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WEALTH DISTRIBUTION IN
PRESENCE OF DEBTS. A FOKKER-PLANCK DESCRIPTION*

MARCO TORREGROSSAT AND GIUSEPPE TOSCANTI#

Abstract. We consider here a Fokker—Planck equation with variable coefficient of diffusion which
appears in the modeling of the wealth distribution in a multi-agent society. At difference with previous
studies, to describe a society in which agents can have debts, we allow the wealth variable to be negative.
It is shown that, even starting with debts, if the initial mean wealth is assumed positive, the solution of
the Fokker—Planck equation is such that debts are absorbed in time, and a unique equilibrium density
located in the positive part of the real axis will be reached.
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1. Introduction

Mathematical modeling of wealth distribution has seen in recent years a remarkable
development, mainly linked to the understanding of the mechanisms responsible of the
formation of Pareto tails [40] (cf. Chapter 5 of [38] for a recent survey). Among the
various kinetic and mean field models considered so far [1,2,14-16,20-23, 30,41, 42],
the Fokker—Planck type description of the evolution of the personal wealth revealed to
be successful. In [11] Bouchaud and Mezard introduced a simple model of economy,
where the time evolution of wealth is described by an equation capturing both exchange
between individuals and random speculative trading, in such a way that the fundamental
symmetry of the economy under an arbitrary change of monetary units is insured. A
Fokker—Planck type model was then derived through a mean field limit procedure, with
a solution becoming in time a Pareto (power-law) type distribution. Let f(v,t) denote
the probability density at time ¢>0 of agents with personal wealth v >0, departing
from an initial density fy(v) with a mean value fixed equal to one

mifo)= [ offo)do=1. (1.1)

The evolution in time of the density f(v,t) was described in [11] by the Fokker—Planck
equation
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where A and o denote two positive constants related to essential properties of the trade
rules of the agents.

The key features of equation (1.2) is that, in presence of suitable boundary condi-
tions at the point v =0, the solution is mass and momentum preserving, and approaches

*Received: September 26, 2017; accepted (in revised form): January 14, 2018. Communicated by
Lorenzo Pareschi.

fDepartment of Mathematics, University of Pavia, via Ferrata 1, Pavia, 27100 Italy (marco-
torr1986@gmail.com).

tDepartment of Mathematics, University of Pavia and IMATI of CNR, via Ferrata 1, Pavia, 27100
Italy (giuseppe.toscani@unipv.it). http://www-dimat.unipv.it/toscani.

537



538 WEALTH DISTRIBUTION WITH DEBTS

in time a unique stationary solution of unit mass [43]. This stationary state is given by
the (inverse) I'-like distribution [11]

(u—1)" exp (—£51)

foolv)= T(n) ot

(1.3)
where the positive constant p>1 is given by
A
p=1+2—.
o

In agreement with the observations of the Italian economist Vilfredo Pareto [40] on the
distribution of wealth, the equilibrium density (1.3) exhibits a power-law tail for large
values of the wealth variable.

The explicit form of the equilibrium density, which represents one of the main
aspects linked to the validity of the model in its economic setting, is indeed very difficult
to achieve at the Boltzmann kinetic level, where only few relatively simple models can
be treated analytically [7,8,33].

In addition to [11], the Fokker—Planck equation (1.2) appears as limit of different
kinetic models. It was obtained by one of the present authors with Cordier and Pareschi
[18] via an asymptotic procedure applied to a Boltzmann-type kinetic model for binary
trading in presence of risks. Also, the same equation with a modified drift term appears
when considering suitable asymptotics of Boltzmann-type equations for binary trading
in presence of taxation [9], in the case in which taxation is described by the redistribution
operator introduced in [10]. Systems of Fokker—Planck equations of type (1.2) have been
considered in [25] to model wealth distribution in different countries which are coupled
by mixed trading. Further, the operator J(f) in equation (1.2) and its equilibrium
kernel density have been considered in a nonhomogeneous setting to obtain Euler-type
equations describing the joint evolution of wealth and propensity to trading [24], and
to study the evolution of wealth in a society with agents using personal knowledge to
trade [39].

These results contributed to retain that this limit model represents a quite satisfac-
tory description of the time-evolution of wealth density towards a Pareto-type equilib-
rium in a trading society.

Existence, uniqueness and asymptotic behavior of the solution to equation (1.2)
have been recently addressed in [43]. In this paper, by resorting in part to the strategy
outlined in [28], a precise relationship between the solution of the kinetic model consid-
ered in [18] and the solution to the Fokker—Planck equation (1.2) was obtained, together
with an exhaustive study of the large-time behavior of the latter. Various properties
of the solution to equation (1.2) can in fact be extracted from the limiting relation-
ship between the Fokker—Planck description and its kinetic level, given by the bilinear
Boltzmann-type equation introduced in [18]. It is essential to remark that, due to the
fact that the domain of the wealth variable v takes values in R, and that the coefficient
of diffusion depends on the wealth variable, the analysis of the large-time behavior of
the solution to equation (1.2) appears very different from the analogous one studied
in [3,44] for the classical Fokker—Planck equation. In particular, the essential argument
in [43] was to resort to an inequality of Chernoff type [17,34], recently revisited in [28],
that allows to prove convergence to equilibrium in various settings.

All the previous results describe a society in which all agents have initially a non-
negative wealth, and do not consider the unpleasant but realistic possibility that part of
the agents would have debts, clearly expressed by a negative wealth. Recent results on
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one-dimensional kinetic models [5,6] showed however that there are no mathematical
obstacles in considering the Boltzmann-type equation introduced in [18] with initial
values supported on the whole real line. Also, other recent approaches to the modeling
of binary interactions including uncertain factors [19,46] can naturally produce outcomes
with negative wealth.

Following the idea of [5, 6], we will study in this paper the initial value problem
for the Fokker—Planck equation (1.2) posed on the whole real line R, by assuming that
the initial datum satisfies condition (1.1), that is by assuming that part of the agents
of the society could initially have debts, while the initial (conserved) mean wealth is
positive. As we shall see, also in this situation, the positivity of the mean wealth will
be enough to drive the solution towards the (unique) equilibrium density, still given
by formula (1.3). Also, the forthcoming analysis will clearly indicate that the initial-
boundary value problem considered in [43], in which the initial density is supported on
the positive half-line, is simply a particular case of the general situation studied here.
However, while the analysis of [43] allows to conclude that the solution to the initial-
boundary value problem for equation (1.2) converges strongly towards the equilibrium
density (1.3) with an explicit rate, in the general situation discussed in this paper, we
are able to show that exponential in time convergence to equilibrium takes place only
in a weak setting, well described by resorting to Fourier based metrics.

