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A CONTINUUM MODEL FOR DISTRIBUTIONS OF DISLOCATIONS
INCORPORATING SHORT-RANGE INTERACTIONS∗

XIAOHUA NIU† , YICHAO ZHU‡ , SHUYANG DAI§ , AND YANG XIANG¶

Abstract. Dislocations are the main carriers of the permanent deformation of crystals. For simu-
lations of engineering applications, continuum models where material microstructures are represented
by continuous density distributions of dislocations are preferred. It is challenging to capture in the
continuum model the short-range dislocation interactions, which vanish after the standard averaging
procedure from discrete dislocation models. In this study, we consider systems of parallel straight
dislocation walls and develop continuum descriptions for the short-range interactions of dislocations
by using asymptotic analysis. The obtained continuum short-range interaction formulas are incorpo-
rated in the continuum model for dislocation dynamics based on a pair of dislocation density potential
functions that represent continuous distributions of dislocations. This derived continuum model is
able to describe the anisotropic dislocation interaction and motion. Mathematically, these short-range
interaction terms ensure strong stability property of the continuum model that is possessed by the
discrete dislocation dynamics model. The derived continuum model is validated by comparisons with
the discrete dislocation dynamical simulation results.

Keywords. discrete dislocation model; continuum theory; short-range interaction; asymptotic
analysis; level set method.
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1. Introduction

The plastic deformation of crystalline materials is primarily carried out by the
motion of a large number of atomistic line defects, i.e. dislocations. Based on the
accumulated knowledge about the behavior of individual dislocations [14], discrete dis-
location dynamics (DDD) models [2, 9, 12, 19, 22, 35] have been well developed for the
study of crystal plasticity in a wide range of mechanical problems. For engineer appli-
cations, however, DDD models are limited to samples of small size (order of microns
or below), because of their high computational costs. Hence continuum models, where
material microstructures are represented by continuous density distributions of disloca-
tions resulting from the local homogenization of the discrete dislocation networks, are
practically preferred [1, 3, 4, 6, 7, 10, 11,15–18,20,21,23–26,28,31,34,36,38,41–44].

In order to incorporate the orientation-dependent dislocation densities and the
anisotropic dislocation interaction and motion in the continuum model, we have em-
ployed a pair of dislocation density potential functions (DDPFs) to describe the dislo-
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cation distribution [34,37–39,43]. In this representation, the intersections of the contour
lines (of integer multiples of the length of the Burgers vector) of the two DDPFs φ and
ψ are the locations of the dislocations, see Section 3 for the model in two-dimensions
(where dislocations are infinite straight lines). Essentially, the DDPF ψ characterizes
the local distribution of the active slip planes and the DDPF φ restricted on a slip plane
describes the local dislocation distribution within that plane. As a result, the derived
continuum dislocation dynamics model takes the form of a PDE system of two DDPFs
φ and ψ, instead of equations of the single variable of scalar dislocation density in the
existing two-dimensional continuum models in the literature reviewed above for geo-
metrically necessary dislocations. While previous continuum model based on DDPFs
focused on dislocation glide within slip planes [34, 38, 42, 43], the continuum disloca-
tion dynamics equations derived in this paper incorporate both dislocation motions of
glide and climb. The continuum dislocation model based on DDPFs also provides a
mathematical framework for rigorous analysis of the properties of the interaction and
dynamics of dislocations and further incorporation of other important dislocation mech-
anisms at the continuum level (such as the Frank–Read sources [42] and dynamics of
dislocation dipoles [4, 41]).

In dislocation-density-based continuum models that are derived from the DDD
model, the leading order dislocation interaction is given by an integral over the dis-
locations in the entire system and is referred to as the long-range dislocation interac-
tion. The correction terms that improve a continuum model as an approximation to the
DDD model often take the form of higher order derivatives of dislocation densities that
depend only on the local arrangement of dislocations, and are referred to as the short-
range dislocation interaction terms. In the existing dislocation-density-based models of
plasticity, although the long-range dislocation-dislocation interactions are well-captured
by direct averaging, the short-range interactions have to be incorporated with special
treatments. This is because the mutual interaction force between two dislocations can
grow as strong as the order of 1/r, where r is the dislocation spacing, which leads
to a strong dependence of dislocation dynamics on the local discrete arrangement of
dislocations and further influences the plastic behavior of materials. However, when
a discrete dislocation network is treated by a dislocation continuum, such short-range
interactions are averaged to zero. Therefore, the development of continuum modelling
of dislocations highly relies on effective ways to capture the short-range interactions on
a coarse-grained scale.

For two-dimensional dislocation configurations where all dislocations are infinitely
straight and mutually parallel, Groma et al. [11] developed a continuum formulation
for the short-range dislocation interaction based on a statistical approach, and such
statistical method was further extended by Dickel et al. [5] to identify the role played
by dislocation dipoles in crystal plasticity. However, it has been argued by comparisons
with discrete dislocation dynamics simulations (Roy et al. [27]) that the short-range dis-
location interaction formulas obtained based on statistic approaches do not necessarily
apply to deterministic distributions of dislocations.

A class of representative two-dimensional dislocation configurations widely studied
in the literature are distributions (pile-ups) of dislocation walls consisting of straight and
mutually parallel dislocations (e.g. [8, 13, 27–30, 32, 40]). In this scenario, dislocation-
dislocation interactions take place in both directions that are in and normal to the
dislocation slip planes. To the best knowledge of the authors, most available analytical
results employing dislocation densities were obtained for regular dislocation wall struc-
tures, where dislocations within each wall are vertically aligned and uniformly spaced
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in the direction normal to the dislocation slip planes. For example, in their compar-
isons with results of discrete dislocation model, Roy et al. [27] also used semi-continuum
analysis (in which discreteness normal to the slip planes are maintained) for pile-up of
dislocation walls. With the matched asymptotic techniques, Voskoboinikov and cowork-
ers [32] calculated the discrete positions of a simple dislocation structure formed by one
horizontal row of straight dislocations near a dislocation lock, where the dislocation
density becomes singular under a continuum setting. Hall [13] generalized the approach
in Ref. [32] to determine the discrete positions of the dislocation walls of infinite length
near the grain boundaries. For regular dislocation walls, Geers and coworkers [8] iden-
tified five regimes for the interaction energy by a single parameter depending on the
driving force, the horizonal and the vertical spacing between neighbouring dislocations,
and they also studied the continuum limit of the equilibrium state in each regime as the
number of the regular walls tends to infinity. The analysis in Ref. [8] also suggests that
a single field variable describing the dislocation density is not sufficient for the discrete-
to-continuum transition for the configuration with dislocation regular walls. Zhu and
Chapman [40] examined the equilibria of periodically arranged dipole walls, and a nat-
ural transition between dipolar configurations was found controlled by the dipole height
to width ratio. By investigating the local behavior of the mean-field stress exerted by
a row of dislocations, Schulz et al. added to the continuum system a dislocation den-
sity gradient term depending on the mesh size in their finite element calculations [30].
Schmitt et al. derived continuum internal stress formula for dislocation glide by homog-
enization of dislocation microstructures under the assumption that the geometrically
necessary dislocations form regular walls [28]. Their obtained formula is similar in its
form to the short-range dislocation interaction term obtained by Groma et al. [11] using
a statistical approach.

In this paper, we first systematically examine the perturbed regular edge disloca-
tion wall structures and derive continuum short-range interaction formulas from discrete
dislocation dynamics model by asymptotic analysis. The derived accurate short-range
interaction formulation for such representative deterministic dislocation distributions,
together with the available results in the literature reviewed above, is able to give more
complete understanding of the nature of the short-range dislocation interactions for par-
allel dislocations with the same Burgers vector in the continuum model. In particular,
our continuum short-range formulation is expressed by higher order derivatives of the
dislocation distribution; although it is similar to the continuum formula derived using
other approaches [11, 28], the exact expressions are different. Moreover, by using two
field variables (two DDPFs), our continuum formulation incorporates the anisotropy of
the short-range dislocation interactions in directions along or normal to the dislocation
slip planes, in addition to the anisotropic dislocation motions of glide and climb. Such
anisotropy is not included in the available continuum short-range interaction formu-
las [11, 28], and although it was examined in Ref. [8] by regular dislocation walls, no
continuum formulation is available in the existing literature to account for such dislo-
cation interaction anisotropy for general cases.

We then incorporate these continuum short-range interaction contributions in our
continuum PDE model. These terms are local in the sense that they depend on the first
and second partial derivatives of the DDPFs instead of their integrals. The full contin-
uum force (including both the long-range and short-range continuum forces) provides a
good approximation to the discrete dislocation dynamics model. Mathematically, these
new terms in the continuum model serve as stabilizing terms that maintain the same
stability properties as the discrete dislocation dynamics model. Moreover, since these
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short-range interaction terms are in the form of second order partial derivatives of the
DDPFs φ and ψ, they also serve as regularization terms to the continuum long-range
force terms that are in the form of integrals of first partial derivatives of φ and ψ.

The rest of this paper is organized as follows. In Section 2, we reviewed the dis-
crete dislocation dynamics model, from which the continuum formulation of short-range
interactions will be derived. In Section 3, we present the continuum framework for dis-
location walls based on the representation of dislocation density potential functions,
where the force on dislocations consists only of the long-range Peach–Koehler force.
In Section 4, we show that without short-range interactions, the continuum long-range
Peach–Koehler force is inconsistent with the Peach–Koehler force in the discrete dis-
location model for many common dislocation distributions. In Section 5, we derive
continuum expressions for the dislocation short-range interactions from the discrete
dislocation dynamics model. We focus on the dislocation configurations identified in
Section 4 where the continuum long-range force fails to provide stabilizing effect com-
pared with the discrete model. In Section 6, we present the DDPF-based continuum
dislocation dynamics model that incorporates both the long-range and the short range
continuum forces. In Section 7, we show the new continuum model is indeed able to
stabilize the perturbed dislocation structures as the discrete dislocation model does. In
Section 8, numerical simulations are performed to validate the continuum model.

