(X,V,V̄ ,Ṽ )g,v,r,c,n+1
∥∥∥2

Qβ [t,T ]
. (4.122)

Furthermore, it follows from the facts in (4.118)–(4.122) and a similar argument as was used
for proving inequality (4.98) that

P
{
‖D0U

g,v,r,c,n(t)‖[t,T ]≥K
}
≤C3 max

{
K̄

K2
,

1

K̄
,

1

K̄− L̂2T
,

1

(K̄− L̂2T )2

}
. (4.123)

Similarly, for the case in which z 6= 0, it follows from Lemma 4.7 and the conditions in (2.10)–
(2.16) that

P
{

(‖DZg,v,r,c,n1 ‖ν)[t,T ]≥K
}
≤ 2L̂2T

K− L̂T

∥∥∥D(X,V,V̄ ,Ṽ )g,v,r,c,n
∥∥∥2

Qζ [t,T ]
, (4.124)

P
{

(‖DZg,v,r,c,n2 ‖ν)[t,T ]≥K
}
≤ K̄

K2
+

L̂2T

K̄− L̂2T

∥∥∥D(X,V,V̄ ,Ṽ )g,v,r,c,n
∥∥∥2

Qζ [t,T ]
, (4.125)

P
{

(‖DUg,v,r,c,n1 ‖ν)[t,T ]≥K
}
≤ 2L̂2T

(K− L̂T )2

∥∥∥D(X,V,V̄ ,Ṽ )g,v,r,c,n
∥∥∥2

Qζ [t,T ]
, (4.126)

P
{

(‖DUg,v,r,c,n2 ‖ν)[t,T ]≥K
}
≤ K̄

K2
+

L̂2T

K̄− L̂2T

∥∥∥D(X,V,V̄ ,Ṽ )g,v,r,c,n
∥∥∥2

Qζ [t,T ]
, (4.127)

P
{

(‖DUg,v,r,c,n3 ‖ν)[t,T ]≥K
}
≤ K̄

K2
+

1

K̄

∥∥∥D(X,V,V̄ ,Ṽ )g,v,r,c,n+1
∥∥∥2

Qζ [t,T ]
. (4.128)
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Therefore, by (4.87) and (4.124)–(4.128), we have that

P
{
‖D·Ug,v,r,c,n(t)‖[t,T ]≥K

}
≤P

{
(‖DUg,v,r,c,n(t)‖ν)[t,T ]≥K

}
≤C4 max

{
K̄

K2
,

1

K̄
,

1

K̄− L̂2T
,

1

(K̄− L̂2T )2

}
. (4.129)

Here, we remark that the nonnegative constants C3 and C4 in (4.123) and (4.129) may depend
on (g,v,r,c). However, owing to the convergence in (4.52)–(4.54), (4.110)–(4.114) and the
similar computational procedure for a conventional system of FB-SDEs (see in (4.115) with
z= 0), we can take (g,v,r,c) as a 4-tuple integer function satisfying (g(v),v(r),r(c),c(n))→∞
when n→∞ such that∥∥∥∆(D0(X,V,V̄ ,Ṽ )g,v,r,c,n)

∥∥∥2

Qβ [t,T ]
→0 as n→∞, (4.130)

where the difference ∆ is defined by

∆(Dθ,z(X,V,V̄ ,Ṽ )g,v,r,c,n) =Dθ,z(X,V,V̄ ,Ṽ )g,v,r,c,n−Dθ,z(X,V,V̄ ,Ṽ )v,r,c,n. (4.131)

Moreover, once again by the convergence in (4.52)-(4.54) and (4.110)-(4.114), we have that∥∥∥((∆Xv,r,c,n,∆V v,r,c,n),(∆V̄ v,r,c,n,∆Ṽ v,r,c,n(·)))
∥∥∥2

Qγ [0,T ]
→0 as n→∞, (4.132)

where the 3-tuple function satisfies (v(r),r(c),c(n))→∞ as n→∞. In addition, the notation
∆ in (4.132) denotes the difference between the corresponding processes of the system in (1.1)
and the one in (4.63) and (4.70) (see those as defined in (4.85)-(4.86)).

