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ASYMPTOTIC EXPANSION WITH BOUNDARY LAYER ANALYSIS
FOR STRONGLY ANISOTROPIC ELLIPTIC EQUATIONS∗

LING LIN† AND XIANG ZHOU‡

Abstract. In this article, we derive the asymptotic expansion, in theory, up to an arbitrary order
for the solution of a two-dimensional elliptic equation with strongly anisotropic diffusion coefficients
along different directions, subject to the Neumann boundary condition and the Dirichlet boundary
condition on specific parts of the domain boundary, respectively. The ill-posedness arising from the
Neumann boundary condition in the strongly anisotropic diffusion limit is handled by the decomposition
of the solution into a mean part and a fluctuation part. The boundary layer analysis due to the Dirichlet
boundary condition is conducted for each order in the expansion for the fluctuation part. Our results
suggest that the leading order is the combination of the mean part and the composite approximation of
the fluctuation part for the general Dirichlet boundary condition. We also apply this method to derive
the results for the heterogeneous diffusion problems.
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1. Introduction
The strongly anisotropic elliptic problem that we consider in this article is the

following equation imposed in the domain D= (0, 1)×(0, 1) with mixed Dirichlet–
Neumann boundary conditions:

−ε−2∂2
xuε(x,y)−∂2

yuε(x,y) =f(x,y), in D,

∂xuε(0,y) =∂xuε(1,y) = 0, for 06y61,

uε(x,0) =φ0(x), uε(x,1) =φ1(x), for 06x61.

(1.1)

The special feature for this equation is that ε is a small positive number, that is, the
diffusion coefficient along the x-direction is very large. Here the Neumann boundary
conditions are imposed on the left and right boundaries and the Dirichlet boundary
conditions are imposed on the top and bottom boundaries of the rectangular domain.

The Equation (1.1) belongs to a large class of diffusion models with the strongly
anisotropic diffusion coefficients from many applications, e.g., flows in porous media,
semiconductor modeling, heat conduction in fusion plasmas, and so on. For instance,
in magnetized plasmas, the particles are confined by the magnetic field along the field
lines. In such cases, the distance between two successive collisions is extremely large
compared to the mean free path in the perpendicular direction, which yields strongly
anisotropic diffusion tensors. Note that we use ε2 here rather than ε in the diffusion
coefficients for a reason we will justify later. Furthermore, in this simplified model (1.1),
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the line field parallels to the x-axis. In more realistic models, the line field may not be
so simple and could be a closed loop.

Our main interest is to examine the asymptotic behaviors of the solution uε such as
the asymptotic expansion uε∼u0 +εu1 +ε2u2 + ·· ·. In this paper we first work on the
Equation (1.1) and then generalize the results to the case where the diffusion coefficients
are heterogeneous (see the Equation (5.1) below). We first show why the traditional
formal asymptotic expansions, by directly plugging the ansatz into (1.1), fails to provide
meaningful results. If this approach is applied, it is easy to see that all ui’s share the
same homogeneous Neumann boundary conditions at x= 0 and x= 1. Furthermore,
∂2
xu0 =∂2

xu1 = 0, −∂2
xu2−∂2

yu0 =f , −∂2
xuk+2−∂2

yuk = 0 ∀k>1. It follows that both u0

and u1 are constants along the x-direction, thus only depend on y. But these two
functions u0(y) and u1(y) are undetermined, and it follows that {uk :k>2} cannot to
be determined either. There are no extra conditions to help resolve this issue.

The above ill-posedness also imposes severe numerical challenges. The traditional
numerical methods for the elliptic equations, such as the standard five-point scheme,
suffer from the large condition numbers for tiny ε. There have been a lot of efforts
focusing on the efficient numerical methods for the strongly anisotropic elliptic problem.
In particular, one class of asymptotic preserving (AP) method developed by P. Degond
et al [5–8], is to decompose the solution uε into two parts, a mean part along the
strongly diffusive direction and a fluctuation part. This mean-fluctuation decomposition
reformulates the original equation into a coupled system of the equations for these
two parts. Another idea proposed in [19] is to replace one of the Neumann boundary
condition by the integration of the original equation along the field line.

We shall see below that such a mean-fluctuation decomposition in [7] is also essential
to our asymptotic analysis. Besides the ill-posedness, due to the Neumann boundary
condition, we point out another barrier in our analysis: the existence of the boundary
layers around y= 0 and y= 1. This fact can be partially observed from the u0 term
in the above naive expansion: The derived conclusion that u0 is a function of only y
is inconsistent with the Dirichlet boundary conditions in (1.1) unless both functions
φ0 and φ1 are constant. In general, a function of only the y variable (such as the
so-called mean part) is not capable of describing the limiting solution in the whole
domain because there exist boundary layers near each nonconstant Dirichlet boundary.
Inside these boundary layers, the function of only the y variable has to be corrected to
match the nonconstant Dirichlet boundary conditions. It is noteworthy that for existing
numerical examples presented in previous works such as [8, 19], as far as the authors
know, the Dirichlet boundary conditions are always homogeneous, and so there are no
boundary layers. Actually, those numerical examples are intentionally constructed by
choosing a true solution without boundary layers first and then defining the force term
f accordingly. However, as we argued above, the emergence of the boundary layer is
generic. This phenomena is a big challenge in our asymptotic analysis.

Elliptic equations are intrinsically connected to the probabilistic diffusion processes
described by Itō stochastic differential equations (SDE) [14]. Traditionally, there are
many classical research works applying the asymptotic methods to the elliptic equations
associated with some small parameters to obtain the leading order quantities related to
the corresponding diffusion processes. One well-known example is the exit problem of a
particle in a potential well perturbed by small isotropic noise (e.g. [13,15,16,18]). These
works used the singular perturbation techniques (e.g. the WKB method) to analyze the
boundary layers at the homogenous Dirichlet boundaries induced by the small noise
intensity. However, for our strongly anisotropic elliptic problem (1.1), the underlying
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stochastic dynamics is not the SDE with small isotropic noise, but the following slow-
fast two-time-scale system: let (Xt,Yt) be the position of a particle in D satisfying the
following SDE {

dXt=ε−1 dWt,

dYt= dBt,
(1.2)

subject to the reflection boundary condition on the left and right boundaries (x= 0 and
x= 1) and the absorbing boundary condition on the top and bottom boundaries (y= 0
and y= 1). Here Wt and Bt are two independent (standard) Brownian motions. By the
Feymann-Kac formula [14], the solution to (1.1) is represented by

uε(x,y) =E
[
φYτ (Xτ )+

1

2

∫ τ

0

f(Xt,Yt)dt

∣∣∣∣ (X0,Y0) = (x,y)

]
, (1.3)

where τ = inf {t>0 :Yt= 0 or 1} is the absorption time of the Y process to the Dirichlet
boundaries.