As discussed in Section 3.3, the usual approach to convergence to equilibrium via
entropy arguments fails due to the fact that in this situation the initial density and
consequently the solution at each time ¢ >0 is supported on the whole real line R, while
the equilibrium density is supported only on the positive half-line R;. This problem
can be bypassed by resorting to entropy functionals different from the standard relative
Shannon entropy. However, a detailed evaluation of the entropy production of the new
entropy functional allows to conclude only with a result convergence in the classical L;
setting, without rate.

2. Main results

2.1. Existence and uniqueness. Existence of a (unique) solution for the
initial value problem for the Fokker—Planck equation can be recovered by means of the
analysis done in [43], which is based on the strong connection between equation (1.2)
and the kinetic equation of Bolzmann type introduced in [18]. Indeed, the existence
proof in [43] is based on the Fourier transformed version of the kinetic equation, and
applies without any change even if the wealth variable takes values on the whole real
line. However, while Fokker—Planck equations with variable coefficients and in presence
of boundary conditions have been rarely studied [26] (cf. also the book [27] for a general
view about boundary conditions for diffusion equations), in absence of boundaries, other
results are available, which apply directly to the Fokker—Planck equation (1.2).

Particular cases of Fokker—Planck type equations with variable coefficient of diffu-
sion, mainly related to the linearization of fast diffusion equations have been studied in
detail (cf. [12] and the references therein). Then, the initial value problem for Fokker-
Planck type equations with general coefficients has been recently investigated by Le
Bris and Lions in [35]. Their results allow to conclude that the initial value problem for
equation (1.2) has a unique solution for a large class of initial values. In one-dimension
of space Le Bris and Lions consider Fokker—Planck equations in one of the the forms

*%avz (UQ(U)P(’U,t))+%(b(v)p(v,t)), (2.1)
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which corresponds to our case, equations in divergence form
0 o1, .0
— t)=—1| = — t)+b t 2.2
S0 = (302005 p(w0) +0)p(00) ). (2:2)
and the so-called backward Kolmogorov equation

O plst) = 30°(0) 5 p(0,t) ~b(o) Splot). (23

Let b% and the Stratonovich drift b° be defined as

Then, the following holds

THEOREM 2.1 ( [35]). Let us assume that any one of the three drift functions b, b°
or b5t satisfies

1,1 a 00 b(U) 1 00
b(v) e W, (R), 5 b(v) € L (R), T+l eL'+ L>*(R), (2.4)
and that o satisfies
1,2 O’(U) 2 =]
o(v) e W, (R), 5 o] € L*+ L>™(R). (2.5)

Then for each initial condition in L' NL>(R) (resp. L2NL*°(R)), the Fokker—Planck
equation (2.1), the Fokker-Planck equation of divergence form (2.2), and the backward
Kolmogorov equation (2.3) all have a unique solution in the space

peL>([0,T],L'NL>®) (resp. L>([0,T],L*NL>)), U%p eL*([0,7),L%).  (2.6)

The natural condition for the Fokker-Planck equation (1.2) is to apply Theorem 2.1
considering as initial value a probability density in L'NL>(R). To this extent, it is
sufficient to rewrite equation (1.2) in the divergence form

S o))

that is the analogous of Equation (2.2), and to remark that in our case b(v) = (o +A)v— A
and o(v) =c'/?v.

We obtain

THEOREM 2.2.  Let fo(v) belong to L'\ L>=(R). Then, the the Fokker—Planck equation
(1.2), for t<T, has a unique solution f(v,t) in the space

f(v,t)eL>([0,T],L' NL>), va%f(v,t) e L*([0,7],L%). (2.8)
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2.2. Regularity. The regularity of the solution to the initial-boundary value
problem for equation (1.2) has been studied in [43]. For the sake of completeness, and
for its consequences on the large-time behavior of the solution, we give here a short
proof.

For any given smooth function ¢(v), v € R let us consider the weak form of equation
(1.2)

+oo +oo -
%/_ s@(v)f(v,t)dv=(%J(f))=/ [2112@”() A(v—l)w’(v)] flot)dv. (2.9)

— 00

Under the hypotheses of Theorem 2.2, by choosing ¢ (v) =e~%? we obtain the Fourier
transformed version of the Fokker—Planck equation (1.2)

A~ o~

9~ L
ﬁf(&t):J() *528§2f(§,) AE fLf(fﬂf)*l)\éf(éﬂf% (2.10)

where, as usual g(§) denotes the Fourier transform of ¢g(v), veR
36)= [ < ge) o
R
Let ]?(f,t) =a(&,t)+1ib(&,t). Then the real and imaginary parts of fsatisfy

7a(§7t) = 752 (57 ) >‘£ (fat) +)‘§b(€7t)a
ot ‘%2 5 (2.11)

D061 = 78 Db(6.1) - N b6 D)~ Aeal&, 1)

S 23

Let us multiply equations (2.11) respectively by 2a and 2b. Summing up we get the
evolution equation satisfied by |f(&,t)|%.

o 5 2 62

a|f)?
o¢

Hence, multiplying by |§ [P and integrating over R with respect to £, we obtain the evo-
lution equation of the H,,/o,—norm of f(v,t), where, as usual, the homogeneous Sobolev

= / €2 F2(6) de
R

(2.12)

space HS, is defined by the norm

‘We obtain

2
o [emrae=o e fo 2 ase Zalacn [aer®Tae 2y

and integrating by parts the two integrals, it results

8t/|€\p|f| dé = (p+1)[ (p+2) +>\]/|§|p|f|2d§ a/|g2+z){ g“|2+|§gb|2]df
(2.14)
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Since the last integral in equation (2.14) can be bounded from below [43]