2. Discrete dislocation dynamics model
In this section, we briefly reviewed the discrete dislocation dynamics model, from

which the continuum formulation of short-range interactions will be derived. We con-
sider a system of parallel straight edge dislocations, see Figure 2.1. In this case, the
dislocation dynamics can be reduced to a two-dimensional spatial problem, in which the
dislocations are points in the plane orthogonal to the direction of the dislocation lines,
that is, parallel to the z-axis. The Burgers vector b is along the x-axis. The locations
of dislocations are denoted by the points {(xm,yn)} for integer m and n.

Fig. 2.1. A system of parallel straight edge dislocations.

The Peach–Koehler force f on a dislocation is a configurational force associated with
the change of free energy dW due to a displacement dl of the dislocation: dW =−fdl.
The Peach–Koehler force per unit length on the dislocation is related to the stress field
by [14]

f=(σ ·b)×τ =

⎛
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where b is the Burger’s vector with the magnitude b, τ =(0,0,1) is the dislocation line
direction, and σ is the stress tensor. The component of the Peach–Koehler force in the x
direction is parallel to the plane containing both the Burgers vector and the dislocation
line direction (which is the slip plane), and is the glide force. The component of the
Peach–Koehler force in the y direction is normal to the direction of the Burgers vector b
and the dislocation line direction, and is the climb force. From equation (2.1), we have
the glide force fg= bσxy and the climb force fc=−bσxx.

Using isotropic linear elasticity theory, an edge dislocation located at the point (0,0)
generates the following stress field [14]

σxy(x,y)=σyx(x,y)=
μb

2π(1−ν)
x(x2−y2)
(x2+y2)2

�G1(x,y), (2.2)

σxx(x,y)=
−μb

2π(1−ν)
y(3x2+y2)

(x2+y2)2
�G2(x,y), (2.3)

where μ is the shear modulus and ν is the Poisson ratio, and other stress components
vanish.

Therefore, for a dislocation located at (xm0 ,yn0), the glide force on it generated

by another dislocation located at (xm,yn) is
μb2

2π(1−ν)

(xm0
−xm)((xm0

−xm)2−(yn0
−yn)

2)

[(xm0
−xm)2+(yn0

−yn)2]2
. By

superposition, the total glide force acting on the dislocation located at (xm0
,yn0

) is

fddg (xm0 ,yn0)=
μb2

2π(1−ν)
∑

(m,n) �=(m0,n0)

(xm0−xm)[(xm0−xm)2−(yn0−yn)2]
[(xm0

−xm)2+(yn0
−yn)2]2 . (2.4)

Similarly, the total climb force acting on the dislocation located at (xm0
,yn0

) is

fddc (xm0 ,yn0)=
μb2

2π(1−ν)
∑

(m,n) �=(m0,n0)

(ym0
−ym)[3(xm0

−xm)2+(yn0
−yn)2]

[(xm0−xm)2+(yn0−yn)2]2
. (2.5)

With applied stress, the total glide and climb forces acting on the dislocation located
at (xm0

,yn0
) can be written as

fg(xm0 ,yn0)=f
dd
g (xm0 ,yn0)+bσ

0
xy, (2.6)

fc(xm0
,yn0

)=fddc (xm0
,yn0

)−bσ0
xx, (2.7)

where σ0
xx and σ0

xy are the components of the applied stress tensor.
In discrete dislocation dynamics, the local dislocation velocity v is given by the

following mobility law in terms of the Peach–Koehler force [2, 9, 19, 35] as v=M · f,
where M is the mobility tensor and f is the Peach–Koehler force. Following [35], the
mobility tensor can be written asM=mg(I−n⊗n)+mcn⊗n, wheremg is the mobility
constant for dislocation glide, mc is the mobility constant for dislocation climb, I is the
identity matrix, and n is the normal direction of the slip plane. For the edge dislocation
array being considered, n=(0,1,0)T , and the dislocation velocity is given by

v=

⎛
⎝ vg
vc
0

⎞
⎠=

⎛
⎝mgfg
mcfc
0

⎞
⎠ . (2.8)

where the continuum Peach–Koehler force is f=(fg,fc,0)
T .
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Note that when the line direction of all the dislocation lines is changed to τ =
(0,0,−1), the Peach–Koehler force components in equations (2.4) and (2.5) do not
change because both the dislocation line direction and the stress change their signs. In
this case, the total glide and climb forces with applied stress in equations (2.6) and (2.7)
change to fg(xm0

,yn0
)=fddg (xm0

,yn0
)−bσ0

xy and fc(xm0
,yn0

)=fddc (xm0
,yn0

)+bσ0
xx.

3. Continuum formulation for dynamics of dislocation ensembles using
dislocation density potential functions

We consider the system of parallel straight edge dislocations as shown in Figure 2.1.
The number of the dislocations in the vertical direction or horizontal direction is large
and can be considered as infinity. As all the existing continuum dislocation dynamics
models reviewed in the introduction, our continuum model is able to describe smoothly
varying dislocation structures and holds in an averaged sense for general dislocation
structures by homogenizing the discrete dislocations within some representative volumes
centered at each point [43].

To represent the resulting dislocation continuum, we employ a pair of dislocation
density potential functions (DDPFs) [43] φ(x,y) and ψ(x,y), such that, for this two-
dimensional problem, the intersection of the contour lines

φ(x,y)= ib and ψ(x,y)= jb, (3.1)

i,j=0,±1,±2, · · · , are the dislocation lines, see Figure 3.1. Given a smoothly varying
dislocation structure, the local slip planes are represented by the contour lines of the
DDPF ψ, while the dislocation lines within a slip plane are described locally by the
contour lines of another DDPF φ restricted on that plane.

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥
∇ψ(x,y)

∇φ(x,y)

dsl

din

y

x

ψ(x,y)=3b

ψ(x,y)=4b

ψ(x,y)=2b

ψ(x,y)=b

φ(x,y)=b φ(x,y)=2b φ(x,y)=3b φ(x,y)=4b

Fig. 3.1. Representation of dislocation ensembles by the dislocation density potential functions
(DDPFs). Given a smoothly varying dislocation structure, the contour line of one DDPF ψ coincide
with the slip planes, while the dislocation lines within a slip plane are given by the contour lines of
another DDPF φ restricted on that plane. The local average active slip plane spacing dsl and the local
dislocation spacing within a slip plane din are given by equations (3.3) and (3.4), respectively. Note
that in general ∇φ is not necessarily normal to ∇ψ.

With this continuum representation of dislocation distributions, the local dislocation
line direction is determined from the DDPFs by

τ =
∇φ×∇ψ
‖∇φ×∇ψ‖ . (3.2)
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The local normal direction of the dislocation slip plane is in the direction of ∇ψ, and
the local average active slip plane spacing is given by

dsl=
b

‖∇ψ‖ . (3.3)

Using the fact that the local dislocation line direction is in the direction of ∇φ×∇ψ, it
can be calculated that the local dislocation spacing within a slip plane is

din=
b‖∇ψ‖

‖∇φ×∇ψ‖ . (3.4)

(In fact, din= b/length of ∇φ in the slip plane.)
For the two-dimensional problem considered in this paper, the Nye dislocation den-

sity tensor is reduced to a scalar dislocation density function ρ(x,y), which is the number
of dislocations per unit area [18,26,33]. (In fact, here the Nye dislocation density tensor
ααα=ρ(x,y)b⊗τττ , where b=(b,0,0) and τττ =(0,0,1) or (0,0,−1).) Here we define ρ(x,y)
to be the signed dislocation density: which is positive when the dislocations are in the
+z direction and negative when they are in the −z direction. Since the local disloca-

tion number density in the DDPF framework is 1
dindsl

= ‖∇φ×∇ψ‖
b2 , the signed dislocation

density can then be written as

ρ(x,y)=
1

b2
(∇φ×∇ψ ·k), (3.5)

where k is the unit vector in the +z direction.
For example, consider the case when the distribution of dislocations is uniform in

y direction (normal to the slip plane) and nonuniform in x direction (within the slip
plane). The DDPFs that describe this dislocation distribution is φ(x,y)=φ(x) and
ψ(x,y)= by

D , where D is the uniform active slip plane spacing. The dislocation density

in this case is ρ(x,y)= φ′(x)
bD .

For dislocation dynamics problems, the DDPFs φ and ψ also depend on time t and
their evolution implicitly describes the dynamics of dislocations at the continuum level,
which is {

φt+v ·∇φ=0,
ψt+v ·∇ψ=0,

(3.6)

where v=(vg,vc)
T is the local dislocation velocity at the continuum level and is calcu-

lated from the continuum Peach–Koehler force f=(fg,fc)
T following the mobility law

in equation (2.8) in the two dimensional form. Here the continuum glide force fg and
the continuum climb force fc are

fg=f
dc
g +(τττ ·k)bσ0

xy, (3.7)

fc=f
dc
c −(τττ ·k)bσ0

xx, (3.8)

where fdcg and fdcc are the continuum glide and climb forces due to the stress field of
dislocations, and the second term in each equation is the force due to the applied stress.

The leading order continuum Peach–Koehler force due to the long-range dislocation
interaction is given below in terms of the DDPFs φ and ψ, using the dislocation density
ρ in equation (3.5):

fdc,0g (x,y)=
μb2

2π(1−ν)
∫ +∞

−∞

∫ +∞

−∞

(x−x1)[(x−x1)2−(y−y1)2]
[(x−x1)2+(y−y1)2]2 ρ(x1,y1)dx1dy1,
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(3.9)

fdc,0c (x,y)=
μb2

2π(1−ν)
∫ +∞

−∞

∫ +∞

−∞

(y−y1)[3(x−x1)2+(y−y1)2]
[(x−x1)2+(y−y1)2]2 ρ(x1,y1)dx1dy1.

(3.10)

These continuum long-range forces are obtained by straightforward averaging from the
discrete dislocation dynamics model in equations (2.4) and (2.5) [18, 23,26].