The solution to (1.2) is straightforward: Xt=X0 +ε−1Wt
d
=X0 +Wt/ε2 and Yt=

Y0 +Bt (“
d
=” means the equality in the sense of distributions). So Xt is a fast Brownian

motion and Yt is a slow one. The particle randomly moves drastically fast with the
speed at the order O(ε−1) along the x-direction while with a normal speed at the order
O(1) in the y-direction. By the averaging principle [11], the leading order dynamics
as the limit of ε↓0 is the expectation of the slow dynamics for Yt with respect to the
invariant measure of the fast variable Xt, which happens to be a uniform distribution
here. Thus the expectation of the integral part in (1.3) should have a limit independent
of the x variable, which is exactly the so called mean part defined in [7]. In essence, the
mean-fluctuation decomposition is the result of averaging principle and the ergodicity
of the fast process. The boundary layer is generated by the first term φ0,φ1 in (1.3),
whose expectation depends on the distribution of the absorbing point (Xτ ,Yτ ). If the
starting position (x,y) is away from the absorbing boundary, then the absorbing time
τ is sufficient large compared to the O(ε) relaxation time to the equilibrium in the
x-direction, so that the averaging principle holds, and the limit of (1.3) is a function of
the variable y only. However, the averaging principle breaks down if the initial position
(x,y) is very close to the absorbing boundary so that τ would be too short to allow
the fast dynamics to relax to the equilibrium. It is easy to see that this occurs if the
distance to the boundary is O(ε), thus the thickness of the boundary layers around y= 0
and y= 1 is O(ε).

Our main motivation is to give a more detailed understanding of the above prob-
abilistic picture by the tool of asymptotic analysis. The goal is to derive a series of
approximate functions to the solution uε up to an arbitrary order as ε↓0. Due to
the different nature of the underlying stochastic dynamics, our asymptotic analysis is
completely different from the traditional singular perturbation approach. For the gen-
eral Dirichlet boundary conditions in (1.1), we shall show that each asymptotic term
u0,u1,u2,·· · exhibits the boundary layer effect. In particular, the leading order u0(x,y)

is not simply the mean part ū(y) =
∫ 1

0
uε(x,y)dx. To attack the ill-posedness arising from

the Neumann boundary conditions, we utilize the framework of mean-fluctuation decom-
position; to deal with the boundary layers originating from the nonconstant Dirichlet
boundary conditions, we adopt the Van Dyke’s method of matched asymptotic expan-
sions [9] in which the outer expansion and the inner expansion are both conducted. The
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series in the outer expansion are described by the y-parametrized one-dimensional Neu-
mann boundary value problem in the x variable, while the series in the inner expansion
are in the form of the two-dimensional elliptic equations which are solved with the aid
of the Fourier series.

The above method can also be applied to more general diffusion models where the
diffusion coefficients are heterogeneous in space, with a more technical analysis of the
boundary layers. Firstly, the equations for the mean and fluctuation parts now form a
truly coupled system so that we will also need to perform the boundary layer analysis
for the mean part. Secondly, after the change of variables in the inner regions within the
boundary layers, the diffusion coefficients still explicitly depend on ε, and consequently
we need the Taylor expansions of the diffusion coefficients. Lastly, the terms in the inner
expansion can be expanded in the generalized eigenfunctions of a generalized eigenvalue
problem arising from the application of separation of variables, but these generalized
eigenfunctions cannot be expressed analytically (recall that we resort to the Fourier
series to obtain analytical expressions for the simple model (1.1)).

The other extensions to the situations more relevant for applications may include
the nonlinear strongly anisotropic diffusion problems, or the case where the field lines
are not simply along the x-axis direction, but in the form of general curves. The the-
oretic asymptotic analysis is not well suitable for these complicated models. Several
efficient numerical methods have been developed for these problems [1] [2], however, the
boundary conditions imposed there are all pure Neumann boundary conditions. There
are also some other asymptotic works on more general problems for elliptic equations.
For instance, [3] focuses on the interface problem where the diffusion coefficients in dif-
ferent subdomains have huge differences, [4] conducts an asymptotic analysis of elliptic
problems with perturbed domains or interfaces.

The rest of the paper is organized as follows. Section 2 presents our main result
of the asymptotic expansion. Section 3 gives a rigorous proof of our formal expansion.
Section 4 presents a specific example to illustrate the effect of boundary layer and the
convergence order in ε. Section 5 illustrates how to generalize these results to the more
representative models with the heterogeneous diffusion coefficients and the appendix
collects some technical details for this section. The last section contains our concluding
discussion.

2. Asymptotic results

2.1. Decomposing the solution into the mean value and the fluctuation.
For the solution uε to (1.1), we introduce the mean part ū along the line field, i.e.,

the x-coordinate

ū(y) :=

∫ 1

0

uε(x,y)dx,

and denote the residual as the fluctuation part ũε,

ũε :=uε− ū.

We shall show, in the following paragraph, that ū is independent of ε here; so it is
denoted by ū instead of ūε.

By integrating both sides of the Equation (1.1) with respect to x over [0, 1], we
obtain {

−ū′′(y) = f̄(y), in (0, 1),

ū(0) = φ̄0, ū(1) = φ̄1,
(2.1)
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where

f̄(y) =

∫ 1

0

f(x,y)dx, φ̄0 =

∫ 1

0

φ0(x)dx, φ̄1 =

∫ 1

0

φ1(x)dx.

Clearly, (2.1) is a well-posed linear two-point boundary value problem, and ū can be
solved uniquely. Formally,

ū(y) =y

(∫ 1

0

∫ z

0

f̄(t)dtdz− φ̄0 + φ̄1

)
−
∫ y

0

∫ z

0

f̄(t)dtdz+ φ̄0. (2.2)

Subtracting (2.1) from (1.1) yields the elliptic problem for the fluctuating part:
−ε−2∂2

xũε−∂2
y ũε= f̃ , in D,

∂xũε(0,y) =∂xũε(1,y) = 0, for 06y61,

ũε(x,0) = φ̃0(x), ũε(x,1) = φ̃1(x), for 06x61,

(2.3)

where

f̃(x,y) =f(x,y)− f̄(y), φ̃0(x) =φ0(x)− φ̄0, φ̃1(x) =φ1(x)− φ̄1.

Note that by construction, we have∫ 1

0

ũε(x,y)dx= 0, for 06y61, (2.4)∫ 1

0

f̃(x,y)dx= 0, for 06y61,∫ 1

0

φ̃0(x)dx=

∫ 1

0

φ̃1(x)dx= 0.

2.2. Asymptotic expansions of the fluctuation ũε. Our main task is to
seek an asymptotic expansion of the fluctuation ũε. Formally, as ε↓0 in (2.3) and (2.4),
the formal limit ũ0 = limε↓0 ũε would satisfy

∂2
xũ0 = 0, in D,

∂xũ0(0,y) =∂xũ0(1,y) = 0, for 06y61,∫ 1

0

ũ0(x,y)dx= 0, for 06y61,

ũ0(x,0) = φ̃0(x), ũ0(x,1) = φ̃1(x), for 06x61.

(2.5)

Clearly, this is an ill-posed problem unless φ̃0(x)≡0 and φ̃1(x)≡0, since the first three
equations in (2.5) yield ũ0≡0. This inconsistency implies that we have a singular
perturbation problem and anticipate the emergence of two boundary layer regions near
the Dirichlet boundaries y= 0 and y= 1 respectively. We apply the Van Dyke’s method
of matched asymptotic expansions [9] to tackle this problem, i.e., first separately solve
the problem in the inner regions within the boundary layers and in the outer region
away from the boundary layers, then match them at the edges of the boundary layers.
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2.2.1. Outer expansion. Assume the following outer expansion away from the
Dirichlet boundaries y= 0 and y= 1:

ũotε (x,y) =

∞∑
n=0

εnũotn (x,y).