Hence, for each given ε>0, it follows from the initial condition in (4.77) and the facts in
equations (4.98), (4.123), (4.129), (4.130), and (4.132) with suitably chosen constants K and
K̄, that

inf
n
P
{
‖Ξn(t)‖≤C, 0≤ t≤T

}
≥ inf

n
min

{
P
{∥∥(Xn+1,Y n+1)(t)

∥∥≤C, 0≤ t≤T},
P
{∥∥∥(V n+1,V̄ n+1,Ṽ n+1(·),Fn+1)(t)

∥∥∥≤C, 0≤ t≤T}}
≥1−ε (4.133)

for some nonnegative constant C. Thus, the sequence {Ξn} along n∈{1,2, ...} satisfies condition
(4.79).

Now, we show this sequence {Ξn} satisfies condition (4.80). In doing so, for any ε>0 and
a constant δ>0, we consider a finite set {tl} of points satisfying 0 = t0<t1<...< tp=T and
tl− tl−1 = δ<ε/L̂ with l∈{1, ...p} and p∈{1,2, ...}. Furthermore, for all 0≤s≤ t≤T , it follows
from (4.83) and (4.84) that∥∥(Xn+1,Y n+1)(t)−(Xn+1,Y n+1)(s)

∥∥≤2C1

(
‖X(0)‖+‖Zn‖[0,T ]

)
, (4.134)∥∥∥(V n+1,V̄ n+1,Ṽ n+1(·),Fn+1)(t)−(V n+1,V̄ n+1,Ṽ n+1(·),Fn+1)(s)
∥∥∥

≤2C1

(
1+‖X(0)‖+

∥∥Zn−1
∥∥

[0,T ]
+
∥∥Un−1

∥∥
[0,T ]

+‖Un‖[0,T ]

+
∥∥∆V̄ v,r,c,n+1(t)

∥∥+
∥∥∥∆Ṽ v,r,c,n+1(·)(t)

∥∥∥+‖Dt,0Uv,r,c,n(t)‖+‖Dt,·Uv,r,c,n(t)‖
)
.

(4.135)
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Then, by equations (4.77), (4.93)–(4.96), (4.134)–(4.135), and the explanation given for (4.83),
we know that

P
{
w(Zn1 ,δ,T )≥ ε

}
≤ 3L̂2δ

(ε− L̂δ)2

(
E
[
‖Xn‖2[0,T ] +‖V

n‖2[0,T ]

]
+
∥∥∥(Un,V̄ n,Ṽ n)

∥∥∥2

Qγ [0,T ]

)

≤ 3L̂2δ

(ε− L̂δ)2

(
A0 +

n∑
k=1

Ak+1
1 T k+1

(k+1)!

(
1+Kk

γ

)
+A2

n∑
k=1

Kk
γ

)
, (4.136)

where as stated for the inequality in (4.97), A0, A1, andA2 are nonnegative constants depending
only on L̂, T , d, and h. By Lemma 4.2.8 [2] (or the related theorem in [22]) and the linear
growth condition, we know that

P
{
w(Zn2 ,δ,T )≥ ε

}
≤ ε̄

ε2
+

3L̂2

ε̄−3L̂2δ

(
δE
[
‖Xn‖2T

]
+δE

[
‖V n‖2T

]
+E

[∥∥∥(Un,V̄ n,Ṽ n)
∥∥∥2

Qγ [0,T ]

])
≤ ε̄

ε2
+

3L̂2

ε̄−3L̂2δ

(
δ

(
A0 +

n∑
k=1

Ak+1
1 T k+1

(k+1)!

(
1+Kk

γ

)
+A2

n∑
k=1

Kk
γ

)
+A3

n∑
k=1

Kk
γ

)
(4.137)

for each nonnegative constant ε̄>3L̂2δ, where A3 is some nonnegative constant depending only
on L̂, T , d, and h. Similarly, there are some constants B0, B1, B2, and B3 depending only on
L̂, T , d, and h such that

P
{
w(Un1 ,δ,T )≥ ε

}
≤ 3L̂2δ

(ε− L̂δ)2

(
B0 +

n∑
k=1

Bk+1
1 T k+1

(k+1)!

(
1+Kk

γ

)
+B2

n∑
k=1

Kk
γ

)
, (4.138)

P
{
w(Un2 ,δ,T )≥ ε

}
≤ ε̄

ε2
+

3L̂2

ε̄−3L̂2δ

(
δ

(
B0 +

n∑
k=1

Bk+1
1 T k+1

(k+1)!