[t [l + | bl e CELE [ e

we finally obtain
0 - 1] p+3 -
2 [lerifras <2t o222 o] [ jepifae (2.15)
R R

The inequality (2.15) implies that if the initial data has bounded prnorm, then for
all £>0, the H,—norm of the solution remains bounded, even if not uniformly bounded
with respect to time. We proved

THEOREM 2.3. ( [43]) Let fo(v) be a probability density in R that belongs to H,(R).
Then, the H,—norm of the solution f(v,t) to the Fokker-Planck equation (1.2), for
t<T, still belongs to H.(R), and

Lieriiewae son{ 2 o252 o [ierRpas (210

REMARK 2.1. The difficulty of recovering the uniform boundedness of the H,.(R)-norm
of the solution to the Fokker—Planck equation (1.2) is strictly related to the singularity
of the coefficient of diffusion ov?, which vanishes in correspondence to the point v =0.
Indeed, as proven in [12] for a similar Fokker—Planck equation with coefficient of diffusion
14 0v?, the uniform boundedness of the H,(R)-norm of the solution holds.

2.3. Further properties. The analysis of [35] does not care about the eventual
preservation of positivity of the solutions to equation (2.1). However, this property can
be easily proved for Equation (1.2), by resorting to the same argument used in [43] for
the same equation posed in R . Indeed, as proven in [43], the solution to the Fokker—
Planck equation (1.2) is the limit of the solution to a kinetic equation of Boltzmann
type, for which it is elementary to obtain the positivity property.

Positivity can however be proven directly by working on the Fokker—Planck equa-
tion, by resorting to the following argument [31]. Suppose the initial data fo(v) (and
hence the unique solution) to the Fokker—Planck equation (1.2) are smooth and vanish
for v=+400. Suppose moreover that fo(v)>0. Since the (smooth) initial value is non
negative, for ¢ >0, every point v, (t) in which f(v,,(¢),t) =0 is either a local minimum,
and

2f(v t) =0 a—Qf(v t) >0 (2.17)
vV R Ve '
V=, (t) V=0, (1)
or a stationary point, and in this case
0 0?
(v,t) =0, ——=f(v,) =0. (2.18)
81} V=0, (t) Iv? V=, (t)

Computing derivatives, the Fokker—Planck equation (1.2) can be written in the form

2

0 o 5,0 0
af(v,t) = §v2wf(v,t)+ [(20+X)v— )] %f(v,t)+()\+a)f(v,t). (2.19)
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Hence, evaluating expression (2.19) at the point v=wv,,(t), and using condition (2.17)
shows that, if vy, (t) #0 is a local minimum

0 o 0?
af(’l),t) ‘vzvm(t) = §vm(t)2w (’U,t) |v:vm(t) >0.

This entails that the function f(v,t) is increasing in time at the point v=wv,,(t), unless
Um (t) =0. Indeed, if the local minimum is attained at vy, () =0

0
af(’l}?t) |'u:0 = 07

and f(0,t) remains equal to zero at any subsequent time.
If now vy, (t) is a stationary point, so that condition (2.18) holds,

0

ot (v,t) |v:vm(t) =0,

and f(v,t) remains equal to zero. Therefore

glelﬂg}f(v,t)zo, (2.20)
and positivity follows. The proof for initial data satisfying the conditions of Theorem
2.2 then follows first considering a suitable smoothing of the initial data, and then using
the fact that at any subsequent time ¢ > 0, the solution corresponding to the smoothed
initial data converges to the solution of the original data when eliminating the initial
smoothing.

REMARK 2.2. A further consequence of this analysis is that, if the initial datum
vanishes on the half-line v <0, in reason of the properties of the solution at the point
v=0, the solution at any subsequent time ¢ >0 will remain equal to zero on the half-line
v <0.

Further results in this direction follows by studying the evolution of the mass located
in the negative part of the real axis. To start with, consider that by evaluating equation
(2.9) with test functions ¢(v)=1,v one obtains that, if the initial value fo(v) vanishes
for v=+o00, the solution to equation (1.2) satisfies

d +oo d “+o0 “+o0 “+o0
i) f(v,t)dv=0, il vf(v,t)dv:/\<—/oo vf(v,t)dv+ - f(v,t)dv).

Therefore, if the (nonnegative) initial value of the Fokker-Planck Equation (1.2) is a
density function satisfying the normalization conditions

—+oo —+oo
fo(v)(v)dv=1, / vfo(v)(v)dv=1 (2.21)
— 00 — 00

the solution f(v,t) to (1.2) still satisfies conditions (2.21). In other words, if the initial
datum is a probability density with unit mean, then the solution at any subsequent time
remains a probability density with unit mean.

A further interesting property of the solution can be extracted by analyzing the
behaviour of the mass and the mean value separately on the left and right half-line.
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Let us denote by p.(t) (respectively p_(t)) the fraction of the mass distributed on the
positive half-line (respectively on the negative half-line) at time ¢ >0, that is

0

—+oo
po(t)= / ftydv; pt)=[ f(o.t)dv. (2.22)

Let the initial value fy(v)€ C(R) satisfy conditions (2.21). Let H,(v) be a smooth
approximation to the Heaviside step function, for example the logistic function

H,(v) L

= 1 +672nv :
Then, equation (2.9) implies, for any ¢ >0

+oo
H,(v)f(v,t)dv

_ :oHn(v)fo(v)var/ot/:o [%vzH;[(v)—)\(v—l)H,’l(v)} F(v,8)dvds.

Letting n— +o0, and considering that H/ (v) converges to a Dirac delta in zero, while
v2H! (v) is a uniformly bounded function that converges pointwise to zero, we obtain

n—-+4+oo

lim /0 t / :° (202 (0) - Mw— 1) ()] £(0.5) dvds=A /0 " F(0,5)ds.

Therefore, since for any ¢t >0

“+oo “+oo
lim H,(v)f(v,t)dv= flo,t)ydv=p4(t),

n—-+oo o 0

it follows that

pi0) =)+ [ 10.5)s (2.23)

namely that the mass in the positive half-line can not decrease if the mean value is
positive.