Substituting this into the equation in (2.3) and equating coefficients, we obtain

−∂2
xũ

ot
0 ≡0, (2.6)

−∂2
xũ

ot
1 ≡0, (2.7)

−∂2
xũ

ot
2 =∂2

y ũ
ot
0 + f̃ , (2.8)

−∂2
xũ

ot
n =∂2

y ũ
ot
n−2, for n>3. (2.9)

These equations are a set of parametric one dimensional differential equations in the x
variable and y is in the role of parameters. The outer expansion solutions must also
satisfy the Neumann boundary condition as in (2.3) and the integral condition (2.4),
which gives for any n∂xũ

ot
n (0,y) =∂xũ

ot
n (1,y) = 0, for 06y61,∫ 1

0

ũotn (x,y)dx= 0, for 06y61.
(2.10)

Then each ũotn is the unique solution to these Neumann problems due to the second
condition in (2.10). We can solve ũotn recursively from (2.6)∼(2.9) together with (2.10).
In particular, we have

ũot0 (x,y)≡0, (2.11)

ũotn (x,y)≡0, for odd n,

ũot2 (x,y) =−F̃2(x,y)+ F̃3(1,y). (2.12)

Here F̃n is defined recursively as

F̃n(x,y) =


∫ x

0

F̃n−1(z,y)dz, for n>1,

f̃(x,y), for n= 0.
(2.13)

2.2.2. Inner expansion near y= 0. Next we explore the inner solution near
y= 0 in terms of the stretched variable ξ=y/ε by assuming

ũin,0ε (x,ξ) =

∞∑
n=0

εnũin,0n (x,ξ).

In terms of ξ, the equation in (2.3) becomes

−ε−2∂2
xũε(x,ξ)−ε−2∂2

ξ ũε(x,ξ) = f̃(x,εξ). (2.14)

Thus the inner expansion ũin,0ε (x,ξ) near y= 0 asymptotically satisfies the Equation
(2.14) with the boundary conditions{

∂xũ
in,0
ε (0,ξ) =∂xũ

in,0
ε (1,ξ) = 0, for ξ>0,

ũin,0ε (x,0) = φ̃0(x), for 06x61,
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and the integral condition ∫ 1

0

ũin,0ε (x,ξ)dx= 0, for ξ>0.

We can write the Taylor expansion of the fluctuation part of the external force:

f̃(x,εξ) =

∞∑
n=0

εnξn

n!
∂ny f̃(x,0),

then equate coefficients of the same powers of ε to obtain the following two-dimensional
elliptic equations on the domain (x,ξ)∈D′ := (0, 1)×(0, +∞):

−∂2
xũ

in,0
0 −∂2

ξ ũ
in,0
0 = 0, in D′,

∂xũ
in,0
0 (0,ξ) =∂xũ

in,0
0 (1,ξ) = 0, for ξ>0,

ũin,00 (x,0) = φ̃0(x), for 06x61,∫ 1

0

ũin,00 (x,ξ)dx= 0, for ξ>0,

(2.15)



−∂2
xũ

in,0
1 −∂2

ξ ũ
in,0
1 = 0, in D′,

∂xũ
in,0
1 (0,ξ) =∂xũ

in,0
1 (1,ξ) = 0, for ξ>0,

ũin,01 (x,0) = 0, for 06x61,∫ 1

0

ũin,01 (x,ξ)dx= 0, for ξ>0,

(2.16)

and for n>2,

−∂2
xũ

in,0
n −∂2

ξ ũ
in,0
n =

ξn−2

(n−2)!
∂n−2
y f̃(x,0), in D′,

∂xũ
in,0
n (0,ξ) =∂xũ

in,0
n (1,ξ) = 0, for ξ>0,

ũin,0n (x,0) = 0, for 06x61,∫ 1

0

ũin,0n (x,ξ)dx= 0, for ξ>0.

(2.17)

These problems (2.15), (2.16) and (2.17) do not have the uniqueness of the solutions

even the integral conditions
∫ 1

0
ũin,0n (x,ξ)dx= 0 are imposed. The uniqueness comes

from matching the outer solutions, as we will show below.
We next solve ũin,0n by the method of separation of variables because of the simple

geometry of the domain. We first work on the lowest order at n= 0, and the following
terms will be determined in a next subsection. We look at the solutions that can be
expanded into the form

ũin,00 (x,ξ) =
∑
k

Ak(ξ)Bk(x).

The equation and boundary conditions in (2.15) show that

Bk(x) = cos(kπx), for k>0,
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which form a complete orthogonal basis for the Hilbert space L2([0, 1]). Thus we can

expand ũin,00 (·,ξ) and φ̃0 respectively in terms of these Fourier cosine series:

ũin,00 (x,ξ) =

+∞∑
k=1

Ak(ξ)cos(kπx), φ̃0(x) =

+∞∑
k=1

φ0,k cos(kπx),

where the coefficients for k>1 are respectively

Ak(ξ) = 2

∫ 1

0

ũin,00 (x,ξ)cos(kπx)dx, φ̃0,k = 2

∫ 1

0

φ̃0(x)cos(kπx)dx.

Note that the terms for k= 0 in these Fourier cosine series disappear since

A0(ξ) =

∫ 1

0

ũin,00 (x,ξ)dx= 0, φ̃0,0 =

∫ 1

0

φ̃0(x)dx= 0.

Substituting these Fourier cosine expansions into (2.17), we deduce that for each k>1,
Ak(ξ) satisfies {

−A′′k(ξ)+k2π2Ak(ξ) = 0, in (0, +∞),

Ak(0) = φ̃0,k.

Hence we have that for k>1,

Ak(ξ) = (ck+ φ̃0,k)e−kπξ−ckekπξ,

with the constants ck to be determined later by matching the outer and inner solutions.

Remark 2.1. We comment a bit on the possibility of generalizing the above calcu-
lations to a general line field. One can work in the curvilinear coordinate of the field
line and obtain the equations for the outer expansions straightforwardly. But since in
general the line field may not match the Dirichlet boundary like in our model (1.1),
then the boundary layer may not be a rectangular band with a uniform width ε, and
consequently, the stretching variable ξ would not be simply equal to y/ε; the geometric
property of the field line and the Dirichlet boundary should be incorporated to derive
the equations for the inner expansion near the Dirichlet boundary.

2.2.3. Matching. To determine the constants ck’s in the first-term approxi-
mation of the boundary layer solution near y= 0, we make use of the essential point
that the inner solution ũin,00 (x,ξ) and the outer solution ũot0 (x,y) should match on the
boundary of the layer near y= 0, that is,

lim
ξ→+∞

ũin,00 (x,ξ) = lim
y→0+

ũot0 (x,y) = 0.

This gives ck = 0 for k>1, and so Ak(ξ) = φ̃0,ke−kπξ for k>1. Consequently,

ũin,00 (x,ξ) =

+∞∑
k=1

φ̃0,ke−kπξ cos(kπx). (2.18)
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2.2.4. Inner expansion near y= 1. For the other Dirichlet boundary at y= 1,
we proceed in the exactly same way to derive the inner solution. Assume the inner
expansion near y= 1 in terms of the stretched variable η= (1−y)/ε,

ũin,1ε (x,η) =

∞∑
n=0

εnũin,1n (x,η).

In terms of η, the equation in (2.3) becomes

−ε−2∂2
xũε(x,η)−ε−2∂2

η ũε(x,η) = f̃(x,1−εη).

Thus the inner expansion ũin,1ε (x,η) near y= 1 must asymptotically satisfy this equation
and the boundary and integral conditions

∂xũ
in,1
ε (0,η) =∂xũ

in,1
ε (1,η) = 0, for η>0,

ũin,1ε (x,0) = φ̃1, for 06x61,∫ 1

0

ũin,1ε (x,η)dx= 0, for η>0.