While previous continuum model based on DDPFs focused on dislocation glide
within slip planes [34, 38, 43], the continuum dislocation dynamics equations in equa-
tion (3.6) incorporate both dislocation motions of glide and climb. Compared with the
level set discrete dislocation dynamics method [35] in which only the intersection of
the zero level sets of two level set functions is meaningful, the continuum dislocation
dynamics equations of the two DDPFs hold everywhere in the simulation domain, i.e.
the intersections of all the level set pairs of the two DDPFs are meaningful here. As all
the existing continuum dislocation dynamics models reviewed in the introduction, our
continuum model is able to describe smoothly varying dislocation structures and holds
in an averaged sense for general dislocation structures by homogenizing the discrete
dislocations within some representative volumes centered at each point [43].

As to be discussed in Section 4, it is essential to include in continuum Peach–Koehler
force the contributions due to short-range dislocation interactions, whose accurate ex-
pressions will be derived in the next few sections.

4. Inconsistency between the continuum long-range force and the dis-
crete dislocation model

We observe that the continuum Peach–Koehler forces based on the long-range dis-
location interaction in equations (3.9) and (3.10) are not always consistent with the
forces from the discrete dislocation dynamics model, especially when the long-range
dislocation interaction vanishes. For example, when the distribution of dislocations is
uniform in the y direction, the dislocation density only depends on the spatial vari-
able x, i.e. ρ(x,y)=ρ(x). Substituting this density into equation (3.9) and using∫ +∞
−∞

(x2−y2)
(x2+y2)2 dy=0, we have

fdc,0g (x,y)=
μb2

2π(1−ν)
∫ +∞

−∞

∫ +∞

−∞

(x−x1)[(x−x1)2−(y−y1)2]
[(x−x1)2+(y−y1)2]2 ρ(x1)dx1dy1

=
μb2

2π(1−ν)
∫ +∞

−∞
(x−x1)ρ(x1)dx1

∫ +∞

−∞

[(x−x1)2−(y−y1)2]
[(x−x1)2+(y−y1)2]2 dy1

=0. (4.1)

Thus the continuum glide force in equation (3.9) vanishes for this case.
We then calculate the glide force for this case using the discrete dislocation dynamics

model. Since the distribution of dislocations is uniform in the y direction, the locations
of dislocations can be written as {(xm,yn0

+jD)|m,j=0,±1,±2, · · ·}, where D is the
uniform inter-dislocation spacing in the y direction. On the dislocation located at
(xm0 ,yn0), the glide force calculated from the discrete dislocation dynamics formula in
equation (2.4) is

fddg (xm0 ,yn0)=
μb2

2π(1−ν)
∑
m

+∞∑
j=−∞

(xm0−xm)[(xm0−xm)2−(jD)2]

[(xm0
−xm)2+(jD)2]2
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=
μπb

(1−ν)D2

∑
m �=m0

xm0
−xm

cosh(2π
xm0

−xm

D )−1
. (4.2)

This glide force in general is nonzero. This disagreement shows that in the continuum
model, in addition to the leading order contribution from the long-range dislocation
interaction, it is essential to incorporate short-range dislocation interactions at higher
orders in the coarse-graining process from the discrete dislocation dynamics model.

In this paper, we will derive continuum formulas for these short-range dislocation
interactions. We first identify all the cases in which the glide or climb force due to the
long-range dislocation interaction vanishes. The long-range forces are easily calculated
in the Fourier space, in which the force formulas in equations (3.9) and (3.10) become

f̂dc,0g (k1,k2)=4π2bĜ1(k1,k2)ρ̂(k1,k2)=− 2μb2

1−ν
ik1k

2
2

(k21+k
2
2)

2
ρ̂(k1,k2), (4.3)

f̂dc,0c (k1,k2)=4π2bĜ2(k1,k2)ρ̂(k1,k2)=− 2μb2

1−ν
ik32

(k21+k
2
2)

2
ρ̂(k1,k2), (4.4)

where f̂ is the Fourier coefficient of f of the component ei(k1x+k2y), i is the imaginary
unit and k1,k2 are the wave numbers. Recall that the functions G1(x,y) and G2(x,y)
are defined in equations (2.2) and (2.3).

(i) The long-range glide force vanishes, i.e. fdc,0g =0. This is equivalent to

f̂dc,0g (k1,k2)=0 for any k1 and k2. Following equation (4.3), if f̂dc,0g (k1,k2)=0, at least
one of the following three conditions holds for any fixed k1,k2: k1=0 but k2 �=0; k2=0
but k1 �=0; or ρ̂(k1,k2)=0 if k1,k2 �=0. Thus all the solutions of fdc,0g =0 are given by

ρ(x,y)=
∑
k1

∑
k2

ρ̂(k1,k2)e
i(k1x+k2y)

=
∑
k1 �=0

ρ̂(k1,0)e
ik1x+

∑
k2 �=0

ρ̂(0,k2)e
ik2y

=ρ1(x)+ρ2(y), (4.5)

where ρ1(x) and ρ2(y) are some functions.
(ii) The long-range climb force vanishes, i.e. fdc,0c =0. This is equivalent

to f̂dc,0c (k1,k2)=0 for any k1 and k2. Following equation (4.4), if f̂dc,0c (k1,k2)=0, at
least one of the following two conditions holds for any fixed k1,k2: k2=0 but k1 �=0; or
ρ̂(k1,k2)=0 if k2 �=0. Thus all the solutions of fdc,0c =0 are given by

ρ(x,y)=
∑
k1

∑
k2

ρ̂(k1,k2)e
i(k1x+k2y)

=
∑
k1 �=0

ρ̂(k1,0)e
ik1x

=ρ3(x), (4.6)

where ρ3(x) is some function.
In summary, the long-range glide force in the continuum model vanishes if and

only if the dislocation density has the form ρ(x,y)=ρ1(x)+ρ2(y), and the long-range
climb force in the continuum model vanishes if and only if the dislocation density has
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the form ρ(x,y)=ρ3(x) (which means that the dislocation distribution is uniform in
the y direction). However, the forces calculated from the discrete dislocation dynamics
model are not necessarily zero, see the example in equation (4.2). In these cases, it is
essential to keep the next order forces that represent the short-range dislocation inter-
action due to the discreteness of dislocation distributions, in the coarse-graining process
from the discrete dislocation dynamics model. In the next section, we examine these
cases and derive continuum force expressions to capture such short-range interactions
of dislocations.

5. Continuum force formulation due to short-range dislocation interac-
tions

In this section, we derive continuum expressions for the dislocation short-range in-
teractions from the discrete dislocation dynamics model. We focus on the dislocation
configurations identified in Section 4 where the continuum long-range force fails to pro-
vide stabilizing effect compared with the discrete model. These dislocation distributions
are uniform either within the slip planes (in the x direction) or in the direction normal
to the slip planes (in the y direction), i.e.,

ρ=ρ(x) or ρ(y). (5.1)

We consider the dislocation configurations that are not far from a unform distribution
(i.e. in the linear regime of the deviations). The perturbations are small in the sense of
the maximum norm. We neglect the force due to applied stress in this section.

Using the representation of DDPFs described in Section 3, such a perturbed uniform
dislocation wall can be described by

φ=
b

B
x+ φ̃, ψ=

b

D
y+ ψ̃, (5.2)

where B is the inter-dislocation spacing in a slip plane and D is the inter-slip plane
spacing in the uniform dislocation wall. From the formula of ρ in equation (3.5), it is
easy to show that equation (5.1) holds under the following necessary condition in the
linear regime that the perturbations in a DDPF φ or ψ are either functions of x or y,
i.e. {

φ̃= φ̃(x) or φ̃(y)

ψ̃= ψ̃(x) or ψ̃(y).
(5.3)

These dislocation configurations can be summarized into four cases as shown in Fig-
ure 5.1.

In Case 1, the dislocation distribution is uniform in the direction normal to the
slip planes, but nonuniform in a slip plane. This dislocation structure can be described
using DDPFs φ and ψ as φ=φ(x), ψ= by/D. In Case 2, each row of dislocations has a
small perturbation in the direction normal to the slip planes, and the perturbations are
uniform in the direction normal to the slip planes. This dislocation structure is given
by φ= bx/B, ψ= by/D+ ψ̃(x), where ψ̃(x) is some function. In Case 3, the dislocation
distribution is uniform in any slip plane, but nonuniform in the direction normal to
the slip planes. This dislocation structure is given by φ= bx/B, ψ=ψ(y). Finally, in
Case 4, each column of dislocations has a small perturbation, and the perturbations
are uniform for all the columns of dislocations. This dislocation structure is given by
φ= bx/B+ φ̃(y), ψ= by/D.
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We then derive for each of these four cases a continuum formula of the short-range
dislocation interaction force from the discrete dislocation dynamics model reviewed in
Section 2. In this discrete to continuum process, we employ asymptotic analysis under
the assumption that L>>B,D where L is the length unit of the continuum model.
This means that there are a large number of dislocations contained in a unit area of the
domain of the continuum model. Note that in this limit process, b/B and b/D are fixed
finite (small) numbers, and B and D are greater than a few multiples of the Burgers
vector length b such that the core regions of different dislocations are not overlapped.

Note that although we use linear assumption, the obtained continuum model still
holds for configurations significantly deviated from the uninform distributions. See the
numerical examples in Section 8.
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Fig. 5.1. Four cases of dislocation distributions with vanishing glide or climb force due to the
long-range dislocation interaction. Case 1: φ=φ(x), ψ= by/D. Case 2: φ= bx/B, ψ= by/D+ ψ̃(x).
Case 3: φ= bx/B, ψ=ψ(y). Case 4: φ= bx/B+ φ̃(y), ψ= by/D. See the text for the description of
each case.