(
1+Kk

γ

)
+B2

n∑
k=1

Kk
γ

)
+B3

n∑
k=1

Kk
γ

)
, (4.139)

P
{
w(Un3 ,δ,T )≥ ε

}
≤ ε̄

ε2
+

3L̂2

ε̄

(
δ

(
B0 +

n+1∑
k=1

Bk+1
1 T k+1

(k+1)!

(
1+Kk

γ

)
+B2

n∑
k=1

Kk
γ

)
+B3

n+1∑
k=1

Kk
γ

)
. (4.140)

Next, instead of the interval [0,T ] consider the interval [t,T ] in the left-hand side of (4.2),
and just as in the discussion of (4.136)–(4.140) there are nonnegative constants Ā0, Ā1, Ā2,
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B̄0, B̄1, B̄2, and B̄3 depending only on L̂, T , d, and h such that

P
{
w(D0Z

g,v,r,c,n
1 ,δ, [t,T ])≥ ε

}
≤ 3L̂2δ

(ε− L̂δ)2

(
Ā0 +

n∑
k=1

Āk+1
1 T k+1

(k+1)!

(
1+Kk

β

)
+Ā2

n∑
k=1

Kk
β

)
, (4.141)

P
{
w(D0Z

g,v,r,c,n
2 ,δ, [t,T ])≥ ε

}
≤ ε̄

ε2
+

3L̂2

ε̄−3L̂2δ

(
δ

(
Ā0 +

n∑
k=1

Āk+1
1 T k+1

(k+1)!

(
1+Kk

β

)
+Ā2

n∑
k=1

Kk
β

)
+Ā3

n∑
k=1

Kk
β

)
, (4.142)

P
{
w(D0U

g,v,r,c,n
1 ,δ, [t,T ])≥ ε

}
≤ 3L̂2δ

(ε− L̂δ)2

(
B̄0 +

n∑
k=1

B̄k+1
1 T k+1

(k+1)!

(
1+Kk

β

)
+B̄2

n∑
k=1

Kk
β

)
, (4.143)

P
{
w(D0U

g,v,r,c,n
2 ,δ, [t,T ])≥ ε

}
≤ ε̄

ε2
+

3L̂2

ε̄−3L̂2δ

(
δ

(
B̄0 +

n∑
k=1

B̄k+1
1 T k+1

(k+1)!

(
1+Kk

β

)
+B̄2

n∑
k=1

Kk
β

)
+B̄3

n∑
k=1

Kk
β

)
, (4.144)

P
{
w(D0U

g,v,r,c,n
3 ,δ, [t,T ])≥ ε

}
≤ ε̄

ε2
+

3L̂2

ε̄

(
δ

(
B̄0 +

n+1∑
k=1

B̄k+1
1 T k+1

(k+1)!

(
1+Kk

β

)
+B̄2

n∑
k=1

Kk
β

)
+B̄3

n+1∑
k=1

Kk
β

)
, (4.145)

where as in (4.94), there exists a nonnegative constant K̃ depending only on L̂, T , d, and h,
such that, for a suitable chosen β>0,

Kβ =
K̃

β
<1. (4.146)

Furthermore, there are nonnegative constants Ã0, Ã1, Ã2, B̃0, B̃1, B̃2, and B̃3 depending only
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on L̂, T , d, and h such that

P
{
‖w(DZg,v,r,c,n1 ,δ, [t,T ])‖ν ≥ ε

}
≤ 3L̂2δ

(ε− L̂δ)2

(
Ã0 +

n∑
k=1

Ãk+1
1 T k+1

(k+1)!

(
1+Kk

ζ

)
+Ã2

n∑
k=1

Kk
ζ

)
, (4.147)

P
{

(‖w(DZg,v,r,c,n2 ,δ, [t,T ])‖ν)≥ ε
}

≤ ε̄

ε2
+

3L̂2

ε̄−3L̂2δ

(
δ

(
Ã0 +

n∑
k=1

Ãk+1
1 T k+1

(k+1)!

(
1+Kk

ζ

)
+Ã2

n∑
k=1

Kk
ζ

)
+Ã3

n∑
k=1

Kk
ζ

)
, (4.148)

P
{

(‖w(DUg,v,r,c,n1 ,δ, [t,T ])‖ν ≥ ε
}

≤ 3L̂2δ

(ε− L̂δ)2

(
B̃0 +

n∑
k=1

B̃k+1
1 T k+1

(k+1)!

