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COALESCING PARTICLE SYSTEMS AND APPLICATIONS TO
NONLINEAR FOKKER–PLANCK EQUATIONS∗

GLEB ZHELEZOV† AND IBRAHIM FATKULLIN‡

Abstract. We study a stochastic particle system with a logarithmically-singular inter-particle
interaction potential which allows for inelastic particle collisions. We relate the squared Bessel process
to the evolution of localized clusters of particles, and develop a numerical method capable of detecting
collisions of many point particles without the use of pairwise computations, or very refined adaptive
timestepping. We show that when the system is in an appropriate parameter regime, the hydrodynamic
limit of the empirical mass density of the system is a solution to a nonlinear Fokker–Planck equation,
such as the Patlak–Keller–Segel (PKS) model, or its multispecies variant. We then show that the
presented numerical method is well-suited for the simulation of the formation of finite-time singularities
in the PKS, as well as PKS pre- and post-blow-up dynamics. Additionally, we present numerical
evidence that blow-up with an increasing total second moment in the two species Keller–Segel system
occurs with a linearly increasing second moment in one component, and a linearly decreasing second
moment in the other component.
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1. Introduction

1.1. Background. The connection between systems of interacting particles
and kinetic-type PDEs was first investigated by Kac in his study of the motion of a
tagged molecule in a bath of identical molecules [18], which arose as a simplified model
of a Maxwellian gas [24]. This work introduced the property of “propagation of chaos”:
as the number of molecules tends to infinity, the N -particle probability densities are
well-approximated by the product of single particle marginals.

The connection between such processes and nonlinear parabolic equations, such
as Boltzmann’s equation or Burgers’ equation, was then elaborated by McKean [25].
This line of research has continued since, and much more is now known about the
duality between these processes and parabolic PDEs [28]. In particular, particle-based
numerical methods have been developed for the solution of such PDEs [3] using the
methods of “mean field Monte Carlo.” The solutions to these PDEs are approximated
by the empirical density of N -particle systems. As the number of particles tends to
infinity, such approximations become exact by the propagation of chaos property.

Rigorously proving propagation of chaos for particle systems with singular inter-
action coefficients is challenging, and has only been carried out in a few special cases,
e.g. [17]. One PDE associated with a logarithmically-singular particle system is the
Patlak–Keller–Segel chemotaxis model (PKS) [20, 26], which is reviewed extensively
in [15, 16]. Despite the lack of a propagation of chaos result, the PDE has been nu-
merically approximated using the associated particle system in several works, initially
in [12, 13] and later in [10]. Various properties of the PKS, such as the formation of
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Dirac singularities in finite time [1], as well as interaction of singularities post-blow-
up [7,30,31], can either be shown to be true in the particle system, or have considerable
numerical evidence for their existence. Recent advacements in understanding this parti-
cle system include partial existence and uniqueness results for solutions to the subcritical
(small mass) particle system [4,11], and convergence of the empirical density of a similar
particle system to the solution of a modified PKS system [2].

Singular interaction coefficients in the PKS particle system allow for particle col-
lisions, and some type of regularization must be introduced in order to propagate the
particle system past the first collision time. In [12], semi-deterministic heavy particles
absorb light particles. In [10], collided particles are forced to move in unison due to a
mean field. Broadly speaking, the two works take two different approaches to simulat-
ing the regularizations of the PKS derived in [7] and [30, 31]. The first work simulates
the singular limit of the system, whereas the second work simulates the system with an
effectively regularized Green’s function.

In [12], heavy particles corresponding to singularities in the PDE must be prescribed
a priori and cannot arise as the result of a collision of many light particles. On the other
hand, particles do not truly collide in [10], and the deterministic system approximated
is closer to the one given in [30,31], where singularities are replaced with regions of high
density. In this work, we develop criteria for particle coalescence of particles of arbitrary
masses, based on analytical estimates of exit times of the squared Bessel process. In
this context, the particle system in [12] can be viewed as the limit of the particle system
in [10] with collisions, as the number of particles tends to infinity.

1.2. Outline. We introduce a coalescing particle system with nonuniform parti-
cle masses and a logarithmic interaction kernel. Using estimates on the system’s second
moment, we derive a criterion for a finite-time collision of the entire particle system.
We then motivate the mass-dependence of the diffusion coefficient of a particle, and ap-
proximate the time evolution of a localized subsystem’s second moment. We then show
that the hydrodynamic limit of such a system is the multispecies Patlak–Keller–Segel
system, of which the PKS is a special case. Finally, we present a numerical method im-
plementing many-body collisions and coalescence events, which is generally applicable
to PDEs of the form ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ1 =∇·(μ1∇ρ1−χρ1∇c),
...

∂tρK =∇·(μK∇ρK−χρK∇c),

Lc =−(ρ1+ · · ·+ρK),

(1.1)

where

Lc(x,t)=∇·(G(x)∇c(x,t))+F (x,c) (1.2)

is an elliptic operator with a fundamental solution V which has a logarithmic singularity.
As an application, we apply it to the planar case with decaying (radiative) boundary
conditions and L=Δ, though the method is equally applicable to bounded domains
with Neumann boundary conditions. This special case is the planar PKS system, some
properties of which we describe in Section 1.4, and whose measure-valued solutions we
describe in Section 4.2. We also apply the numerical method to investigate blow-up in
the components of the multispecies PKS.



GLEB ZHELEZOV AND IBRAHIM FATKULLIN 465

1.3. The coalescing particle system. We study the N -particle systems
described by the following equations

dX
(n)
t =−χ ∂

∂X
(n)
t

N∑
i=1
i �=n

miV (X
(n)
t ,X

(i)
t )dt+

√
2μ̃

mn
dW

(n)
t . (1.3)

Each particle has some mass mn and position X
(n)
t ∈R2. The total mass is M =

∑
imi,

and χ,μ̃>0 are parameters. The processes W
(n)
t are independent Wiener processes.

The particle system in (1.3) is related to the PDE in (1.1) when V is the fundamental
solution of L, e.g. if L=Δ or L=Δ−k2, we have

V (x,y)=
1

2π
ln |x−y|, (1.4a)

V (x,y)=− 1

2π
K0(k|x−y|), (1.4b)

where K0 is the modified Bessel function of the second kind. When mn=M/N and
μ̃=μM/N , the empirical mass density of the particle system with V given by equation
(1.4a) approximates the PKS, and the particle system with V given by equation (1.4b)
is the one given in [10].

The dynamics prescribed in equation (1.3) allows for particle collisions provided
that V has logarithmic or stronger singularities. In this case, the SDE must be aug-
mented with proper boundary conditions prescribing behavior when at least two parti-
cles’ coordinates are identical. Well-posedness and uniqueness results for these types of
SDEs have not been rigorously established. We proceed formally, considering inelastic
collisions: colliding particles merge into a single particle which absorbs their total mass.

1.4. Properties of the Patlak–Keller–Segel system. Since many of the
applications of this work are related to the PKS, we give a short overview of its definition
and properties here.