5.1. Case 1. The structure of dislocations in this case is shown schematically
in Figure 5.1(a), which is uniform in the direction normal to the slip planes (in the y
direction), but nonuniform in a slip plane (in the x direction). This dislocation structure
is described by

φ=φ(x)=
b

B
x+ φ̃(x), ψ=ψ(y)=

b

D
y, (5.4)
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where φ̃(x) is some small perturbation such that φ̃(x)<<b and φ′(x)>0. Using equa-

tion (3.5), the dislocation density ρ=ρ(x)= 1
D ( 1

B + φ̃′(x)
b ), and accordingly, the con-

tinuum Peach–Koehler force due to the long-range dislocation interaction vanishes as
shown in Section 4. We will derive a continuum formula of the short-range dislocation
interaction force from the discrete dislocation dynamics model.

We first consider the glide force. In this case, the discrete dislocation dynamics
model in equation (2.4) gives the following expression for the glide force on the disloca-
tion located at (xm,yn=nD):

fddg (xm,yn)=
μb2

2π(1−ν)
∑
j �=m

+∞∑
k=−∞

(xm−xj)[(xm−xj)2−(kD)2]

[(xm−xj)2+(kD)2]2

=
πμb2

(1−ν)D2

∑
j �=m

xm−xj
cosh2π

xm−xj

D −1

=
πμb2

(1−ν)D2

+∞∑
j=1

(
xm−xm+j

cosh2π
xm−xm+j

D −1
+

xm−xm−j

cosh2π
xm−xm−j

D −1

)
. (5.5)

We will derive a continuum expression from equation (5.5) in the limit of the length
unit of the continuum model L>>B, D and b. The continuum expression will be based
on the DDPF φ(x) in equation (5.4) such that φ(xm)=mb, m=0,±1,±2, · · · . We then
have

xm−xm+j =−jB+
B

b
[φ̃(xm+j)− φ̃(xm)]. (5.6)

Using the assumption φ̃<<b, we can make the following Taylor expansion at xm−
xm+j =−jB:

xm−xm+j

cosh2π
xm−xm+j

D −1
= −jB

cosh2π jB
D −1

+ B
b ·

cosh2π jB
D −1−2π jB

D sinh2π jB
D

(cosh2π jB
D −1)2

[φ̃(xm+j)− φ̃(xm)]+ · · · .
(5.7)

We can then approximate the glide force in equation (5.5) by

fddg (xm,yn)≈ πμb2

(1−ν)D2

∑+∞
j=1

B
b

cosh2π jB
D −1−2π jB

D sinh2π jB
D

(cosh2π jB
D −1)2

[φ̃(xm−j)+ φ̃(xm+j)−2φ̃(xm)].

(5.8)
Following equation (5.6), we have

φ̃(xm−j)+ φ̃(xm+j)−2φ̃(xm)=
b

B
(2xm−xm+j−xm−j)=− b

B
(jb)2xφφ=

b3

B

φxx
φ3x

j2.

(5.9)
Note that since we have assumed φ′(x)>0, x can also be considered as a function of φ.
Thus equation (5.8) can be approximated by

fddg (xm,yn)≈ πμb4

(1−ν)D2

φxx
φ3x

+∞∑
j=1

cosh2π jB
D −1−2π jB

D sinh2π jB
D

(cosh2π jB
D −1)2

j2

=
πμbB

1−ν φxx
+∞∑
j=1

[cosh2π jB
D −1−2π jB

D sinh2π jB
D ]( jBD )2

(cosh2π jB
D −1)2

,

=−πμbD
1−ν g1

(
B

D

)
φxx, (5.10)
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where the function g1(s) is defined as

g1(s)=

+∞∑
j=1

[2πjssinh(2πjs)−cosh(2πjs)+1](js)2s

[cosh(2πjs)−1]2
. (5.11)

In the continuum model, it would be more convenient to have a simple formula
for the coefficient instead of the summation in equation (5.11). Obtaining analytical
formula for such a summation is difficult. In the following, we will derive an approximate
formula for it.

First, when B/D is small, the summation in equation (5.11) can be considered as
an approximation to some integral with Δx=B/D as follows

g1

(
B

D

)
=

1

2

∑
j �=0

[2π jB
D sinh2π jB

D −cosh2π jB
D +1]( jBD )2

(cosh2π jB
D −1)2

· B
D

≈ 1

2

[∫ +∞

−∞

(2πxsinh2πx−cosh2πx+1)x2

(cosh2πx−1)2
dx

− lim
x→0

(2πxsinh2πx−cosh2πx+1)x2

(cosh2πx−1)2
· B
D

]

=
1

2

(∫ +∞

−∞

2πx3 sinh2πx

(cosh2πx−1)2
dx−

∫ +∞

−∞

x2

cosh2πx−1
dx− 1

2π2

B

D

)

=
1

2

(∫ +∞

−∞

2x2

cosh2πx−1
dx− 1

2π2

B

D

)

=
1

6π
− 1

4π2

B

D
. (5.12)

Note that in these calculations, the approximation from the summation in the first line
to the integral in the second line is based on the trapezoidal rule and the fact that the
integrand decays exponentially as x→±∞. Thus by equations (5.10)–(5.12), we have
the following continuum approximation of the glide force on the dislocation

fdcg =− μb2

6(1−ν)|ψy|
(
1− 3

2π

|ψy|
|φx|

)
φxx. (5.13)

Here we have used b
B ≈|φx| and b

D = |ψy| by equation (5.4).
Note that the above approximation holds when B/D is small. When B/D is large,

all the terms in the summation in g1 are exponentially small controlled by e−
B
D , and

accordingly g1 is exponentially small. On the other hand, there is an important property
that g1>0 always holds. Thus when B/D is large, we use ε/(6π) to approximate g1,
where ε is some small positive constant. That is,

g1(s)≈
{

1
6π − s

4π2 , if 1− 3
2π s>ε;

ε
6π , otherwise for s≥0.

(5.14)

Figure 5.2 shows good match between the results from the approximation of the function
g1(s) and its exact formula in equation (5.11) for different values of s.

Using the approximations in the two regimes obtained above, we have the following
continuum approximation of the glide force on the dislocation for all values of B/D:

fdcg =− μb2

6(1−ν)|ψy|
[
1− 3

2π

|ψy|
|φx|

]
ε+

φxx, (5.15)
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where the notation [·]ε+ is defined as

[h]ε+=

{
h, if h>ε;
ε, if h≤ε. (5.16)

We would like to remark that in addition to its accuracy, the form of the continuum
force formula in equation (5.15) is also essential to maintain the strict stability of the
evolution equations, see equation (5.20).

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05
g1

S

Fig. 5.2. Comparison of the approximation of the function g1(s) in equation (5.14) (the red piece-
wise linear curve) and its exact formula in equation (5.11) (the blue dash curve, calculated numerically)
for different values of s, where ε=0.02.

Note that when the line direction of these dislocations changes to τ =(0,0,−1), we
may have φx<0, and this case can be included by modifying the continuum glide force
in equation (5.15) as

fdcg =−sgn(φx) μb2

6(1−ν)|ψy|
[
1− 3

2π

|ψy|
|φx|

]
ε+

φxx, (5.17)

where the function sgn(s) gives the sign of s. This continuum expression does not
depend on the sign of ψy.

Next we derive continuum expression of the climb force for this case. On the
dislocation at (xm,yn), the climb force from the discrete dislocation dynamics model in
equation (2.5) is

fddc (xm,yn)=
μb2

2π(1−ν)
∑
j �=m

+∞∑
k=−∞

(0−kD)(3(xm−xj))2+(0−kD)2)

[(xm−xj)2+(0−kD)2]2
=0. (5.18)

Thus the continuum expression of the climb force in this case is

fdcc ≡0. (5.19)

Substituting the continuum expressions of fdcg and fdcc in equations (5.17) and (5.19)
into the evolution equation of φ in (3.6), with the mobility law in equation (2.8), the
final form of the evolution equation for Case 1 is

φt− mgμb
2

6(1−ν)
|φx|
|ψy|

[
1− 3

2π

|ψy|
|φx|

]
ε+

φxx=0. (5.20)
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5.2. Case 2. The structure of dislocations in this case is shown schematically
in Figure 5.1(b). Each row of dislocations has a small perturbation in the direction
normal to the slip planes (in the y direction), and the perturbations are uniform in the
y direction. This dislocation structure is described by

φ=
b

B
x, ψ=

b

D
y+ ψ̃(x), (5.21)

where ψ̃(x) is some small perturbation with ψ̃(x)<<b and Bb/D. The continuum
Peach–Koehler force due to the long-range dislocation interaction vanishes as shown in
Section 4.

In the discrete model of this case, if we denote the locations of the dislocations on
the ψ=0 row by (xj = jB,yj) for j=0,±1,±2, · · · , i.e.,

b

D
yj+ ψ̃(xj)=0, (5.22)

the glide force on the dislocation (xm,ym) using equation (2.4) is

fddg (xm,ym)=
μb2

2π(1−ν)
∑
j �=m

+∞∑
k=−∞

(xm−xj)[(xm−xj)2−(ym−(yj+kD))2]

[(xm−xj)2+(ym−(yj+kD))2]2

=
πμb2

(1−ν)D2

∑
j �=m

(xm−xj)[cosh2π xm−xj

D cos2π
ym−yj

D −1]

(cosh2π
xm−xj

D −cos2π
ym−yj

D )2

≈ πμb2

(1−ν)D2

·
∑
j �=m

(xm−xj)
[
cosh2π

xm−xj
D −1−

(
cosh2π

xm−xj
D +2

)(
1−cos2π

ym−yj
D

)]
(
cosh2π

xm−xj
D −1

)2 .