With similar arguments it is possible to analyze the time behaviour of the parts
of the mean value located on the positive and negative parts of the real line. Let us
indicate these parts by m4 (t) and m_(t), where

0

+oo
m+(t)=/0 vf(v,t)dv, m_(t):/ vf(v,t)dv (2.24)

— 00

A direct computation shows that, for each time ¢ >0

() =my (0) + / (=p— (5)mp () + pa (s)m—(s)) ds,
(2.25)

m_(t) =m_(0)+ / ((p—(s)m4 (s) — pa (s)m_(s)) ds.

The choice of mean value m=1>0 implies my(t)=|m_|(t)+1. Therefore using
this equality into the second equation in (2.25) we obtain

%\m— == (p-O)my () = p()m (1)) = = (jm- )|+ p—(t)[m-O)]) < =|m_(1)|.
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Consequently, by Gronwall inequality we conclude that
m—(t)] <[m—(0)]e™", (2.26)

and the negative part of the mean value decays exponentially fast towards zero. We can
group the previous results into the following

THEOREM 2.4. Let fo(v) be a probability density in R, satisfying the normaliza-
tion conditions (2.21). Then, the solution f(v,t) to the Fokker—Planck Equation (1.2)
remains a probability density for each subsequent time t>0, and satisfies conditions
(2.21). Moreover, the mass p4(t) located on the positive part of the real line is non
decreasing in time and condition (2.23) holds. Also, the part of the mean value m_(t)
located on the negative part of the real axis is exponentially decreasing in time, and
inequality (2.26) holds.

In the economic context, the consequences of Theorem 2.4 appear relevant.

REMARK 2.3. Equation (2.23), coupled with the property of mass conservation,
implies that, in the particular case in which the initial data is a smooth probability
density which takes values only in the region v >0, since the mass in this region can
only increase, the solution at any subsequent time ¢ >0 remains a smooth probability
density distributed on the same region v>0. This independently of any boundary
condition one can introduce to justify mass and momentum conservation [28,43]. This
property can be easily relaxed to general probability measures initially taking values
on the set v>0. In other words, the lack of diffusion at the point v=0, as outlined in
Remark 2.2, is enough to maintain the whole mass, initially located on the positive part
of the real line, on the same set.

REMARK 2.4. The previous results about the time evolution of the mass and mean
value located on the set v>0 show that the part of mass that is initially distributed
on the negative half-space (the debts) moves to the region v>0, and this process is
exponentially rapid in terms of the negative part of the mean value. However, since
the regularity results of Theorem 2.3 are not uniform with respect to time, one can not
in principle exclude that there is accumulation in time of the negative fraction of the
mass at the point v=0, with the eventual formation of a Dirac delta in v =0, namely
the point in which there is no diffusion. The subsequent analysis on the large-time
behavior of the solution is only able to exclude that this eventual accumulation of mass
at the point v=0 remains for all times. Further investigations in this direction could
be obtained by studying the Fokker—Planck equation (1.2) at a numerical level.

2.4. The stationary state. Let us consider the I'-like distribution (1.3),

continuously extended to zero for v <0

(p—1)" exp (=17
I'(w) olte

foo(v)=

if v>0; foo()=0 if v<0. (2.27)
where
A
p=1+2->1 (2.28)
It can be easily verified that the equilibrium distribution (2.27) achieves its maximum

value

P (pryet
foo—r(u)(uil) p(—(pn+1)) (2:29)
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at the point

pn—1

v="—.
41

(2.30)
Therefore it is increasing in the interval (0,7) and decreasing on (7,+00). Note that the
value 1+ u defines the rate of decay at infinity of the power tailed distribution (2.27).
Consequently

/Iv\’"foo(v)dv<oo (2.31)
R

if and only if r < p.
Then, owing to elementary properties of the Gamma function, it is immediate to
conclude that, provided g > 2, the second moment of the steady state is bounded, and

/foo(v)dvzl; /vfoo(v)dvzl; /v2foo(v)dv:u—_l. (2.32)
R R R p—=2

It follows that, if the initial value for the Fokker-Planck Equation (1.2) posed in the
whole space R is a probability density function of mean value equal to one, f (v) is
a smooth probability density with the same mean value, which in addition satisfies
the Fokker—Planck equation (1.2) on R. If in addition p>2, and the initial value
has the second moment bounded, then the second moment of the solution converges
exponentially towards the second moment of f.

For n e N, let us define

Then [43]

d

ng(t):(a—Z)\)Mg(tH—Z/\. (2.33)
Hence, the value of the second moment stays bounded when o <2\ (or, what is the
same p > 2), while it diverges in the opposite case. In the former case, solving equation
(2.33) we obtain

2\ 2\
_ (o=2)\)t
Ms(t)=e <M2(0)+a—2)\>+2)\—0’ (2.34)
which implies
. 2\
MM =535

Thus, foo(v) is the (unique) steady state of the Fokker—Planck equation with moments
satisfying equations (2.32). This clearly indicates that one could expect that, even
starting with a probability density defined on the whole R, but with positive mean value
(equal to one in our case), the solution to the initial value problem will converge in time
towards the equilibrium (2.27). A rigorous proof of this property will be presented in
the next section.

REMARK 2.5. It is clear that the evolution of the principal moments of the solution to
the Fokker—Planck equation (1.2) can be obtained recursively, and explicitly evaluated
at the price of an increasing length of computations.



MARCO TORREGROSSA AND GIUSEPPE TOSCANI 547

3. Convergence to equilibrium

3.1. Fourier based metrics. As shown in Section 2, in reason of the positivity
property, and mass and momentum conservation of the solution of the Fokker—Planck
equation (1.2), one can always assume that both the solution and the steady state are
probability densities satisfying conditions (2.21). This remark allows to use metrics for
probability distributions to study convergence to equilibrium. This is a method that in
kinetic theory of rarefied gases goes back to [29], where convergence to equilibrium for
the Boltzmann equation for Maxwell pseudo-molecules was studied in terms of a metric
for Fourier transforms (cf. also [13,37,45] for further applications).