(
1+Kk

ζ

)
+B̃2

n∑
k=1

Kk
ζ

)
, (4.149)

P
{

(‖w(DUg,v,r,c,n2 ,δ, [t,T ])‖ν ≥ ε
}

≤ ε̄

ε2
+

3L̂2

ε̄−3L̂2δ

(
δ

(
B̃0 +

n∑
k=1

B̃k+1
1 T k+1

(k+1)!

(
1+Kk

ζ

)
+B̃2

n∑
k=1

Kk
ζ

)
+B̃3

n∑
k=1

Kk
ζ

)
, (4.150)

P
{

(‖w(DUg,v,r,c,n3 ,δ, [t,T ])‖ν)≥ ε
}

≤ ε̄

ε2
+

3L̂2

ε̄

(
δ

(
B̃0 +

n+1∑
k=1

B̃k+1
1 T k+1

(k+1)!

(
1+Kk

ζ

)
+B̃2

n∑
k=1

Kk
ζ

)
+B̃3

n+1∑
k=1

Kk
ζ

)
, (4.151)

where as in (4.146) and for a suitable chosen ζ >0,

Kζ =
K̃

ζ
<1. (4.152)

Hence, for each given ε>0, it follows from the convergence in (4.130) and (4.132), the facts
in (4.136)–(4.145) and (4.147)–(4.151), there exist suitably chosen constants ε̄, δ, sufficiently
small numbers of γ, β, and ζ (via the expressions of Kγ , Kβ , and Kζ in (4.94), (4.146), and
(4.152)) that

limsup
n→∞

P
{
w(Ξn),δ,T )≥ ε

}
≤ ε. (4.153)

Thus condition (4.80) is true for the sequence of {Ξn}. Furthermore, by (4.84), (4.153), and
Corollary 7.4 in [20], this sequence is relatively compact. Therefore, there is a subsequence of
{Ξn} that converges weakly in Skorohod topology to

Ξ≡ ((X,Y ),(V,V̄ , ˆ̃V,F )). (4.154)

For convenience, we suppose that the subsequence is the sequence itself, i.e.,

Ξn⇒Ξ. (4.155)

Due to the Skorohod representation theorem (see Theorem 1.8 in [20]), we can assume that the
convergence in (4.155) is a.s. in the Skorohod topology. Now, for each n∈{1,2, ...}, we define

Υji(t
−,Xn,V n,V̄ n,Ṽ n,u,zi)

≡ ζji(t−,Xn,V n,V̄ n,Ṽ n,u,zi)+ Ṽ n+1
ji (t−,zi)− Ṽ nji (t−,zi). (4.156)
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It follows from (4.63) and the Itô-Lévy isometry that

E
[∫ T

0

∫
Z

q∑
j=1

h∑
i=1

K̂
∧(

Υji(t
−,Xm,V m,V̄ m,Ṽ n,u,zi)

−Υji(t
−,Xn,V n,V̄ n,Ṽ n,u,zi)

)2

λiνi(dzi)dt
]
→0 (4.157)

as m,n→∞ for each given constant K̂ >0. Thus, subject to the constraint of K̂, we see that
Υ(t−,Xn,V n,V̄ n,Ṽ n,u,z) is a Cauchy sequence along n∈{1,2, ...} in the mean-square sense.
Furthermore, as m,n→∞, it follows from the Lipschitz condition in (2.13) that

E
[∫ T

0

∫
Z

q∑
j=1

h∑
i=1

K̂
∧(

Ṽ m+1(t−,zi)− Ṽ n+1(t−,zi)
)2

λiνi(dzi)dt
]
→0. (4.158)

In other words, Ṽ n+1(t−,z) is also a Cauchy sequence along n∈{1,2, ...} in the mean-square
sense. Therefore, it has a convergent sequence in the mean-square sense, which further implies
that it has an a.s. convergent subsequence. Hence, we can conclude that Ṽ n+1 corresponding

to the subsequence converges a.s. along n∈{1,2, ...} to a limit Ṽ such that ˆ̃V in (4.154) can
be explicitly expressed as

ˆ̃V (t) = Ṽ (t, ·) =

∫
Zm

Ṽ (t,z)λν(dz)

under the constraint of K̂. Then, let K̂→∞, it follows from the monotone convergence theorem
that the required Ṽ (t,z) can be derived.