(5.23)

Here we have summed up the contributions from each column first. When j=m, the
glide force on the dislocation (xm,ym) imposed by the vertical dislocation array con-
taining this dislocation itself is zero. The last approximation is obtained by Taylor
expansions using the fact that cosh2π

xm−xj

D −1>>1−cos2π
ym−yj

D for j �=m, which is
due to xj = jB and yj<<D and B. The latter can be derived from the assumption

ψ̃(x)<<b and Bb/D and the definition of yj in equation (5.22).
Next we derive a continuum expression from the summation in equation (5.23) when

B,D<<L, the length unit of the continuum model. As in equation (5.5) in Case 1, the
summation in equation (5.23) can be written in a symmetric way as

fddg (xm,ym)≈ πμb2

(1−ν)D2

·
+∞∑
j=1

{
(xm−xm+j)

[
cosh2π

xm−xm+j
D −1−

(
cosh2π

xm−xm+j
D +2

)(
1−cos2π

ym−ym+j
D

)]
(
cosh2π

xm−xm+j
D −1

)2

+
(xm−xm−j)

[
cosh2π

xm−xm−j
D −1−

(
cosh2π

xm−xm−j
D +2

)(
1−cos2π

ym−ym−j
D

)]
(
cosh2π

xm−xm−j
D −1

)2

}
.

(5.24)
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Using xj = jB, equation (5.22), and the assumption yj<<D, we can calculate as in
Case 1 that

fddg (xm,ym)≈ 2μπ3

(1−ν)D2

+∞∑
j=1

jB
cosh2π jB

D +2

(cosh2π jB
D −1)2

·[ψ̃(xm+j)− ψ̃(xm−j)][ψ̃(xm+j)−2ψ̃(xm)+ ψ̃(xm−j)]

≈ 4μπ3D2

1−ν ψ̃xxψ̃x

+∞∑
j=1

(
jB

D

)4 cosh2π jB
D +2

(cosh2π jB
D −1)2

=O(ψ̃2)

≈0. (5.25)

Note that we only keep linear terms of the small perturbation ψ̃. Thus the continuum
expression of the glide force in this case is

fdcg ≡0. (5.26)

Next we will derive a continuum expression of the climb force in this case. The
discrete expression given by equation (2.5) is

fddc (xm,ym)=
μb2

2π(1−ν)
∑
j �=m

+∞∑
k=−∞

(ym−(yj+kD))[3(xm−xj)2+(ym−(yj+kD))2]

[(xm−xj)2+(ym−(yj+kD))2]2

=
μb2

2(1−ν)D
∑
j �=m

sin2π
ym−yj

D

(cosh2π
xm−xj

D −cos2π
ym−yj

D )2

·
{
cosh2π

xm−xj
D

−cos2π
ym−yj
D

+2π
xm−xj
D

sinh2π
xm−xj
D

}

≈ πμb2

(1−ν)D2

∑
j �=m

(ym−yj)(cosh2π xm−xj

D −1+2π
xm−xj

D sinh2π
xm−xj

D )

(cosh2π
xm−xj

D −1)2
.

(5.27)

Using the same method as before, equation (5.27) can be approximated by

fddc (xm,ym)≈ πμbD2

(1−ν)B ψ̃xx

+∞∑
j=1

[cosh2π jB
D −1+2π jB

D sinh2π jB
D ]( jBD )2

(cosh2π jB
D −1)2

· B
D
.

(5.28)

Further using |ψy|= b
D , |φx|= b

B , and taking into consider the dislocations in the oppo-
site direction (i.e. ψy<0), as in Case 1, we have

fdcc =sgn(ψy)
πμb2|φx|

(1−ν)|ψy|2 g2
( |ψy|
|φx|

)
ψxx, (5.29)

where function g2 is defined as g2(
B
D )=

∑+∞
j=1

[cosh2π jB
D −1+2π jB

D sinh2π jB
D ]( jB

D )2

(cosh2π jB
D −1)2

· BD . Sub-

stituting the obtained fdcg and fdcc into the evolution equation of ψ in equation (3.6),
with the mobility law in equation (2.8), the evolution equation of dislocations for this
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case can be written as ψt+
πmcμb

2|φx|
(1−ν)|ψy| g2

( |ψy|
|φx|

)
ψxx=0. It is easy to see that g2(s)>0

for s>0. This means that the obtained evolution equation is not wellposed. In order to
obtain a wellposed equation, we can keep higher order derivative terms in the contin-
uum approximation, which will make the equation very complicated. Alternatively, we
simply choose a simple regularization term of second order to ensure the wellposedness
of the continuum model, which leads to the following evolution equation for Case 2:

ψt− mcμb
2

6(1−ν)εψxx=0, (5.30)

where ε>0 is the same small parameter as that in equation (5.14).

5.3. Case 3. The structure of dislocations in this case is shown schematically
in Figure 5.1(c), which is uniform in each slip plane (in the x direction), but slip planes
of these dislocations are nonuniform (in the y direction). This dislocation structure is
described by

φ=
b

B
x, ψ=

b

D
y+ ψ̃(y), (5.31)

where ψ̃(y) is some small perturbation such that ψ′(y)>0.
Using equation (3.5), the dislocation density in this case is

ρ=ρ(y)=
1

B

(
1

D
+
ψ̃′(y)
b

)
. (5.32)

Based on the conclusions in Section 4 (equations (4.5) and (4.6)), the continuum long-
range glide force vanishes, whereas the continuum long-range climb force does not.
Therefore, in this case, the integral expression in equation (3.10) is able to give a
nonvanishing leading order continuum approximation for the climb force, and we only
need to derive a continuum formula for the short-range glide force.

Using the discrete model in equation (2.4), the glide force on the dislocation located
at (xm=mB,yn) in this case is

fddg (xm,yn)=
μb2

2π(1−ν)
∑
k �=n

+∞∑
j=−∞

−jB[(jB)2−(yn−yk)2]
[(jB)2+(yn−yk)2]2 =0. (5.33)

This means that the glide force in this case indeed vanishes. Therefore, in this case,

fdcg ≡0. (5.34)

Remark 5.1. In this case, we have shown that the integral expression in equa-
tion (3.10) is able to give a nonvanishing leading order continuum approximation for
the climb force. It is interesting to note that this integral expression with the dislocation
density ρ in equation (5.32) in this case can be further simplified to a local expression:
fdc,0c = 2μb

(1−ν)B ψ̃(y), if the perturbation ψ̃ goes to zero at infinity.

5.4. Case 4. The structure of dislocations in this case is shown schematically
in Figure 5.1(d). Each column of dislocations has a small perturbation in their own slip
planes (in the x direction), and the perturbations are uniform in the x direction. This
dislocation structure is described by

φ=
b

B
x+ φ̃(y), ψ=

b

D
y, (5.35)
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where φ̃(y) is some small perturbation with φ̃(y)<<b and Db/B. The continuum
Peach–Koehler force due to the long-range dislocation interaction vanishes as shown
in Section 4 because the scalar dislocation density calculated by equation (3.5) is a
constant.

In the discrete model of this case, we denote the locations of the dislocations on the
φ=0 column by (xk,yk=kD) for k=0,±1,±2, · · · , i.e.,

b

B
xk+ φ̃(yk)=0. (5.36)

The glide force on the dislocation (xn,yn) using equation (2.4) is

fddg (xn,yn)=
μb2

2π(1−ν)
∑
k �=n

+∞∑
j=−∞

(xn−(xk+jB))[(xn−(xk+jB))2−(yn−yk)2]
[(xn−(xk+jB))2+(yn−yk)2]2

=
μb2

2(1−ν)B
∑
k �=n

sin2π xn−xk

B

(cosh2π yn−yk

B −cos2π xn−xk

B )2

·
(
cosh2π

yn−yk
B

−cos2π
xn−xk
B

−2π
yn−yk
B

sinh2π
yn−yk
B

)

≈ μb2

2(1−ν)B
∑
k �=n

sin2π xn−xk

B (cosh2π yn−yk

B −1−2π yn−yk

B sinh2π yn−yk

B )

(cosh2π yn−yk

B −1)2
.

(5.37)

Here we have summed up the contributions from each row first. When k=n, the glide
force on the dislocation (xn,yn) imposed by the row of dislocations containing this
dislocation itself is zero. The last approximation is obtained by Taylor expansions using
the fact that cosh2π yn−yk

B −1>>1−cos2π xn−xk

B for k �=n, which is due to yk=kD and

xk<<B and D. The latter can be derived from the assumption φ̃(y)<<b and Db/B
and the definition of xk in equation (5.36). The relative error of this approximation is
O(max

k
|xk|/D)2.

Following equation (5.36), we have the Taylor expansion that

xk−xn=−B
b
φ̃(yk)+

B

b
φ̃(yn)

=−B
b
φ̃y(yn)(yk−yn)− B

2b
φ̃yy(yn)(yk−yn)2+O((yk−yn)3). (5.38)

Using equations (5.37) and (5.38) and yk=kD, we have

fddg (xn,yn)≈ μb2

2(1−ν)B
+∞∑
k=1

(
sin2π

xn−xn+k

B
+sin2π

xn−xn−k

B

)

·cosh2π
kD
B −1−2π kD

B sinh2π kD
B

(cosh2π kD
B −1)2

≈ πμb

(1−ν)B φ̃
′′(yn)

+∞∑
k=1

(cosh2π kD
B −1−2π kD

B sinh2π kD
B )(kD)2

(cosh2π kD
B −1)2

. (5.39)

Using the definition of the function g1 in equation (5.11) and the approximation in
equation (5.14), we have the continuum approximation

fdcg =− πμbB2

(1−ν)D g1

(
D

B

)
φ̃yy≈− μb2|ψy|

6(1−ν)|φx|2
[
1− 3

2π

|φx|
|ψy|

]
ε+

φyy. (5.40)
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Here we have used φ̃yy =φyy.
As in Case 1, when the line direction of these dislocations changes to τ =(0,0,−1),

we may have φx<0, and this case can be included by modifying the continuum glide
force in equation (5.40) as

fdcg =−sgn(φx) μb2|ψy|
6(1−ν)|φx|2

[
1− 3

2π

|φx|
|ψy|

]
ε+

φyy. (5.41)

This continuum expression does not depend on the sign of ψy.
As in the previous cases, we also calculate the continuum approximation of the

climb force in this case from the discrete model in equation (2.5), and the result is

fddc (xn,yn)=
μb2

2π(1−ν)
∑
k �=n

+∞∑
j=−∞

(yn−yk)[3(xn−(xk+jB))2+(yn−yk)2]
[(xn−(xk+jB))2+(yn−yk)2]2

=
μb2

2(1−ν)B
∑
k �=n

1

(cosh2π yn−yk

B −cos2π xn−xk

B )2

·[−2π yn−yk

B (cosh2π yn−yk

B cos2π xn−xk

B −1)

+2sinh2π yn−yk

B (cosh2π yn−yk

B −cos2π xn−xk

B )]

=O(φ̃′(yn)φ̃′′(yn))
≈0. (5.42)

Again, we have used the fact that cosh2π yn−yk

B −1>>1−cos2π xn−xk

B for k �=n, to
obtain the expansions. Therefore, in this case,

fdcc ≡0. (5.43)

Substituting equations (5.41) and (5.43) into equation (3.6), we have the following
evolution equation for this case:

φt− mgμb
2

6(1−ν)
|ψy|
|φx|

[
1− 3

2π

|φx|
|ψy|

]
ε+

φyy =0. (5.44)

6. Continuum dislocation dynamics model incorporating short-range in-
teractions

In this section, we present the continuum dislocation dynamics model that incor-
porates the short range dislocation interactions discussed in the previous section.