For a given constant s >0 let M be the set of probability measures p on the Borel
subsets of R such that

/ Jo]? 1(dv) < oo,
R

and let F be the set of Fourier transforms of probability distributions p in M. A useful
metric in F has been introduced in [29] in connection with the Boltzmann equation for
Maxwell molecules, and subsequently applied in various contexts, which include kinetic
models for wealth distribution [38]. For a given pair of random variables X and Y
distributed according to ¢ and 1 this metric reads

ds(XvY):ds(Qb,?/J):supM

Sup I , (3.1)

As shown in [29], the metric ds(¢,1)) is finite any time the probability distributions ¢
and ¢ have equal moments up to [s], namely the entire part of s € R, or equal moments
up to s—1 if seN, and it is equivalent to the weak™ convergence of measures for all
s>0. Among other properties, it is easy to see [29,38] that, for any random variable Z
independent of X and Y and for any constant ¢

dS(X+Z,Y+Z)§ds(X;Y)> (3 2)

ds(cX,cY)=lc|’ds(X,Y). '

These properties classify d as an ideal probability metric in the sense of Zolotarev [47].

Few years after the publication of [29], Baringhaus and Griibel [4], in connection

with the study of convex combinations of random variables with random coefficients,
considered a Fourier metric similar to the metric (3.1), defined by

DL(X.Y)=D.(¢.) = /R Wd@ (3.3)

As shown in [4], also D, as an ideal probability metric in the sense of Zolotarev, and
for 1< s<2 the space Fy, CF of probability distributions satisfying conditions (2.21)
endowed with the metric D, is complete.

It can be verified that the metrics ds and Dy are strictly connected. In particular,
if r<s, D,(¢,9) <c(r,s)ds(é,9)7/*, where c(r,s) is a positive constant which depends
only on r,s. R R

Indeed, since |¢p(€)] <1, [¢(§)] <1, for any given positive constant R

16(6) = 9(6)| 2 4
LSV A Vi) _C de=—.
/£>R [k gS/zg>R €[+ < rR"
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On the other hand, on the interval [¢ < R|, for s>r it holds

[6(6) =) 6 9@l 1
2 dE= . dé<
/|§|<R €1+ < I€]<R €]* |g[1+r=s <<
RS T
ds dé=2d, .
(60) /M e =200
Therefore, for for any given positive constant R
R*" 4
Dr(6,) £ 24,(0,0) -+~
and, optimizing over R we obtain, for s >r
Dy (¢,9) < c(r,5)ds(¢,)"/°, (3.4)
where
2—r/s
c(r,s)=2 7“(8—7“) (3.5)

This allows to conclude that for 1 <r <2, and for s>, the space F, endowed with the
metric dg is complete.

New metrics on Fs can be introduced according to the following definition. Let
p>1, and s>0. For a given pair of random variables X and Y distributed according
to ¢ and v we define

Dap(X.Y) =D p (1)) = [ /}R D 3(0) — e)rae| (3.6)

The metric Dy corresponds to Dy 1, while the metric dy is obtained by taking the limit
p—o0 of D ,. Moreover, for any given value of the constant p, the D, metric is an
ideal probability metric in the sense of Zolotarev. Proceeding as before, it is immediate
to show that these metrics satisfy an inequality similar to inequality (3.4)

Dy (¢,9) < clp,r,5)ds(6,9)"7*, (3.7)
where
c(p,r,s) =217/ [pr(isr)} ’ . (3.8)

In addition, it can be shown that the D, ,-metrics are strictly related each other. In
fact, if p<q and r < s, by similar methods one proves that there exists a finite explicitly
computable constant such that the following estimate holds

Dy p(659) < clp,q,78) Dy (6:00)7. (3.9)
A distinguished case is obtained by fixing p=2. Then the D, o metric

Dy (6,06) = [/ -2 13(0) — d(6) e (3.10)

coincides with the distance between ¢ and ¢ in the homogeneous Sobolev space of
fractional order with negative index H_,, with ¢g=s41/2, where, for he H_,

il = / €12 R (€) 2 de. (3.11)
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3.2. Convergence in Fourier metric. Convergence to equilibrium of the solu-
tion to the Fokker—Planck equation (1.2) in the metric Dg 2 is an easy consequence of
the result of Theorem 2.3. Indeed, looking at its proof it is immediate to notice that
all computations leading to formula (2.16) still holds when r <0. Moreover, thanks to
the linearity of the Fokker—Planck equation (1.2), formula (2.16) remains valid if we
substitute f(v,t) with the difference f(v,t)— foo(v). Hence, by setting r=—(s+1/2)
we obtain

Dea (£ foe) = [ LI —foo<£>|2dg} ’

<exp{ -5 (=) +20} | [ 16 Ifo(e) - Futo)Pae|
—exp{ =2 (1=)0) +20) } Dy (fo, foo)- (3.12)

Therefore, if the exponent is negative, there is exponential convergence in D, o-metric
of the solution f(v,t) towards the steady distribution f.(v). This happens if

A
s<14+2Z=p (3.13)
g

where the constant p has been defined in (2.28), and characterizes the decay at infinity
of the stationary distribution fo(v). Note that, since u> 1, by taking s=1 we obtain
that convergence to equilibrium holds for all initial values satisfying conditions (2.21)
at a rate 2\, which results to be independent of the coefficient of diffusion o of the
Fokker-Planck equation (1.2). Hence we have

THEOREM 3.1.  Let fo(v) be a probability density in R satisfying conditions (2.21), and
such that D 2(fo, foo) is finite for some s <, where pu is defined in (2.28). Then, the
solution to the Fokker—Planck equation (1.2) posed in the whole space R is exponentially
converging to the equilibrium density foo in D s-metric and the following decay holds

Daa(F(8).f) Sexp {3 (1=5)0) +20) | Da.o(fo. fo). (3.14)

It is immediate to verify that the rate of decay to equilibrium is maximum when
s=y/2. In this case, provided Ds , /2 (fo, foo) <00

2

Dy ,y2(f(t), foo) <exp { —% } Dy 072 fo, foo)- (3.15)

3.3. The monotonicity of relative entropy. The result of Section 3.2 shows
that, at least in a weak sense, there is exponential convergence of the solution to the
Fokker—Planck equation (1.2) posed in the whole space towards the unique steady state
foo(v) defined in (2.27). As usual for this type of equations [28], to obtain stronger
convergence results, typically in L'(R), a classical method is to resort to the study of
the time decay of various Lyapunov functionals involving the solution f(v,t) and the
steady state.