The PKS is prescribed by the following system of PDEs:{
∂tρ =∇·(μ∇ρ−χρ∇c),

Δc =−ρ, (1.5)

and models a biological system consisting of amoeba, which spread across the plane
with mass density ρ(x,t) and produce a chemical (“chemoattractant”) of concentration
c(x,t). On average, amoeba diffuse in space with diffusivity μ and drift in the direction of
∇c with speed χ|∇c|. The chemoattractant diffuses instantly. The boundary condition
ρ(x,t)→0 as |x|→∞ is enforced, and mass is conserved:

∫
ρ(x,t)dx=M .

This system has been investigated extensively in the literature [15, 16], often in
connection with the property that when

M>8πμ/χ, (1.6)

solutions form singularities in finite time, and when

M<8πμ/χ, (1.7)

solutions are global in time [1]. In the former case, an upper bound for the singularity
formation time T may be given as

T <
2πF (0)

(χM−8πμ)M
, (1.8)
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Fig. 2.1: An N-particle system with a tightly-clustered N ′-particle subsystem. The particles inside
the dashed circle correspond to particles with indices 1, . . . ,N ′, and the rest of the particles correspond
to N ′+1, . . . ,N . Several colors are used to emphasize that the point particles are of different masses.

where

F (t)=

∫
R2

|x|2ρ(x,t)dx (1.9)

and F (0) is the system’s initial second moment [1].

2. Collisions and post-collision dynamics

2.1. Overview. Let us first carry out a moment-based computation for finding
a criterion which predicts whether a particle system will coalesce into a single particle
in finite time. Similar to the PKS mass criterion, this criterion only depends on the
total mass of the system and the number of particles, and is otherwise independent of
the distribution of particles in the plane. We then motivate the mass dependence of the
diffusion coefficient of the newly created particle. Finally, we derive an approximate
equation for the dynamics of the second moment of an isolated cluster of particles.

2.2. Collision criterion for the full system. Consider an N -particle system
with masses and V given as in equation (1.4a). The dynamics of the nth particle are
then prescribed by

dX
(n)
t =− χ

2π

∑
i �=n

mi
X

(n)
t −X

(i)
t∣∣∣X(n)

t −X
(i)
t

∣∣∣2 dt+
√

2μ̃

mn
dW

(n)
t . (2.1)

To quantify the size of the system, consider its second moment

Yt=
1

2M2

∑
i,j

mimj

∣∣∣X(i)
t −X

(j)
t

∣∣∣2 . (2.2)

By the positivity of Yt, showing the total collision of the particles in finite time is
equivalent to showing that YT =0 for some T <∞.

It can be shown (by an application of Ito’s lemma) that

dYt=αdt+2β
√

YtdWt (2.3)

where

α=
4μ̃(N−1)

M
− χM

2π

⎛
⎝1−

∑
j

(mj

M

)2⎞⎠ , β=

√
2μ̃

M
, (2.4)
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and

dWt=
1

(M)3/2
√
Yt

N∑
i,j=1

mj
√
mi

(
X

(i)
t −X

(j)
t

)
·dW (i)

t (2.5)

is a Wiener process by the Lévy characterization. We stress that expression (2.3) is only
valid between collision events, as α depends on the total number of particles and their
masses, and must therefore be updated after each collision. Rescaling time as t→ t/β2

and setting Ỹt=Yβ2t, we get

dỸt=2(ν+1)dt+2

√
ỸtdWt, (2.6)

where ν= α
2β2 −1. In terms of our original constants, ν is given by

ν(m1,m2, · · · ,mN )=(N−2)− χM2

8πμ̃

⎛
⎝1−

∑
j

(mj

M

)2⎞⎠ . (2.7)

Equation (2.6) describes a squared Bessel process with index ν. Its boundary behavior
at Ỹ =0 depends on its index [19,27]:

(1) When ν ∈ [0,+∞), the origin is an entrance boundary, and Ỹt>0 a.s. for all t>0.

(2) When ν ∈ (−1,0), the origin is a regular boundary, and the behavior of the process
at this point must be defined (e.g. absorbing boundary, reflective boundary).

(3) When ν ∈ (−∞,−1], the origin is an absorbing boundary which is hit in finite time.

It then follows that a full, simultaneous collision of all the particles may occur if

ν(m1, . . . ,mN )<0. (2.8)

When ν ∈ (−1,0), we may choose the collision, which we call “soft,” to be fully inelastic,
or fully elastic. Similarly, when ν ∈ (−∞,−1], only an inelastic collision may occur.

The above is not sufficient for describing all collisions in the system. For instance,
we expect the associated singular forces to force the subsystem inside the dashed line in
Figure 2.1 to inelastically collide earlier than the full system. We will approximate the
evolution of the second moment of such a colliding subsystem in Section 2.4, but already
note here that a localized colliding subsystem’s second moment may be approximated as
a separate squared Bessel process that’s independent of the particles not participating
in the collision. As shown in Appendix A, the indices of the squared Bessel processes
corresponding of the full system pre- and post-collision, and the index of the colliding
subsystem, are related via a subtraction formula: if νi is the index of the full system
described in Figure 2.1, νf is the index of the same system after the particles inside the
dashed lines coalesce, and ν is the index of the subsystem inside the dashed line, then

νf −νi=−(ν+1) . (2.9)

From equation (2.9) we see that hard collisions, except in the critical ν=−1 case, always
increase the system’s overall index, and soft collisions increase the system’s overall index.

To see the effect of this index change on the full system, let τ be the first hitting
time of the origin for the SDE given in (2.3). This hitting time has the inverse gamma
distribution [23],

τ � μ̃
Y0

U
, (2.10)
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(a) An aggregate of particles, a moment
before coalescence.

(b) Aggregate coalesces into one particle
of mass M ′.

Fig. 2.2: As ε→0, the bottom-left particle should experience the same drift in (2.2a) and (2.2b).

where U ∼G(|ν|,1) is distributed according to the gamma distribution with shape pa-
rameter |ν| and rate parameter 1.

Intuitively, we see that increasing the index implies that a system contracts at a
slower rate, and that a system with only hard inelastic collisions contracts at a slower
rate after each collision (e.g. as in Figure 5.1). Furthermore, we expect many systems
which can experience soft inelastic collisions to behave similarly, as a localized subsystem
with an index ν ∈ (−1,0) has a low probability of undergoing a collision in a time step
(e.g. τ only has an expected value when ν <−1), and may attract a sufficient number
of additional particles into its aggregate to force the aggregate to experience a hard
collision instead. Since in this work we will primarily focus on the large particle case,
we prescribe that all collisions—soft and hard (i.e. ν <0)—are inelastic.

We remark that the formula for the time derivative of the second moment of the
PKS also only gives an upper bound for the formation of a singularity, since for a system
of total mass M greater than the system’s critical mass Mc, a second moment equal to
zero implies the formation of a singularity of total mass M>Mc. However, singularities
in the radially-symmetric PKS form with a mass of exactly Mc [14,29], after which the
time derivative of the second moment changes [30].

2.3. Post-collision dynamics. The dynamics of the coalescing diffusion sys-
tem, given by (1.3), are undefined at times when there exist two indices i and j such that

X
(i)
t =X

(j)
t . If we prescribe that collisions only occur inelastically, we can propagate the

system past collision times by coarsening the system: that is, by replacing each collided
aggregate of particles with a single particle of the same mass as the aggregate. Let us
now show the diffusion coefficient of the newly-created particle is inversely-dependent
on the square root of the mass, as given in equation (1.3).