6.1. The continuum dislocation dynamics model based on DDPFs. We
have shown in Section 4 that a continuum model with only the long-range Peach–Koehler
force is not always able to capture the behaviors of discrete dislocation dynamics. It will
be shown in Section 7 that such inconsistency leads to insufficiency in the stabilizing
effect of the continuum model compared with the discrete dislocation dynamics model.
As a result, in numerical simulations using such a continuum model, there is no effective
mechanism to eliminate some numerical oscillations generated during the simulations.

In Section 3, we have presented the framework of our DDPF-based continuum dis-
location dynamics model, see equation (3.6). We incorporate into our continuum model
the continuum short-range forces obtained in the previous section for the cases where
the continuum long-range glide or climb force vanishes. With these short-range terms
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and including the contributions of the applied stress field, the continuum dislocation
dynamics equations in equation (3.6) become⎧⎨

⎩
φt+v ·∇φ= mgμb

2

6(1−ν)
|φx|
|ψy|

[
1− 3

2π
|ψy|
|φx|

]
ε+
φxx+

mgμb
2

6(1−ν)
|ψy|
|φx|

[
1− 3

2π
|φx|
|ψy|

]
ε+
φyy,

ψt+v ·∇ψ= mcμb
2

6(1−ν)εψxx,
(6.1)

where

v=(vg,vc), (6.2)

vg=
mg

b (τττ ·k) G1 ∗(∇φ×∇ψ ·k)+mg(τττ ·k)bσ0
xy,

=
mgμ

2π(1−ν) (τττ ·k)
∫ +∞
−∞

∫ +∞
−∞

(x−x1)[(x−x1)
2−(y−y1)

2]
[(x−x1)2+(y−y1)2]2

[∇φ(x1,y1)×∇ψ(x1,y1) ·k] dx1dy1
+mg(τττ ·k)bσ0

xy, (6.3)

vc=−mc

b (τττ ·k) G2 ∗(∇φ×∇ψ ·k)−mc(τττ ·k)bσ0
xx,

= mcμ
2π(1−ν) (τττ ·k)

∫ +∞
−∞

∫ +∞
−∞

(y−y1)[3(x−x1)
2+(y−y1)

2]
[(x−x1)2+(y−y1)2]2

[∇φ(x1,y1)×∇ψ(x1,y1) ·k] dx1dy1
−mc(τττ ·k)bσ0

xx, (6.4)

τττ = ∇φ×∇ψ
‖∇φ×∇ψ‖ , (6.5)

k=(0,0,1)T , (6.6)

with

G1(x,y)=
μb

2π(1−ν)
(x−x1)[(x−x1)

2−(y−y1)
2]

[(x−x1)2+(y−y1)2]2
, (6.7)

G2(x,y)=− μb
2π(1−ν)

(y−y1)[3(x−x1)
2+(y−y1)

2]
[(x−x1)2+(y−y1)2]2

. (6.8)

Under the assumptions that the length of the Burgers vector b<<L, where L is the
unit length of the continuum model, and the average dislocation spacing B∼D<<L,
it is easy to find that the ratio of the second order partial derivative terms vs the long-
range terms v ·∇φ and v ·∇ψ in equation (6.1) is O(b/L)<<1. Here we have used the
fact that φx=O(b/B), φxx=O(b/(BL)), and similar orders for other partial derivatives
of φ and ψ.

Recall that continuum short-range interaction terms provide good approximations
to the discrete dislocation model when the continuum long-range force vanishes for some
non-trivial perturbed dislocation walls. For a general dislocation distribution described
by the continuum model, the full continuum force (including both the long-range and
short-range continuum forces) still provides a good approximation to the discrete dis-
location dynamics model under the assumption that a point in the continuum model
corresponds to one of these dislocation microstructures of perturbed regular dislocation
walls, which is a common technique for the coarse-graining from micro- or meso-scopic
models to continuum models. Mathematically, these short-range terms in the contin-
uum model serve as stabilizing terms that maintain the same stability properties as the
discrete dislocation dynamics model, as will be shown in Section 7.

Recall also that the main advantage of continuum model based on DDPFs [34, 38,
42,43] is being able to describe the orientation-dependent dislocation densities of curved
dislocations. The dislocation glide within its slip plane due to the long-range Peach–
Koehler force is regularized by the local curvature term due to line tension effect. In the
continuum dynamics equations in equation (6.1) obtained in this paper, the short-range
interaction terms are in the form of second partial derivatives of the DDPFs and are
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able to provide regularization in the cross-section of the dislocations for both glide and
climb. Combining these two regularization effects, we expect to have a full well-posed
continuum dislocation dynamics model based on DDPFs. Moreover, the use of two
DDPFs φ and ψ in the continuum dislocation dynamics model enables the study of the
anisotropic behaviors of dislocation ensembles within and out of their slip planes. These
will be further explored in the future work.

6.2. Continuum model for dislocation glide. In this subsection, we consider
the dynamics of dislocations only by their glide. In this case, we assume the average
inter-slip plane distance is D [43], that is, ψ(x,y)= b

Dy is always fixed. Applying our
continuum model in equation (6.1) to this case, i.e., the dislocations only move in the
x direction. In this case, equation (6.1) becomes

φt+
mg

D |φx|G1 ∗φx+mgbσ
0
xy|φx|

=
mgμbD
6(1−ν) |φx|

[
1− 3D

2πb|φx|
]
ε+
φxx+

mgμb
3

6(1−ν)D|φx|
[
1− 3D|φx|

2πb

]
ε+
φyy, (6.9)

where

G1 ∗φx(x,y)= μb
2π(1−ν)

∫ +∞
−∞

∫ +∞
−∞

(x−x1)[(x−x1)
2−(y−y1)

2]
[(x−x1)2+(y−y1)2]2

φx(x1,y1) dx1dy1. (6.10)

In this case, the continuum model in equation (6.9) can be written as:

φt+vgφx=0, (6.11)

where the total glide velocity vg=mgfg, the continuum total glide force fg=f
dc
g +

sgn(φx)bσ
0
xy as given by equation (3.7), and the continuum force due to interactions

between dislocations

fdcg =sgn(φx)

{
1
DG1 ∗φx− mgμbD

6(1−ν)

[
1− 3b

2πD|φx|
]
ε+
φxx− mgμb

3

6(1−ν)Dφ2
x

[
1− 3b|φx|

2πD

]
ε+
φyy

}
(6.12)

including both the long-range interaction force (the first term) and the short-range
interaction forces (the remaining two terms) on the dislocations.

When the dislocation distribution is uniform in the y direction, which is Case 1 in
Section 5, equation (6.9) reduces to

φt+mgbσ
0
xy|φx|−

mgμb
2D

6(1−ν) |φx|
[
1− 3b

2πD|φx|
]
ε+

φxx=0. (6.13)

In this case, the continuum total force in equation (6.12) reduces to equation (5.17).

6.3. Comparison with scalar dislocation density based continuum mod-
els. In this subsection, we examine the evolution of the signed dislocation density ρ
defined equation (3.5) in terms of the DDPFs φ and ψ.

We first consider the continuum model of φ and ψ in the form of equation (3.6).
From equations (3.5) and (3.6), we can calculate that

ρt+∇·(ρv)=0, (6.14)

where v=(vg,vc)
T is the dislocation velocity. In fact,

ρt=
1

b2
(φxψy−ψxφy)t
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=
1

b2
(φxtψy+φxψyt−ψxtφy−ψxφyt)

=
1

b2
{(−v ·∇φ)xψy+(−v ·∇ψ)yφx−(−v ·∇ψ)xφy−(−v ·∇φ)yψx}

=
1

b2
{(−v1φxψy+v1ψxφy)x+(−v2φxψy+v2ψxφy)y}

=−∇·(ρv). (6.15)

In most of the continuum dislocation dynamics models in the literature, the evolution
equation is written in the conservative form in equation (6.14). Here we only consider the
geometrically necessary dislocations. When only the long-range Peach–Koehler force is
considered, the dislocation velocity v is expressed by the mobility law in equation (2.8)
and the long-range force f=(fg,fc)

T in equations (3.9) and (3.10) in terms of ρ. These
form a closed evolution equation for the dislocation density ρ.

However, the modified continuum dislocation dynamics models incorporated with
short-range interaction terms in equation (6.1) in general is not able to be described
fully by the evolution of ρ. The reason is that in our continuum model incorporates the
anisotropy of dislocation structure and motion within and out of the slip planes, whereas
the single scalar dislocation density ρ is only able to describe isotropy dislocation struc-
ture and motion. When we only consider the glide motion of dislocations as in Sec-
tion 6.2, following equation (3.5), the dislocation density is ρ=(∇φ×∇ψ ·k)/b2= 1

bDφx,
and equation (6.11) can be written as

ρt+(ρvg)x=0, (6.16)

where vg=mgfg, fg=f
dc
g +sgn(ρ)bσ0

xy, and

fdcg =sgn(ρ)

{
bG1 ∗ρ− mgμb

2D2

6(1−ν)

[
1− 3

2πD2ρ

]
ε+
ρx− mgμb

2

6(1−ν)D2
1
ρ2

[
1− 3D2ρ

2π

]
ε+
φyy

}
.