Among these functionals, a leading role is usually assumed by the relative Shannon
entropy H(f,h), where, for any given pair of probability densities f,h

H(f,h) = /R F(v)log ﬁz; dv. (3.16)
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However, since in our case the steady state (2.27) is supported on the positive real
line, while the initial value is in general supported on the whole real line, the Shannon
entropy H(f(t), fs) of the solution f(v,t) to the Fokker—Planck equation (1.2) relative
to the steady state fo(v) is unbounded, and consequently useless.

A related relative entropy which appears more appropriate to treat the present
problem is the so-called Jensen-Shannon entropy, introduced by Lin in [36]. Given the
pair of probability densities f,h, and a constant 0 < a <1, the Jensen-Shannon entropy
H, of f relative to h is defined by

= V) 10, f('U) v

Note that, since the convex combination af + (1 —a)h of the two probability densities f
and h is still a probability density, say h,, the Jensen-Shannon entropy H,, of f relative
to h is simply the Shannon entropy of f relative to h,. The main properties of these
entropies have been studied in [36] (cf. also [28]). In particular, thanks to Lemma 27
in [28] the Jensen—Shannon entropy of two probability densities is always bounded.
Let g(v,t)=af(v,t)+ (1 — ) foo(v). Thanks to conditions (2.21) and (2.32), it fol-
lows that g(v,t) is a probability density of unit mean. Moreover, since both f(v,t)
and foo(v) are solutions to the linear Fokker—Planck equation (1.2), g(v,t) is itself a
solution to equation (1.2). Note that for v<0, f(v)/g(v)=1/a. Moreover, if v >0,
f(v)/g(v) <1/a. Since for r >0 the function rlogr is bounded from below, writing

(g@)l gg<v>>g( v

Ha(f.0)= |

R

it is immediate to conclude that H, (f, fo) is well defined and bounded from above and
below independently of the regularity of the initial data.

In what follows, to avoid inessential difficulties in the forthcoming computations,
we will assume that the initial density fo(v) (and consequently the solution f(v,t)), is
smooth and has enough moments bounded.

To compute the evolution of the Jensen—Shannon entropy, let us first remark that

0 F(v.0)
/,oof o e B (1= @) fo(®)

Since, according to equation (2.23) the mass in the negative half-line can not increase,
and logé >0, the part of Jensen—Shannon entropy relative to the domain v <0 is non-
increasing in time.

On the set (g,+00) we have

d 0o f B oo f 82 ) f 82 5

= [0 [0
—I—/e {loggav[(v—l)f]—gav[(v—l)g]}dv. (3.18)

1 0
dvzlog—/ f(v,t)dv.
@ — 00

Using the identity f/g=(v2f)/(v%g), that clearly holds when v € (g,+00), integration
by parts gives (cf. the proof of Proposition 25 in [28])

+o0 sz 82 ) ’U2f 82 )
/E {IOgv?gE)v?(v f)*@w(v 9)}‘11}
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gion-gen]™ "o

og 81)( °f)-
The contribution of the border term at infinity can be easily shown to vanish provided
f(v,t) has moments bounded of order 2+ ¢ for some § > 0. Indeed, given p,q conjugate
exponents, namely such that 1/p+1/¢=1

1/q 2 \ 1/a
o Ben|-|() k() e
1/q
o
g g

which is bounded in reason of the fact that f/g<1/a. Moreover, by Holder inequality,
whenever p/q<¢/2

fo Ak
PR 1ogg dv. (3.19)

—(v?g) 5

G i

<Cy(vg)p or

In the previous inequality we defined

Cy=sup

/(v2f)1/pdv:/(UQf)l/p(l—i—vQ)l/q(l—i—vQ)_l/qdv
R

R

1/p 1/q
< (/Rv2(l+v2)p/qfdv> (/R(1+1)2)_1dv> <C.

Consequently, as soon as p/q<§/2, both the smooth functions v2g and (v?f)'/? are
integrable, and

o(u2f)"/?
lim (v2g)Y|—=—2—|=0. 3.20
Jim (v%g) ey (3.20)
Analogous arguments can be used to prove that

fo _

On the other extremal point, the choice p=g=2 gives

fo O(vf'/?)
ov ‘

log 50 (UQf)‘ <20(v%g)"/? =2Cs v

g2 < af? Jr‘/,»1/2) ‘

Then, considering that both f and ¢ are smooth, and f/2 ¢ L2 (R), one obtains

a(vzf)uz
1/2 _
lim (v%g) R 0, (3.22)
and
CFO
51_%5%(0 g)=0. (3.23)

Let us consider now the second integral in equation (3.18). Integrating by parts first on
the interval (¢,1—¢), and using the identity f/g=(v—1)f/[(v—1)g] we obtain



552 WEALTH DISTRIBUTION WITH DEBTS

) g(v—l)g—(v—l)f} ) (3.24)

g

- loggw—l)f—(v—l)f glog

g

Hence, since the quantity (f/g)log(f/g) is uniformly bounded from above and below

11)1_>ml (;logg(v—l)g—(v—l)f> =0.

Moreover, since

liva)—l
v—>Og(1}) o’
we obtain
i 1) — v)—(v— v og«
iy (10 2 (0= 1)7(0) - (0= 1)7(0) ) = (0) (14 10ge)

This implies

! f o 0
/ (loggav[(vl)f]M[(vl)g])dvf(ﬂ)(lﬂoga)

Similar computations then give

/1+oo (bgfa[( —1)f]—f§[(v—1)g]> dv=0.

g Ov g Ov

Grouping the various pieces, we conclude that the Jensen—Shannon entropy Ho, (f (), foo)
is nonincreasing in time. We proved

THEOREM 3.2.  Let fo(v) be a smooth probability density in R satisfying conditions
(2.21), and such that its moments up to 2+03 are finite for some 6>0. Then, for
any 0<a <1, the Jensen—Shannon entropy H,(f(t), foo) of the solution to the Fokker—
Planck equation (1.2) relative to the equilibrium solution is monotonically nonincreasing,
and the following decay holds

Ho(f(1), foo) = Ha(for o) /fOSds—/ /m US[alggézzgrdvd&
(3.25)

3.4. The monotonicity of Hellinger distance. A second interesting functional
that has been shown to be monotonically decreasing along the solution to Fokker—Planck
type equations [28] is the Hellinger distance. For any given pair of probability densities
f and h defined on R, the Hellinger distance dg (f,h) is [47]

dutr)=( [ (VI@ - Vit)" o) g (3.26)

In what follows, in analogy with the definition of Jensen—Shannon entropy, defined in
(3.17), we will define, for 0 <« <1 the a-Hellinger distance of f and h by

dit.o(f.h)? = / (VI v/af @)+ - a)h(v)) dv, (3.27)




MARCO TORREGROSSA AND GIUSEPPE TOSCANI 553

and we will study the time-evolution of the square of the a-Hellinger distance between
the solution f(v,t) of the Fokker—Planck equation (1.2), and the equilibrium density
foo(v), namely the square of the Hellinger distance between f(v,t) and g(v,t) =af(v,t)+
(I—a)fe(v).