Again, using Taylor expansion and then equating coefficients of like powers, we obtain

−∂2
xũ

in,1
0 −∂2

η ũ
in,1
0 = 0, in D′,

∂xũ
in,1
0 (0,η) =∂xũ

in,1
0 (1,η) = 0, for η>0,

ũin,10 (x,0) = φ̃1, for 06x61,∫ 1

0

ũin,10 (x,η)dx= 0, for η>0,



−∂2
xũ

in,1
1 −∂2

η ũ
in,1
1 = 0, in D′,

∂xũ
in,1
1 (0,η) =∂xũ

in,1
1 (1,η) = 0, for η>0,

ũin,11 (x,0) = 0, for 06x61,∫ 1

0

ũin,11 (x,η)dx= 0, for η>0,

and for n>2,

−∂2
xũ

in,1
n −∂2

η ũ
in,1
n =

(−1)nηn−2

(n−2)!
∂n−2
y f̃(x,1), in D′,

∂xũ
in,1
n (0,η) =∂xũ

in,1
n (1,η) = 0, for η>0,

ũin,1n (x,0) = 0, for 06x61,∫ 1

0

ũin,1n (x,η)dx= 0, for η>0.

As before, we solve the above equations by Fourier cosine series and use the matching
procedure to determine the constants, then we obtain the lowest order

ũin,10 (x,η) =

+∞∑
k=1

φ̃1,ke−kπη cos(kπx), (2.19)

where

φ̃1,k = 2

∫ 1

0

φ̃1(x)cos(kπx)dx.
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2.2.5. Composite expansion. Now we can get the leading order term of uε
which is valid on the whole domain. Expressing all the three pieces of expansions in
terms of x and y, and combining them by adding them together and then subtracting
their common parts, eventually we obtain the following composite approximation by
noting (2.2), (2.11), (2.18) and (2.19),

uε(x,y) = ū(y)+ ũε(x,y)

∼ ū(y)+
(
ũot0 (x,y)+ ũin,00 (x,y/ε)+ ũin,10 (x,(1−y)/ε)

− lim
ξ→+∞

ũin,00 (x,ξ)− lim
η→+∞

ũin,10 (x,η)
)

= y

(∫ 1

0

∫ z

0

f̄(t)dtdz− φ̄0 + φ̄1

)
−
∫ y

0

∫ z

0

f̄(t)dtdz+ φ̄0

+

+∞∑
k=1

(
φ̃0,ke−kπy/ε+ φ̃1,ke−kπ(1−y)/ε

)
cos(kπx)

=:u[0](x,y). (2.20)

2.2.6. Higher order approximations. Higher order approximations can be
obtained similarly by the Van Dyke’s method of matched asymptotic expansions [9].
Let us compute the second order expansion to demonstrate the technique. To this end,
we need to solve the next two orders in the inner expansion near the boundaries y= 0,1,
i.e., ũin,0n and ũin,1n for n= 1,2.

Using the method of separation of variables again, by expanding in the Fourier
cosine series, we obtain

ũin,01 (x,ξ) =

+∞∑
k=1

ak(e−kπξ−ekπξ)cos(kπx),

ũin,02 (x,ξ) =

+∞∑
k=1

[
f̃k(0)

k2π2
+bkekπξ−

(
bk+

f̃k(0)

k2π2

)
e−kπξ

]
cos(kπx),

where

f̃k(y) = 2

∫ 1

0

f̃(x,y)cos(kπx)dx,

ak and bk are undetermined constants. Clearly, the ekπξ terms should disappear since
they exponentially blow up, this implies that ak = 0 and bk = 0. Hence, we have the first
three terms of the inner solution ũin,0ε (x,ξ):

ũin,0ε (x,ξ) = ũin,00 (x,ξ)+εũin,01 (x,ξ)+ε2ũin,02 (x,ξ)+O(ε3)

=

+∞∑
k=1

[
φ̃0,ke−kπξ+ε2 f̃k(0)

k2π2
(1−e−kπξ)

]
cos(kπx)+O(ε3).

Note that the outer expansion is

ũotε (x,y) = ũot0 (x,y)+εũot1 (x,y)+ε2ũot2 (x,y)+O(ε3)

=ε2
(
−F̃2(x,y)+ F̃3(1,y)

)
+O(ε3).
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To see that these two expansions do match up to the given order, we write the outer

expansion ũotε (x,y) in terms of the inner variables (x,ξ) and denoted by
(
ũotε (x,y)

)in,0
;

on the other hand, write ũin,0ε (x,ξ) in terms of (x,y) and denoted it by
(
ũin,0ε (x,ξ)

)ot
.

By dropping the asymptotically negligible e−kπξ terms as ξ→+∞, we have the O(ε3)
approximations: (

ũotε (x,y)
)in,0≈ε2

(
−F̃2(x,0)+ F̃3(1,0)

)
, (2.21)(

ũin,0ε (x,ξ)
)ot≈+∞∑

k=1

ε2 f̃k(0)

k2π2
cos(kπx). (2.22)

To show that matching (to this order) has been accomplished, we only need to check
that the right hand sides of (2.22) and (2.21) are equal. In fact, we have for every y, by
(2.10) and (2.12), ∫ 1

0

(−F̃2(x,y)+ F̃3(1,y)
)
dx= 0;

from (2.13) and the integration by parts twice, for k>1 we have that

2

∫ 1

0

(
−F̃2(x,y)+ F̃3(1,y)

)
cos(kπx)dx=

2

kπ

∫ 1

0

F̃1(x,y)sin(kπx)dx

=
2

k2π2

∫ 1

0

f̃(x,y)cos(kπx)dx=
f̃k(y)

k2π2
.

Note that in the second equality, we also used the simple fact of the integral condition

F̃1(x,y) =

∫ x

0

f̃(z,y)dz= 0, for x= 0, 1.

Analogously, we can solve

ũin,11 (x,η)≡0,

ũin,12 (x,η) =
f̃k(1)

k2π2
(1−e−kπη),

and from (
ũotε (x,ξ)

)in,1≈ε2
(
−F̃2(x,1)+ F̃3(1,1)

)
,(

ũin,1ε (x,ξ)
)ot≈+∞∑

k=1

ε2 f̃k(1)

k2π2
cos(kπx),

we also see that matching (to this order) has been accomplished.
The last step is to combine the three expansions into a composite expansion

uε(x,y)∼ ū(y)+ ũot0 (x,y)+εũot1 (x,y)+ε2ũot2 (x,y)

+ ũin,00 (x,y/ε)+εũin,01 (x,y/ε)+ε2ũin,02 (x,y/ε)

+ ũin,10 (x,(1−y)/ε)+εũin,11 (x,(1−y)/ε)+ε2ũin,12 (x,(1−y)/ε)

−
(
ũotε (x,ξ)

)in,0−(ũotε (x,ξ)
)in,1
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≈u[0](x,y)+ε2
+∞∑
k=1

[
f̃k(y)

k2π2
− f̃k(0)

k2π2
e−kπy/ε− f̃k(1)

k2π2
e−kπ(1−y)/ε

]
cos(kπx)

=:u[2](x,y), (2.23)

where u[0](x,y) is the leading order given in (2.20).
Clearly, using the above method, we may proceed to derive the asymptotic expan-

sions of uε to any order, and in general, the form of the asymptotic expansion up to
O(ε2n), n= 0,1, ·· ·, is

uε(x,y)∼ u[0](x,y)+

n∑
m=1

ε2m
+∞∑
k=1

[
f̃

(2m−2)
k (y)

(kπ)2m
−
f̃

(2m−2)
k (0)

(kπ)2m
e−kπy/ε

−
f̃

(2m−2)
k (1)

(kπ)2m
e−kπ(1−y)/ε

]
cos(kπx)

=:u[2n](x,y). (2.24)

The justification of the approximation orders of these asymptotic expansions will be
given in the next section.