(6.17)

Although equation (6.16) is in a conservative form of the dislocation density ρ, the
continuum total glide force in equation (6.17) also depends on φyy, which cannot be
simply expressed in terms of ρ. Especially, for the dislocation structure of Case 4
shown in Figure 5.1(d), the dislocation density ρ≡1/(BD), thus the representation by
ρ alone is not able to tell the difference between this dislocation structure and a uniform
distribution.

For the dislocation structure of Case 1 shown in Figure 5.1(a) (without the applied
stress), our continuum model in equation (5.20) can indeed be rewritten as an evolution
equations of the dislocation density ρ following ρ= 1

bDφx, which is

ρt− mgμb
2

6(1−ν)

(
D2|ρ|

[
1− 3

2πD2ρ

]
ε+

ρx

)
x

=0. (6.18)

In this case, only the local short-range force is nonvanishing, which is

fdcg =−sgn(ρ)mgμb
2D2

6(1−ν)
[
1− 3

2πD2ρ

]
ε+

ρx. (6.19)

In the available continuum formulas in the literature for this case using different meth-
ods [11, 28], their local forces are proportional to ρx/|ρ| when only the geometrically
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necessary dislocations are considered. The corresponding term in our continuum model
for this case in equations (6.18) and (6.19) is ρxD

2, which means that for this spe-
cial case, the isotropic dislocation density ρ in the denominator in the models in the
literature should be replaced by a more accurate expression 1/D2 where D is the av-
erage inter-dislocation distance normal to the slip plane. Again we can see that our
model using two DDPFs φ and ψ are able to anisotropy of dislocation structure and
motion within and out of the slip planes, which is not able to be achieved by using the
traditional scalar dislocation density ρ.

7. Stability using the new continuum model
In this section, we examine the stability of the uniform dislocation distributions

using the derived continuum model in equation (6.1). Consider a uniform distribution
of dislocations represented by φ0=

b
Bx, ψ0=

b
Dy. This uniform distribution subject to

a small perturbation can be written as{
φ= b

Bx+ φ̃(x,y,t),

ψ= b
Dy+ ψ̃(x,y,t),

(7.1)

where φ̃(x,y,t) and ψ̃(x,y,t) are small perturbation functions. Using equation (3.5), the
dislocation density for this distribution up to linear order of the small perturbations is

ρ(x,y,t)=
(∇φ×∇ψ) ·k

b2
≈ 1

BD
+

1

bD
φ̃x+

1

bB
ψ̃y. (7.2)

Substituting the above φ and ψ into the continuum model in equation (6.1) with
equations (6.2)–(6.8), the linearized evolution equations of φ̃(x,y,t),ψ̃(x,y,t), written in
the Fourier space, is

ˆ̃
φt=−2mgμb

2

1−ν

{
1

BD

k21k
2
2

(k21+k
2
2)

2
+

D

12B

[
1− 3

2π

B

D

]
ε+

k21+
B

12D

[
1− 3

2π

D

B

]
ε+

k22

}
ˆ̃
φ

− 2mgμb
2

(1−ν)B2

k1k
3
2

(k21+k
2
2)

2

ˆ̃
ψ, (7.3)

ˆ̃
ψt=− 2mcμb

2

(1−ν)D2

k1k
3
2

(k21+k
2
2)

2

ˆ̃
φ− 2mcμb

2

1−ν
[

1

BD

k42
(k21+k

2
2)

2
+

1

12
εk21

]
ˆ̃
ψ, (7.4)

where k1 and k2 are frequencies in the x and y directions, respectively. Here we have

used Ĝ1(k1,k2)=−i μb
2π2(1−ν)

k1k
2
2

(k2
1+k2

2)
2 and Ĝ2(k1,k2)=−i μb

2π2(1−ν)
k3
2

(k2
1+k2

2)
2 for G1(x,y)

and G2(x,y) in equations (6.7) and (6.8).

The evolution of
ˆ̃
φ and

ˆ̃
ψ described by equations (7.3) and (7.4) is determined by

the two eigenvalues of the coefficient matrix solved from the characteristic polynomial∣∣∣∣λ+A+a1+a2 R
C λ+S+s1

∣∣∣∣=0, (7.5)

where

A=
2mgμb

2

(1−ν)BD
k21k

2
2

(k21+k
2
2)

2
, R=

2mgμb
2

(1−ν)B2

k1k
3
2

(k21+k
2
2)

2
,

C=
2mcμb

2

(1−ν)D2

k1k
3
2

(k21+k
2
2)

2
, S=

2mcμb
2

(1−ν)BD
k42

(k21+k
2
2)

2
,
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a1=
mgμb

2D

6(1−ν)B
[
1− 3

2π

B

D

]
ε+

k21, a2=
mgμb

2B

6(1−ν)D
[
1− 3

2π

D

B

]
ε+

k22,

s1=
εmcμb

2

6(1−ν)k
2
1.

The Fourier coefficients of the small perturbations
ˆ̃
φ and

ˆ̃
ψ decay when the two eigen-

values λ1,λ2<0.

Due to AS=RC, the characteristic polynomial in equation (7.5) becomes

λ2+(A+a1+a2+S+s1)λ+(a1+a2)(S+s1)+As1=0. (7.6)

Thus the two eigenvalues are

λ1,2=
−(A+a1+a2+S+s1)±

√
(A+a1+a2+S+s1)2−4[(a1+a2)(S+s1)+As1]

2 (7.7)

=
−(A+a1+a2+S+s1)±

√
(A+a1+a2−S−s1)2+4AS

2 . (7.8)

Note that A,S,a1,a2,s1≥0. By equation (7.8), we know that both λ1 and λ2 are real.
It is easy to conclude from equation (7.7) that λ1,2<0 when k1 �=0 or k2 �=0 (because
the term 4[(a1+a2)(S+s1)+As1]>0 in this case), and λ1=λ2=0 when k1=k2=0.

Therefore, when (k1,k2) �=(0,0),
ˆ̃
φ and

ˆ̃
ψ always decay and the uniform distribution of

dislocations is stable using the derived continuum model in equation (6.1).

This stability result provides a basis for wellposedness of the continuum model
in equation (6.1) as well as stability of numerical solutions for it. These topics will
be further explored in the future work. When only the continuum long-range Peach–
Koehler force is considered, i.e., the second partial derivative terms on the right-hand
side of the PDE system in equation (6.1) vanish, the linearized equations for the small
perturbations φ̃ and ψ̃ in the Fourier space are

ˆ̃
φt=−2mgμb

2

1−ν
1

BD

k21k
2
2

(k21+k
2
2)

2

ˆ̃
φ− 2mgμb

2

(1−ν)B2

k1k
3
2

(k21+k
2
2)

2

ˆ̃
ψ, (7.9)

ˆ̃
ψt=− 2mcμb

2

(1−ν)D2

k1k
3
2

(k21+k
2
2)

2

ˆ̃
φ− 2mcμb

2

1−ν
1

BD

k42
(k21+k

2
2)

2

ˆ̃
ψ. (7.10)

Same as the discussion in Section 4, when k1=0 or k2=0, there is no stabilizing force
(which is the glide force) for φ̃; and when k2=0, there is no stabilizing force (which is
the climb force) for ψ̃. In these cases, numerical oscillations in simulations cannot be
stabilized without the second order partial derivative terms.

Recall that the second order partial derivative terms in equation (6.1) are based on
the short-range interactions of dislocations. Those terms coming from the short-range
glide forces (in the φ-equation) agree with the glide forces using the discrete dislocation
model for uniform dislocation distributions subject to small perturbations in the glide
direction. For the climb force, a regularization term (in the ψ-equation) is added in
addition to the stabilizing effect provided by the long-range climb force.

8. Numerical simulations

In this section, we perform numerical simulations to validate the derived continuum
model. In addition to the nondimensionalization before simulations, we set Poisson
ratio ν=1/3.
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8.1. Comparisons of the continuum force with the discrete model. We
first examine the total glide force in the continuum model including both the long-range
and short-range contributions given by equation (6.12) by comparisons with the discrete
dislocation dynamics model. Recall that the continuum short-range glide force terms
are derived from the discrete dislocation model for uniform dislocation distributions
subject to small perturbations in the glide direction.

We first consider the dislocation distributions of Case 1 in Section 5, where the
dislocation distributions are uniform in the y direction. This problem is reduced to a
one-dimensional problem depending only on x.

Example 1
Assume the dislocation distribution is described by

φ(x)=

⎧⎪⎨
⎪⎩
−Nb

2 if x=−NB
2

Nb
2 erf( x

w ) if −NB
2 <x< NB

2
Nb
2 if x= NB

2

(8.1)

where erf(x)= 2√
π

∫ x

0
e−u2

du, and ψ(y)= b
Dy. Periodic boundary condition is assumed

in the x direction. We set D=50b, B=30b, and N =40. The dislocation walls are con-
centrated within the region in the center with width w. We perform simulations for the
cases of w=10B, w=5B, w=B. The profiles of the DDPF φ and the locations of the
dislocation walls are shown in Figure 8.1 (a), (c), and (e), and the corresponding glide
forces calculated by the continuum model in equation (6.12) (which reduces to equa-
tion (5.17) in this case) and by the discrete dislocation model are plotted in Figure 8.1
(b), (d), and (f), respectively. It can be seen that the results of the continuum model
agree excellently with those of discrete model for smoothly varying (the case of w=10B
in Figure 8.1 (a),(b)) and even concentrated (the case of w=5B in Figure 8.1 (c),(d))
distributions of dislocation walls. For extremely concentrated distribution of disloca-
tion walls as shown in Figure 8.1 (e) with w=B, the overall continuum approximation
Figure 8.1 (f) is still reasonably good. At the two ends of the concentrated distribution
where the dislocation density changes dramatically, our continuum approximation gives
the strongest force as in the discrete model, although there are discrepancies in the exact
values. (Recall that the continuum formulations are derived based on smoothly-varying
dislocation densities.)