As in Section 3.3, we will assume that the initial density fy(v) (and consequently
the solution f(v,t)), is smooth and has enough moments bounded. Moreover, since
most of the computations that follow are analogous to the computations of Section 3.3,
we will only outline the differences.

To compute the the evolution of the square of the a-Hellinger distance, let us first
remark that

[ (Vi@ - Var@T i arm) w=0-vay [ swoa.

0

— 00
Therefore, since according to equation (2.23) the mass in the negative half-line can not
increase, and (1— \/&)2 >0, the part of the square of the a-Hellinger distance relative

to the domain v <0 is nonincreasing in time.
On the set (g,4+00) we have

& [ Wi-vara
[AC D) imens (- 3)saenp
[ (- f8) mle-va+ (1— \/D Slo-Daba e

Using the identity f/g=(v?f)/(v?g), that clearly holds when v € (g,+00), integration
by parts gives (cf. the proof of Proposition 25 in [28])

+o0 2 o2 2 o2
/‘E {(1— :};?) W(UQf)—i-(l—U%)W(ng)}dv

v2g\ 0 v2 9 too | oo o 2
(5w () o] 4 el o
(3.29)

Proceeding as in the proof of monotonicity of Jensen—Shannon entropy, the contribution
of the border term at infinity in expression (3.29) can be easily shown to vanish provided
f(v,t) possesses moments bounded of order 3+ for some ¢ >0. Indeed, it is enough to
follow the proof of Section 3.3 by choosing p=¢=2.

On the other extremal point, considering that both f and ¢ are smooth, and f/2 ¢
L?(R), one obtains

025"
ov

- [fO
313})\/;(%(1129):0. (3.31)

lim (v2g)*/?

v—0

=0, (3.30)

and, since f/g is bounded,
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Let us consider now the second integral in equation (3.28). Integrating by parts first on
the interval (e,1—¢), and using the identity f/g=(v—1)f/[(v—1)g] we obtain

/(- fc);,[(v—l)m(l—\/g);[<v—1>g})dv
~|e- v+ -20-0vTs| (332)

Hence
and

This implies

/01 ((v—l)(f-i-g)—Q(v—l)\/E) dv=£(0) (1_\/@2.

Similar computations then give

/1+OO ((vl)(erg)?(vl)\/E) dv=0.

Grouping the various pieces, we conclude that the square of the a-Hellinger distance is
nonincreasing in time. We have

THEOREM 3.3.  Let fo(v) be a smooth probability density in R satisfying conditions
(2.21), and such that its moments up to 3+ are finite for some 6 >0. Then, for any
0<a<1, the a-Hellinger distance dp o(f(t),feo) between the solution to the Fokker—
Planck equation (1.2) and the equilibrium solution is monotonically nonincreasing, and
the following decay holds

t “+o0 V.5 2
dH,a(f(t)afoo):dH,a(fo,foo)*%/o/O 2/ f(v,8)g(v,s) {ilogf( ! )} dvds.

9(v,s)
(3.33)
Note that, at difference with the Jensen—Shannon entropy, the behavior of the
solution at the point v =0 does not enter into the expression of the entropy production.
As we shall see in the next Section, the monotonicity of Hellinger distance can be
coupled with the monotonicity of Jensen—Shannon entropy to obtain decay without rate
of some a-Hellinger distance towards zero.

3.5. The decay of the a-Hellinger distance. In general, precise lower bounds
for the entropy production of the Jensen—Shannon entropy are difficult to obtain. The
main obstacle comes from the fact that, at difference with the case treated in [43],
where the support of the initial value coincides with the support of the steady state a
Chernoff-type inequality [17,28,34] connecting the relative entropy production (3.25)
found in Theorem 3.2 with the Hellinger distance (3.27) ( cf. [28,32]) is not available
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here. Nevertheless, we can still resort to Chernoff inequality to obtain a convergence
result in a-Hellinger distance. Thanks to the identity

) Po(1a 19\ (1-a)? (18 19, \f?
(o) =1 (Gapa-ga00) =Satba(Capo- gt ) 2= G

and to the upper bound

the integral part of the entropy production of the Jensen—Shannon entropy can be

bounded as
<, 9. f(,9)]
/0 v°f(v,s) {mlogg(v’s)] dv

S [T ) [t
|

(0%

Z(I_Q)Q/OOOUQQ(M)

«

0= = 0[] (@),

e f°°”[av\@1 (%) «

_amap o i),

~ = /0 fﬂ)l@@} . (3.35)

For the last equality in (3.35) we refer to [28,32].
We can now apply Chernoff inequality with weight, in the form proven in [28].

THEOREM 3.4 ( [28]).  Let X be a random variable distributed with density foo(v),
vel CR, where the probability density function fo, satisfies the differential equality

(,%(/ﬁ(v)foo)—k(v—m)foo:(), vel. (3.36)

If the function ¢ is absolutely continuous on I and ¢(X) has finite variance, then
Var[p(X)] < E{x(X)[¢' (X))} (3.37)
with equality if and only if ¢(X) is linear in X.