2.3. Discussion. For our approximations (2.24), it is observed that the bound-
ary layer terms would disappear if

φ̃0,k = φ̃1,k = f̃
(2m−2)
k (0) = f̃

(2m−2)
k (1) = 0, for 16m6n, k>1,

i.e., if

φ0(x), φ1(x), ∂2m
y f(x,0), ∂2m

y f(x,1), for 06m6n−1,

all happen to be constant functions independent of x. Note that this condition is
stronger than the homogeneous Dirichlet boundary conditions since it also involves
the even order normal derivatives up to 2n−2 of the external force on the Dirichlet
boundaries. In this case, free of the boundary layers, we only need to compute the outer
expansions by solving the Equations (2.8) and (2.9) up to 2n to get the approximation
u[2n]. Note that each equation in (2.8) and (2.9) is actually a system parametrized
by the y variable of independent ordinary differential equations in the x variable rather
than a two-dimensional partial differential equation. In computation, each equation can
be solved by a numerical integrator in parallel at all grid points of the y variable which
is now viewed as a parameter. This can reduce the computational cost to linear scaling.
However, in general, the appearance of the boundary layers seems inevitable; then many
existing algorithms may need further improvements to approximate the solution on the
whole domain.

3. Theoretical justification
We prove the following estimates of the errors in this section.

Theorem 3.1. Define the remainders in the asymptotic expansions of uε:

r2n=uε−u[2n], for n= 0,1,·· · ,

where the approximations u[2n]’s are given in (2.24). Then we have

‖r2n‖∞=O
(
ε2(n+1)

)
.
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To justify these estimates, we first establish a modified version of the maximum principle
for elliptic equations with mixed boundary value conditions.

Lemma 3.1. Let

L=
∑
i,j

aij(x)∂2
xixj +

∑
i

bi(x)∂xi

be a uniformly elliptic operator on a connected, bounded, open domain Ω. Suppose that
w∈C2(Ω)∩C(Ω̄) satisfies Lw60 in Ω and ∂nw60 on ΓN ⊂∂Ω, where n is the outer
unit normal to Ω on the boundary ∂Ω. Also assume that Ω satisfies the interior ball
condition at every x∈ΓN . Let ΓD =∂Ω\ΓN . Then

max
Ω̄
w= sup

ΓD

w.

Proof. It suffices to show that w attains its maximum over Ω̄ on ΓD. Let us assume
w is not constant within Ω, as otherwise the proof is trivial. Then the strong maximum
principle [10] states that w cannot attain its maximum over Ω̄ at any interior point.
Furthermore, w cannot attain its maximum over Ω̄ at any boundary point x0∈ΓN
either, since otherwise Hopf’s lemma [10] would imply ∂nw(x0)>0, which contradicts
the assumption ∂nw60 on ΓN . Hence w has to attain its maximum over Ω̄ on ΓD.

The proof of Theorem 3.1 relies on the following lemma, which is a consequence of
the above modified version of the maximum principle.

Lemma 3.2. For any ε>0, let L=−∂2
x−ε2∂2

y . Suppose that u∈C2(D)∩C(D̄) satis-
fies 

Lu=g, in D,

∂xu(0,y) =∂xu(1,y) = 0, for 06y61,

u(x,0) =φ0(x), u(x,1) =φ1(x), for 06x61.

Then

‖u‖∞6Φ+
G

2
,

where G= sup
(x,y)∈D

|g(x,y)| and Φ = max
i=0,1

sup
06x61

|φi(x)|.

Proof. Let w(x,y) =u(x,y)−v(x), where

v(x) = Φ+
G

2
(1−x)2.

Then our reader can check that

Lw=g−G60, in D,

∂xw(x,y) =∂xu(x,y)+G(1−x) =

{
G>0, for x= 0,

0, for x= 1,

w(x,0)6φ0(x)−Φ60, w(x,1)6φ1(x)−Φ60.
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From the modified version of the maximum principle (Lemma 3.1), we conclude that
w(x,y)60 in D, thus

u(x,y)6Φ+
G

2
(1−x)2 6Φ+

G

2
, in D.

Applying the above argument to −u yields

−u(x,y)6Φ+
G

2
, in D.

Then we obtain the desired inequality.

Now we give the proof of Theorem 3.1.

Proof. (Proof of Theorem 3.1.) Direct calculation shows that

Lr2n=Luε−Lu[2n]

=ε2f−ε2f̄−
n∑

m=1

ε2m
+∞∑
k=1

f̃
(2m−2)
k (y)

(kπ)2m−2
cos(kπx)+

n∑
m=1

ε2m+2
+∞∑
k=1

f̃
(2m)
k (y)

(kπ)2m
cos(kπx)

=ε2f̃−ε2
+∞∑
k=1

f̃k(y)cos(kπx)+ε2n+2
+∞∑
k=1

f̃
(2n)
k (y)

(kπ)2n
cos(kπx)

=O
(
ε2(n+1)

)
,

therefore r2n satisfies
Lr2n=O

(
ε2(n+1)

)
, in D,

∂xr2n(0,y) =∂xr2n(1,y) = 0, for 06y61,

r2n(x,0) =O
(
e−π/ε

)
, r2n(x,1) =O

(
e−π/ε

)
, for 06x61,

where L is the same as in Lemma 3.2. Then the asserted error estimates follow from
Lemma 3.2.

4. Numerical demonstration
To demonstrate the consequence of the boundary layer and to illustrate the con-

vergence orders in Theorem 3.1, we study a specific example in this section. The main
purpose is to numerically demonstrate the correct order of convergence of the derived
expansions in L∞ norm sense. Thus all solutions here are computed in a brute-force
way by the finite difference method with sufficiently fine mesh grids for a given ε. In
this example, we choose the source term

f(x,y) = sin(π(x2 +y2))

and the Dirichlet boundary conditions

φ0(x) = cos(πx), φ1(x) = 16x2(x−1)2.

Note that the Dirichlet boundary conditions should be consistent with the Neumann
boundary conditions in (1.1), which dictates the compatibility conditions

φ′0(0) =φ′0(1) =φ′1(0) =φ′1(1) = 0.

Clearly, these compatibility conditions are satisfied in this example.
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We choose a grid for which the grid points are half-integered in the x-direction and
integered in the y-direction, that is,

xi=
(
i− 1

2

)
∆x, yj = (j−1)∆y,

where ∆x= 1/N , ∆y= 1/M , and i= 1,2, ·· · ,N , j= 1,2,·· · ,M+1. Then the solution uε
to (1.1) is solved numerically by the standard five-point finite difference method with
difference choices of M and N for different values of ε. For example, at ε2 = 0.05, our
mesh size is chosen as M×N = 512×2048. Note that ∆y= 1/2048 = 4.9×10−4 and the
theory shows the thickness of the boundary layer is roughly ε=

√
0.05≈0.22. Since there

are around 450 grid points in y direction inside each boundary layer, the boundary layer
is well resolved here. For other smaller values of ε, we numerically ensure N (as well as
M) is sufficiently large by comparing the difference resulted from N and 2N . The final
values of N are listed in Table 4.1. The mean part ū is analytically computed thanks to
(2.2). The first order asymptotic approximation u[0] and the higher order asymptotic
approximation u[2] are computed respectively by a truncation of the infinite summation
in (2.20) and (2.23) at some sufficiently large point.
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(a) The contour plot of uε
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(b) The contour plot of ū
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(c) The contour plot of u[0]
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(d) The contour plot of u[2]

Fig. 4.1. The contour plots of the numerical solutions at ε2 = 0.05. (a) the exact solution uε; (b)
the mean part ū; (c) the asymptotic approximation u[0] and (d) the asymptotic approximation u[2].