Finally, by claim (a) in Theorem 1.14 (or claim (a) in Proposition 2.1) of [26] and the
fact that Y n+1(0) =0 and Y n+1 is nondecreasing, we can conclude that Y (0) =0 and Y is
nondecreasing. Furthermore, by Lemma 4.3 and (4.50)∫ t

0

IDi(X(s))dYi(s) =Yi(t) for all t≥0, i∈{1, ...,b}. (4.159)

Analogously, we know that F (0) =0, F is non-decreasing, and∫ t

0

ID̄i(V (s))dFi(s) =Fi(t) for all t≥0, i∈{1, ..., b̄}. (4.160)

Therefore, by the Lipschitz condition in (2.11), we know that ((X,Y ),(V,V̄ ,Ṽ ,F )) satisfies the
FB-SDEs with Lévy jumps in (1.1) a.s. Thus, by the Skorohod representation theorem again,
it is a weak solution to the FB-SDEs in (1.1)–(1.5).

Part A (Uniqueness). Assume that ((Xj ,Y j),(V j ,V̄ j ,Ṽ j ,F j)) for j∈{1,2} are two weak
solutions to the FB-SDEs in (1.1). Since Y ji for each i∈{1, ...,b} and j∈{1,2} is non-decreasing
and finite a.s. along each sample path, it can be approximated by a sequence of non-decreasing
continuous processes. Therefore, without loss of generality, we suppose that Y ji for each i∈
{1, ...,b} and j∈{1,2} is non-decreasing and continuous. Furthermore, it follows from the
discussion in (4.50) that

Y ji (t) =

∫ t

0

αji (s)ds (4.161)

for some process αji (·)≥0. Nevertheless as in (4.50), it may be unbounded. Thus, for each
c∈{1,2, ...}, we let αc,j(t) be a b-dimensional vector whose component associated with each
i∈{1, ...,b} is given by

αc,ji (t)≡αji (t)I
{
αji (t)≤ c

}
. (4.162)
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Then, by the monotone convergence theorem we have that∥∥∥Y j−Y c,j∥∥∥
[0,T ]
→0 a.s. as c→∞. (4.163)

In addition, for each given c, there exists a sequence
{
αr,c,j ,r∈{1,2, ...}

}
of simple processes

such that

E

[∫ T

0

∥∥∥αr,c,j(s)−αc,j(s)∥∥∥2

ds

]
→0 as r→∞. (4.164)

For convenience define

Y r,c,j(t)≡
∫ t

0

αr,c,j(s)ds. (4.165)

Similarly, we can find such a sequence {βr,c,j} corresponding to F (t). such that

F r,c,j(t)≡
∫ t

0

βr,c,j(s)ds. (4.166)

Therefore, for each j∈{1,2}, the corresponding FB-SDEs in (1.1) can be rewritten as
Xj(t) = ξ+Zj(t)+R(Y j(t)−Y r,c,j(t))+RY r,c,j(t),
V j(t) = H(Xj(T ), ·)+U j(t)+S

(
(F j(T )−F j(t))−(F r,c,j(T )−F r,c,j(t))

)
+S(F r,c,j(T )−F r,c,j(t)).

(4.167)

Next, for each f j ∈{Xj ,Y r,c,j ,V j ,V̄ j ,Ṽ j ,F r,c,j} with j∈{1,2}, we define

∆f =f1−f2 (4.168)

and construct the following quadratic function

ζ(t)≡ (Tr(∆X(t))+Tr(∆V (t)))e2γt (4.169)

where γ >0 is some constant, and Tr(A) denotes the trace of the matrix A′A for a given
matrix A. Then, by the expressions in (4.161) and (4.165)–(4.166), the Itô’s formula, and the
discussion for Proposition 18 in [16] and Lemma 4.1, we have that∥∥∥((∆X,∆αr,c),(∆V,∆V̄ ,∆Ṽ ,∆βr,c))

∥∥∥2

Qγ [0,T ]

≤ C̄

1−K̄γ

(
E

[
sup
t∈[0,T ]

‖∆(Y (t)−Y r,c(t))‖2
]