Consider an N ′+1 particle system, with the first N ′ particles positioned in a tight,

pre-coalesced cluster at X
(n)
t with masses mn totalling to M ′, and the last particle

located far away at x=X
(N ′+1)
t with mass m=mN ′+1, as in Figure 2.2a. In general,

the diffusion coefficient of a particle may be given as a function of the particles mass,
σn=σ(mn). Let τ denote the time at which the first N ′ particles coalesce at Zτ , and
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fix 0<ε	 τ . Then

dxτ−ε=−χ
N ′∑
i=1

mi
∂V

∂x

(
xτ−ε,X

(i)
τ−ε

)
dt+σ(mN ′+1)dW

(N ′+1)
τ−ε . (2.11)

At the moment the first N ′ particles coalesce, the system becomes a two-particle system,
and so

dxτ =−χM ′ ∂V
∂x

(xτ ,Zτ )dt+σ(mN ′+1)dW
(N ′+1)
τ . (2.12)

Let us assume the particle at xt should not experience an abrupt discontinuity in its
drift at the moment of coalescence, i.e. we want dxτ−ε→dxτ as ε→0+. Equating the
right-hand sides of equations (2.11) and (2.12) as ε→0+ and using the property that

X
(n)
τ−ε→Zτ for all n≤N ′, we get

Zτ = lim
ε→0+

1

M ′

N ′∑
i=1

miX
(i)
τ−ε, (2.13)

meaning the N ′ particles must coalesce at the center of mass of the subsystem. This
suggests that the diffusion coefficient of the newly-created particle positioned at Zτ

should be the same as the diffusion coefficient of the center of mass process of the first

N ′ particles for t<τ . By the independence of the processes W
(i)
t for 1≤ i≤N ′ and the

definition of the center of mass inside the limit on the right-hand side of equation (2.13),
we get

σ(M ′)=
1

M ′

√√√√ N ′∑
i=1

m2
i (σ(mi))2, (2.14)

or equivalently,

(M ′)2 (σ(M ′))2=
N ′∑
i=1

m2
i (σ(mi))

2. (2.15)

Since M ′=
∑

mi, it follows that f(x)=x2(σ(x))2 must be additive, i.e. satisfies
Cauchy’s functional equation,

f(x)=f(x)+f(y). (2.16)

Under the physically relevant assumption that f is continuous, solutions to this func-
tional equation must be linear [21]. We therefore get

σ(m)=

√
2μ̃

m
, (2.17)

as in the dynamics given in the beginning of the work in equation (1.3).
By the same reasoning, we expect Zt to be driven by the weighted noise of the

center of mass, W
(cm)
t , given by

W
(cm)
t =

1√
M ′

N ′∑
i=1

√
miW

(i)
t . (2.18)



470 COALESCING PARTICLE SYSTEMS

(a) All three particles are drifting in the direction
of the center of mass. As can be seen by the asym-
metry in the paths of particles 1 and 2, the effect
of the third particle on the dynamics of the first
two is non-negligible.

(b) The second moment of the subsystem consist-
ing of the first two particles is approximated us-
ing formulae (2.20) and (2.29), and both are com-
pared with the real second moment. Approxima-
tion (2.29) shows the better agreement with the
actual dynamics.

Fig. 2.3: An adaptive time step is used to simulate a three-particle system with χ = 10, μ̃ = 10, and
particle masses m1=m2=20, m3=100. The first two particles are initialized at

(
0,± 1

10

)
, the third

at
(
4
5
cosθ, 4

5
sinθ

)
with θ=π/12.

The dynamics of the coalesced particle of mass M ′ at Zt for t≥ τ are therefore

dZt=−χm∂V

∂x
(Zt,xt)dt+

√
2μ

M ′ dW
(cm)
t , (2.19)

which in the presence of additional particles generalize to equation (1.3).

2.4. Evolution of a subsystem’s second moment. Let us compute the local
second moment of the highly localized subsystem of the first N ′ particles in Figure 2.1.
First, we ignore all interactions with the outside particles not in the colliding cluster,
and therefore approximate that the local second moment,

Ỹt=
1

2(M ′)2

N ′∑
i,j=1

mimj

∣∣∣X(i)
t −X

(j)
t

∣∣∣2 , (2.20)

evolves according to equation (2.3) with the summation being taken over the indices of
the particle participating in the collision,

dỸt≈dQt=

⎛
⎝4μ̃(N ′−1)

M ′ − χM ′

2π

⎛
⎝1−

N ′∑
j=1

(mj

M ′
)2⎞⎠

⎞
⎠dt+2

√
Ỹt

√
2μ̃

M ′ dW̃t, (2.21)

where

dW̃t=
1

(M ′)3/2
√
Ỹt

N ′∑
i,j=1

mj
√
mi

(
X

(i)
t −X

(j)
t

)
·dW (i)

t . (2.22)
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As shown in Figure 2.3, such an approach appears to be qualitatively correct, but
introduces an error which appears to grow in time. Let us now find a higher order
approximation.

As a model for the system in Figure 2.1, consider a system consisting of two
nearby particles of masses m1 and m2, and a third, distant particle of mass m3, i.e.∣∣∣X(1)

t −X
(2)
t

∣∣∣	 ∣∣∣X(1)
t −X

(3)
t

∣∣∣≈ ∣∣∣X(2)
t −X

(3)
t

∣∣∣. We wish to investigate how the third par-

ticle affects the second moment of the subsystem consisting of the first two particles,

Ỹt=
m1m2

(m1+m2)2

∣∣∣X(1)
t −X

(2)
t

∣∣∣2 . (2.23)

Using equation (1.3) and an application of Ito’s lemma, we can get an exact correction
to the deterministic part of the approximating process Qt given in (2.21):

dỸt=dQt+
2m1m2

(m1+m2)2

(
X

(1)
t −X

(2)
t

)
·

·

⎡
⎢⎣−χm3

2π

⎛
⎜⎝ X

(1)
t −X

(3)
t∣∣∣X(1)

t −X
(3)
t

∣∣∣2 +
X

(2)
t −X

(3)
t∣∣∣X(2)

t −X
(3)
t

∣∣∣2
⎞
⎟⎠
⎤
⎥⎦dt. (2.24)

We introduce the small parameter

εt=(X
(2)
t −X

(1)
t )/(m1+m2), (2.25)

through which expression (2.24) may be approximated as

dỸt=dQt− χm3

π

Ỹt∣∣∣X(cm)
t −X

(3)
t

∣∣∣2 cos2θdt+O(|εt|2)dt (2.26)

where we assume X
(1)
t −X

(3)
t ≈X

(2)
t −X

(3)
t ≈X

(cm)
t −X

(3)
t and θ is the angle between

X
(2)
t −X

(1)
t and X

(cm)
t −X

(3)
t .