Figure 4.1 shows respectively the contour plots of the numerical results at ε2 = 0.05
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of the exact solution uε, the mean part ū, the first order asymptotic approximation
u[0], and the higher order asymptotic approximation u[2]. It is observed that there exist
two boundary layers near the boundaries y= 0 and y= 1 respectively, and the thickness
of each boundary layer is roughly ε=

√
0.05≈0.22. This is consistent with the result

of the asymptotic analysis in last section. Clearly, as shown in the subfigure (b), the
mean solution ū fails to capture the leading order solution inside these two boundary
layers. The first order approximation u[0] is very close to the true solution while the
next order approximation u[2] is almost identical to the true solution, as indicated from
the subfigures (c) and (d). We can notice that the improvement for u[2] is that in the
region of the boundary layers, compared with subfigure (a) for uε, the counter lines in
the subfigure (d) for u[2] are more accurate than those in the subfigure (c) for u[0].
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Fig. 4.2. The plot on logarithmic scales of the discrete L∞ norms of the errors r0 (in the square-
shaped markers) and r2 (in the circle-shaped markers) versus ε2. The best fitting straight lines through
each set of data points are also shown. Their equations are indicated in the legend.

ε2 ‖r0‖∞ ‖r2‖∞ M N
0.001 1.0533E−04 5.2834E−07 512 32768
0.005 5.2222E−04 7.3587E−06 512 16384
0.01 1.0335E−03 2.8475E−05 512 8192
0.05 4.7441E−03 5.7746E−04 512 2048
0.1 8.6241E−03 1.9240E−03 512 1024

Table 4.1. The discrete L∞ norms of the errors r0 and r2 for different values of ε. M and N
respectively indicate the mesh grid size in x and y directions used in computing the true solution uε.
Since the boundary layers are along the y direction whose width changes with ε, we need to change
N to resolve the fine structures within the boundary layers. However, in the x direction, there are no
boundary layers, so M does not change with ε.
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This example intuitively indicates that the mean part ū is not sufficient to approx-
imate the true solution uε in the L∞ norm, i.e., ‖uε− ū‖∞ does not converge. The
fluctuation ũε has the non-negligible contribution to the true leading order u[0], in par-
ticularly near the Dirichlet boundaries.

To further demonstrate the convergence order, we compute the errors in L∞ norm.
Table 4.1 shows the discrete L∞ norms of the errors r0 and r2 for different values
of ε, and Figure 4.2 is the convergence plot of these errors versus ε2 on logarithmic
scales. The best fitting straight lines through each set of data points are also plotted
in Figure 4.2. From the equations of these fitting lines, we observe that the orders of
the approximation errors r0 and r2 are roughly O(ε2) and O(ε4) respectively. These
numerical results are consistent with the theoretical assertion in Theorem 3.1.

5. Generalization to the heterogeneous diffusions
The Equation (1.1) we studied so far has the constant diffusion coefficients. In

this section, we show how the same approach can be generalized to the heterogeneous
diffusions, i.e., the case of variable diffusion coefficients. Specifically, we consider the
following elliptic equation

−ε2∂x
(
a1(x,y)∂xuε

)
−∂y

(
a2(x,y)∂yuε

)
=f, in D. (5.1)

The same boundary conditions as in (1.1) are used here. The diffusion coefficients
ai(x,y), i= 1,2, satisfy the ellipticity condition

0<M1<ai(x,y)<M2<∞, ∀ (x,y)∈D,

with two positive constants M1 and M2. For ease of exposition, we further assume that
φ1 = 0, so that the boundary layer only appears near the bottom side y= 0. In addition,
to illustrate the idea, we only derive the expansion uε∼u0 +εu1 up to the order O(ε).

5.1. Decomposing the solution into the mean and the fluctuation parts.
As before, we first decompose the solution uε into the mean part ūε and the fluctuation
part ũε. Then the pair

(
ūε(y),ũε(x,y)

)
satisfies the following coupled ODE-PDE system

[7]: 

−
(
ā2(y)ū′ε(y)

)′
= f̄(y)+

∫ 1

0

∂y
(
a2(x,y)∂yũε(x,y)

)
dx, in (0, 1),

ūε(0) = φ̄0, ūε(1) = 0;

−∂x
(
a1(x,y)∂xũε (x,y)

)
−ε2∂y

(
a2(x,y)∂yũε (x,y)

)
=ε2f(x,y)+ε2∂y

(
a2(x,y)ū′ε(y)

)
, in D,

∂xũε(0,y) =∂xũε(1,y) = 0, for 06y61,

ũε(x,0) = φ̃0(x), ũε(x,1) = 0, for 06x61,∫ 1

0

ũε(x,y)dx= 0, for 06y61.

(5.2)

Here by the convention, āi(y) :=
∫ 1

0
ai(x,y)dx and ãi :=ai− āi refer to the mean and

fluctuation part of the function ai(x,y), i= 1,2, respectively.
It is easy to see that if the fluctuation ã2 vanishes, the above system becomes

decoupled, i.e., ūε and ũε satisfy their own closed equations, respectively. For any non-
vanishing ã2, we face with a coupled ODE-PDE system, however, we shall show later
that the equation for the fluctuation part of each term in the asymptotic expansion can
still be closed. The above coupled system (5.2) is also the form for the outer solution
except the boundary conditions at y= 0.
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5.2. Asymptotic expansions of the mean and fluctuation terms.

5.2.1. Outer expansion. We work on the outer solution first. To ease the
notation, we still use the little letters uε,ūε,ũε, etc., to denote the outer solutions.

From the ansatz in the form uε=u0 +εu1 +ε2u2 + ·· · for the mean ūε and the
fluctuation ũε, respectively, the straightforward calculation shows that

ũ0≡0, and ũn≡0, for odd n, (5.3)

which are the same as in the simplified case (a1 =a2≡1) in previous sections. The mean
part ū0 of the leading order of the outer solution satisfies{

−
(
ā2(y)ū′0(y)

)′
= f̄(y), in (0, 1),

ū0(1) = 0,

thus it has a closed form

ū0(y) = c0−
∫ y

0

∫ y′
0
f̄(z)dz+α0(c0)

ā2(y′)
dy′ (5.4)

with a constant c0 = ū0(0) undetermined. Here α0(c0) is the implicit function of c0
defined by ū0(1) = 0 in (5.4). The constant c0 has to be determined later by matching
with the inner solution inside the boundary layer near y= 0.

5.2.2. Inner expansion. Now we examine the inner solution, which will be
written in the capitalised letters, Uε(x,ξ), where ξ=y/ε. The calculation is straight-
forward but tedious, and we defer the details to Appendix A. The results we obtained
are

Ũ0(x,ξ) =

+∞∑
n=1

βnBn(x)e−
√
λnξ, (5.5)

Ū0(ξ) =

+∞∑
n=1

βn

(
1−e−

√
λnξ
)∫ 1

0

a2(x,0)

ā2(0)
Bn(x)dx+C0ξ+ φ̄0, (5.6)

where λn>0 and Bn(x), n>1, are all the generalized eigenvalues and the corresponding
eigenfunctions of two self-adjoint positive operators T1 and T2, defined by (A.5) and

(A.6) in Appendix A, on the Hilbert space L̊2([0, 1]) :={B∈L2([0, 1]) :
∫ 1

0
B(x)dx= 0},

the coefficients βn can be determined by the boundary condition Ũ0(x,0) = φ̃0(x), and
C0 is a constant to be determined in the matching procedure later. Note that Ũ0(x,ξ)
decays exponentially fast as ξ→+∞.