+E

[
sup
t∈[0,T ]

‖∆(F (t)−F r,c(t))‖2
])

→0 as c→∞, (4.170)

where C̄ and K̄γ <1 are nonnegative constants only depending on L̂, T , d, and h. Furthermore,
r in (4.170) is a function of c, satisfying r(c)→∞ as c→∞. In addition, the norm (4.170) is
defined as ∥∥∥((∆X,∆αr,c),(∆V,∆V̄ ,∆Ṽ ,∆βr,c))

∥∥∥2

Qγ [0,T ]

≡E

[
sup
t∈[0,T ]

(
‖∆X(t)‖2 +‖∆V (t)‖2

)
e2γt

]

+E

[∫ T

0

‖∆αr,c(t)‖2e2γtdt

]
+E

[∫ T

0

‖∆βr,c(t)‖2e2γtdt

]
+E

[∫ T

0

∥∥∆V̄ (t)
∥∥2
e2γtdt

]
+E

[∫ T

0

∥∥∥∆Ṽ (t, ·)
∥∥∥2

ν
e2γtdt

]
. (4.171)
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Thus, it follows from (4.170) and (4.171) that

(∆X,∆αr,c,∆V,∆V̄ ,∆Ṽ ,∆βr,c)→0 as r→∞ (4.172)

for almost all (t,z,ω)∈ [0,T ]×Zm×Ω. By the same argument used in proving relatively com-
pactness for the sequence in (4.77), we know that the sequence {(∆X,∆αr,c, ∆V,∆V̄ , ∆Ṽ ,
∆βr,c),c∈{1,2, ...}} is relatively compact in the Skorohod topology. It follows from (4.172)
that the zero process is the unique limit process for all of its convergent subsequences. Thus,
we can conclude that the whole sequence itself converges to the zero process weakly, which
implies that

(∆X,∆Y r,c,∆V,∆V̄ ,∆Ṽ ,∆F r,c)⇒0 as r→∞, (4.173)

where “⇒” denotes “convergence in distribution”. Therefore, it follows from (4.163)–(4.166)
and Theorem 4.4.6 in [7] that

((X1,Y 1),(V 1,V̄ 1,Ṽ 1,F 1))

= ((X1,Y 1),(V 1,V̄ 1,Ṽ 1,F 1))−((X1,Y r,c,1),(V 1,V̄ 1,Ṽ 1,F r,c,1))

+((X2,Y r,c,2),(V 2,V̄ 2,Ṽ 2,F r,c,2))−((X2,Y 2),(V 2,V̄ 2,Ṽ 2,F 2))

+((∆X,∆Y r,c),(∆V,∆V̄ ,∆Ṽ ,∆F r,c))+((X2,Y 2),(V 2,V̄ 2,Ṽ 2,F 2))

⇒ ((X2,Y 2),(V 2,V̄ 2,Ṽ 2,F 2)) as r→∞. (4.174)

Thus, we know that (Xj ,Y j , V j ,V̄ j , Ṽ j ,F j) with j∈{1,2} have the same distribution. In
other words, the weak uniqueness of solution to the system of FB-SDEs in (1.1) holds. This
completes the proof of Part A.

Part B. We consider the case that L̂(t,ω) appearing in (2.10)–(2.15) is a constant and
the spectral radii of S and each p×p sub-principal matrix of N ′R are strictly less than one. In
this case, we need to prove that there is a unique strong adapted solution ((X,Y ),(V,V̄ ,Ṽ ,F ))
to system (1.1)–(1.5).

In fact, it follows from [24], [15], Lemma 7.1 and Theorem 7.2 in [6] that there exist two
Lipschitz continuous mappings Φ1 and Ψ1 such that

(Xn+1,Y n+1)(t) =(Z̄n(t)+Φ1(Z̄n)(t),Φ1(Z̄n)(t)), (4.175)

(V n+1,Fn+1)(t) =(Ūn(t)+Ψ1(Ūn)(t),Ψ1(Ūn)(t)) (4.176)

for each n∈{1,2, ...} and t∈ [0,T ], where the processes Z̄n and Ūn are defined by

Z̄n(t) = ξ+Zn(t),

Ūn(t) =H(Xn(T ),∗)+SFn(T )+Un(t).