Example 2
In this example, we examine the continuum glide force in equation (5.17) for different

values of the ratio B/D for distributions of dislocation walls with uniform active slip
plane spacing. Recall that B is the average inter-dislocation distance within a slip plane
and D is the average slip plane spacing. For these dislocation distributions, we choose
the DDPFs ψ(y)= b

Dy and φ(x) determined by the following equation

b

B
x=φ+bsin

(
2πφ

40b

)
. (8.2)

This a uniform dislocation wall distribution with perturbation in the x direction, and
the DDPF φ can be written as φ(x)= b

Bx+ φ̃(x), where φ̃(x) is a small perturbation,
see Figure 8.2(a). The period of this distribution is N =40 dislocation walls. We fix
D=50b and vary the value of B.

The values of the glide force calculated by the continuum model and comparisons
with the results of the discrete dislocation model are shown in Figure 8.2(b)-(f) for
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Fig. 8.1. Example 1: Continuum glide force compared with the discrete model for distributions
of dislocation walls for different values of concentration width w (defined in equation (8.1)). The
concentration width w=10B in (a) and (b), w=5B in (c) and (d), and w=B in (e) and (f). Images
(a), (c), and (e) show the profile of φ(x) (red curve) and locations of the dislocation walls for each
value of the width w. The black dots on the horizontal line indicate the locations of the dislocation
walls, and the blue dots show the corresponding values of φ in the continuum model. Images (b), (d),
and (f) show values of the glide force fg on the dislocation walls calculated by using the continuum
model (red circles) and by using the discrete dislocation model (blue stars).

the cases of B=15b,40b,50b,100b,200b. When the inter-dislocation wall distance B is
smaller than the slip plane spacing D, as shown in Figure 8.2(b), the continuum glide
force agrees excellently with the force in discrete model. In this case, the glide force is
significant: around 10−3μb, in agreement with the strong interaction between neighbor-
ing dislocation walls. When the inter-dislocation wall distance B is comparable with
the slip plane spacing D, as shown in Figure 8.2(c) and (d), the continuum glide force
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Fig. 8.2. Example 2: Continuum glide force compared with that of the discrete model for distribu-
tions of dislocation walls for different values of the ratio B/D for distributions of dislocation walls with
uniform active slip plane spacing (given by equation (8.2)). (a) The profile of the DDPF φ (red curve)
and locations of the dislocation walls. The black dots on the horizontal line indicate the locations of
the dislocation walls, and the blue dots show the corresponding values of φ in the continuum model.
Images (b)-(f) show the continuum glide force (red circles) compared with the force calculated from
the discrete dislocation model (blue stars) for the cases of (b) B=15b, (c) B=40b, (d) B=50b, (e)
B=100b, and (f) B=200b, respectively.

agrees well with the force in discrete model with small errors. In this case, the glide
force becomes smaller: around 10−4μb, which is again consistent with the weak inter-
action between neighboring dislocation walls in this case. When the inter-dislocation
wall distance B is much greater than the slip plane spacing D, the interaction between
neighboring dislocation walls should be negligible, which is reflected by the small values
of the forces calculated by the continuum and the discrete models shown in Figure 8.2(e)
and (f) (at the order of ≤10−6μb and ≤10−10μb). In this sense, the continuum model
still provides a good approximation to the discrete model in this case, although the
values calculated by the two models are not necessarily exactly the same. The lat-
ter differences at the negligible orders are due to the simplification of our continuum
model in equation (5.17) from its exact form in equations (5.10) and (5.11) using the
simplification in equation (5.14).

Example 3
In this example, we examine the continuum glide force in equation (6.12) for a

general dislocation distribution. The dislocation distribution is given by⎧⎨
⎩
φ(x,y)= b

Bx+0.02sin
(

2π
L1

10x
)
sin

(
2π
L1

2y
)
,

ψ(x,y)= b
Dy+0.02sin

(
2π
L2

2x
)
sin

(
2π
L2

5y
)
,

(8.3)

where D=50b, B=30b, L1=40B and L2=60D. Here L1 and L2 are the periods of
the perturbations in the x and y directions, respectively, and the wavenumbers of the
perturbations in DDPFs φ and ψ are (10,2) and (2,5), respectively.
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(a) Continuum model (full) (b) Continuum long-range force

(c) Discrete model
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Fig. 8.3. Example 3: Continuum glide force and comparison with that of the discrete dislocation
model for a general dislocation distribution given by equation (8.3). The force unit is μb.

Figure 8.3 shows the values of the continuum glide force calculated by equa-
tion (6.12) and comparisons with the results obtained using the discrete dislocation
model. It can be seen that the glide force profile calculated by the continuum model
including both the long-range and short-range interactions (in Figure 8.3(a)) excellently
keeps the overall features of the glide force distribution calculated by the discrete dislo-
cation model (in Figure 8.3(c)), whereas the continuum long-range glide force alone (in
Figure 8.3(b)) loses too much detailed information compared with the discrete model
(in Figure 8.3(c)). Moreover, as shown in Figure 8.3(d) and (e), the full continuum
force successfully reduces the maximum error of the continuum long-range force by half,



XIAOHUA NIU, YICHAO ZHU, SHUYANG DAI, AND YANG XIANG 519

although the continuum short-range terms are derived only from special distributions
of dislocations.

8.2. Dynamics simulations. In this subsection, we present some simulation
results for the dynamics of the dislocation structures and compare the results with those
of the discrete model. We consider the dislocation distribution of Case 1 in Section 5.
In this case, the continuum model is given by equation (6.13). We fix the uniform active
slip plane spacing ψy =D=50b.

The initial state of the evolution is a dislocation wall system of N =40 dislocation
walls with average spacing B=30b. The left half of these dislocation walls consist of
dislocations with direction in the +z direction, and the right half consist of dislocations
with direction in the −z direction. Initially, these dislocation walls have equal spacing.
An initial profile of the DDPF φ is shown by the blue curve in Figure 8.4. We use
periodic boundary condition in the simulations. The dislocation walls at the two ends
of the simulation domain are fixed. We evolve the dislocation system under applied
shear stress σ0

xy =−0.0009μb and −0.09μb.

−60 −40 −20 0 20 40 60
0

2

4

6

8

10

12

14

16

18

20

x/B

φ/
b

Fig. 8.4. Evolution of the dislocation walls system (represented by the evolution of the DDPF
φ) and equilibrium locations of dislocation walls (dots on the x-axis) under applied shear stress σ0

xy =
−0.0009. The blue curve is the initial profile of φ(x), and the red curve is the profile of φ(x) of the
final, equilibrium state.

Evolution of the dislocation walls system represented by the DDPF φ under applied
shear stress σ0

xy =−0.0009 is shown in Figure 8.4. It can be seen that during the evo-
lution, some opposite-direction dislocation wall pairs initially in the middle annihilate,
and the remaining dislocation walls are piled-up at the two ends of the domain. Finally,
an equilibrium state is reached, in which the +z dislocation walls are piled up at the
left end of the domain and the −z dislocation walls are piled up at the right end of the
domain.

The obtained equilibrium dislocation wall distributions under applied shear stress
σ0
xy =−0.0009μb and −0.09μb and comparisons with the results obtained by discrete

dislocation model are shown in Figure 8.5. In both cases, the simulation results using
the continuum model agree excellently with the results of discrete dislocation model for
these pile-ups of dislocation walls, even though the dislocation wall densities are high
in the pile-ups and vanishes in the middle of the domain.
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(a) Wall locations for σ0
xy =−0.0009μb
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(c) Wall locations for σ0
xy =−0.009μb
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Fig. 8.5. Equilibrium dislocation wall pile-ups calculated using our continuum model and compar-
isons with the results of the discrete dislocation model under the applied shear stress σ0

xy =−0.0009μb

(images (a) and (b)) and σ0
xy =−0.009μb (images (c) and (d)). The profiles of the DDPF φ and

locations of the dislocation walls in the equilibrium states are shown in (a) for σ0
xy =−0.0009μb and

(c) for σ0
xy =−0.009μb. The black dots on the x-axis indicate the locations of the dislocation walls,

and the blue dots show the corresponding values of φ in the continuum model. The densities of the
dislocation walls (given by φ′(x)) in the equilibrium states are shown in (b) for σ0

xy =−0.0009μb and

(d) for σ0
xy =−0.009μb.

9. Conclusions
In this study, we have considered systems of parallel straight dislocation walls and

have identified four cases of these dislocation structures where the continuum long-
range glide or climb force vanishes but the corresponding Peach–Koehler force from
the discrete dislocation model does not. We have developed continuum descriptions
for the short-range dislocation interactions for these four cases by using asymptotic
analysis. The obtained continuum short-range interaction formulas are incorporated in
the continuum model for dislocation dynamics based on a pair of dislocation density
potential functions that represent continuous distributions of dislocations. This derived
continuum model is able to describe the anisotropic dislocation interaction and motion.
It has been shown that after incorporating these short-range interaction terms, the
continuum model is able to provide strong stabilizing effect as does by the discrete
dislocation dynamics model. Since these short-range interaction terms are in the form of
second order partial derivatives of the DDPFs φ and ψ, they also serve as regularization
terms in the evolution equations of φ and ψ. The derived continuum model is validated
by comparisons with the discrete dislocation dynamical simulation results.

Multiple pairs of the DDPFs can be employed in continuum model to describe
the dynamics of dislocations with multiple Burgers vectors [43]. The short-range in-
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teractions between dislocations with different Burgers vectors may involve dislocation
reaction and dissociation in addition to the elastic interactions [14, 44]. Continuum
formulations incorporating these interactions will be explored in the future work.
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