We apply Theorem 3.4 with I =R, x(v)=0/(2\)v?, and density f.(v), which is
such that equality (3.36) holds in R,. Moreover

By (3.37)

JACIN0 Lf,/gf(;] v
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l,/fjg | = ]foom
(), [1—(/0 \/h<v,s>foo<v>)]. (3.38)

In expression (3.38) we defined

h(v,s)= J;OZU( s)) , (3.39)

and with h(v,s) the probability density on R, given by
h(v,s)
1A (s)llz,

Note that, since by definition foo(v)/g(v,s)<1/(1—«), and by the Cauchy—Schwartz
inequality

h(v,s) = (3.40)

e’ %) 1/2
lz/0 foo(v)dv= ; \/m\/ g(v,s)dv <||h(s) 1/2(/0 g(v,s)dv) ;

for all s>0 it holds

1

1<), < 7=

(3.41)

On the other hand, as proven in [32], for any given pair of probability densities f,g

1- ( /O N mdvfz;dh{(f,g)?. (3.42)

In conclusion we obtain that on Ry the entropy production of the Jensen—Shannon
entropy satisfies the lower bound

<, 0 fl,s)1? ao 9
|| grioel B8] o (T an MO 0 3)

Note that in inequality (3.43) the coefficient is independent of time. Substituting into
equation (3.25), inequality (3.43) implies that

oo

[ b o) o) < 52T

Ha(vafoo)

Consequently, the sequence {dg(h(t),||h(t)|lL, foo(t))}i>0 contains a subsequence
{du(h(tn), |h(tn)|| L, foo (tn)) }n>0 such that, as n— oo, t, — 00, and

lim dyg (h(tn), [|h(tn)]| 2, foo) = 0. (3.44)

n—roo

Now, consider that, for any given nonnegative L;-functions p(v) and ¢(v), v €R it holds

/‘p |dv—/‘\/p Va()|- [Vl + Va(w)| v
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1/2

s[/ﬂ{(\/ﬁ)—\/ﬁ)fc@v 1/2~[4(W+W)2dv

1/2
<dn(pg) [2 / (p(v)+q<v>>dv] —Vadua) (Iplo, + o) 2. (3.45)

Hence, using inequality (3.41) we obtain

) =) Fcl 0 < T2t [t ),

namely the Li-convergence to zero of the sequence {h(t,)—|h(tn)|L, foc}p>o- This
implies that we can extract from the above sequence of times a subsequence, still denoted
by t,,, such that on this subsequence

h(v,tn) = [h(tn)|l L, foo(v) =0 a.s. in Ry
Since foo(v) >0, vER,, it holds

foo(v)
1A ()] 2, (0, )

—1 a.s. in Ry,

or, what is the same

foo ()
1A ()|,

Integrating on R, and recalling that by Theorem 3.1

—g(v,ty,)—0 a.s.inR,.

/ g(v,tn)dv—>/ foo(v)dv=1,
0 0
shows that

lim ||ty 0, — 1. (3.46)
n—oo

The validity of the limits (3.44) and (3.46) then imply

lim_dig(h(t,). foo) =0, (3.47)
Indeed

B (h(tn). £o0)? = i (1), (1) 1, )

= ), +2 (el )21 [ VAT 249
and

/o v hf“’d”‘/o Vo =" e

Last, consider that

dH(h(tn%foo)Q:/Om( g‘z‘; )—\/f2> dv
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|} e (V) e |

, (\/g(tn) - \/E)z dv.

foo Zg(tn)
(3.49)
Thanks to inequality (3.45), from inequality (3.49) we obtain
1
UNSEL Y| (foo — g(ta)) do. (3.50)
{foo>9(tn)}

Taking into account that both f. and g(t,) are probability density functions, it holds

/ (oo —(ta)) dv= 3 lg(tn) ~ folls. (351)
{foe2g(tn)}

Also, since for a >b>0
(a—b)?<a®-1?,
one obtains easily the inequality

dH(g(tn)afoo)2§”g(tn)ffoo”Lr (352)

Grouping all these inequalities we finally get

1 1
dir(h(tn), o) 2 0(t) — Foc 1, > Sdin(o(1a), o) (3.59)
It follows that, along the subsequence {t, }n>0

However, in view of Theorem 3.3, the sequence dy o(f(t), fx), t>0 is monotonically
nonincreasing. This implies that the whole sequence converges to zero as time goes to
infinity.

THEOREM 3.5.  Let fo(v) be a smooth probability density in R satisfying conditions
(2.21), and such that its moments up to 3+ 9 are finite for some § >0. Then, for 0 <a<
1, the solution to the Fokker—Planck equation (1.2) converges towards the equilibrium
density foo in a-Hellinger distance.

Theorem 3.5 has important consequences. First, in view of the inequality

||f_gHL1 SQdH<f7g)a

that holds for any pair of probability densities f,g, we get, for 0 <a <1

(1-a) / 1F () —g(v) | dv= / 1 — (@ (0) + (1—0)g(v))| dv < sz o (f,9).

Hence, under the same conditions of Theorem 3.5 the convergence to zero in a-Hellinger
distance implies the Lj-convergence of the solution to the Fokker—Planck equation (1.2)
towards its equilibrium density.

Moreover, as proven in [43], Lemma 3.3, the condition of smoothness of the initial
value can be dropped as soon as convergence is restricted to L'.

COROLLARY 3.1. Let fo(v) be a probability density in R satisfying conditions (2.21),
and such that its moments up to 3+0 are finite for some 6 >0. Then, the solution to
the Fokker—Planck equation (1.2) converges towards the equilibrium density foo in L.
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4. Conclusions

The Fokker—Planck equation (1.2) studied in this paper appears as a useful and
consistent model to study the evolution in time of the distribution of wealth in a pop-
ulation, even in the realistic case in which part of the agents can have debts. If the
total mean wealth of the population is positive, it is shown that the unique equilibrium
density, supported in half-line of positive wealths, is still attracting any density, with
part of the mass located on the negative half-line. At difference with the case studied
in [43], where convergence to the equilibrium density has been shown in L!'-norm, here
convergence with rate has been proven only in terms of a Fourier-based metric, equiv-
alent to the weak*-convergence of measures. A rigorous study of the time evolution
of relative entropy functionals, Jensen—Shannon entropy [36] and a-Hellinger distance,
shows that these functionals are monotonically nonincreasing in time, and can be cou-
pled to furnish convergence without rate in a-Hellinger distance and consequently in
Lq. A challenging problem which remains open is to be able to quantify the rate of
decay of the solution with respect to the L;-norm.
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