5.2.3. Matching. Making use of the matching condition

Ū0(ξ→∞) = ū(y→0) = c0,

we derive the values of two constants from (5.4) and (5.6):

C0 = 0, c0 =

+∞∑
n=1

βn

∫ 1

0

a2(x,0)

ā2(0)
Bn(x)dx+ φ̄0. (5.7)

This finishes the derivations of all four leading order terms: ū0(y),ũ0(x,y), Ū0(ξ) and
Ũ0(x,ξ).
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5.3. First-order terms. The detailed derivation of the O(ε) terms can be
found in Appendix B. We summarize the main results here:

ũ1≡0, ū1(y) = c1

[
1−
(∫ 1

0

dy′

ā2(y′)

)−1(∫ y

0

dy′

ā2(y′)

)]
, (5.8)

Ũ1(x,ξ) =

+∞∑
n=1

Hn(ξ)Bn(x), (5.9)

Ū1(ξ) =

+∞∑
n=1

ωnHn(ξ)+

+∞∑
n=1

ln(ξ)e−
√
λnξ+C1ξ+D1, (5.10)

where

Hn(ξ) =

+∞∑
m=1

pnm(ξ)e−
√
λmξ,

C1 =−α0(c0)

ā2(0)
, c1 =D1 =−

+∞∑
n=1

ln(0), (5.11)

and {pnm(ξ)} are certain known polynomials with order 62. Hereinafter an object is
referred to as a known quantity if it can be expressed explicitly in terms of a1, a2, f ,
φ0, {λn :n>1} and {Bn :n>1}. We have that {ωn} are known coefficients, and {ln(ξ)}
are known linear functions.

5.4. Composite expansion. In summary, we have obtained the expansions of
the inner and outer solutions to the Equation (5.1) respectively up to the first order
terms. Then the composite approximation with truncation error O(ε2) can be written
down as in the previous sections:

uε(x,y)∼ ū0(x,y)+ ũ0(x,y)+ Ū0(x,y/ε)+ Ũ0(x,y/ε)

+ε
(
ū1(x,y)+ ũ1(x,y)+ Ū1(x,y/ε)+ Ũ1(x,y/ε)

)
−(c0 +C1y+εD1).

Refer to (5.3)-(5.10) for the outer and inner expansions in the first two lines and
(B.5)(5.7)(5.11) for the common part in the last line.

Remark 5.1. The more general case than (5.1) is the non-diagonal diffusion tensor.
In this difficult case, the line fields will not parallel to the coordinate axes, which will
critically affect the formation of the boundary layers. Such complexity will hinder the
feasibility of analytical studies.

6. Conclusion and discussion
We have presented a formal expansion of the solution to the strongly anisotropic

diffusion Equation (1.1) in the simple rectangular domain. Our expansions take into
account the boundary layers near the Dirichlet boundaries. We proved the rigorous
convergence of the formal expansion by the maximum principle. We also illustrated
that such developments can be generalized to more representative problems, e.g., the
diffusion coefficients are functions of the space variables.

Throughout the paper, we have stressed much the challenges due to the emergence of
the boundary layers. One might ask a natural question: whether the existing asymptotic
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preserving (AP) methods such as [8] are still applicable for the case here with the
existence of the boundary layers. Our answer is yes if some numerical techniques like
local mesh adaptivity can be implemented in the AP framework. It is easy to see
that if a uniform mesh is used, then the number of grid points surely increases with a
decreasing ε in order to resolve the boundary layers, even when the AP scheme is applied.
Recall that in our illustrative example in Section 4, we used a very naive mesh refining
strategy: a uniform but finer mesh in y direction so that ∆y�∆x and ∆y decreases
with ε. Certainly, more advanced adaptive techniques can be implemented, such as the
moving mesh [17,20] or adaptive mesh refinement based on either the heuristic criteria
of the norm of gradients or the posterior error estimates [12, 21] as in many adaptive
finite element methods. For the models of strong anisotropy with more general form of
diffusion tensor and the line fields, it is conceivable that both the mean part and the
fluctuation part require the adaptive strategy.

In summary, we have studied a diffusion model with strong anisotropy, which is
analytically tractable, to illustrate how the different boundary conditions generate var-
ious types of challenges, especially, the emergence of the boundary layers which is quite
common in singular perturbations. Our derivation of asymptotic expansion is formal
but the convergence result is rigorous. Our numerical demonstration calls for a further
adaptive improvement within the existing AP framework.

Appendix A. Derivation for the leading order term of the inner solution.
Here, we derive the leading order term of the inner solution. The equations within the
boundary layer are the following coupled system on the domain (x,ξ)∈D′:

−
(
ā2(εξ)Ū ′ε(ξ)

)′
=ε2f̄(εξ)+

∫ 1

0

∂ξ

(
a2(x,εξ)∂ξŨε(x,ξ)

)
dx,

−∂x
(
a1(x,εξ)∂xŨε (x,ξ)

)
−∂ξ

(
a2(x,εξ)∂ξŨε (x,ξ)

)
=ε2f(x,εξ)+∂ξ

(
a2(x,εξ)Ū ′ε(ξ)

)
.

The boundary conditions at ξ= 0 are Ūε(0) = φ̄0 and Ũε(x,0) = φ̃0(x). Ũε also satisfies
the homogeneous Neumann conditions at x= 0 and x= 1.

After expanding ai(x,εξ) =ai(x,0)+ε∂yai(x,0)ξ+O(ε2), i= 1,2, and applying the
ansatz Uε=U0 +εU1 +ε2U2 + ·· · , we obtain that the mean part Ū0 of the leading order
term of the inner solution satisfies−ā2(0)Ū ′′0 (ξ) =

∫ 1

0

a2(x,0)∂2
ξ Ũ0(x,ξ)dx, in (0, +∞),

Ū0(0) = φ̄0,

(A.1)

while the fluctuation part Ũ0(x,ξ) satisfies

−∂x
(
a1(x,0)∂xŨ0(x,ξ)

)
−a2(x,0)∂2

ξ Ũ0 (x,ξ)

= a2(x,0)Ū ′′0 (ξ) =−a2(x,0)

ā2(0)

∫ 1

0

a2(x,0)∂2
ξ Ũ0(x,ξ)dx,

(A.2)

where in the last equality we have used (A.1). So (A.2) is closed for Ũ0. Consequently,
(A.2) with the original boundary condition Ũ0(x,0) = φ̃0(x) and the matching boundary
condition

lim
ξ→+∞

Ũ0(x,ξ) = lim
y→0+

ũ0(x,y) = 0
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plus the homogeneous Neumann conditions at x= 0 and x= 1 will uniquely determine
the solution Ũ0. We solve (A.2) by the method of separation of variables. Take Ũ0(x,ξ) =
A(ξ)B(x) and plug it into (A.2) to get

−
(
a1(x,0)B′(x)

)′
a2(x,0)B(x)− a2(x,0)

ā2(0)