A similar monopole approximation may be used when there are N−2 particles
affecting the evolution of the second moment of the first two particles. Then,

dỸt=dQt− χỸt

π

K+2∑
i=3

mi∣∣∣X(cm)
t −X

(i)
t

∣∣∣2 cos2θi+O(|εt|2) (2.27)

=dQt+2χỸt

K+2∑
i=3

miV
′′
(∣∣∣X(cm)

t −X
(i)
t

∣∣∣)cos2θi+O(|εt|2), (2.28)

where θi is the angle betweenX
(2)
t −X

(1)
t and X

(cm)
t −X

(i)
t , and the shorthand V (x,y)=

V (|x−y|) is used to simplify the expression.
By a similar argument, for an N particle system with a cluster consisting of the

first N ′ particles, we have

dỸt≈dQt+2χỸt

N∑
i=N ′+1

N ′∑
j,k=1

miV
′′
(∣∣∣X(cm)

t −X
(i)
t

∣∣∣)cos2θijkdt, (2.29)



472 COALESCING PARTICLE SYSTEMS

where θijk is the angle between X
(j)
t −X

(k)
t and X̃

(cm)
t −X

(i)
t , with

X̃
(cm)
t =(miX

(i)
t +mjX

(j)
t )/(mi+mj). (2.30)

Heuristically, we see that as Ỹt→0, the corrections in approximation (2.29) van-
ish, the subsystem essentially becomes decoupled from the rest of the system, and the
subsystem’s second moment Ỹt becomes a squared Bessel process of negative index by
condition (2.8). Since the collision process (before the collision time) does not involve
the creation or annihilation of particles, it appears that a highly-localized aggregate
which is not decoupled from the rest of the system, but is nontheless undergoing colli-
sion, should still satisfy (2.8), i.e.

ν(m1,m2, . . . ,mN ′)<0, (2.31)

where ν is as in formula (2.7). This informal argument suggests that for a very tight
cluster, this is a sufficient condition for an aggregate to undergo collision. For a less
tight cluster (even if it is separated), the contributions of the higher order corrections
may prevent a collision from occurring.

3. Simulation of particle coalescence and dynamics

3.1. Overview. We employ a grid-particle approach for computing interparticle
interactions, which avoids pairwise computations in equation (1.3) by introducing a
continuous global potential which varies in time. We remark that similar ideas have
been developed in the particle-in-cell literature (e.g. [6, 32]), but without coalescing
stochastic particles.

We sidestep the challenge of numerically detecting singular point collisions by intro-
ducing an adaptive grid which identifies highly localized aggregates, the second moment
of which is computed and simulated using the appropriate Wiener process (given by
equation (2.5)) in order to identify a collision inside a timestep.

3.2. Full numerical method. The numerical method for the simulation of the
coalescing particle system (1.3) combines the upcoming sections at every timestep in
the following order:

(1) Detect highly isolated clusters of particles with negative indices, which may collide
with high probability within the upcoming time step. For each such cluster, compute
the local second moment, Ỹt.

(2) Simulate the particle dynamics, using adaptive timestepping when appropriate. For
each particle in the above clusters, record the total increment of the driving Wiener
process over the full time step.

(3) For each cluster, simulate the second moment over a time step, using equation
(2.5). If the second moment hits zero, coalesce the cluster’s particles at their center
of mass.

3.3. Detection of isolated aggregates. To detect particle collisions, we first
apply a density-based clustering algorithm for finding isolated particle aggregates. Such
clusters are then checked for collisions, as described in Section 3.5.

To find clusters, we form a coarse mesh which covers all the particles (in practice,
we use a 1×1 mesh). For each cell, we compute the square of its diagonal, s2, and the
second moment of the particles inside the cell, Ỹ . We call a cell “separated” if

Ỹ /s2<η	1, (3.1)
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interpolate

monopole
approximation

Fig. 3.1: Inside the computational domain, which we denote by the dashed box, ∇Cij is computed
numerically, and then bilinearly interpolated at the point inside the cell. Outside the computational
domain, we approximate ∇c via a monopole approximation (xcm denotes the center of mass).

where η is some fixed constant (in practice, the authors use η=0.1). If a cell is not
separated, and has more than two particles, then we refine the cell into four equally-sized
cells, and repeat this procedure with each subcell.

A separated cell is kept if it is “collidable,” otherwise it is refined as well. A cell is
collidable if its index ν is negative, and the second moment satisfies

Ỹ +αΔt+2β
√

Ỹ Φ−1(p)
√
Δt<0, (3.2)

where α and β are given as in definition (2.4), Φ is the normal distribution function,
and 0<p	1 is some small probability. The interpretation of this inequality is that it
excludes cells which may collide within the time step with very low probabilities.

3.4. Particle dynamics. Since V (x,y)= 1
2π ln |x−y| is the fundamental solu-

tion to the Laplace operator, we can get a global potential for the the dynamics given
in equation (1.3): ⎧⎪⎪⎨

⎪⎪⎩
dX

(n)
t =χ∇c

(
X

(n)
t ,t

)
dt+

√
2μ̃
mn

dW
(n)
t ,

Δc =−P,
P (x,t) =

∑N
i=1miδ

(
x−X

(i)
t

)
,

(3.3)

where c is the interaction field and P is the empirical mass density. The case of a
different V can be treated similarly.

For the simulation of these particle dynamics, we discretize a computational domain
as in Figure 3.1, and use the particles to interpolate a mass density field Pij onto the field.
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We then numerically solve for the mean field Cij . To advance by Δt forward in time, we
introduce adaptive time steps Δτ1, . . . ,ΔτK(n,t) (this is needed for stability reasons—see
below), and use a forward Euler–Maruyama scheme to simulate the dynamics of each
particle:

X(n)(t+Δτi)=X(n)(t)+χ∇c
(
X(n)(t),t

)
Δτi+

√
2μ̃

mn
N

(n)
i (0,1)

√
Δτi, (3.4)

where N
(n)
i (0,1) is a normal Gaussian random variable. This bookkeeping of the noise

is helpful for numerically detecting collisions, where we need the quantity

ΔW (n)(t)=

K(n,t)∑
i=1

√
ΔτiN

(n)
i (0,1), (3.5)

i.e. the increment of the nth Wiener processW
(n)
t between t and t+Δt (see Section 3.5).

We approximate ∇c(x) in two steps. First, we construct the gradient field
∇Cij = (CXij ,CYij) using the second order approximation

CXij =
Ci+1,j−Ci−1,j

2Δx
, (3.6)

CYij =
Ci,j+1−Ci,j−1

2Δx
. (3.7)

Then we approximate ∇c(x,t) using a bilinear interpolation of the values of ∇C at the
four nearest grid points. In the case that x is not inside the computational domain, we
use a monopole approximation:

∇c(x)=−M∇V (x−xcm), (3.8)

where xcm is the center of mass of the system. Since the primary novelty of this
numerical method is in its applicability to colliding systems, an appropriately-chosen
computational domain (i.e. one which overlaps with most of the mass of the system)
will make use of the monopole approximation rarely. Nonuniform meshes may be used
as well, but have not been observed to make a significant improvement in systems with
most of the mass sufficiently away from the boundaries.

As described in [10], an adaptive time step is dynamically chosen such that the
expected length of a particle’s jump does not exceed the mesh size. This is necessary to
prevent spurious mass oscillations around singularities in c(x,t). Since V has logarithmic
singularities, we expect that time steps can get as small as Δτ ∼Δx2.