Then, it follows from (4.175)–(4.176), the related estimates in Part A, and the conventional
Picard’s iterative method, that we can prove the claim in terms of the unique existence of a
strong solution to (1.1)–(1.5) in Part B. Furthermore, we know that there are two Lipschitz
continuous mappings Φ and Ψ such that

Φ(Z̄)(t) =Φ1(Z̄)(t),

Ψ(Ū)(t) =F (T )−F (t).

Hence, we finish the proof of Part B.

Part C. We consider the case that L̂(t,ω) appearing in (2.10)–(2.15) is a constant and
both of the SDEs have no reflection boundaries. In this case, we need to prove that there is
a unique strong adapted solution ((X,Y ),(V,V̄ ,Ṽ ,F )) to system (1.1)–(1.5). In fact, by the
related estimates in Part A, this case can be proved by directly generalizing the conventional
Picard’s iterative method.
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Part D. We consider the case that L̂(t,ω) appearing in (2.10)–(2.15) is a general adapted
and mean-square integrable stochastic process. The proofs corresponding to the cases stated
in Part A, Part B, and Part C can be accomplished along the lines of proofs for Lemma 4.1
in [14] associated with a forward SDE under random environment and Proposition 18 in [16]
for a backward SDE under random environment. The key in the proofs is to introduce the
following sequence of {Ft}-stopping times, i.e.,

τn≡ inf{t>0,‖L̂(t)‖>n} for each n∈{1,2, ...}.

By the assumption in (2.16), τn is nondecreasing and a.s. tends to infinity as n→∞.

Finally, by summarizing the cases presented in Part A to Part D, we finish the proof of
Theorem 2.1.

4.4. Proof of Proposition 3.1. First, we claim that the stochastic exponential
M defined in Proposition 3.1 is an {Ft}- and P -local martingale. In fact, it follows from
Theorem 2.1 that the system described by the SDEs in (3.1)–(3.2) is well-posed, i.e., the joint
distribution F(S,Z) of the processes S and Z is uniquely determined. Thus, we can conclude
that

E

[∫ T

0

{
γ(s−,S,Z)γ(s−,S,Z)′+

h̄∑
i=1

∫
Z

((
ηi(s

−,S,Z,zi)zi
)2

+
(

ln((η(t,S,Z,zi)+1)zi)
)2
)
ν̄i(λ̄idzi)

}
ds

]
<∞. (4.177)

Therefore, the following process, denoted by G(t) for each t∈ [0,T ], is well-defined:

G(t) =−
∫ t

0

(
1

2
γ(s−,S,Z)γ(s−,S,Z)′+

∫
Zh̄

(
η(s−,S,Z,z)′ diag(z)

)
ν̄(λ̄dz)

)
ds

+

∫ t

0

γ(s−,S,Z)dW̄ (s)

+

∫ t

0

∫
Zh̄

(
ln
(
η(s−,S,Z,z)+e

)′
diag(z)

)
N̄(λ̄ds,dz). (4.178)

Furthermore, it follows from the Itô’s formula that the stochastic exponential M(t) =exp{G(t)}
defined in Proposition 3.1 is an {Ft}- and P -local martingale.

Second, let Γ(t) denote the unique strong solution of the following SDE with Lévy jumps,

dΓ(t) = φ̄(t−,S,Γ)dW̄ (t)+

∫
Zh̄
ψ̄(t−,S,Γ,z) ˜̄N(λ̄dt,dz). (4.179)

Then, by the fact that the processM(t) is an {Ft}-local martingale, and by the Girsanov–Meyer
Theorem (see [41] and [33]), we know that

dF(S,Z)

dF(S,Γ)

((S,Z)(t)) =M(t). (4.180)

Furthermore, we define a process X by

dX(t) =

∫ t

0

γ(s−,S,Z)dW̄ (s)

+

∫ t

0

∫
Zh̄
η(s−,S,Z,z)diag(z) ˜̄N(λ̄ds,dz). (4.181)
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Then it follows from the proof of Theorem 37 in [41] that the Doléans-Dade exponential of X
can be calculated by

E(X)t= exp

{
X(t)− 1

2
[X,X]c(t)

}∏
s≤t

(
1+∆X(s)

)
exp

{
−∆X(s)

}
=M(t), (4.182)

where [X,X]c is the continuous part of [X,X]. Thus, it follows that

M(t) =1+

∫ t

0

M(s−)dX(s). (4.183)