∫ 1

0

a2(x,0)B(x)dx

=
A′′(ξ)

A(ξ)
,

which equals a separation constant λ. Therefore

−
(
a1(x,0)B′(x)

)′
=λ

(
a2(x,0)B(x)− a2(x,0)

ā2(0)

∫ 1

0

a2(x,0)B(x)dx

)
, (A.3)

A′′(ξ) =λA(ξ). (A.4)

Note that
∫ 1

0
B(x)dx= 0 and the (natural) boundary condition for B(x) is B′(0) =

B′(1) = 0. In other words, λ and B(x) satisfying (A.3) are respectively known as the
generalized eigenvalue and eigenfunction of the linear operators

T1(B) :=−
(
a1(x,0)B′(x)

)′
, (A.5)

T2(B) :=a2(x,0)B(x)− a2(x,0)

ā2(0)

∫ 1

0

a2(x,0)B(x)dx. (A.6)

It is easy to verify that T1 and T2 are both (densely defined) self-adjoint operators on the

Hilbert space L̊2([0, 1]) :={B∈L2([0, 1]) :
∫ 1

0
B(x)dx= 0}. In addition, an application

of integration by parts and the Cauchy-Schwarz inequality can show that T1 and T2 are
both positive operators. It follows that the generalized eigenvalue λ is always positive.

Therefore the bounded solution for (A.4) has the form A(ξ) = ce−
√
λξ, where c is an

arbitrary constant. Assume that λn and Bn(x), n>1, are all the generalized eigenvalues
and the corresponding eigenfunctions of T1 and T2. Then all λn are strictly positive and
{Bn(x)} is a complete set of the T2-orthogonal basis in L̊2([0, 1]). Thus the solution
Ũ0(x,ξ) for (A.2) can be represented by the series

Ũ0(x,ξ) =

+∞∑
n=1

βnBn(x)e−
√
λnξ,

where the coefficients βn are given by the boundary condition Ũ0(x,0) = φ̃0(x). The
Equation (A.1) for Ū0(ξ) thus reduces to the form

−Ū ′′0 (ξ) =

+∞∑
n=1

βnλne−
√
λnξ

∫ 1

0

a2(x,0)

ā2(0)
Bn(x)dx,

with the boundary condition Ū0(0) = φ̄0. Then the solution is

Ū0(ξ) =

+∞∑
n=1

βn

(
1−e−

√
λnξ
)∫ 1

0

a2(x,0)

ā2(0)
Bn(x)dx+C0ξ+ φ̄0,

where C0 is an undetermined constant.
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Appendix B. Derivation for the first order term.

B.1. Outer solution. Note that ũ1 = 0 by (5.3). Then the equation for ū1

reads −(ā2(y)ū′1(y))
′
= 0 with ū1(1) = 0. The solution has the form

ū1(y) = c1−α1(c1)

∫ y

0

dy′

ā2(y′)
, (B.1)

where the constant c1 = ū1(0) is to be determined later by the matching condition, and
α1(c1) is the implicit function defined by ū1(1) = 0.

B.2. Inner solution. The first order term (Ū1(ξ),Ũ1(x,ξ)) of the inner expan-
sion satisfies

−ā2(0)Ū ′′1 (ξ) = ā′2(0)
(
ξŪ ′0(ξ)

)′
+

∫ 1

0

∂ξ

(
a2(x,0)∂ξŨ1(x,ξ)+∂ya2(x,0)ξ∂ξŨ0(x,ξ)

)
dx;

−∂x
(
a1(x,0)∂xŨ1(x,ξ)

)
−a2(x,0)∂2

ξ Ũ1(x,ξ)

=∂x

(
∂ya1(x,0)ξ∂xŨ0(x,ξ)

)
+∂ya2(x,0)∂ξ

(
ξ∂ξŨ0(x,ξ)

)
+ a2(x,0)Ū ′′1 (ξ)+∂ya2(x,0)

(
ξŪ ′0(ξ)

)′
.

(B.2)

For the second equation in (B.2), by the same trick as before, we can use the first
equation to eliminate a2(x,0)Ū ′′1 (ξ) so that it becomes a closed equation for Ũ1(x,ξ).
Then by using the T2-orthogonal basis {Bn(x) :n>1} of L̊2([0, 1]), we expand

Ũ1(x,ξ) =

+∞∑
n=1

Hn(ξ)Bn(x). (B.3)

To derive Hn, we plug (B.3) together with (5.5)(5.6) into the closed equation of Ũ1 and
thus obtain

H ′′n(ξ)−λnHn(ξ) =

+∞∑
m=1

hnm(ξ)e−
√
λmξ,

where {hnm(ξ)} are some known linear functions. The general solution is of the form

Hn(ξ) =γ−n e−
√
λnξ+γ+

n e
√
λnξ+

+∞∑
m=1

pnm(ξ)e−
√
λmξ,

where {pnm(ξ)} are known polynomials with order 62. Note that γ+
n must vanish since

otherwise Hn would blow up exponentially as ξ→+∞. γ−n can be determined by the

boundary condition Hn(0) = 0 since Ũ1(x,0) = 0. The term γ−n e−
√
λnξ can be absorbed

into the series
∑+∞
m=1pnm(ξ)e−

√
λmξ, and thus we eventually have

Hn(ξ) =

+∞∑
m=1

pnm(ξ)e−
√
λmξ,

with pnn(ξ) redefined. A useful fact used later is that Hn(ξ) decays exponentially fast
as ξ→+∞.
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Once Ũ1(x,ξ) is obtained, we solve the first equation in (B.2) with the boundary
condition Ū1(0) = 0 to get

Ū1(ξ) =

+∞∑
n=1

ωnHn(ξ)+

+∞∑
n=1

ln(ξ)e−
√
λnξ+C1ξ+D1, (B.4)

where {ωn} are known coefficients, {ln(ξ)} are known linear functions, and

D1 =−
+∞∑
n=1

ln(0),

but C1 is an undetermined constant.

B.3. Matching. To proceed the matching condition to determine the two
constants c1 in (B.1) and C1 in (B.4), we need to consider the outer solution expansion
(in terms of the inner variables (x,ξ))

uε(x,y)∼ ū0(x,εξ)+ ũ0(x,εξ)+εū1(x,εξ)+εũ1(x,εξ)+ ·· ·
= ū0(x,εξ)+εū1(x,εξ)+ ·· · ,

where ū0 and ũ1 are given by (5.4) and (B.1) respectively, and the inner solution ex-
pansion (in terms of the original variables (x,y))

Uε(x,ξ)∼ Ū0(x,y/ε)+ Ũ0(x,y/ε)+εŪ1(x,y/ε)+εŨ1(x,y/ε)+ ·· · ,

refer to (5.6) (5.5) (B.3) (B.4). After expanding the above two expressions in terms of ε,
and noting the exponential decay of Ũ0 and Hn, we have the following approximations
on the order O(ε2):

(
uε
)in

(x,ξ)≈ c0−εξ
α0(c0)

ā2(0)
+εc1,(

Uε
)ot

(x,y)≈ c0 +yC1 +εD1, (B.5)

where the sup-indices in,ot refer to the types of variables written in the expansions.
Since y=εξ, matching (to this order O(ε2)) will be accomplished by selecting

C1 =−α0(c0)

ā2(0)
, c1 =D1 =−

+∞∑
n=1

ln(0).

Now we have derived the values of the two undetermined constants in ū1 and Ū1. It
is noted that in determining these constants by matching, only the mean parts have
contributions since the fluctuation parts either vanish or decay exponentially.
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