The mass density field Pij is computed by bilinearly interpolating the mass of
each particle onto the four nearest grid points. The result is divided by Δx2, to get
a mass density. This first-moment-preserving approach prevents particles from “self-
interacting,” a phenomenon which creates an artificial flux towards grid points, as de-
scribed in [10].

The mean field Cij is solved for on the computational domain using a standard
finite-differences scheme:

1

Δx2
(Ci+1,j+Ci−1,j+Ci,j−1+Ci,j+1−4Cij)=−Pij . (3.9)

The monopole approximation is used for the boundary conditions:

Cij =−MV (Xij−xcm) (3.10)

for Xij on the boundary on the computational domain, and xcm the center of mass of
the particle system.
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3.5. Detection of collisions in isolated aggregates. After all the particles are
propagated over one time step, we consider the terminal cells returned by the algorithm
given in Section 3.3. We approximate the evolution of the second moment inside each
cell which is both separated and collidable. To do this, for each cell, we compute the
quantity

ΔỸ =αΔt+2β
√
ỸΔW̃t, (3.11)

and coalesce all the particles at their new center of mass if ΔỸ ≤0.
The increment ΔW̃t is given by equation (2.22), i.e.

ΔW̃t=
1

(M ′)3/2
√
Ỹt

N ′∑
i,j=1

mj
√
mi

(
X

(i)
t −X

(j)
t

)
·ΔW (i)(t). (3.12)

The cost of computing the above sum can be significantly reduced using the following
identity:

dWt=
1√
MYt

N∑
i=1

√
mi

(
X

(i)
t −X

(cm)
t

)
·dW (i)

t , (3.13)

from which

ΔW̃t=
1√
MỸt

N ′∑
i=1

√
mi

(
X

(i)
t −X

(cm)
t

)
·N (i)(t)

√
Δt, (3.14)

where X
(cm)
t is the center of mass of the cell.

We note the dynamics of the second moment may be approximated more accurately
by taking advantage of the first order correction presented in Section 2.4, but the ne-
cessity of such corrections may be avoided by simply choosing a very small localization
parameter η, as in condition (3.1).
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4. Finite-time blow-up in hydrodynamic limits

4.1. Overview. We first show how the PKS particle system described in
the introduction fits in the context of the present work. We then formally derive the
hydrodynamic limit of a particle system with masses approaching zero nonuniformly,
which we call the multispecies Patlak–Keller–Segel system (MPKS), and derive a finite-
time blow-up condition. Finally, we show how the hydrodynamic limit of the system
may be taken in such a way that the limit is a regularized MPKS system after the time
of blow-up.

4.2. The Patlak–Keller–Segel particle system. As already described in Sec-
tion 1.4, the PKS is given by the following system of PDEs:{

∂tρ =∇·(μ∇ρ−χρ∇c),

Δc =−ρ, (4.1)

where the boundary condition ρ(x,t)→0 as |x|→∞ is enforced, and mass is conserved:∫
ρ(x,t)dx=M .

The PKS may be rewritten more compactly as an integrodifferential equation:

∂tρ=∇·(μ∇ρ+χρ∇(V ∗ρ)), (4.2)

where V (x)= 1
2π ln |x|, as before, is the fundamental solution of the Laplace operator.

Observe that if c is predetermined, then the first equation in system (4.1) is the Fokker–
Planck equation for the process

dXt=χ∇c(Xt,t)dt+
√

2μdWt. (4.3)

It follows that for an N -particle system with positions X
(n)
t , the empirical mass density

PN (x,t)=
M

N

N∑
n=1

δ
(
x−X

(n)
t

)
(4.4)

approximates the solution to the PKS ρ.
Since ∇c is unknown, we approximate it by the mean field created by the particles

themselves: this is readily done making the substitution c→−V ∗PN , as suggested by
equation (4.2). We arrive at

dX
(n)
t =−χM

N

∂

∂X
(n)
t

∑
i �=n

V (X
(n)
t ,X

(i)
t )dt+

√
2μdW

(n)
t . (4.5)

This is simply the particle system described in the bulk of this work, with mn=M/N
and the diffusion coefficient

μ̃=μmn=
μM

N
. (4.6)

Thus, the PKS with total mass M and diffusion coefficient μ can be viewed as the
hydrodynamic limit of the particle system with the above parameters.

The particle system described in this work collides only when the index of the
system (2.7) is negative. Similarly, the PKS forms singularities when the total mass is
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above the critical mass Mc=8πμ/χ [1]. Let us show that these two criteria coincide in
the hydrodynamic limit.

Substituting the necessary diffusion coefficient (4.6) into the definition of the Bessel
index (2.7), we get the PKS index:

νPKS =(N−2)− χMN

8πμ

(
1−
∑
k

(mk

M

)2)

=N

[(
1− 2

N

)
− χM

8πμ

(
1−
∑
k

(mk

M

)2)]
(4.7)

=N

[(
1− 2

N

)
− χM

8πμ

(
1− 1

N

)]
(4.8)

=(N−1)

(
1− χM

8πμ

)
−1. (4.9)

As per the classification of the origin for the second moment, listed in Section 2.2,
we have that a finite-time collision will occur when ν≤−1. This criterion applied to
expression (4.9) reduces exactly to M>8πμ/χ—the necessary and sufficient condition
for finite-time blow-up in the PKS.

4.3. Post-blow-up PKS and particle coalescence. The PKS has been
regularized and investigated post-blow-up in several works, including [30, 31] and [7].
Although the post-blow-up dynamics are slightly different in the two works, they share
the common feature that the density becomes a measure, and splits into a regular, and
an atomic component consisting of Kt point masses:

ρ(x,t)=ρreg(x,t)+

Kt∑
n=1

Mn(t)δ
(
x−x

(n)
t

)
, (4.10)

where the nth atomic component has a smoothly-evolving mass Mn(t)≥8πμ/χ, sup-
ported on a point moving along a smooth path. The point masses may emerge or collide,
and thus their number Kt varies in time. Mass is locally transferred from the regular
component to each atomic component as

dMn

dt
=ρreg

(
x
(n)
t ,t

)
Mn. (4.11)

With these dynamics, it can be shown [7] that the second moment of this system evolves
as

d

dt

(
1

M

∫
|x|2ρ(x,t)dx

)
=4μ

M̄

M
− χM

2π

(
1−

Kt∑
i=1

(
Mi(t)

M

)2
)
, (4.12)

where M̄ =M−∑Kt

i=1Mi(t) is the mass of the regular component (we note the quantity
of interest in the PKS literature is typically the unnormalized second moment, which
we choose to normalize, due to its geometric interpretation).

In the context of the PKS particle system, we expect light, uncoalesced particles
to correspond to the regular component of the solution to the PKS, and each massive,
coalesced particles to correspond to point mass in the atomic component of the solution
to the PKS. By the previous section, such particles should only have mass above 8πμ/χ,
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as in the PKS. Let us recover equation (4.12) using the particle system, assuming that
this correspondence is true.