Hence, by the assumption of independence among different driving noises in (3.1)–(3.2), we
know that

ES [M(t)] =1+

∫ t

0

ES
[
M(s−)γ(s−,S,Z)

]
dW̄ (s)

+

∫ t

0

∫
Zh̄
ES
[
M(s−)η(s−,S,Z,z)′

]
diag(z) ˜̄N(λ̄ds,dz). (4.184)

In addition, let

H(t) = lnES [M(t)] . (4.185)

Then, by applying the Itô’s formula to the SDE in (4.184), we have that

dH(t) =− 1

2(ES [M(t−)])2ES
[
M(t−)γ(t−,S,Z)

]
ES
[
M(t−)γ(t−,S,Z)

]′
dt (4.186)

−
∫
Zh̄

1

ES [M(t−)]
ES
[
M(t−)η(t−,S,Z,z)′diag(z)

]
ν̄(λ̄dz)dt

+
1

ES [M(t−)]
ES
[
M(t−)γ(t−,S,Z)

]
dW̄ (t)

+

∫
Zh̄

ln

((
ES
[
M(t−)η(t−,S,Z,z)

]
ES [M(t−)]

+e

)′
diag(z)

)
N̄(λ̄dt,dz)

=−
(

1

2
γ̂(t−,S,Z)γ̂(t−,S,Z)′+

∫
Zh̄
η̂(t−,S,Z,z)diag(z)ν̄(λ̄dz)

)
dt

+γ̂(t−,S,Z)dW̄ (t)

+

∫
Zh̄

ln
((
η̂(t−,S,Z,z)+e

)′
diag(z)

)
N̄(λ̄dt,dz).

Note that by an explanation similar to the one for M(t), we know that the following process
M̃(t) is also an {Ft}- and P - local martingale,

M̃(t)≡ES [M(t)] =exp{H(t)} . (4.187)

Furthermore, by a similar argument given for (4.180), we know that

dFZ
dFΓ

(Z(t)) =M̃(t). (4.188)

Next, it follows from (4.180) and (4.188) that the absolute continuity among the corresponding
measures of the distributions FZ , FΓ, F(S,Z), and F(S,Γ) is true, i.e.,

FZ�FΓ, F(S,Z)�F(Z,Γ). (4.189)
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Thus, it follows from the chain rule for Radon–Nikodym derivatives, and (4.189), (4.180), and
(4.184), that

dF(S,Z)

d(FS×FZ)
((S,Z)(t)) =

dF(S,Z)

d(FS×FΓ)
((S,Z)(t))

dFZ
dFΓ

(Z(t))
=M(t)M̃−1(t). (4.190)

Furthermore, by the relationship in (4.190) and the definition of the mutual information in
(3.3), we know that

I(T,S,Z) =

∫ (
lnM(T )− lnM̃(T )

)
dF(S,Z). (4.191)

Hence, it follows from equations (3.11), (4.184), (4.191), and Corollary 8.7 in [26] that the
formula given by (3.8) in Proposition 3.1 is true.

5. Conclusion
In this paper, we are concerned with the well-posedness and applications of a unified

system of coupled FB-SDEs with completely-S skew reflections and Lévy jumps. Owing to the
reflections, the solution to an embedded Skorohod problem may be not unique, i.e., bifurcations
may occur at reflection boundaries, the well-known contraction mapping approach can not be
extended directly to solve our problem. Thus, we develop a weak convergence method to
prove the well-posedness of an adapted 6-tuple weak solution (in the sense of distributions)
to the unified system. Furthermore, in our proof we adopt a generalized linear growth and
Lipschitz condition that guarantees the well-posedness of the unified system even under a
random environment. In addition, if the spectral radii for the reflections are strictly less than
unity, a unique adapted 6-tuple strong solution is considered. As applications of our unified
system, we also develop new techniques including deriving a generalized mutual information
formula for signal processing over possible non-Gaussian MIMO channels with dynamics driven
by Lévy processes. Finally, since our unified system is formulated possibly in the most general
form with feedback control concerning various SDEs, we predict that our main results can be
applied to more areas.
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[3] A. Bernard and A. El Kharroubi, Régulations déterministes et stochastiques dans le premier “or-
thant” de Rn, Stochastics Stochastics Rep., 34:149–167, 1991.
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