Consider a PKS system with smooth initial conditions, which blows up in finite
time, and has an atomic component of mass M1, consisting of one point mass, at time
t=T . Now consider a PKS particle system, initialized with N0 particles distributed
according to the initial conditions given to the PKS PDE. The second moment Yt

evolves according to

dYt=αdt+2β
√

YtdWt, (4.13)

where α and β are given in definition (2.4), with μ̃=μM/N0, and mn=M/N0 initially.
Near t=T , there should be one massive particle, consisting of k coalesced light particles.
Plugging this into (2.4), we get:

α=
4μ

M

M

N0
(N0−k+1−1)− χM

2π

(
1−N0−k

N2
0

−
(
M1

M

)2
)

(4.14)

=
4μ

M

(
N0−k

N0
M

)
− χM

2π

(
1−N0−k

N2
0

−
(
M1

M

)2
)
. (4.15)

As N0→∞, we get β→0, and Yt becomes deterministic:

dYt→4μ
M̄

M
− χM

2π

(
1−
(
M1

M

)2
)
dt, (4.16)

consistent with equation (4.12) for a single point mass. A similar argument can be used
to derive equation (4.12) fully.

4.4. Hydrodynamic limit to the multispecies PKS model. We remark that
the sign of the PKS particle system’s index (4.8) becomes independent of N as N→∞.
This convenient property occurs only because μ̃∼1/N , and is actually independent of
the the particle masses, as long as the total sum of the particle masses is fixed and
the mass of each individual particle approaches zero. Thus the question of the limiting
system when individual particles approach 0 nonuniformly arises naturally.

As a first basic example, let us consider the system

dX
(n)
t =−χ ∂

∂X
(n)
t

∑
i �=n

miV (X
(n)
t ,X

(i)
t )dt+

√
2μM

Nmn
dW

(n)
t , (4.17)

where N =2N ′, M =M1+M2, mi = M1/N
′ for i≤N ′ and mi = M2/N

′ for i>N ′.
That is, we break up the system into two families, the first family containing N ′ particles
of uniform mass ma=M1/N

′, and the second family containing N ′ particles of uniform
mass mb=M2/N

′. The particle dynamics are then given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
dX

(n)
t =χ∇c(X

(n)
t ,t)dt+

√
μ
(
1+ M1

M2

)
dW

(n)
t , n≤N ′

dX
(n)
t =χ∇c(X

(n)
t ,t)dt+

√
μ
(
1+ M2

M1

)
dW

(n)
t , n>N ′

Δc =−P1(x)−P2(x),

(4.18)
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where P1 and P2 are the empirical mass densities of the particles of the first and second
mass:

P1(x)=

N ′∑
i=1

maδ
(
x−X

(i)
t

)
, (4.19)

P2(x)=
2N ′∑

i=N ′+1

mbδ
(
x−X

(i)
t

)
. (4.20)

Appealing once more to the formal derivation of the hydrodynamic limit described
earlier, we expect that Pi approximates ρi in the limit N→∞, where

⎧⎪⎪⎨
⎪⎪⎩
∂tρ1 =∇·

(
μ
2

(
1+ M2

M1

)
∇ρ1−χρ1∇c

)
,

∂tρ2 =∇·
(

μ
2

(
1+ M1

M2

)
∇ρ2−χρ2∇c

)
,

Δc =−(ρ1+ρ2).

(4.21)

The above system can be seen as a “two species” PKS model, in which two species
attract each other through the same mechanism, but have different average diffusion
rates.

Similarly, we may break the system up into K families, each family of total mass
Mi and containing Ni particles of uniform mass Mi/Ni. We take the hydrodynamic
limit by fixing ηi>0 for 1≤ i≤K such that

η1+ · · ·+ηK =1, (4.22)

and letting N→∞ in such a way that

Ni=ηiN. (4.23)

Then Pi→ρi, where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ1 =∇·(μ1∇ρ1−χρ1∇c) ,
...

∂tρK =∇·(μK∇ρK−χρK∇c) ,

Δc =−(ρ1+ · · ·+ρK),

(4.24)

with
∫
ρi=Mi and

μi=
M

Mi
ηiμ= lim

N→∞
M/N

Mi/Ni
μ, (4.25)

which can be interpreted as μ scaled by the ratio of the overall system’s average par-
ticle mass, to the ith family’s particle mass. We will refer to system (4.24) as the
“multispecies Patlak–Keller–Segel system” (MPKS).

The excluded case ηi=0 corresponds to a mass of Mi being supported entirely on
a singular component of the solution post-blow-up.
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4.5. Formation of singularities in the MPKS. As can be seen from expression
(4.7), the sign of the index of a particle system that’s taken to its hydrodynamic limit
becomes independent of the number of particles, and can therefore fully collide in finite
time, if a specific mass condition is satisfied. In the PDE, this corresponds to a finite-
time blow up. Let us verify that this is indeed the case.

Assume arbitrary diffusion coefficients μi. Let P (x,t)=
∑K

i=1ρi(x,t) be the total
mass density of an MPKS system. Then

∫
R2P (x,t)dx=M1+ · · ·+MK =M , and

c(x,t)=− 1

2π

∫
R2

ln |x−y|P (y)dy. (4.26)

To show the existence of finite-time blow-up, define the second moment of the system,

F (t)=

∫
R2

P (x,t)|x|2dx, (4.27)

and compute its derivative:

F ′(t)=
K∑
i=1

(
4μi− χM

2π

)
Mi, (4.28)

where the detailed computation is given in Appendix B. Thus for constants satisfying

K∑
i=1

(
4μi− χM

2π

)
Mi<0, (4.29)

the second moment vanishes in finite time, but the total mass is conserved–thus implying
the formation of a singularity.

As an aside, we remark that the the formula given by (4.28) remains valid when
each component has a different chemosensitivity χi. Furthermore, we note that the
blow-up condition (4.29) is satifised when M>max(8πμi/χ), i.e. the MPKS forms a
singularity when its total system mass is greater than the classic PKS critical mass for
each separate components. Recalling the special structure of the diffusion coefficients in
the hydrodynamic limit of the particle system (4.25), we see that the blow-up condition
(4.29) coincides with the full particle system collision condition νPKS <0, where νPKS

is as in expression (4.7).

For two species, the system was investigated in [5], where initial data were classified
in terms of having solutions which either blow up in finite time, or are global in time.
Interestingly, that work showed that there exist initial data corresponding to finite
time blow-up, for which the second moment is increasing, i.e. F ′(t)>0—in analogy
with equation (2.9). An optimal classification was obtained for a disc domain in [8],
though questions, such as if blow up occurs simultaneously in all components, remain
(this question was affirmatively answered for the radial case in [9]). In Section 5.3, we
investigate how the second moments of components of the two species MPKS evolve in
the regime that a singularity forms in finite time with F ′(t)>0.

We expect that the MPKS can be regularized past blow-up times using a singular
perturbation limit, as was done in [30, 31] for the PKS, and proposed in [22] for the
MPKS. In this case, the presented method is well-suited for the investigation of this
regularization.
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Fig. 4.1: For the two species MPKS system, the second moment increases when the point (M1,M2)
lies below the curve obtained by setting the right-hand side of equation (4.28) to zero. However, it was
shown in [5] that finite-time blow-up will occur for radially-symmetric initial data when M2>8πμ2/χ;
thus, unlike in the PKS, it is possible (when μ1>2μ2) for a system to both spread across the plane,
and form a singularity in finite time. The values of Mmax

1 and Mmax
2 are given in equation (5.6).

A typical region in which this atypical behavior occurs is shaded above, with parameters χ=100,μ1=
10,μ2=1. In the aforementioned work, it was hypothesized that the second moment of one component
increases, while the second moment of the other component decreases. We investigate this possibility
in Section 5.3.

4.6. More general V . As the particle system dynamics are equally valid for
choices of V which are not scaled logarithms, we left some formulas somewhat general,
simply in terms of the derivatives of V . Particle coalescence, however, strongly depends
on there being a logarithmic singularity in V . This is necessary to connect collisions to
the Bessel process.

We note that, in the plane, the fundamental solution to a radially-symmetric, elliptic
operator L with sufficiently regular coefficients (as in equation (1.2)) has logarithmic
singularities. It therefore follows that the discussion above applies in the case when V is
such a fundamental solution. That is, suppose V (x,y)∼γ ln |x−y| as |x−y|→0. Then
the index formulas used in the previous sections should be replaced by the following
index:

νL(m1,m2, · · · ,mN )=N

(
1− 2

N

)
− γχM2

4μ̃

⎛
⎝1−

∑
j

(mj

M

)2⎞⎠ . (4.30)

Applying the same procedure as in Section 4.4 will result in a hydrodynamic limit
which solves ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ1 =∇·(μ1∇ρ1−χρ1∇c) ,
...

∂tρK =∇·(μK∇ρK−χρK∇c) ,

Lc =−(ρ1+ · · ·+ρK),

(4.31)

with post-blow-up dynamics similar to the ones given for the PKS in [30,31] and [7].

5. Numerical simulations
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5.1. Overview. One application of this work is in developing a numerical
method for the PKS and PKS-like systems, which is able to handle the formation of
singularities, as well as post-blow-up dynamics. Let us consider two example applica-
tions, for which we explicitly know the expected behavior: the evolution of the second
moment for the PKS, pre- and post-blow-up, as given in equation (4.12), and blow-up
with an increasing second moment in the two species MPKS, as described in Figure 4.1.
In the first, we will show that the second moment of our particle approximation evolves
as predicted by [7] both before and after blow-up, confirming that our numerical method
correctly transitions from approximating smooth solutions to the PKS, to approximat-
ing measure-valued solutions. In the second, we will see how the second moment of
the components of a two species MPKS system with masses inside the shaded region
in Figure 4.1 evolve, thus giving numerical evidence to the idea that blow-up in this
regime occurs via one contracting, and one expanding component.

We remark the presented numerical method is parallelizable, and scales approxi-
mately linearly with the number of particles. It can therefore be used to simulate a
large number (on the order of millions) of particles very quickly. Averaging over such
large ensembles reduces observed stochastic fluctuations to a minimum, as may be noted
from the examples in this section.

Fig. 5.1: We simulate 40×103 particles to approximate the system described in Section 5.2. Initially,
the second moment decreases at a rate of −20, as predicted by the classic PKS formula for blow-up.
Near t=0.05, a singularity is formed, and the slope of the graph of second moment suddenly changes
to −12. Each dashed line is fitted to one only point—i.e. the particle approximation of the PDE is
effective post-blow-up.
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Fig. 5.2: We simulate 40×103 particles to approximate the system described in Section 5.2 until it is
fully singular. On this time scale, the continuous transfer of masses between the regular and singular
component may be observed, by the curved second moment graph, and by the gradually decreasing graph
of number of particles. The dashed lines correspond to the same ones as in Figure 5.1.

5.2. Regularized PKS. For the first example, we reproduce equation (4.12) for
the PKS second moment:

d

dt

(
1

M

∫
|x|2ρ(x,t)dx

)
=4μ

M̄

M
− χM

2π

(
1−

Kt∑
i=1

(
Mi(t)

M

)2
)
. (5.1)

Thus, the graph of the second moment of a critical PKS system will initially appear
linear, then decelerate, and then—depending on the mass distribution—will either be-
come linear again (with a different slope), or continually change its slope due to nonstop
mass transfer to the atomic component. Using the numerical method developed in this
work, this second moment evolution can be observed. For a PKS system with mobil-
ity μ and chemosensitivity χ, we associate an N0-particle coalescing particle system
with μ̃=μM/N0 and mn=M/N0, and approximate ρ by the empirical mass density.
As this particle approximation has been shown to be effective in approximating the
PKS pre-blow-up [10,12], we specifically concentrate on the formation and detection of
singularities.

5.2.1. Mass transfer to singularity. In particular, we consider the case
χ=μ=1, with total mass six times the critical mass, M =6 ·8π. We split the mass
amongst a small bump function of mass M1=4 ·8π supported on a disc of unit radius,
which is separated far away from a bump function of mass M2=2 ·8π that’s supported
on an ellipse with axes 1 and 7. These initial initial conditions are chosen so as to
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Fig. 5.3: Snapshots of the interpolated mass density field Pij for the simulation described in Sec-
tion 5.2. The relation between this figure and Figure 5.1 and Figure 5.2 is given at the end of Sec-
tion 5.2.1. All particles initially have the same mass.
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Fig. 5.4: We set χ=μ=1 and initialize two small bumps functions at (±3,±1) with supercritical
masses 12π/5 and 28π/5. Each smooth bump quickly forms a singular component, and the 400×103

particle system reduces to a ∼2 particle system. The formation and interaction of the singularities
may be seen in the above snapshots of c(x,t). After the initial formation of singularities, the second
moment decreases linearly, as predicted by equation (4.12). In this particular simulation, we used
[−15,15]2 as the computational domain, which we discretized using a 270×270 mesh, and set the time
step to be 0.002

make the solution initially exhibit a linear decay of the second moment, then a sudden
change of slopes due to the rapid formation of a singularity caused by the first bump
function, and finally–a continuous deceleration, due to continual mass transfer from the
lighter bump function to the formed atomic component. With the chosen parameters,
the first two rates of change of the second moment should be −20 and −12. This can
be observed in Figure 5.1. Further in time, the gradual transfer of mass may be seen as
well, as shown in Figure 5.2.

The underlying particle dynamics and collisions are illustrated in Figure 5.3, where
each snapshot corresponds to qualitatively different rates of change of the second mo-
ment in Figure 5.1 and Figure 5.2: sudden mass coalescence of a tight aggregate (switch
of slopes in Figure 5.2, and t=0.050 and t=0.100 in Figure 5.3), attraction of mass
without coalescence (linear decay in Figure 5.1, and t=0.100 and t=0.650 in Fig-
ure 5.3), continuous slow and fast mass absorption (gradual deceleration in Figure 5.2,
and t=0.650 and t=0.950 in Figure 5.3), and the transformation of the PKS system
to being essentially singular (flat part of the figure in Figure 5.2, and t=2.200 in Fig-
ure 5.3).

5.2.2. Interaction of singularities. In another experiment, we initialize a
system in which two singularities form and interact, as described in Figure 5.4. In this
special case, the second moment is simply the square of the distance between the two
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Fig. 5.5: Evidence of the phenomenon described in Figure 4.1, for initial conditions which are and
are not radially-symmetric. As can be seen, the total second moment expands at a fixed rate, as do the
individual components. However, the rate of change of the second moment of each component varies
with the initial data. For these simulations, we used 106 particles, and discretized [−1.5,1.5] using a
320×320 mesh for the computational grid. The initial conditions for each experiment are given in 5.3.
We note that although the first component is expanding, there is evidence that it nonetheless blows up
in the L∞ norm [22].

singularities, the graph of which should be piecewise linear (as observed). We note that
the numerical coalescence procedure avoids the “washing out” effect near the collision
time in Figure 7 of [10].

5.3. Expanding MPKS with blow-up. For the second example, we simulate
blow-up with an increasing total second moment for the two species Keller–Segel system:

⎧⎪⎨
⎪⎩
∂tρ1 =∇·(μ1∇ρ1−χρ1∇c),

∂tρ2 =∇·(μ2∇ρ2−χρ2∇c),

Δc =−(ρ1+ρ2),

(5.2)
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with
∫
ρ1=M1 and

∫
ρ2=M2. The interest in this phenomenon is described in Figure 4.1

and Section 4.4. In particular, we show that when a two species PKS system is in
this regime, the second moment of one component increases linearly, while the other
decreases. Such semi-decoupled behavior was suggested in [5]. We remark that the
numerical method presented is well-suited for this investigation, as it can simulate the
system in the entire plane.

We approximate this two system using N0 particles, the first N1= �η1N0� of which
have particle masses M1/N1, and distributed on the plane according to ρ1(·,0). Sim-
ilarly, the last N2=N0−N1 particles have masses M2/N2, and are distributed on the
plane according to ρ2(·,0). Using equations (4.24) and (4.25), we see that

ηi=
Mμi

Miμ
, (5.3)

where

μ=(M1+M2)

(
μ1

M1
+

μ2

M2

)
. (5.4)

The particle system’s diffusion coefficient μ̃ is then

μ̃=
μ(M1+M2)

N0
. (5.5)

Thus, for a two species MPKS system with component masses M1,M2 and diffusion
coefficients μ1,μ2, we associate an N0 particle system with two different possible particle
masses. The diffusion coefficient for equation (1.3) is given by formula (5.5). In this
sense, the purpose of μ in formula (5.4) is auxiliary.

When μ1>2μ2, it is always possible to choose component masses which will force
a radially-symmetric system to blow-up with increasing second moment. In this case,
Mmax

1 and Mmax
2 in Figure 4.1 can be shown to be

Mmax
1 =

2π

χ
· (μ1−2μ2)μ1

μ1−μ2
, Mmax

2 =
2π

χ
· μ2

1

μ1−μ2
. (5.6)

For the experiments in this section, we simulate the two species system as described
above, and choose the convenient parameters

χ=4, μ1=
35

2
, μ2=

35

12
, M1=4, M2=24, (5.7)

which correspond to the auxiliary parameters

μ=5, η1=
1

2
, η2=

1

2
. (5.8)

For the above masses, we consider three different initial conditions. Each respective
solution exhibits linear growth in the first component’s second moment, and decay
in the second component’s second moments, but at rates which depend on the initial
distribution of mass. In particular, we choose the following initial conditions:

(1) Radially-symmetric component initial data. We initialize both components as bump
functions supported on a disc of radius a=0.35 and centered at the origin.
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(2) Non-symmetric component initial data. We initialize the first component as a bump
function of radius a and centered at the origin, and the second component as a bump
function supported on an ellipse centered at (0.1,0) with axes 2a and a/2, with the
major axis parallel to the y-axis.

(3) Component initial data on disjoint support. We initialize each component on a bump
function supported on a disc of radius a, where the first component is centered at
(a,−a), and the second at (−a,a).
The results of these simulations can be seen in Figure 5.5. We note that although

both components change linearly, their rates of change appear to depend on the initial
conditions.

6. Conclusion
We investigated a planar particle system with nonuniform particle masses, in which

particles interact via a logarithmically-singular kernel. As post-collision dynamics in
such a system are undefined, we used the idea of particle coalescence in order to prop-
agate the system further in time, and connected it to the theory of the squared Bessel
process. We exploited this connection to develop an efficient numerical method for
the simulation of the system, which has applications in the numerical approximation
and regularization of a wide range of nonlinear Fokker–Planck equations, such as the
multispecies Patlak–Keller–Segel model.

As mentioned before, properties of singularity formation in the MPKS are not fully
understood, and have somewhat unexpected behavior, when compared to the PKS. For
instance, singularities may form while the system’s second moment is increasing. It
would be interesting to further connect existing results with predicting a nonuniform
particle system’s behavior post-collision.

The question of coalescence in a system with memory arises naturally, as an analogue
to the parabolic Keller–Segel model. In this case, the field c(x,t) is replaced with the
solution to the following equation,

∂tc=Δc−k2c+
∑
i

miδ
(
x−X

(i)
t

)
, (6.1)

which has the more biologically-meaningful intepretation of a chemoattractant which
thermalizes at a finite rate, diffuses, decays, and is produced by the particles. This
system will be investigated in future works.
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Appendix A. Subtraction formula for indices. If νi is the index of the full
system described in Figure 2.1, νf is the index of the same system after the particles
inside the dashed lines coalesce, and ν is the index of the subsystem inside the dashed
line, then using formula (2.7) we have

νi=N−2− χ

8πμ̃

⎛
⎝M2−

N∑
j=1

m2
j

⎞
⎠ , (A.1)

νf =N−N ′−1− χ

8πμ̃

⎛
⎝M2−

N∑
j=N ′+1

m2
j−(M ′)2

⎞
⎠ , (A.2)
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ν=N ′−2− χ

8πμ̃

⎛
⎝(M ′)2−

N ′∑
j=1

m2
j

⎞
⎠ , (A.3)

from which it follows that

νf −νi=−(ν+1) . (A.4)

Appendix B. MPKS second moment. The evolution of the second moment of
the MPKS can be computed as follows:

F ′(t)=
d

dt

∫
R2

|x|2
K∑
i=1

ρi(x,t)dx (B.1)

=

∫
R2

|x|2
K∑
i=1

∇·(μi∇ρi−χρi∇c)dx (B.2)

=−2
∫
R2

K∑
i=1

(μi∇ρi−χρi∇c) ·xdx (B.3)

=−2
∫
R2

K∑
i=1

μi∇ρi ·xdx+2χ

∫
R2

K∑
i=1

ρi∇c ·xdx (B.4)

=4

∫
R2

K∑
i=1

μiρi(x)dx (B.5)

− χ

π

∫
R2×R2

K∑
i,j=1

ρi(x)ρj(y)
x−y

|x−y|2 dy ·xdx

=4

K∑
i=1

μiMi− χ

2π

⎛
⎝∫

R2×R2

K∑
i,j=1

ρi(x)ρj(y)
x−y

|x−y|2 dy ·xdx (B.6)

+

∫
R2×R2

K∑
i,j=1

ρi(y)ρj(x)
y−x

|y−x|2 dx ·ydy
⎞
⎠

=4
K∑
i=1

μiMi− χ

2π

∫
R2

K∑
i,j=1

ρi(y)ρj(x)dydx (B.7)

=4
K∑
i=1

μiMi− χM

2π

K∑
i=1

Mi (B.8)

=
K∑
i=1

(
4μi− χM

2π

)
Mi. (B.9)
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